Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

2

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

3

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

4

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

5

Supplemental Gas Supplies  

Gasoline and Diesel Fuel Update (EIA)

. . Supplemental Gas Supplies by State, 1996 (Million Cubic Feet) Table State Synthetic Natural Gas Propane- Air Refinery Gas Biomass Gas Other Total Alabama ...................... 0 18 0 0 0 18 Colorado...................... 0 344 0 0 a 6,443 6,787 Connecticut ................. 0 48 0 0 0 48 Delaware ..................... 0 1 0 0 0 1 Georgia........................ 0 94 0 0 0 94 Hawaii.......................... 2,761 0 0 0 0 2,761 Illinois .......................... 0 488 3,423 0 0 3,912 Indiana......................... 0 539 0 0 b 2,655 3,194 Iowa............................. 0 301 0 0 0 301 Kentucky...................... 0 45 0 0 0 45 Maine........................... 0 61 0 0 0 61 Maryland...................... 0 882 0 0 0 882 Massachusetts ............ 0 426 0 0 0 426 Michigan ...................... 0 0 0 0 c 21,848 21,848 Minnesota.................... 0 709 0 0 0 709 Missouri

6

Coal Supply Basin Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

7

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

8

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

9

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

10

,"New York Supplemental Supplies of Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Supplemental Supplies of Natural Gas",5,"Annual",2013,"6301967" ,"Release Date:","10...

11

Gas supplies of interstate/natural gas pipeline companies 1989  

SciTech Connect (OSTI)

This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

Not Available

1990-12-18T23:59:59.000Z

12

natural gas supply | OpenEI  

Open Energy Info (EERE)

natural gas supply natural gas supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 13, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA natural gas supply prices Data application/vnd.ms-excel icon AEO2011: Natural Gas Supply, Disposition, and Prices - Reference Case (xls, 91.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

13

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES  

E-Print Network [OSTI]

NOAA Technical Memorandum ERL GLERL-85 COVARIANCE PROPERTIES OF ANNUAL NET BASIN SUPPLIES ........................................................................................................ 2 2.2 Net Basin Supplies . . . . . . . . . . . 4 Table lb.--Lag-Zero Cross Covariances and Cross Correlations Among Great Lakes Annual Connecting

14

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect (OSTI)

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

15

Optimization Online - Consideration of Gas Supply Contracts with ...  

E-Print Network [OSTI]

Nov 18, 2008 ... ... natural gas (NG) providers, who supply gas for electric energy generators. In order to achieve more regularity for NG providers cash flows,...

Leonardo A. M. Moraes

2008-11-18T23:59:59.000Z

16

Restoration islands supplied by gas turbines  

Science Journals Connector (OSTI)

The paper describes how gas turbine based plants (open cycle and combined cycle) can be profitably used in power system restoration for supplying restoration areas. In recent times, in fact, several gas turbine sections entered the power system due to the improved efficiency of gas turbines and to the development of high efficiency combined-cycle plants. These units can be easily improved to provide black-start capability and can therefore largely increase the black-start capacity of the entire system. Restoration islands to be used for minimizing the time to supply critical areas, such as urban and industrial zones, can support the usual restoration paths designed to provide cranking power to large steam units. The paper presents the defining criteria for the procedures to be followed during restoration. An example referred to as an urban area is reported with simulation results. The Italian System Operator recently carried out some tests on an open cycle gas turbine aimed at checking the island operation of the unit. Some results are described.

S. Barsali; D. Poli; A. Pratic; R. Salvati; M. Sforna; R. Zaottini

2008-01-01T23:59:59.000Z

17

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect (OSTI)

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

18

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

19

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

20

Restricted Natural Gas Supply Case (released in AEO2005)  

Reports and Publications (EIA)

The restricted natural gas supply case provides an analysis of the energy-economic implications of a scenario in which future gas supply is significantly more constrained than assumed in the reference case. Future natural gas supply conditions could be constrained because of problems with the construction and operation of large new energy projects, and because the future rate of technological progress could be significantly lower than the historical rate. Although the restricted natural gas supply case represents a plausible set of constraints on future natural gas supply, it is not intended to represent what is likely to happen in the future.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

SciTech Connect (OSTI)

This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

Not Available

1995-01-01T23:59:59.000Z

22

Multi-Echelon Supply Chain Design in Natural Gas Industry  

E-Print Network [OSTI]

Abstract: In this paper, a framework is proposed for integrating of the operational parts of Natural Gas Transmission Systems (NGTSs) through pipelines and better coordination for the flow of natural gas and information in the system. The objective functions of this study are to provide a brief review of literature in natural gas supply chain modeling and to design a multi-echelon Supply Chain for the Natural Gas Transmission Systems (NSTSC). To achieve this, extensive and detailed studies in this field of research have been done. Subsequently, a complete study on the transmission of natural gas through pipelines, as well as the supply chain and its application, has been made in gas industry. Next, based on the operational systems in the natural gas industry, the supply chain levels are developed. These designs are very effective for modeling and optimization of the gas networks. In addition, the developed supply chain helps to reduce the costs of the NGTSs and increase customer satisfaction.

Mehrdad Nikbakht; N. Zulkifli; N. Ismail; S. Sulaiman; Abdolhossein Sadrnia; M. Suleiman

23

Natural Gas Supply Vulnerability in Europe.  

E-Print Network [OSTI]

??Demand for natural gas has been increasing steadily the past few years. Most European countries depend heavily on natural gas imports due to insufficient gas (more)

Gungor, Bekir

2013-01-01T23:59:59.000Z

24

The Natural Gas Pools Characteristics in Sulige Gas Field, Ordos Basin, China  

Science Journals Connector (OSTI)

There are abundant natural gas resources in Sulige gas field, Ordos Basin. The ascertained resources ... setting and reservoir heterogeneity. The characteristics of natural gas pools were analyzed from gas compos...

Lin Xiaoying; Zeng Jianhui; Zhang Shuichang

2012-01-01T23:59:59.000Z

25

Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary  

SciTech Connect (OSTI)

The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

Not Available

1993-12-07T23:59:59.000Z

26

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Broader source: Energy.gov (indexed) [DOE]

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

27

Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed  

Broader source: Energy.gov (indexed) [DOE]

Favorable Supplies, Costs, Environmental Profile for Natural Gas Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study August 23, 2012 - 1:00pm Addthis Washington, DC - The nation's large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy (DOE) study. The report, Role of Alternative Energy Sources: Natural Gas Power Technology Assessment, was prepared by the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Analysts focused on seven criteria to evaluate the role of natural gas in the U.S. energy supply

28

Oil and gas resources in the West Siberian Basin, Russia  

SciTech Connect (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

29

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1998-01-01T23:59:59.000Z

30

Investigating the natural gas supply security: A new perspective  

Science Journals Connector (OSTI)

Abstract This paper assesses the natural gas supply security of 23 importing countries from divergent regions of the world for the period between 2001 and 2013. The indicators used for the study are the volume of imported natural gas, the number of natural gas suppliers, the level of dependency on one country, import dependency, the fragility of supplier countries, and the share of natural gas in primary energy consumption. The method used to establish the supply security index is the PCA (principal component analysis) over the indicators in the model for each country on a yearly basis for the period 2001 to 2013. The dispersed country sample enables the established index to measure the sensitivity of specific natural gas importer countries using a uniform framework. According to the results, the most effective indicators for the measurement of supply security are the number of supplier countries, supplier fragility, and the overall volume of imported gas.

Mehmet Efe Biresselioglu; Tezer Yelkenci; Ibrahim Onur Oz

2014-01-01T23:59:59.000Z

31

Short-term supply chain management in upstream natural gas systems  

E-Print Network [OSTI]

Natural gas supply chain planning and optimization is important to ensure security and reliability of natural gas supply. However, it is challenging due to the distinctive features of natural gas supply chains. These ...

Selot, Ajay

2009-01-01T23:59:59.000Z

32

Chapter 10 - The Transformation of the German Gas Supply Industry  

Science Journals Connector (OSTI)

Publisher Summary Natural gas is the second largest energy source in Germany, and its market share will continue to increase. This chapter describes the historical development of the German gas industry, discusses current issues of importance in German gas policy, and outlines the industrial organization and profiles of the major gas utilities. Today, the German gas industry can be divided into two groups: the gas supply industry and the rest of the gas industry. The gas market in Germany has developed on three levels: natural gas production and import, pipeline business and distribution, and end user supply. Germany's energy policy, as a part of economic policy, is oriented to free market principles. The future of the German gas market is very promising. The share of natural gas is growing as a part of primary energy supply, as well as in power generation, substituting coal and oil, and electricity in the heat market. With regard to the effects of liberalization, it can be said that a one-to-one transposition of international experience to the German gas industry will not be possible, due to the different historical, economical, and political factors at work.

Lutz Mez

2003-01-01T23:59:59.000Z

33

Natural Gas Supply in Denmark -A Model of Natural Gas Transmission and the  

E-Print Network [OSTI]

and power generators of which most are natural gas fired, leads to the natural assumption that the future the consumption of natural gas for heat and power generation is emphasized. General results and threeNatural Gas Supply in Denmark - A Model of Natural Gas Transmission and the Liberalized Gas Market

34

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Broader source: Energy.gov (indexed) [DOE]

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

35

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Broader source: Energy.gov (indexed) [DOE]

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

36

Illinois Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

15 20 17 1 1 * 1967-2013 Synthetic 0 0 1980-2013 Propane-Air 15 20 17 1 1 * 1980-2013 Refinery Gas 1980-2005 Biomass 0 0 1999-2013 Other 0 0 2005...

37

EIA - Assumptions to the Annual Energy Outlook 2010 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2010 Oil and Gas Supply Module Figure 8. Natural Gas Transmission and Distribution Model Regions. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas natural gas exploration and development on a regional basis (Figure 7). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2010), (Washington, DC, 2010). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural

38

Documentation of the Oil and Gas Supply Module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

NONE

1995-10-24T23:59:59.000Z

39

Impact of Natural Gas Price Decontrol on Gas Supply, Demand and Prices  

E-Print Network [OSTI]

is increasingly supplemented by supplies from coal gasification, Alaska, unconventional sources, LNG, Canada, and Mexico. At the same time, however, gas demand is characterized by price-induced conservation in all markets, together with continuing gas demand...

Schlesinger, B.

1982-01-01T23:59:59.000Z

40

New Jersey Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

489 454 457 392 139 255 1967-2013 Synthetic 0 0 0 1980-2013 Propane-Air 0 0 1980-2013 Refinery Gas 1980-2005 Biomass 0 0 1993-2013 Other 489 454 457 392 139 255 1980-2013...

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

42

California's LNG Terminals: The Promise of New Gas Supplies  

Broader source: Energy.gov (indexed) [DOE]

LNG Terminals: The LNG Terminals: The Promise of New Gas Supplies November 28, 2007 © 2005 San Diego Gas and Electric and Southern California Gas Company. All copyright and trademark rights reserved What is LNG? LNG is natural gas that has been liquefied, by cooling it to a temperature of -260°F, so it can be shipped across oceans. The gas is then re-vaporized and delivered to customers. 2 Why Do We Need LNG? California Energy Commission * 2007 Integrated Energy Policy Report -North American gas demand to increase at annual rate of 2.1% over next decade -Domestic production expected to remain flat -LNG imports to US expected to increase 14% annually by 2017 3 4 Benefits of LNG * Reduced energy costs for customers * Increased competition between gas suppliers * Improved reliability for customers

43

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

44

California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

45

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect (OSTI)

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

46

Staff Listing - Office for Oil and Gas Global Security and Supply...  

Broader source: Energy.gov (indexed) [DOE]

Staff Listing - Office for Oil and Gas Global Security and Supply Staff Listing - Office for Oil and Gas Global Security and Supply Director of the Office for Oil and Gas Global...

47

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

48

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

49

Documentation of the oil and gas supply module (OGSM)  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSK, to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2). OGSM is a comprehensive framework with which to analyze oil and gas supply potential and related issues. Its primary function is to produce forecast of crude oil, natural gas production, and natural gas imports and exports in response to price data received endogenously (within NEMS) from the Natural Gas Transmission and Distribution Model (NGTDM) and the Petroleum Market Model (PMM). To accomplish this task, OGSM does not provide production forecasts per se, but rather parameteres for short-term domestic oil and gas production functions and natural gas import functions that reside in PMM and NGTDM.

NONE

1996-01-01T23:59:59.000Z

50

Seismic interpretation, distribution, and basin modelling of natural gas leakage in block 2 of the Orange Basin, offshore South Africa.  

E-Print Network [OSTI]

??Includes abstract. The aims of this study are to: (1) characterize different natural gas leakage features present throughout the basin, and (2) understand the relationship (more)

Boyd, Donna Louise.

2010-01-01T23:59:59.000Z

51

Middle East fuel supply & gas exports for power generation  

SciTech Connect (OSTI)

The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

Mitchell, G.K. [Merrimack Energy Co., LTD, Lowell, MA (United States); Newendorp, T. [Taylor-DeJongh, Inc., Washington, DC (United States)

1995-12-31T23:59:59.000Z

52

Assumptions to the Annual Energy Outlook 2001 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2001), (Washington, DC, January 2001). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

53

Assumptions to the Annual Energy Outlook 2002 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2002), (Washington, DC, January 2002). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both

54

Shale-gas scheduling for natural-gas supply in electric power production  

Science Journals Connector (OSTI)

Abstract This paper describes a novel integration of shale-gas supply in geographical proximity to natural-gas power production. Shale-gas reservoirs hold special properties that make them particularly suited for intermittent shut-in based production schemes. The proposed scheme argues that shale-gas reservoirs can be used to shift storage of gas used for meeting varying demands, from separate underground storage units operated by local distribution companies to the gas producers themselves. Based on this property, we present an economical attractive option for generating companies to increase their use of firm gassupply contracts to the natural-gas power plants in order to secure a sufficient gas supply. The shale-well scheduling is formulated as profit-maximization model for well operators, in which we seek to include their main operational challenges, while preserving an economic incentive for the operators to adopt the proposed scheme. The resulting large-scale mixed integer linear program is solved by a Lagrangian relaxation scheme, with a receding horizon strategy implemented to handle operational uncertainties. We present the proposed optimization framework by illustrative case studies. The numerical results show a significant economic potential for the shale-well operators, and a viable approach for generating companies to secure a firm gas supply for meeting varying seasonal electricity demands.

Brage Rugstad Knudsen; Curtis H. Whitson; Bjarne Foss

2014-01-01T23:59:59.000Z

55

EIA-Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2007 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2006), (Washington, DC, 2006). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

56

EIA - Assumptions to the Annual Energy Outlook 2008 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2008 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Module. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply on a regional basis (Figure 7). A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2007), (Washington, DC, 2007). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural

57

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Reports and Publications (EIA)

This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

2001-01-01T23:59:59.000Z

58

Strategic Planning, Design and Development of the Shale Gas Supply Chain Network  

E-Print Network [OSTI]

1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

Grossmann, Ignacio E.

59

AEO2011: Oil and Gas Supply | OpenEI  

Open Energy Info (EERE)

Supply Supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 14, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA gas oil Data Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

60

The National Energy Modeling System: An Overview 1998 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

OIL AND GAS SUPPLY MODULE OIL AND GAS SUPPLY MODULE blueball.gif (205 bytes) Lower 48 Onshore and Shallow Offshore Supply Submodule blueball.gif (205 bytes) Deep Water Offshore Supply Submodule blueball.gif (205 bytes) Alaska Oil and Gas Submodule blueball.gif (205 bytes) Enhanced Oil Recovery Submodule blueball.gif (205 bytes) Foreign Natural Gas Supply Submodule The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. The driving assumption of the OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas,  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 175 1980's 207 162 103 114 162 185 149 155 158 141 1990's 110 120 100 108 108 115 112 143 153 174 2000's 203 194 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

62

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas  

E-Print Network [OSTI]

Supply Chain Management and Economic Valuation of Real Options in the Natural Gas and Liquefied Natural Gas Industry Mulan Xiaofeng Wang Submitted to the Tepper School of Business in Partial Fulfillment options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportation

Sadeh, Norman M.

63

Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems  

E-Print Network [OSTI]

299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

Lieth, J. Heinrich

64

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

65

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

66

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents [OSTI]

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

67

Assumptions to the Annual Energy Outlook 1999 - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

oil.gif (4836 bytes) oil.gif (4836 bytes) The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze oil and gas supply. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(99), (Washington, DC, January 1999). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery and unconventional gas recovery from tight gas formations, gas shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG).

68

EIA Data: 2011 United States Oil and Gas Supply | OpenEI  

Open Energy Info (EERE)

Oil and Gas Supply Oil and Gas Supply Dataset Summary Description This dataset is the 2011 United States Oil and Gas Supply, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (3 years ago) Date Updated Unknown Keywords AEO EIA energy gas oil Supply Data application/vnd.ms-excel icon Oil and Gas Supply (xls, 32.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

69

California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,253 1980's 2,713 2,664 2,465 2,408 2,270 2,074 2,006 2,033 1,947 1,927 1990's 1,874 1,818 1,738 1,676 1,386 1,339 1,304 1,494 1,571 1,685 2000's 1,665 1,463 1,400 1,365 1,549 2,041 1,701 1,749 1,632 2,002 2010's 1,949 2,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

70

EIA - Assumptions to the Annual Energy Outlook 2009 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumptions to the Annual Energy Outlook 2009 Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.1. Crude Oil Technically Recoverable Resources. Need help, contact the Naitonal Energy Information Center at 202-586-8800. printer-friendly version Table 9.2. Natural Gas Technically Recoverable Resources. Need help, contact the National Energy Information Center at 202-586-8800. Table 9.2. Continued printer-friendly version Table 9.3. Assumed Size and Initial Production year of Major Announced Deepwater Discoveries. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 9.4. Assumed Annual Rates of Technological Progress for Conventional Crude Oil and Natural Gas Sources. Need help, contact the National Energy Information Center at 202-586-8800.

71

DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery,  

Broader source: Energy.gov (indexed) [DOE]

DOE, States Seek Closer Collaboration on Oil and Gas Supply and DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation October 1, 2009 - 1:00pm Addthis Washington, DC - An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy (DOE) and the Interstate Oil and Gas Compact Commission (IOGCC). The Memorandum of Understanding (MOU) provides a framework for states and DOE to work more closely on "responsible domestic production of oil and natural gas; carbon capture, transport and geologic storage; and other topics of mutual interest." The document was signed by DOE's Assistant

72

Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin  

E-Print Network [OSTI]

The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

73

Groundwater Ages and Mixing in the Piceance Basin Natural Gas Province, Colorado  

Science Journals Connector (OSTI)

Groundwater Ages and Mixing in the Piceance Basin Natural Gas Province, Colorado ... Thomas, J. C.; McMahon, P. B. Overview of Groundwater Quality in the Piceance Basin, Western Colorado, 19462009; U.S. Geological Survey Scientific Investigations Report 2012-5198; U.S. Geological Survey: Denver, CO, 2013. ... Hoak, T. E.; Klawitter, A. L. Prediction of Fractured Reservoir Production Trends and Compartmentalization Using an Integrated Analysis of Basement Structures in the Piceance Basin, Western Colorado. ...

Peter B. McMahon; Judith C. Thomas; Andrew G. Hunt

2013-11-04T23:59:59.000Z

74

The effect of natural gas supply on US renewable energy and CO2 emissions  

Science Journals Connector (OSTI)

Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 201355 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

Christine Shearer; John Bistline; Mason Inman; Steven J Davis

2014-01-01T23:59:59.000Z

75

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

76

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

77

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

78

Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes  

Science Journals Connector (OSTI)

A method of supplying CO2 to photosynthetic algal cultures by diffusion through a gas-permeable membrane was developed. The diffusion of CO2 across a silicone membrane could be described by Fick's Laws of Diffusi...

Yuan-Kun Lee; Huey-Kwan Hing

1989-09-01T23:59:59.000Z

79

Fossil gas-seepage marks in coal-bearing sequences of the Lviv-Volyn basin  

Science Journals Connector (OSTI)

The work discusses morphology, vertical and lateral distribution, and genesis of gas-seepage marks first established in the Carboniferous coal-bearing sequence of the Lvov-Volyn Basin. The abundance of gasseep...

V. F. Shulga; A. E. Lukin; B. I. Lelik

2000-09-01T23:59:59.000Z

80

New evidence for the origin of natural gas in Ordos Basin from hydrocarbons of oil water  

Science Journals Connector (OSTI)

The chief aim of the present work is to investigate the controversy origin of natural gas in the Ordos Basin by using the hydrocarbons of oil water. New evidence has been found: There is relatively high content o...

Dujie Hou; Xianqing Li; Youjun Tang

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

82

Water resources: sustainable water supply management and basin wide modelling Internationally it has been recognized that the most important challenge to ensuring sustainable  

E-Print Network [OSTI]

Water resources: sustainable water supply management and basin wide modelling Internationally it has been recognized that the most important challenge to ensuring sustainable water use is implementing integrated water resources management (IWRM). It provides the best framework for balancing

Barthelat, Francois

83

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

84

Staff Listing - Office for Oil and Gas Global Security and Supply |  

Broader source: Energy.gov (indexed) [DOE]

Staff Listing - Office for Staff Listing - Office for Oil and Gas Global Security and Supply Staff Listing - Office for Oil and Gas Global Security and Supply Director of the Office for Oil and Gas Global Security and Supply (Vacant) Natural Gas Regulatory Activities Division John A. Anderson, Director Room 3E-042 Lisa Craig Room 3E-042 Telephone (202)586-9484 FAX (202) 586-6050 Case Management Beverly Howard Room 3E-042 Telephone (202) 586-9387 FAX (202) 586-6050 Lisa Tracy Room 3E-052 Telephone (202) 586-4523 FAX (202) 586-6050 Marc Talbert Room 3E-042 Telephone (202) 586-7991 FAX (202) 586-6050 Office of Natural Gas Docket Room Larine Moore Docket Room Manager Room 3E-042 Telephone (202) 586-9478 FAX (202) 586-6050 International Activities Division Sally Kornfeld, Director Room 3E-042 Telephone (202) 586-3814

85

The National Energy Modeling System: An Overview 2000 - Oil and Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline-quality gas from Mexico and Canada Imported liquefied natural gas. The OGSM regions are shown in Figure 12. Figure 12. Oil and Gas Supply Module Regions The driving assumption of OGSM is that domestic oil and gas exploration and development are undertaken if the discounted present value of the recovered resources at least covers the present value of taxes and the cost of capital, exploration, development, and production. In contrast, international gas trade is determined in part by scenario-dependent, noneconomic factors. Crude oil is transported to refineries, which are simulated in the petroleum market module, for conversion and blending into refined petroleum products. The individual submodules of the oil and gas supply module are solved independently, with feedbacks achieved through NEMS solution iterations (Figure 13).

86

Groundwater and surface water supplies in the Williston and Powder River structural basins are necessary for future development in these regions. To help determine  

E-Print Network [OSTI]

#12;i Abstract Groundwater and surface water supplies in the Williston and Powder River structural of streams, and quantify reservoir interaction in the Williston and Powder River structural basins the loss to underlying aquifers was 7790 ft3 /s. Both the Powder River and Williston basins contain gaining

Torgersen, Christian

87

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

88

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents [OSTI]

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

1987-01-01T23:59:59.000Z

89

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents [OSTI]

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

1987-04-14T23:59:59.000Z

90

Office of Oil, Gas, and Coal Supply Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

feet per day 2,100 1,050 210 <100 Shale plays This page intentionally blank. 2013 U.S. Energy Information Administration | Natural Gas Annual 197 Appendix B Metric and Thermal...

91

Study of gas production potential of New Albany Shale (group) in the Illinois basin  

SciTech Connect (OSTI)

The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

92

AEO2011: Lower 48 Natural Gas Production and Wellhead Prices by Supply  

Open Energy Info (EERE)

Natural Gas Production and Wellhead Prices by Supply Natural Gas Production and Wellhead Prices by Supply Region Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 133, and contains only the reference case. The data is broken down into Production, lower 48 onshore and lower 48 offshore. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural Gas Wellhead prices Data application/vnd.ms-excel icon AEO2011: Lower 48 Natural Gas Production and Wellhead Prices by Supply Region- Reference Case (xls, 59.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

93

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK  

E-Print Network [OSTI]

Oil and Gas CDT Mesozoic Biosequence Stratigraphy of the Wessex Basin, UK University of Birmingham expert academics from across the CDT and also experienced oil and gas industry professionals of a CDT cohort, you will receive 20 weeks bespoke, residential training of broad relevance to the oil

Henderson, Gideon

94

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network [OSTI]

identification method. ..................... 31 Fig. 3.4?Probability distribution at petroleum system level. ......................................... 34 Fig. 3.5?Example of generating probability distribution of qualitative parameter. ....... 34 Fig. 3....6?Example of generating probability distribution of quantitative parameter. ..... 35 Fig. 3.7?Probability distributions of kerogen type in San Juan and Piceance basin. ..... 38 Fig. 3.8?Probability distributions of porosity in San Juan and Piceance basin...

Wu, Wenyan 1983-

2012-10-02T23:59:59.000Z

95

Geologic setting and natural gas potential of Niobrara formation, Williston Basin  

SciTech Connect (OSTI)

Chalk units in the Niobrara Formation (Upper Cretaceous) have potential for generation and accumulation of shallow, biogenic gas in the central and eastern Williston basin. Similar to area of Niobrara gas production in the eastern Denver basin, Niobrara chalks in South and North Dakota were deposited on carbonate ramps sloping westward off the stable eastern platform of the Western Interior seaway. Within the Williston basin, the Niobrara of the western Dakotas, eastern North Dakota, and central South Dakota has different stratigraphic relationships. These three areas can be further subdivided and ranked into six areas that have different exploration potential. The south margin of the Williston basin in central South Dakota is the most attractive exploration area. Niobrara chalk reservoirs, source rocks, and structural traps in the southern Williston basin are similar to those in the eastern Denver basin. Chalk porosities are probably adequate for gas production, although porosity is controlled by burial depth. Organic carbon content of the chalk is high and shows of biogenic gas are reported. Large, low-relief structural features, which could serve as traps, are present.

Shurr, G.W.; Rice, D.D.

1985-05-01T23:59:59.000Z

96

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect (OSTI)

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

97

Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Production of Oil & Gas From Oil Shale in the Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin Evaluation of Production of Oil & Gas From Oil Shale in the Piceance Basin The purpose of this paper is to provide the public and policy makers accurate estimates of energy efficiencies, water requirements, water availability, and CO2 emissions associated with the development of the 60 percent portion of the Piceance Basin where economic potential is the greatest, and where environmental conditions and societal concerns and controversy are the most challenging: i.e., the portion of the Piceance where very high quality oil shale resources and useful ground water co-exist. Evaluation of Energy Efficiency, Water Requirements and Availability, and CO2 Emissions Associated With the Production of Oil & Gas From Oil Shale in

98

U.S. Natural Gas Monthly Supply and Disposition Balance  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 2,473 2,541 2,444 2,550 2,540 2,465 1973-2013 Marketed Production 2,086 2,166 2,097 2,188 2,188 2,105 1973-2013 NGPL Production, Gaseous Equivalent 107 110 107 113 117 116 1973-2013 Dry Production 1,979 2,056 1,990 2,076 2,071 1,989 1973-2013 Supplemental Gaseous Fuels 5 5 3 3 5 5 1973-2013 Net Imports 95 92 103 108 106 123 1973-2013 Net Storage Withdrawals -136 -418 -372 -275 -270 -355 1973-2013 Balancing Item 14 12 9 7 6 -5 2001-2013

99

Limited Electricity Generation Supply and Limited Natural Gas Supply Cases (released in AEO2008)  

Reports and Publications (EIA)

Development of U.S. energy resources and the permitting and construction of large energy facilities have become increasingly difficult over the past 20 years, and they could become even more difficult in the future. Growing public concern about global warming and CO2 emissions also casts doubt on future consumption of fossil fuels -- particularly coal, which releases the largest amount of CO2 per unit of energy produced. Even without regulations to limit greenhouse gas emissions in the United States, the investment community may already be limiting the future use of some energy options. In addition, there is considerable uncertainty about the future availability of, and access to, both domestic and foreign natural gas resources.

2008-01-01T23:59:59.000Z

100

AEO2011: Natural Gas Supply, Disposition, and Prices | OpenEI  

Open Energy Info (EERE)

Supply, Disposition, and Prices Supply, Disposition, and Prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 13, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA natural gas supply prices Data application/vnd.ms-excel icon AEO2011: Natural Gas Supply, Disposition, and Prices - Reference Case (xls, 91.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"U.S. Natural Gas Monthly Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance" Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Monthly Supply and Disposition Balance",9,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_sndm_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_sndm_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

102

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect (OSTI)

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

103

Mechanism of formation of the oil and gas basins of the Persian Gulf  

SciTech Connect (OSTI)

Earlier investigations have shown that most sedimentary basins on continental crust were formed without significant extension. These basins are of two main types. Cratonic sedimentary basins, 3 to 15 km deep, form as a result of slow compensated subsidence at a rate of 10 to 100 m/m.y. over a long period of time (300-1000 m.y.). Miogeosynclines usually form by rapid uncompensated subsidence at a rate of 0.2-1 km/m.y., in a short period of time (1-10 m.y.). In this paper, the authors examine the evolution and distribution of hydrocarbon deposits in the oil and gas basins of the Persian Gulf, which contain more than 60% of the oil and 40% of the gas reserves of non-Soviet countries. They conclude that the oil and gas basins of the Persian Gulf were formed by repeated rapid subsidence without crustal extension. The rapidity of the subsidence was responsible for high heat flow, intensive local tectonics, and the deposition of suitable source beds, reservoir rocks and caprocks, factors that are responsible for the immense oil and gas resources. 44 references, 2 figures.

Artyushkov, E.V.; Beer, M.A.

1987-02-01T23:59:59.000Z

104

Modeling of gas generation from the Cameo coal zone in the Piceance Basin Colorado  

SciTech Connect (OSTI)

The gas generative potential of the Cretaceous Cameo coal in the Piceance Basin, northwestern Colorado, was evaluated quantitatively by sealed gold tube pyrolysis. The H/C and O/C elemental ratios show that pyrolyzed Cameo coal samples follow the Van Krevelen humic coal evolution pathway, reasonably simulating natural coal maturation. Kinetic parameters (activation energy and frequency factor) for gas generation and vitrinite reflectance (R{sub o}) changes were calculated from pyrolysis data. Experimental R{sub o} results from this study are not adequately predicted by published R{sub o} kinetics and indicate the necessity of deriving basin-specific kinetic parameters when building predictive basin models. Using derived kinetics for R{sub o}, evolution and gas generation, basin modeling was completed for 57 wells across the Piceance Basin, which enabled the mapping of coal-rank and coalbed gas potential. Quantities of methane generated at approximately 1.2% R{sub o} are about 300 standard cubic feet per ton (scf/ton) and more than 2500 scf/ton (in-situ dry-ash-free coal) at R{sub o}, values reaching 1.9%. Gases generated in both low- and high-maturity coals are less wet, whereas the wetter gas is expected where R{sub o} is approximately 1.4-1.5%. As controlled by regional coal rank and net coal thickness, the largest in-place coalbed gas resources are located in the central part of the basin, where predicted volumes exceed 150 bcf/mi, excluding gases in tight sands.

Zhang, E.; Hill, R.J.; Katz, B.J.; Tang, Y.C. [Shell Exploration and Production Co., BTC, Houston, TX (United States)

2008-08-15T23:59:59.000Z

105

Gas potential of new Albany shale (Devonian-Mississippian) in the Illinois Basin  

SciTech Connect (OSTI)

A study to update and evaluate publicly available data relating to present and potential gas production from New Albany Shale in the Illinois basin was conducted cooperatively by the Indiana. Illinois, and Kentucky geological surveys (Illinois Basin Consortium), and was partially funded by the Gas Research Institute. Deliverables included a plate of stratigraphic cross sections and six basin-wide maps at a scale of 1:1,000,000. The New Albany Shale is an organic-rich brownish black shale present throughout the Illinois basin. Gas potential of the New Albany Shale may be great because it contains an estimated 86 tcf of natural gas and has produced modest volumes since 1858 from more than 60 fields, mostly in the southeastern part of the basin. Reservoir beds include organic-rich shales of the Grassy Creek (Shale), Clegg Creek, and Blocher (Shale) members. Limited geologic and carbon isotope data indicate that the gas is indigenous and thermogenic. T[sub max] data suggest that the gas generation begins at R[sub o] values of 0.53% and may begin at R[sub 0] values as low as 0.41% in some beds. New Albany Shale reservoirs contain both free gas in open-pore space and gas adsorbed on clay and kerogen surfaces. Natural fracturing is essential for effective reservoir permeability. Fractures are most common near structures such as faults, flexures, and buried carbonate banks. Based on limited data, fractures and joints have preferred orientations of 45-225[degrees] and 135-315[degrees]. Commercial production requires well stimulation to connect the well bore with the natural fracture system and to prop open pressure-sensitive near-borehole fractures. Current stimulations employ hydraulic fracture treatments using nitrogen and foam, with sand as a propping agent.

Comer, J.B.; Hasenmueller, N.R. (Indiana Geological Survey, Bloomington, IN (United States)); Frankie, W.T. (Illinois State Geological Survey, Champaign, IL (United States)); Hamilton-Smith, T. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

106

Simultaneous production and distribution of industrial gas supply-chains  

Science Journals Connector (OSTI)

Abstract In this paper, we propose a multi-period mixed-integer linear programming model for optimal enterprise-level planning of industrial gas operations. The objective is to minimize the total cost of production and distribution of liquid products by coordinating production decisions at multiple plants and distribution decisions at multiple depots. Production decisions include production modes and rates that determine power consumption. Distribution decisions involve source, destination, quantity, route, and time of each truck delivery. The selection of routes is a critical factor of the distribution cost. The main goal of this contribution is to assess the benefits of optimal coordination of production and distribution. The proposed methodology has been tested on small, medium, and large size examples. The results show that significant benefits can be obtained with higher coordination among plants/depots in order to fulfill a common set of shared customer demands. The application to real industrial size test cases is also discussed.

Pablo A. Marchetti; Vijay Gupta; Ignacio E. Grossmann; Lauren Cook; Pierre-Marie Valton; Tejinder Singh; Tong Li; Jean Andr

2014-01-01T23:59:59.000Z

107

CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

81 91 92 102 98 90 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 0 0 0 0 0 0 1979-2013 Natural Gas Associated-Dissolved, Wet After Lease Separation 81 91 92 102...

108

EIA - Natural Gas Pipeline Network - Combined Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Combined Natural Gas Transportation Maps Combined Natural Gas Transportation Maps About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Pipeline Network Map of U.S. Natural Gas Pipeline Network Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors Map of Major Natural Gas Supply Basins Relative to Natural Gas Pipeline Transportation Corridors see related text enlarge see related text enlarge U.S. Regional Breakdown Map of U.S. Regional Breakout States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies Map of States (in Grey) Highly Dependent on Interstate Pipelines for Natural Gas Supplies

109

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah  

SciTech Connect (OSTI)

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

110

Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report  

SciTech Connect (OSTI)

This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

1992-02-01T23:59:59.000Z

111

The economics of oil and gas supply in the Former Soviet Union  

Science Journals Connector (OSTI)

Supply costs curves for the Former Soviet Union (FSU) are constructed for conventional petroleum, which is defined as conventional oil, natural gas and natural gas liquids (NGL). The supply figures show how petroleum quantities vary with production costs over time. Five resource quality categories, distinguishable according to production costs, are used in the estimation. The quantities are allocated across the five categories in a fixed proportion in order to generate the supply cost curves. The role of annual productivity gains, i.e., technological progress, to the year 2030 is also included. Results indicate that petroleum in the FSU is abundant and can be produced economically. In addition, production costs are found to decrease further over time as technology advances. With appropriate energy policy, FSU petroleum resources should assist in meeting domestic and international energy demand.

Roberto F. Aguilera

2012-01-01T23:59:59.000Z

112

A comparative analysis of the technical and economic indicators characterizing independent small-capacity power installations for supplying power to trunk gas lines and gas distribution stations  

Science Journals Connector (OSTI)

Results obtained from a feasibility study of different independent sources of energy are presented, using which one can select them on a sound basis for supplying heat and power for trunk gas lines and gas distri...

G. A. Fokin

2010-11-01T23:59:59.000Z

113

Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply  

Gasoline and Diesel Fuel Update (EIA)

Electricity Shortage in Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in the summer of 2001 during the peak afternoon demand hours. These outages are expected to affect almost all sectors of the State's economy, including crude oil and natural gas producers, petroleum refineries, and pipelines. This report addresses the potential impact of rotating electrical

114

CA, San Joaquin Basin Onshore Natural Gas Reserves Summary as...  

U.S. Energy Information Administration (EIA) Indexed Site

2,249 2,609 2,447 2,685 1,650 1,574 1979-2013 Natural Gas Nonassociated, Wet After Lease Separation 617 607 498 506 269 245 1979-2013 Natural Gas Associated-Dissolved, Wet After...

115

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

116

Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)  

Science Journals Connector (OSTI)

Abstract As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

Byong-Jae Ryu; Timothy S. Collett; Michael Riedel; Gil Young Kim; Jong-Hwa Chun; Jang-Jun Bahk; Joo Yong Lee; Ji-Hoon Kim; Dong-Geun Yoo

2013-01-01T23:59:59.000Z

117

The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado  

SciTech Connect (OSTI)

Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

1997-01-01T23:59:59.000Z

118

File:EIA-Eastern-GreatBasin-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Great Basin By 2001 Gas Reserve Class Great Basin By 2001 Gas Reserve Class Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(5,100 × 6,600 pixels, file size: 17.82 MB, MIME type: application/pdf) Description Eastern Great Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Utah, Nevada File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:59, 20 December 2010 Thumbnail for version as of 17:59, 20 December 2010 5,100 × 6,600 (17.82 MB) MapBot (Talk | contribs) Automated bot upload

119

Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002  

SciTech Connect (OSTI)

Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

Milici, R.C.; Hatch, J.R.

2004-09-15T23:59:59.000Z

120

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 6, Basin analysis, formation and stability of gas hydrates in the Panama Basin  

SciTech Connect (OSTI)

This report presents a geological description of the Panama Basin, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, distribution of hydrates within the sediments, and the relation of hydrate distribution to other features such as salt diapirism are also included. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 63 refs., 38 figs., 7 tabs.

Krason, J.; Ciesnik, M.

1986-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Studies on Optimal Gas Supply For a Maskless Etching System with Micro- Discharge Plasma Operated at Atmospheric Pressure  

Science Journals Connector (OSTI)

An optimal gas supply method for the micro discharge plasma generated along a quartz glass electrode, which was useful for the maskless fabrication of electrode grooves for surface electrodes on solar cells, w...

Toshiyuki Hamada; Takuya Arimura; Tatsuya Sakoda

2012-04-01T23:59:59.000Z

122

Variability of geochemical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA  

SciTech Connect (OSTI)

This study outlines gas characteristics along the southeastern margins of the Illinois Basin and evaluates regional versus local gas variations in Seelyville and Springfield coal beds. Our findings suggest that high permeability and shallow (100250 m) depths of these Indiana coals allowed inoculation with methanogenic microbial consortia, thus leading to widespread microbial methane generation along the eastern marginal part of the Illinois Basin. Low maturity coals in the Illinois Basin with a vitrinite reflectance Ro~0.6% contain significant amounts of coal gas (~3 m3/t, 96 scf/t) with ?97 vol.% microbial methane. The amount of coal gas can vary significantly within a coal seam both in a vertical seam section as well as laterally from location to location. Therefore sampling of an entire core section is required for accurate estimates of coal gas reserves.

Strapoc, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hedges, S.W.

2008-10-02T23:59:59.000Z

123

Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Metropolitan area: an additional ecosystem service?  

E-Print Network [OSTI]

Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Special thanks to all of our field and lab help: Rebecca Hale, Stevan Earl, Bony Ahmed, Lin Ye, Jolene. Samples were then taken throughout the day to assess water concentrations and gas losses (see photos

Hall, Sharon J.

124

AbstractThe Kern River Gas Transmission pipeline was con-structed in 1991 to supply natural gas to be used in the thermally  

E-Print Network [OSTI]

94 Abstract­The Kern River Gas Transmission pipeline was con- structed in 1991 to supply natural plants were found in the 11 seeded plots. The Kern River Gas Transmission pipeline (KRGT) was constructed California. The pipeline route extended from a point near Opal, Wyoming, through Utah and Nevada to Daggett

125

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect (OSTI)

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

126

Greenhouse Gases (GHG) Emissions from Gas Field Water in Southern Gas Field, Sichuan Basin, China  

Science Journals Connector (OSTI)

In order to assess correctly the gases emissions from oil/gas field water and its contributions to the source of greenhouse gases (GHG) at the atmospheric temperature and pressure, ... first developed to study th...

Guojun Chen; Wei Yang; Xuan Fang; Jiaai Zhong

2014-03-01T23:59:59.000Z

127

Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Gasoline and Diesel Fuel Update (EIA)

5(94) 5(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Information General information regarding preparation of this report may be obtained from Craig H. Cranston at 202/586-6023, in Washington, D.C. Specific information regarding the contents of the report may be obtained from the authors: Jack S.

128

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 1 Oil and Natural Gas Market Supply and Renewable Portfolio Standard Impacts of Selected Provisions of H.R. 3221 November 2007 This paper responds to an October 31, 2007, request from Representatives Barton, McCrery, and Young. Their letter, a copy of which is provided as Appendix A, asks the Energy Information Administration (EIA) to assess selected provisions of H.R. 3221, the energy bill adopted by the House of Representatives in early August 2007. EIA was asked to focus on Title VII, dealing with energy on Federal lands; Section 9611, which would establish a Federal renewable portfolio standard (RPS) for certain electricity sellers; and Section 13001, which would eliminate the

129

Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea  

Science Journals Connector (OSTI)

Abstract The Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) recovered various forms of gas-hydrate bearing sediments from 10 drill sites in the lower slope and basin floor of the Ulleung Basin. To characterize the gas-hydrate occurrences and the properties of the host sediments, whole-round core samples were taken from portions of recovered cores determined to be hydrate-bearing based on infrared (IR) scanning. These samples were further characterized by a variety of shipboard experiments such as imaging of the sediments with hand-held IR and visual cameras, measurements of pore water chlorinity within and around IR inferred cold regions in the core and grain-size analysis of pore-water squeeze cakes. Sediment compositions of selected samples were further characterized by X-ray diffraction and scanning electron microscopes during post-cruise analysis. The shipboard and post-cruise analysis results collectively indicate that the recovered gas hydrates mainly occur as 1) pore-filling type bounded by discrete silty sand to sandy silt layers, 2) fracture-filling veins and nodules, or 3) disseminated type in silt. In addition, minor but significant variation in gas hydrate concentrations were observed in diatomaceous silt where gas hydrates occur as pore-filling material in layers dominated by intact diatom frustules. Gas hydrate accumulations of fracture-filling type occur predominantly in regions where acoustic blanking features in the seismic record suggest gas migration from below the gas hydrate stability zone. Results from the UBGH2 core studies along with the analysis of similar samples from other expeditions, including those executed by the Ocean Drilling Program, the Integrated Ocean Drilling Program, and the First Ulleung Basin Gas Hydrate Drilling Expedition, greatly improved our understanding of lithologic controls on marine gas hydrate occurrences.

J.-J. Bahk; D.-H. Kim; J.-H. Chun; B.-K. Son; J.-H. Kim; B.-J. Ryu; M.E. Torres; M. Riedel; P. Schultheiss

2013-01-01T23:59:59.000Z

130

Causes of the unique concentration of oil and gas in the petroliferous basin of the Persian Gulf  

SciTech Connect (OSTI)

The extraordinarily high oil-gas potential of the Persian Gas basin could have resulted from a combination of factors which brought about the conditions necessary for oil accumulation. The author contends that active generation of hydrocarbons in the Persian Gulf basin has not yet ended. The high tectonic activity of the region, expressed by the extremely high velocity of sedimentation and in the intense horizontal compression during late Cenozoic time has created an ideal geologic environment for the metamorphism of the organic matter with maximum release of hydrocarbons. In addition, oil accumulation in the Mesozoic and Cenozoic sequences was not suppressed by gas accumulation because of the intense isolation of the predominantly gas bearing Paleozoic level. The extremely high degree of closure of the folded margin greatly restricted the loss of hydrocarbons. (JMT)

Solov'yev, N.N.

1982-11-01T23:59:59.000Z

131

Processes involved in the origin and accumulation of hydrocarbon gases in the Yuanba gas field, Sichuan Basin, southwest China  

Science Journals Connector (OSTI)

Abstract Natural gases in the superimposed Sichuan Basin commonly experienced a history of remigration in marine carbonate reservoirs since the late Cretaceous. The reservoir in the Changxing Formation (P2c) in the Yuanba gas field in the Sichuan Basin is characterized by a great burial depth of 62007000m and a high temperature about 165C. The gas dryness is 99.7399.99%, and ?13C values of methane and ethane are?31.0 to?28.9 and?29.9 to?25.6, respectively. The chemical and isotopic compositions of natural gases, abundant reservoir solid bitumen, and high reservoir temperature (maximum to 240C) indicate that the \\{P2c\\} gases are of sapropelic origin and are derived from oil cracking. The paleo-oil layers, recognized by solid bitumen distribution, were mainly developed in high position traps when the paleo-oil accumulated during the early Jurassic. Reconstructed structural evolution shows the northwest was uplifted sharply and southern part dipped gently to the north in the gas field after oil cracking. Fluid potential analyses based on changes in the structural configuration imply that gas should re-migrate mainly to the northwest. The observations that paleo-oil-water contacts are mainly above the present day gas-water contacts in the northwest traps, and are below present day gas-water contacts in the middle and eastern traps also confirm the gas remigration trend. Currently, high gas production wells are mainly located in northwest traps and in high positions in the middle and eastern traps. Systematic analyses on early paleo-oil accumulation and late gas remigration processes can reduce the economic risks associated with natural gas exploration in the northeastern Sichuan Basin.

Pingping Li; Fang Hao; Xusheng Guo; Huayao Zou; Xinya Yu; Guangwei Wang

2015-01-01T23:59:59.000Z

132

Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract This paper presents a hybrid energy supply system, which is composed of two subsystems (gas engine-driven heat pump system (GEHP) and organic Rankine cycle system (ORC)) and three major thermodynamic cycles (the vapor compression refrigeration cycle, the internal combustion gas engine cycle and ORC). In order to convert the low-grade gas engine waste heat into high-grade electricity, the ORC system is built up using R245fa, \\{R152a\\} and R123 as working fluids, and the ORC thermal model is also developed. Meanwhile, experiments of \\{GHEPs\\} in cooling mode are conducted, and several factors which influence the cooling performance are also discussed. The results indicate that the cooling capacity, gas engine energy consumption, gas engine waste heat increase with increasing of gas engine speed and decrease with decreasing of evaporator water inlet temperature. The waste heat recovered from gas engine is more than 55% of gas engine energy consumption. F6urthermore, R123 in ORC system yields the highest thermal and exergy efficiency of 11.84% and 54.24%, respectively. Although, thermal and exergy efficiency of \\{R245fa\\} is 11.42% and 52.25% lower than that of R123, its environmental performance exhibits favorable utilization for ORC using gas engine waste heat as low-grade heat source.

Huanwei Liu; Qiushu Zhou; Haibo Zhao; Peifeng Wang

2015-01-01T23:59:59.000Z

133

Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs  

SciTech Connect (OSTI)

The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

2008-10-01T23:59:59.000Z

134

Basin scale assessment of gas hydrate dissociation in response to climate change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

2011-07-01T23:59:59.000Z

135

,"U.S. Natural Gas Annual Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Supply and Disposition Balance" Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Supply",5,"Annual",2012,"6/30/1930" ,"Data 2","Disposition",5,"Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

136

REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS  

SciTech Connect (OSTI)

An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

Ronald C. Surdam

2003-12-29T23:59:59.000Z

137

Optimization Models for Optimal Investment, Drilling, and Water Management in Shale Gas Supply Chains  

Science Journals Connector (OSTI)

Abstract This paper provides an overview of recent optimization models for shale gas production. We first describe a new mixed-integer optimization model for the design of shale gas infrastructures. It is aimed at optimizing the number of wells to drill, size and location of new gas processing plants, section and length of pipelines for gathering raw gas, delivering dry gas and natural gas liquids, power of gas compressors, and planning of freshwater consumption for well drilling and fracturing. We also describe a detailed operational mixed-integer linear model to optimize life cycle water use for well pads. The objective of the model is to determine the fracturing schedule that minimizes costs for freshwater consumption, transportation, treatment, storage, and disposal.

Ignacio E. Grossmann; Diego C. Cafaro; Linlin Yang

2014-01-01T23:59:59.000Z

138

Modelling the demand and supply of natural gas from Cyprus and Israel.  

E-Print Network [OSTI]

?? The use of natural gas as a primary energy source has increased over time and is expected to increase even further in the near (more)

Taliotis, Constantinos

2012-01-01T23:59:59.000Z

139

Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah  

SciTech Connect (OSTI)

The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

1994-08-01T23:59:59.000Z

140

The Cost of Improving Gas Supply Security in the Baltic States  

E-Print Network [OSTI]

to replace a failed compressor station on a transmission pipeline; 12 most disruptions caused by pipeline failures could be repaired in a week or less. A failure of the Latvian underground storage could potentially disrupt supply to Estonia and Latvia... at In?ukalns. Suppliers must store at least 10 days worth of household consumption beginning 1st September 2008, rising by 10 days each year until a 60 day level is reached (REPUBLIC OF LITHUANIA, 2008). The capacity of the pipeline connection between...

Noel, Pierre; Findlater, Sachi; Chyong, Chi Kong

2012-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Consideration of Gas Supply Contracts with Take-or-pay Clauses in ...  

E-Print Network [OSTI]

Nov 15, 2008 ... is currently forced to dispatch NG-fueled thermal plants in a ... a better application of NG and a smaller expected operation cost for the whole power ...... This constraint exists to simulate the real necessities of natural gas...

2008-11-15T23:59:59.000Z

142

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

SciTech Connect (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

143

Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China  

Science Journals Connector (OSTI)

Abstract The Lower Silurian Longmaxi Formation (the Palaeozoic) is organic-rich (black) shale in the southern Sichuan Basin (the Yangtze Plate) of China. This study analyses the lateral extent and thickness, burial depth, total organic carbon content and thermal maturity of the Longmaxi Formation black shale as the key features of the shale gas reservoir. The thickness of the black shale ranges from 10 to 170m. The thickest reservoir is located in Changning-Naxi-Yongchuan region. The TOC of the shale at the bottom of the formation (50-m thickness) is above 2.0%. The lateral distribution of TOC varies with the lateral distribution of thickness, with the maximum TOC in the Gongxian-Luzhou-Yongchuan region. The burial depth ranges from 2000 to 4500m. The shale is thermally over mature. The evaluation of reservoir characteristics indicates that the Longmaxi Formation has conditions appropriate for shale gas accumulation and thus resource potential in the southern Sichuan Basin of China. The objective of this preliminary evaluation of the reservoir characteristics is to locate potential areas favourable for exploration. The most favourable areas are defined here as those where the thickness of black shale is more than 100m and the burial depth is less than 3000m; these cover approximately 12,600km2. The most favourable areas, which cover an area of approximately 5100km2, are located in the northeast Luzhou region.

Shangbin Chen; Yanming Zhu; Yong Qin; Hongyan Wang; Honglin Liu; Junhua Fang

2014-01-01T23:59:59.000Z

144

Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process  

SciTech Connect (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

Kieffer, F.

1994-02-01T23:59:59.000Z

145

Sustainable Development of the Shale Gas Supply Chain and the Optimal Drilling Strategy for Nonconventional Wells  

Science Journals Connector (OSTI)

Abstract We present a long-term MINLP planning model for the development of shale gas fields. A key decision is the drilling/fracturing strategy yielding the freshwater consumption profile, which is critical in waterscarce regions with high cumulative demand for water. Results show that the model can help companies to reduce freshwater consumption by optimally planning drilling operations, at the expense of small reductions in the net present value of the projects.

Diego C. Cafaro; Ignacio E. Grossmann

2014-01-01T23:59:59.000Z

146

Hybrid gas bearings with controlled supply pressure to eliminate rotor vibrations while crossing system critical speeds  

E-Print Network [OSTI]

turbomachinery because of their inherent stability characteristics resulting from no generation of cross- coupled stiffness coefficients [7]. Flexure pivot tilting pad bearings, machined as a single piece using wire EDM (Electrical Discharge Machining) shown... conditions [5]. Gas foil bearings are customarily used in air cycle machines, auxiliary power units, and commercial MTM because of their distinct advantages including tolerance to shaft misalignment and centrifugal/thermal growth, and large load capacity...

Ryu, Keun

2009-05-15T23:59:59.000Z

147

Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea  

Science Journals Connector (OSTI)

Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH26 and UBGH210 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH26 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH26 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 58cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120cm) reaches about 25% with an average saturation of 11%. However, in the UBGH210 well, gas hydrate occupies a 5-m thick sand reservoir near 135mbsf with a maximum saturation of about 60%. In the UBGH210 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

M.W. Lee; T.S. Collett

2013-01-01T23:59:59.000Z

148

Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea  

Science Journals Connector (OSTI)

Abstract Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that gas hydrate occurrence zones (GHOZ) are present about 68155mbsf at Site UBGH2-2_2 and 110155mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as pore-filling type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

J.-J. Bahk; G.-Y. Kim; J.-H. Chun; J.-H. Kim; J.Y. Lee; B.-J. Ryu; J.-H. Lee; B.-K. Son; T.S. Collett

2013-01-01T23:59:59.000Z

149

Proposal for the award of a contract, without competitive tendering, for the supply of UHV residual gas analysers for the LHC  

E-Print Network [OSTI]

This document concerns the award of a contract, without competitive tendering, for the supply of UHV residual gas analysers for the LHC. The Finance Committee is invited to agree to the negotiation of a contract, without competitive tendering, with PFEIFFER INFICON (DE) for the supply of 30 UHV residual gas analysers for a total amount of 1 050 500 Swiss francs, not subject to revision, and an option for up to eight extra units for an amount not exceeding 280 133 Swiss francs, not subject to revision, bringing the total amount to 1 330 633 Swiss francs, not subject to revision.

2005-01-01T23:59:59.000Z

150

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

151

Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins  

SciTech Connect (OSTI)

The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

Goodrich, J.H.

1982-12-01T23:59:59.000Z

152

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network [OSTI]

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and (more)

[No author

2012-01-01T23:59:59.000Z

153

Gas-lift technology applied to dewatering of coalbed methane wells in the black warrior basin  

SciTech Connect (OSTI)

Coalbed methane (CBM) wells are usually dewatered with sucker rod or progressive cavity pumps to reduce wellbore water levels, although not without problems. This paper describes high-volume artificial-lift technology that incorporates specifically designed gas-lift methods to dewater Black Warrior CBM wells. Gas lift provides improved well maintenance and production optimization by the use of conventional wireline service methods.

Johnson, K.J.; Coats, A. (Otis Engineering Corp., Dallas, TX (United States)); Marinello, S.A. (Colorado School of Mines, Golden, CO (United States))

1992-11-01T23:59:59.000Z

154

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect (OSTI)

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

155

Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea  

SciTech Connect (OSTI)

Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

2007-11-16T23:59:59.000Z

156

Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA  

Science Journals Connector (OSTI)

Molecular biodegradation indices for extracts from five Pennsylvanian coals and six New Albany Shale (Devonian Mississippian) samples from the eastern part of the Illinois Basin help constrain relationships between the degradation of biomarkers and the generation of coalbed methane and shale gas. Investigation of these gas source rocks of varying thermal maturity from different depths facilitates evaluation of the association of microbial degradation with biogenic gas formation distinct from thermogenic processes. Extensive biodegradation of both aliphatic and aromatic hydrocarbons is observed in the coal extracts, whereas in shale extracts only short-chain (C15C19) n-alkanes from the shallowest depth appear to be microbially altered with minimal evidence for losses of acyclic isoprenoid alkanes and aromatic hydrocarbons. By contrast, biodegradation of aromatic hydrocarbons, specifically alkylated naphthalenes and phenanthrenes, occurs in coal extracts in concert with losses of n-alkanes attributable to microbial activity. Thus, the progress of hydrocarbon biodegradation in coals differs from the sequence recognized in petroleum where the effects of microbial alteration of aromatic constituents only appear after extensive losses of aliphatic compounds. The extent of hydrocarbon biodegradation in these coals also decreases with depth, as recorded by the ?(nC25nC30) index (i.e. abundance relative to 17?(H), 21?(H)-hopane) among the aliphatic constituents and several aromatic compounds (methyl-, dimethyl-, and trimethylnaphthalenes, phenanthrene, and trimethyl- and tetramethylphananthrenes). However, the depth variations in the distributions of aliphatic and aromatic hydrocarbons in the shale extracts primarily reflect the effects of thermal maturity rather than biodegradation. Overall, variations in the extent and patterns of biomarker biodegradation among coals and shales likely reflect their distinct microbial consortia that can be attributed to differences in (i) surviving microorganisms and inoculations from meteoric water, (ii) the characteristics of the sedimentary organic matter, especially the preponderance of aromatic constituents in coals, and (iii) the accessibility to that substrate through pores and cleats. These results help constrain the processes involved in biodegradation and controls on its extent, which, in turn, assist in recognizing sites favorable for methanogenesis and improved estimates of biogenic gas resources in the Illinois Basin.

Ling Gao; Simon C. Brassell; Maria Mastalerz; Arndt Schimmelmann

2013-01-01T23:59:59.000Z

157

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network [OSTI]

fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment...

Tschirhart, Nicholas Ray

2005-11-01T23:59:59.000Z

158

Coalbed methane potential of the Greater Green River, Piceance, Powder River, and Raton Basins. Topical report, January 1991-July 1991  

SciTech Connect (OSTI)

Coalbed methane potential of the Greater Green River, Piceance, Powder River, and Raton Basins was evaluated in the context of geologic and hydrologic characteristics identified in the San Juan Basin, the nation's leading coalbed methane producing basin. The major comparative criteria were (1) coalbed methane resources, (2) geologic and hydrologic factors that predict areas of high gas producibility and high coalbed reservoir permeability, and (3) coalbed thermal maturity. The technical criteria were expanded to include structure, depositional systems, and data base and then combined with economic criteria (production, industry activity, and pipeline availability) to evaluate the coalbed methane potential of the basins. The Greater Green River and Piceance Basins have primary potential to make a significant near-term contribution to the nation's gas supply. These basins have large gas resources, high-rank coals, high gas contents, and established coalbed methane production. The Greater Green River Basin has numerous coalbed methane targets, good coal-seam permeability, and extensive hydrologic areas favorable for production. The Powder River and Raton Basins were judged to have secondary potential. Coal beds in the Powder River Basin are thermally immature and produce large volumes of water; the Raton Basin has a poor data base and has no gas pipeline infrastructure. Low production and minimal industry activity further limit the near-term potential of the Raton Basin. However, if economic criteria are discounted and only major technical criteria are considered, the Greater Green River and Raton Basins are assigned primary potential. The Raton Basin's shallow, thermally mature coal beds of good permeability are attractive coalbed methane targets, but low coal-seam permeability limits the coalbed methane potential of the Piceance Basin.

Tyler, R.; Ambrose, W.A.; Scott, A.R.; Kaiser, W.R.

1991-12-01T23:59:59.000Z

159

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect (OSTI)

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

160

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Broader source: Energy.gov (indexed) [DOE]

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect (OSTI)

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

162

Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada  

Science Journals Connector (OSTI)

Controls of matrix permeability are investigated for Devonian Gas Shales from the Horn River and Liard basins in northeastern British Columbia, Canada. Mineralogy is varied with high carbonate, high quartz and moderate quartz, carbonate and clay rich strata. Quartz content varies between 2 and 73%, carbonate varies between 1 and 93% and clay varies between 3 and 33%. The TOC content ranges between 0.3 and 6wt.% and porosity varies between about 1 and 7%. For Horn River basin samples, quartz is mainly biogenic in origin derived from radiolarians. TOC content increases with the quartz content suggesting the TOC and quartz both are derived from siliceous phytoplankton. A positive relationship between porosity and quartz content is due to the positive relationship between quartz and TOC. Matrix permeability parallel to bedding varies between 7.5E?02 and 7.1E?07mD at an effective stress of 15MPa. Variation in permeability is due to a complex combination of factors that includes origin and distribution of minerals, pore?size distribution and fabric. Mercury intrusion capillary curves indicate that the higher matrix permeability values (>2E?03mD) occurs in samples that contain interconnected pore apertures greater than 16?m even when these samples may contain less macropores than low permeability samples. The fabric of high permeability samples can be either isotropic or anisotropic; however permeability of anisotropic samples is more sensitive to changes in effective stress than isotropic samples. More highly anisotropic samples contain moderate amounts of quartz, carbonate and in some, clay. High permeability samples that contain a more balanced ratio between micro-, meso- and macroporosity would not only have faster flow rates but also greater access to sorbed gas within the microporosity compared to samples that lack mesopores. Several Muskwa samples compared to Evie and Besa River samples contain higher quartz, moderate clay and high TOC content coupled with high permeability, less sensitivity to effective stress and balanced ratios between micro-, meso- and macroporosity would be a lower exploration risk due a greater propensity to fracture, the ability to produce and store hydrocarbons due to higher TOC contents and greater communication between macropores and micropores in the organic and clay fractions.

Gareth R.L. Chalmers; Daniel J.K. Ross; R. Marc Bustin

2012-01-01T23:59:59.000Z

163

Improvement of LNG production technology in gas-distribution stations with an increased content of carbon dioxide in supply-line gas  

Science Journals Connector (OSTI)

The possibility is considered of reducing the weight of absorbent in a carbon dioxide gas cleaning system during liquefied natural gas production in gas-distribution stations (due to use of a pressure drop ... is...

S. P. Gorbachev; S. V. Lyugai

2009-11-01T23:59:59.000Z

164

Hydrodynamic flow in lower Cretaceous Muddy sandstone, Gas Draw Field, Powder River Basin, Wyoming  

E-Print Network [OSTI]

/dx =[pj(p?- p )j (dh/dx), (4) where 8 is the angle of inclination, dz/dx is the slope of the oil- water interface, dh/dx is the horizontal component of head change, and pj(p - p ) is an amplification factor (Willis, 1961). Thus the w 0 hydrodynamic oil... reflected by Muddy thickness greater than 100 ft appears to cross the north end of Gas Draw, but 37 CHEVRON 1 FEDERAL PERMEABILITY (md) FEET 1000 100 10 I 0. 1 20 POROSITY &Im 20 10 0 WATER SATURATION 100 80 80 40 20 0 I I I I I I OIL SATURATION...

Lin, Joseph Tien-Chin

2012-06-07T23:59:59.000Z

165

ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS  

SciTech Connect (OSTI)

A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

William L. Fisher; Eugene M. Kim

2000-12-01T23:59:59.000Z

166

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

SciTech Connect (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

167

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

168

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

169

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network [OSTI]

Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

170

Assessing Reliability In Hydrogen Supply Pathways  

E-Print Network [OSTI]

liquefied natural gas (LNG) at a large, central steamthe established, global LNG infrastructure provided moreenergy supply over the vast LNG network. The global supply

McCarthy, Ryan; Ogden, Joan M

2005-01-01T23:59:59.000Z

171

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

172

Proposal for the award of a contract for the supply of electronics for the temperature control of cavity windows and helium gas return lines for the superconducting cavities of the LEP200 radio frequency system  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of electronics for the temperature control of cavity windows and helium gas return lines for the superconducting cavities of the LEP200 radio frequency system

1991-01-01T23:59:59.000Z

173

Electrofacies in gas shale from well log data via cluster analysis: A case study of the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Identifying reservoir electrofacies has an important role in determining hydrocarbon bearing intervals. In this study, electrofacies of the Kockatea Formation in the Perth Basin were determined via cluster analys...

Amir Karimian Torghabeh; Reza Rezaee

2014-09-01T23:59:59.000Z

174

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect (OSTI)

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

175

Infrastructure investments and resource adequacy in the restructured US natural gas market : is supply security at risk?  

E-Print Network [OSTI]

The objective of this paper is to analyze the development of US natural gas infrastructure over the last two decades and to discuss its perspectives. In particular, we focus on the relationship between the regulatory ...

Hirschhausen, Christian von

2006-01-01T23:59:59.000Z

176

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

SciTech Connect (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is mined. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

177

Nationwide, Regional, and Statewide Energy Supply Chain Optimization for Natural Gas to Liquid Transportation Fuel (GTL) Systems  

Science Journals Connector (OSTI)

When data on the well-specific production are available, the figures are grouped on the basis of the county of the wells. ... The states that have major natural gas productions are Alabama, Arkansas, California, Colorado, Kansas, Kentucky, Louisiana, Michigan, Mississippi, Montana, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas, Utah, Virginia, West Virginia, and Wyoming. ... State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources ...

Josephine A. Elia; Richard C. Baliban; Christodoulos A. Floudas

2013-09-05T23:59:59.000Z

178

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

13, 2013 | Release Date: November 14, 13, 2013 | Release Date: November 14, 2013 | Next Release: November 21, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Gas pipeline expansions reduce Marcellus backup, New York gas prices As reported in October, natural gas pipeline expansions were slated to add nearly 1 billion cubic feet per day (Bcf/d) of capacity to flow gas to markets in New York and New Jersey on November 1. These expansions happened on schedule, increasing access for consumers in the New York City metropolitan area to natural gas produced in the Appalachian Basin's Marcellus Shale play. This has resulted in lower gas prices for New York consumers, and has eased supply backup in the Marcellus Basin.

179

Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin  

Science Journals Connector (OSTI)

Successful exploration and development of shale-gas in the United States and Canada suggest ... is regarded as a strong potential play for shale-gas with the following significant features: (1)...R...o>2.5%); (4)...

Tonglou Guo ???

2013-12-01T23:59:59.000Z

180

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea  

E-Print Network [OSTI]

sands interlayered with silts and clays, a regime that is not conducive to significant free gas and/or hydrate

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

2007-01-01T23:59:59.000Z

182

NATURAL GAS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

183

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

1, 2013 | Release Date: September 12, 1, 2013 | Release Date: September 12, 2013 | Next Release: September 19, 2013 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: REX gas deliveries to the Northeast fall as Appalachian production grows Data for this week show that deliveries of natural gas to northeastern consumers via the Rockies Express Pipeline (REX) continue to decline markedly from last year as Northeast customers procure more natural gas from the Appalachian Basin. This increased gas supply comes predominantly from the basin's Marcellus Shale play, where dry gas production through the first half of 2013 rose by 50% over year-ago levels, according to U.S. Energy Information Administration (EIA) calculations based on LCI Energy

184

Natural Gas Storage in Basalt Aquifers of the Columbia Basin, Pacific Northwest USA: A Guide to Site Characterization  

SciTech Connect (OSTI)

This report provides the technical background and a guide to characterizing a site for storing natural gas in the Columbia River Basalt

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2002-08-08T23:59:59.000Z

185

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

186

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

187

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

188

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

189

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

190

Computational and experimental test of self starting regimes for the in-house needs of the PGU-450 steam-gas unit at the Kaliningrad TTs-2 Heating and Power Plant during supply disruptions  

Science Journals Connector (OSTI)

The major stages of a computational test of the self starting regimes for the in-house needs of unit No. 1 of the 450 MW steam-gas unit at the Kaliningrad TTs-2 Heating and Electric Power Plant during supply ...

S. N. Sakharov; V. A. Kuzmichev

2008-05-01T23:59:59.000Z

191

Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation Eagle Ford Shale Example  

E-Print Network [OSTI]

Shale gas and oil are playing a significant role in US energy independence by reversing declining production trends. Successful exploration and development of the Eagle Ford Shale Play requires reservoir characterization, recognition of fluid...

Tian, Yao

2014-04-29T23:59:59.000Z

192

Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea)  

Science Journals Connector (OSTI)

Abstract We analyzed the data consist of core digital images and X-rays, core-logs, LWD (logging-while-drilling), and sediment grain-size from the second Ulleung Basin Gas Hydrate Expedition (UBGH2) in the East Sea. Core digital images and X-rays were spliced as a complete composite core in meters below seafloor (mbsf) for five sites; UBGH2-1_1 (Hole D), 2_1 (B), 2_2 (B), 2-6 (B) and 2-10 (CD), and were correlated with the core-log and LWD measurements showing that possible gas hydrate bearing layers are between the depths of about 60180mbsf at these sites. Bulk densities generally increase with depth from 1.3 to 2.0g/cm3 in LWD data, and from 1.1 to 1.8g/cm3 onboard which measured lower than in-situ. Gas hydrate bearing sediments respond with an increase of LWD densities (1.41.6g/cm3) and a decrease in core-logs (1.11.4g/cm3). P-wave velocity values of LWD increase (1400 to 1700m/s) with depth for non-reservoirs, and are high (1500 and 2000m/s) within the gas hydrate bearing intervals depending on the hydrate saturations.Resistivity values logged onboard range from less than 1.0 to over 10.0?-m, while LWD records are around 1.0?-m and between 5.0 and 30.0?-m in background sediments and possible gas hydrate reservoirs, respectively. High resistivity values were observed (5.030.0?-m) within coarse-grained turbidites (mean grain-size between 2.9 and 5.1?; laminated sandy mud or muddy sands). Medium resistivities were observed (5.0?-m) within the silt-dominant hemi-pelagic and turbiditic sediments (5.17.4?; crudely laminated, bioturbated, homogeneous sand, and disintegrated sand and sandy mud facies) bearing pore-filling gas hydrates, or disseminated gas hydrates either formed in pores or small fractures of fine-grained sediments. Core-log measurements are highly fluctuating and sensitive but mostly lower (e.g., density and resistivity) than LWD records.

Senay Horozal; Gil Young Kim; Jang Jun Bahk; Roy H. Wilkens; Dong Geun Yoo; Byong Jae Ryu; Seong Pil Kim

2015-01-01T23:59:59.000Z

193

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrates beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60C, 80C, and 95C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80C and ~95C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

194

Accuracy of Petroleum Supply Data  

Gasoline and Diesel Fuel Update (EIA)

Accuracy of Petroleum Supply Data Accuracy of Petroleum Supply Data by Tammy G. Heppner and Carol L. French Overview Petroleum supply data collected by the Petroleum Division (PD) in the Office of Oil and Gas (OOG) of the Energy Information Administration (EIA) showed an improvement in the accuracy of the 2005 data from initial estimates, to interim values, to final values. These data were presented in a series of PD products: the Weekly Petroleum Status Report (WPSR), This Week in Petroleum (TWIP), the Petroleum Supply Monthly (PSM), and the Petroleum Supply Annual (PSA). Weekly estimates in the WPSR and TWIP were the first values available. Figure FE1 illustrates that as reporting and review time passes from the weekly estimates to the interim monthly values to the final petroleum supply values, the EIA is able to produce more accurate petroleum supply data. For the monthly-from-weekly (MFW) data, respondents

195

Assessing Reliability in Energy Supply Systems  

E-Print Network [OSTI]

liquefied natural gas (LNG) trading expected to increase insteam reformation production facility using imported LNG.The LNG supplies come primarily from Trinidad and Tobago,

McCarthy, Ryan; Ogden, Joan M.; Sperling, Dan

2008-01-01T23:59:59.000Z

196

Assessing reliability in energy supply systems  

E-Print Network [OSTI]

liquefied natural gas (LNG) trading expected to increase insteam reformation production facility using imported LNG.The LNG supplies come primarily from Trinidad and Tobago,

McCarthy, Ryan W.; Ogden, Joan M.; Sperling, Daniel

2007-01-01T23:59:59.000Z

197

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

198

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

199

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

200

GAMA-LLNL Alpine Basin Special Study: Scope of Work  

SciTech Connect (OSTI)

For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

Singleton, M J; Visser, A; Esser, B K; Moran, J E

2011-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

202

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

203

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

204

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

205

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

206

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

207

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

208

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

209

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

210

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

211

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

212

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

213

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

214

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

215

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

216

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

217

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

218

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

219

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

220

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

222

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

223

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

224

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

225

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

226

California GAMA Special Study: An isotopic and dissolved gas investigation of nitrate source and transport to a public supply well in California's Central Valley  

SciTech Connect (OSTI)

This study investigates nitrate contamination of a deep municipal drinking water production well in Ripon, CA to demonstrate the utility of natural groundwater tracers in constraining the sources and transport of nitrate to deep aquifers in the Central Valley. The goal of the study was to investigate the origin (source) of elevated nitrate and the potential for the deep aquifer to attenuate anthropogenic nitrate. The site is ideal for such an investigation. The production well is screened from 165-325 feet below ground surface and a number of nearby shallow and deep monitoring wells were available for sampling. Furthermore, potential sources of nitrate contamination to the well had been identified, including a fertilizer supply plant located approximately 1000 feet to the east and local almond groves. A variety of natural isotopic and dissolved gas tracers including {sup 3}H-{sup 3}He groundwater age and the isotopic composition of nitrate are applied to identify nitrate sources and to characterize nitrate transport. An advanced method for sampling production wells is employed to help identify contaminant contributions from specific screen intervals. Nitrate transport: Groundwater nitrate at this field site is not being actively denitrified. Groundwater parameters indicate oxic conditions, the dissolved gas data shows no evidence for excess nitrogen as the result of denitrification, and nitrate-N and -O isotope compositions do not display patterns typical of denitrification. Contaminant nitrate source: The ambient nitrate concentration in shallow groundwater at the Ripon site ({approx}12 mg/L as nitrate) is typical of shallow groundwaters affected by recharge from agricultural and urban areas. Nitrate concentrations in Ripon City Well 12 (50-58 mg/L as nitrate) are significantly higher than these ambient concentrations, indicating an additional source of anthropogenic nitrate is affecting groundwater in the capture zone of this municipal drinking water well. This study provides two new pieces of evidence that the Ripon Farm Services Plant is the source of elevated nitrate in Ripon City Well 12. (1) Chemical mass balance calculations using nitrate concentration, nitrate isotopic composition, and initial tritium activity all indicate that that the source water for elevated nitrate to Ripon City Well 12 is a very small component of the water produced by City Well 12 and thus must have extremely high nitrate concentration. The high source water nitrate concentration ({approx}1500 mg/L as nitrate) required by these mass balance calculations precludes common sources of nitrate such as irrigated agriculture, dairy wastewater, and septic discharge. Shallow groundwater under the Ripon Farm Services RFS plant does contain extremely high concentrations of nitrate (>1700 mg/L as nitrate). (2) Nitrogen and oxygen isotope compositions of nitrate indicate that the additional anthropogenic nitrate source to Ripon City Well 12 is significantly enriched in {delta}{sup 18}O-NO{sub 3}, an isotopic signature consistent with synthetic nitrate fertilizer, and not with human or animal wastewater discharge (i.e. dairy operations, septic system discharge, or municipal wastewater discharge), or with organic fertilizer. Monitoring wells on and near the RFS plant also have high {delta}{sup 18}O-NO{sub 3}, and the plant has handled and stored synthetic nitrate fertilizer that will have this isotopic signature. The results described here highlight the complexity of attributing nitrate found in long screened, high capacity wells to specific sources. In this case, the presence of a very high concentration source near the well site combined with sampling using multiple isotopic tracer techniques and specialized depth-specific techniques allowed fingerprinting of the source in the mixed-age samples drawn from the production well.

Singleton, M J; Moran, J E; Esser, B K; Roberts, S K; Hillegonds, D J

2010-04-14T23:59:59.000Z

227

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

228

Petroleum supply monthly, August 1993  

SciTech Connect (OSTI)

This publication the Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report, (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. Data presented are divided into Summary Statistics and Detailed Statistics.

Not Available

1993-09-01T23:59:59.000Z

229

Natural gas annual 1994  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

230

Natural gas annual 1995  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

231

Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China  

Science Journals Connector (OSTI)

Abstract High-pressure methane adsorption experiments on a series of Triassic lacustrine shale moisture-equilibrated samples from the southeastern Ordos Basin, China, were conducted at pressure up to 20MPa, two of which were measured at 30C, 40C, 50C, 60C, and 70C, and seven were performed under reservoir temperature (from 48C to 62C) to investigate the effect of organic matter content, maturity, mineralogical compositions and reservoir conditions (temperature and pressure) on the methane sorption capacity. The total organic carbon contents (TOCs) range from 0.91wt.% to 6.11wt.%. The thermal maturities, as inferred from Rock-Eval Analysis, range from low mature to high mature. The minerals of the shale samples are dominated by clays (3657wt.%) and quartz (1944wt.%). For the entire shale samples the dominant clay minerals are mixed-layer illite/smectite with some illite and no smectite exists, corresponding to a stage of late diagenesis. The studied samples have N2 BET surface areas ranging between 1.47 and 9.21m2/g and pore volumes of 0.0130.034cm3/g. The methane sorption capacities of moisture-equilibrated shale samples show a positive correlation with TOC contents and BET surface areas. No relationship was observed between the clay contents and methane sorption capacities, indicating that clay minerals do not significantly contribute to methane sorption capacity in these organic shales. The Langmuir pressure (PL) increases exponentially with temperature and the Langmuir volume (VL) decreases linearly with temperature. A computational scheme has been developed to calculate the methane sorption capacity of shales as a function of TOC content, temperature and pressure based on Langmuir sorption isotherm function. Using this algorithm methane sorption capacity of organic shales as function of depth can be obtained. Due to the predominating effect of pressure the methane sorption capacity increases with depth initially, through a maximum and then decreases due to the influence of increasing temperature at a greater depth. The maximum gas sorption capacity typically occurs at a depth range between 400 and 900m. With TOC content increasing, the maximum methane sorption capacities of organic shales and the corresponding depths increase.

Wenming Ji; Yan Song; Zhenxue Jiang; Xiangzeng Wang; Yongqiang Bai; Jinyan Xing

2014-01-01T23:59:59.000Z

232

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

January 2012 January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases .............................. 65,081 - - 13,044 5,236 - - -10,530 10,937 5,559 77,395 101,248 Ethane/Ethylene

233

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,374,021 - - - - 3,120,755 53,567 34,134 5,489,516 24,693 0 1,060,764 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 881,306 -6,534 230,413 62,192 - - 23,894 186,270 115,054 842,159 153,268 Pentanes Plus .................................................. 116,002 -6,534 - - 10,680 - - -4,857 63,596 43,136 18,273 12,739 Liquefied Petroleum Gases .............................. 765,304 - - 230,413 51,512 - - 28,751 122,674 71,918

234

Historical Natural Gas Annual 1999  

U.S. Energy Information Administration (EIA) Indexed Site

1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

235

Natural gas network resiliency to a %22shakeout scenario%22 earthquake.  

SciTech Connect (OSTI)

A natural gas network model was used to assess the likely impact of a scenario San Andreas Fault earthquake on the natural gas network. Two disruption scenarios were examined. The more extensive damage scenario assumes the disruption of all three major corridors bringing gas into southern California. If withdrawals from the Aliso Canyon storage facility are limited to keep the amount of stored gas within historical levels, the disruption reduces Los Angeles Basin gas supplies by 50%. If Aliso Canyon withdrawals are only constrained by the physical capacity of the storage system to withdraw gas, the shortfall is reduced to 25%. This result suggests that it is important for stakeholders to put agreements in place facilitating the withdrawal of Aliso Canyon gas in the event of an emergency.

Ellison, James F.; Corbet, Thomas Frank,; Brooks, Robert E. [RBAC, Inc., Sherman Oaks, CA

2013-06-01T23:59:59.000Z

236

Long Term World Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: The following pages summarize a recent EIA presentation on estimates of the world conventional oil resource base and the year when production from it will peak and then begin to decline. A version of this presentation was given by former EIA Administrator Jay Hakes to the April 18, 2000 meeting of the American Association of Petroleum Geologists in New Orleans, Louisiana. Specific information about this presentation may be obtained from John Wood (john.wood@eia.doe.gov), Gary Long (gary.long@eia.doe.gov) or David Morehouse (david.morehouse@eia.doe.gov). Long Term World Oil Supply http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld001.htm [8/10/2000 4:56:23 PM] Slide 2 of 20 http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply/sld002.htm [8/10/2000 4:56:24 PM]

237

Accuracy of Petroleum Supply Data  

Gasoline and Diesel Fuel Update (EIA)

in in the Office of Oil and Gas (OOG) of the Energy Information Administration (EIA) showed an improvement in the accuracy of the 2006 data from initial estimates, to interim values, to final values. These data were presented in a series of PD products: the Weekly Petroleum Status Report (WPSR), This Week in Petroleum (TWIP), the Petroleum Supply Monthly (PSM), and the Petroleum Supply Annual (PSA). Weekly estimates in the WPSR and TWIP were the first values available. Figure FE1 illustrates that just as there was an improvement in gas mileage over time, there was an improvement in petroleum supply data accuracy with increasing review time. For the monthly-from-weekly (MFW) data, respondents have the shortest reporting time, analysts have the shortest review time, and the data are least accurate. For the PSM data, respondents have a longer reporting time than the weekly, analysts have

238

The 3He Supply Problem  

SciTech Connect (OSTI)

One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the worlds 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

Kouzes, Richard T.

2009-05-01T23:59:59.000Z

239

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

23, 2013 | Release Date: October 24, 23, 2013 | Release Date: October 24, 2013 | Next Release: October 31, 2013 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: FERC approves service on projects providing almost 1 Bcf/d of gas to New York/New Jersey consumers Last week, on October 17, the Federal Energy Regulatory Commission approved the start of service on November 1 of two related projects that would provide almost 1.0 billion cubic feet per day (Bcf/d) of natural gas from the Appalachian Basin's Marcellus Shale play to consumers in the New York/New Jersey region. The projects would take advantage of the significant rise in Marcellus gas production that has taken place over the past two years to increase gas supply to the New York area, where pipeline

240

Hydrologic and Institutional Water Availability in the Brazos River Basin  

E-Print Network [OSTI]

been constructed to facilitate management of the water resources of the various river basins of the state. Effective control and utilization of the water resource supplied by a stream/reservoir system requires an understanding of the amount of water...

Wurbs, Ralph A.; Bergman, Carla E.; Carriere, Patrick E.; Walls, W. Brian

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Double Counting in Supply Chain Carbon Footprinting  

Science Journals Connector (OSTI)

Carbon footprinting is a tool for firms to determine the total greenhouse gas GHG emissions associated with their supply chain or with a unit of final product or service. Carbon footprinting typically aims to identify where best to invest in emission ... Keywords: carbon footprint, emissions allocation, supply chain, sustainable operations

Felipe Caro; Charles J. Corbett; Tarkan Tan; Rob Zuidwijk

2013-10-01T23:59:59.000Z

242

Gas plants, new fields spark production rise  

SciTech Connect (OSTI)

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

243

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

244

Dr Stephen Dry, Canada Research Chair in Northern Hydrometeorology, discusses research projects on the Quesnel River Basin in British Columbia and wider concerns for freshwater supply in the area  

E-Print Network [OSTI]

focuses on the impacts of climate change on Canada's northern and alpine regions.The anthropogenic. In particular, I am attempting to determine what effect climate change will have on the environment in Canada in the oil and gas sectors with subsurface extraction (through fracking) requiring abundant freshwater

Dery, Stephen

245

Assessing Reliability in Transportation Energy Supply Pathways: A Hydrogen Case Study  

E-Print Network [OSTI]

Asia Liquefied natural gas (LNG) imports are projected tosector, but increasing LNG imports worldwide add relevanceliquefied natural gas (LNG). The LNG supplies were specified

McCarthy, Ryan; Ogden, Joan M

2005-01-01T23:59:59.000Z

246

Natural gas annual 1996  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience. The 1996 data are presented in a sequence that follows natural gas from it`s production to it`s end use.

NONE

1997-09-01T23:59:59.000Z

247

GUNNISON BASIN CLIMATE CHANGE VULNERABILITY ASSESSMENT  

E-Print Network [OSTI]

Climate change is already changing ecosystems and affecting people in the southwestern United States, as well as ecosystem services, e.g., water supply. The climate of the Gunnison Basin, Colorado Fish and Wildlife Service, US Forest Service, Upper Gunnison River Water Conservancy District, Western

Neff, Jason

248

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2014 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels per Day) Commodity Supply Disposition Field...

249

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-October 2014 (Thousand Barrels per Day) Commodity Supply...

250

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, October 2014 (Thousand Barrels) Commodity Supply Disposition Ending Stocks...

251

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

252

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

253

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

254

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

255

Shale Gas R&D  

Broader source: Energy.gov [DOE]

Natural gas from shales has the potential to significantly increase Americas security of energy supply, reduce greenhouse gas emissions, and lower prices for consumers. Although shale gas has been...

256

Petroleum supply monthly, August 1994  

SciTech Connect (OSTI)

Data presented in the Petroleum Supply Monthly (PSM) describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

Not Available

1994-08-26T23:59:59.000Z

257

Death of a carbonate basin: The Niagara-Salina transition in the Michigan basin  

SciTech Connect (OSTI)

The A-O Carbonate in the Michigan basin comprises a sequence of laminated calcite/anhydrite layers intercalated with bedded halite at the transition between normal marine Niagaran carbonates and lower Salina Group evaporites. The carbonate/anhydrite interbeds represent freshing events during initial evaporative concentration of the Michigan basin. Recent drilling in the Michigan basin delineates two distinct regions of A-O Carbonate development: a 5 to 10 m thick sequence of six 'laminites' found throughout most of the western and northern basin and a 10 to 25 m thick sequence in the southeastern basin containing both thicker 'laminates' and thicker salt interbeds. Additionally, potash deposits of the overlying A-1 evaporite unit are restricted to the northern and western basin regions. The distribution of evaporite facies in these two regions is adequately explained by a source of basin recharge in the southeast-perhaps the 'Clinton Inlet' of earlier workers. This situation suggest either that: (1) the source of basin recharge is alternately supplying preconcentrated brine and more normal marine water, or (2) that the basin received at least two distinct sources of water during A-O deposition.

Leibold, A.W.; Howell, P.D. (Univ. of Michigan, Ann Arbor (United States))

1991-03-01T23:59:59.000Z

258

Propylene feedstock: supply and demand  

SciTech Connect (OSTI)

The reasons for the global shortage in propylene in 1981-82 are discussed. The low running rates of ethylene production and refinery operation of which propylene is a byproduct accounts for the reduced propylene supplies. Low prices of the NCL have also shifted incentive from propylene to gas liquids. This situation will continue, with naptha/gas oil becoming the prefered feedstock for ethylene production. The speculative economics for propylene dehydrogenation are not sufficiently attractive for commercialization. But if a country has an internal market for propylene derivatives, production could have a positive influence on the economy. Thailand, Indonesia, Malaysia, and Mexico are suggested as examples.

Steinbaum, C.A.; Pickover, B.H.

1983-04-01T23:59:59.000Z

259

A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption  

E-Print Network [OSTI]

the economics of power production. For example, new gas-fired combined cycle power plants are more effi- cientA Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission the behavior of the various decision-makers, who operate in a decentralized manner and include power generators

Nagurney, Anna

260

Petroleum supply monthly, September 1991  

SciTech Connect (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administrations for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics. 65 tabs.

Not Available

1991-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Petroleum supply monthly, October 1993  

SciTech Connect (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of four publications produced by the Petroleum Supply Division within the Energy Information Administration (EIA) reflecting different levels of data timeliness and completeness. The other publications are the Weekly Petroleum Status Report (WPSR), the Winter Fuels Report, and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

Not Available

1993-10-26T23:59:59.000Z

262

Petroleum Supply Monthly, August 1990  

SciTech Connect (OSTI)

The Petroleum Supply Monthly (PSM) is one of a family of three publications produced by the Petroleum Supply Division within the Energy Information administration (EIA) reflecting different levels of data timeliness and completeness. The other two publications are the Weekly Petroleum Status Report (WPSR) and the Petroleum Supply Annual (PSA). Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) district movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics.

Not Available

1990-10-30T23:59:59.000Z

263

The Domestic Natural Gas Shortage in China.  

E-Print Network [OSTI]

?? This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast (more)

Guo, Ting

2014-01-01T23:59:59.000Z

264

Historical Natural Gas Annual - 1930 Through 2000  

U.S. Energy Information Administration (EIA) Indexed Site

2000 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

265

Production Optimization in Shale Gas Reservoirs.  

E-Print Network [OSTI]

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

266

NETL: Oil & Natural Gas - Energy Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil and Natural Gas Supply Oil and Natural Gas Supply Energy Infrastructure NETL's Energy Infrastructure and Security Research Group (EISRG) has a key supporting role in emergency preparedness and response. The EISRG develops high-level analytical visualizations that are used to study critical U.S. energy infrastructures and their inter-relationships during natural and manmade emergencies. By deploying resources and providing vital information in a timely manner, EISRG improves the ability of government agencies and the energy sector to prevent, prepare for, and respond to hazards, emergencies, natural disasters, or any other threat to the nation's energy supply. NETL coordinated and provided information on an ongoing basis during every major landfall event of the 2005 hurricane season , including Hurricanes Katrina and Rita, as well as during Hurricanes Charley, Frances, and Ivan in 2004. NETL also has participated in exercises to prepare for events with varying degrees of impact, such as pipeline disruptions, local power outages, and transportation interruptions, such as the 2005 Powder River Basin rail service suspension, which resulted in curtailment of coal deliveries to major customers over a six-month period.

267

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

268

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

269

NATURAL GAS: Not Enough by 2000  

Science Journals Connector (OSTI)

NATURAL GAS: Not Enough by 2000 ... The U.S. isn't about to run out of natural gas next week, or even this century. ... And supply patterns will alter significantly, as gas from coal and imported liquefied natural gas (LNG) assume sizable shares of gas energy supply. ...

1969-02-24T23:59:59.000Z

270

Life cycle greenhouse gas footprint of shale gas: a probabilistic approach  

Science Journals Connector (OSTI)

With the increase in natural gas (NG) production in recent years, primarily from shale gas, some sources, including the US Environmental ... the data from the Montney and Horn River shale gas basins in the Northe...

Anjuman Shahriar; Rehan Sadiq

2014-12-01T23:59:59.000Z

271

Natural gas annual 1997  

SciTech Connect (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

272

Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Abstract A comprehensive understanding of porosity variations in tight gas sandstones plays an important role in reservoir management and provision of plans for developing of the field. This is especially important when we encounter with some degree of complexity in reservoir characteristics of these sandstones. Reservoir properties of tight gas sandstones of the Whicher Range field, the target reservoir of this study, were affected by internal reservoir heterogeneity mostly related to depositional and diagenetic features of the reservoir sandstones. In this study, 2D seismic data in combination with well log data were used for prediction of porosity based on seismic inversion technique and multi-attribute regression analysis. The results show that acoustic impedance from model based inversion is the main seismic attribute in reservoir characterization of tight sandstones of the field. Wide variations in this parameter can be effectively used to differentiate the reservoir sandstones based on their tightness degree. Investigation of porosity by this method resulted in 2D-view of porosity variations in sandstone reservoir which is in accordance with variations in geological characteristics of tight gas sandstones in the field. This view can be extended to a 3D-view in the framework of reservoir model to follow the variations throughout the field.

Rahim Kadkhodaie-Ilkhchi; Reza Moussavi-Harami; Reza Rezaee; Majid Nabi-Bidhendi; Ali Kadkhodaie-Ilkhchi

2014-01-01T23:59:59.000Z

273

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

274

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

275

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

276

File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information  

Open Energy Info (EERE)

Black.Warrior.Basin usgs.map.pdf Black.Warrior.Basin usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size of this preview: 742 × 600 pixels. Full resolution ‎(1,860 × 1,504 pixels, file size: 148 KB, MIME type: application/pdf) Description Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Sources USGS Related Technologies Oil, Gas Creation Date 2007 Extent Black Warrior Basin Province Countries United States UN Region Northern America States Alabama, Mississippi Location of the Black Warrior Basin Province in northwestern Alabama and northeastern Mississippi, published in the USGS report entitled, Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin

277

Supply Systems Analyst  

Broader source: Energy.gov [DOE]

In this position you will serve as a Supply Systems Analyst for Supply Chain Services. The incumbent is responsible for managing and supporting multiple electronic database systems, including Asset...

278

47 Natural Gas Market Trends NATURAL GAS MARKET TRENDS  

E-Print Network [OSTI]

47 Natural Gas Market Trends Chapter 5 NATURAL GAS MARKET TRENDS INTRODUCTION Natural gas discusses current natural gas market conditions in California and the rest of North America, followed on the outlook for demand, supply, and price of natural gas for the forecasted 20-year horizon. It also addresses

279

Opportunities for LNG supply infrastructure and demand growth in US and International markets  

E-Print Network [OSTI]

Countries are looking beyond their borders for options to satiate a forecasted increase in natural gas consumption. A strong option for importing natural gas is by way of a liquefied natural gas (LNG) supply chain where ...

Connell, Richard Perry

2004-01-01T23:59:59.000Z

280

E-Print Network 3.0 - austral magallanes basin Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: austral magallanes basin Page: << < 1 2 3 4 5 > >> 1 World Shale Gas Resources: An Initial Assessment of 14 Regions Summary: ......

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Upper DevonianLower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

282

LNG links remote supplies and markets  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N. [Mobil LNG Inc., Houston, TX (United States); Rethore, T.J. [Arthur D. Little Inc., Houston, TX (United States)

1997-06-02T23:59:59.000Z

283

Petroluem Supply Monthly, May 1993  

SciTech Connect (OSTI)

Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in primary supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data presented in the PSM are divided into two sections: Summary Statistics and Detailed Statistics.

Not Available

1993-06-04T23:59:59.000Z

284

Petroleum Supply Monthly, July 1990  

SciTech Connect (OSTI)

Data presented in the PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 states and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States.

Not Available

1990-09-28T23:59:59.000Z

285

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

286

Forecourt and Gas Infrastructure Optimization  

Broader source: Energy.gov (indexed) [DOE]

Forecourt and Gas Infrastructure Optimization Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8-9, 2007 Columbia, Maryland 2 Analysis of Market Demand and Supply...

287

Supplies of Propane-Air Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

1,169 670 838 401 299 309 1980-2012 1,169 670 838 401 299 309 1980-2012 Alabama 1980-2003 Arizona 1980-1998 Arkansas 1980-1998 Colorado 3 2 3 4 21 99 1980-2012 Connecticut 0 0 1 1980-2009 Delaware 5 2 2 1 1980-2010 Florida 1980-1998 Georgia 2 0 0 1980-2012 Hawaii 4 5 9 6 25 20 2004-2012 Illinois 11 15 20 17 1 1 1980-2012 Indiana 81 30 1 1 5 1 1980-2012 Iowa 2 24 3 2 1 1980-2011 Kentucky 124 15 18 5 8 1 1980-2012 Maine 1980-2003 Maryland 245 181 170 115 89 116 1980-2012 Massachusetts 15 13 10 0 1980-2010 Michigan 1980-1998 Minnesota 54 46 47 12 20 9 1980-2012 Missouri 60 6 10 18 0 1980-2012 Nebraska 33 28 18 12 9 4 1980-2012 Nevada 1980-1998 New Hampshire 9 1980-2007 New Jersey 0 1980-2012 New Mexico

288

Natural Gas Consumption (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Federal Offshore Gulf of Mexico 115,528 102,389 103,976 108,490 101,217 93,985 1999-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012 Arizona 392,954 399,188 369,739 330,914 288,802 332,079 1997-2012 Arkansas 226,439 234,901 244,193 271,515 284,076 295,811 1997-2012 California 2,395,674 2,405,266 2,328,504 2,273,128 2,153,186 2,403,385 1997-2012

289

Colorado Supplemental Supplies of Natural Gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

6,258 7,527 5,148 4,268 4,412 4,112 1967-2013 Propane-Air 2 3 4 21 99 41 1980-2013 Other 6,256 7,525 5,144 4,247 4,313 4,071 1980-2013...

290

Ohio Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

460 522 353 296 366 416 1967-2013 Synthetic 0 0 1980-2013 Propane-Air 81 66 40 27 6 34 1980-2013 Biomass 379 456 313 269 360 383 1993-2013...

291

Georgia Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

* 52 732 701 660 642 1967-2013 Propane-Air 0 0 0 1980-2013 Biomass 52 732 701 660 642 1993-2013 Other 0 0 0 1980...

292

New York Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

7 6 2 0 0 0 1967-2013 Synthetic 1980-2005 Propane-Air 7 6 2 1980-2010 Biomass 1993-2005 Other 1980-2005...

293

Table A14. Oil and gas supply  

Gasoline and Diesel Fuel Update (EIA)

price: U.S. Energy Information Administration (EIA), Petroleum Marketing Monthly, DOEEIA- 0380(201308) (Washington, DC, August 2013). 2011 and 2012 lower 48 onshore, lower...

294

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

295

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

296

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

297

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network [OSTI]

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

298

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

299

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

300

Supply | OpenEI  

Open Energy Info (EERE)

Supply Supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Water Basins Civil Engineering  

E-Print Network [OSTI]

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

302

Liquefied Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

303

Engaging Supply Chains in Climate Change  

Science Journals Connector (OSTI)

Suppliers are increasingly being asked to share information about their vulnerability to climate change and their strategies to reduce greenhouse gas emissions. Their responses vary widely. We theorize and empirically identify several factors associated ... Keywords: econometric analysis, empirical research, environmental operations, quality management, risk management, supply chain management, sustainable operations

Chonnikarn Fern Jira; Michael W. Toffel

2013-10-01T23:59:59.000Z

304

Magnets and Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

305

Electric Vehicle Supply Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procurement of Electric Vehicle Supply Equipment This Guidance provides a description of the types of requirements to be included in an employer's workplace charging request for...

306

Geology of the Douala basin, offshore Cameroon, West Africa  

SciTech Connect (OSTI)

The Douala basin is predominantly an offshore basin extending from the Cameroon volcanic line in the north to the Corisco arch in the south near the Equatorial Guinea-Gabon border. The basin lies wholly within the territorial borders of Cameroon and Equatorial Guinea. The Douala basin is one of a series of divergent margin basins occurring along the southwest African coastline resulting from the rifting of Africa from South America. Continental rifting in the Doula basin was initiated at least by Aptian-Albian time and possibly as early as Jurassic. The rift stage persisted until Albian time when the onset of drifting occurred. The sedimentary section in the basin has a maximum thickness of 8-10 km, based on exploration drilling and gravity and magnetics modeling. The synrift section consists of Aptian-Albian sands and shales, deposited primarily as submarine fans, fan-deltas, and turbidite deposits. These are overlain by salt, thought to be equivalent to the Ezagna salt of Aptian age in the Gabon basin to the south. The synrift section is separated from the overlying postrift shale sequence of Late Cretaceous and Tertiary age by a major late Albian unconformity. The Douala basin has been explored for hydrocarbons intermittently over the last 25 years. Results show a distinct tendency for gas-proneness. The largest field recorded to date is the Sanaga Sud gas field, discovered in 1979, offshore, near the coastal city of Kribi.

Pauken, R.J.; Thompson, J.M.; Schumann, J.R. (Mobil New Exploration Ventures Co., Dallas, TX (United States)); Cooke, J.C. (Mobil Exploration and Production Services Inc., Dallas, TX (United States))

1991-03-01T23:59:59.000Z

307

The Supply Chain as a Dynamical System CAPD EWO Seminar, Feb. 28 3, 2008  

E-Print Network [OSTI]

balancing and self-optimization 4. The Adaptive Enterprise 5. Current problems Oil and gas field management tank tank mixer reactor column column column product product waste supply supply recycle stream #12

Grossmann, Ignacio E.

308

Evolution and hydrocarbon prospectivity of the Douala Basin, Cameroon  

SciTech Connect (OSTI)

The Douala Basin is a stable Atlantic-type, predominantly offshore basin and forms the northern terminal of a series of divergent passive margin basins located on the Southwest coast of Africa that resulted from the rifting of Africa from South America. An integration of new studies including detailed well, biostratigraphic, sedimentological, geochemical and seismic data has confirmed that the tectonostratigraphic evolution in the basin can be broadly divided into three developmental phases: the Syn-rift, Transitional and Drift phases. This basis has been explored intermittently for hydrocarbon for the past 40 years with two important gas fields discovered and no commercial oil found as yet. This early gas discovery and a corresponding lack of any significant oil discovery, led early operators to term this basin as essentially a gas province. However, recent geochemical analyses of various oil-seeps and oil samples from various localities in the basin, using state-of-the-art techniques have demonstrated that this basin is a potential oil prone basin. The results show that two models of oil sourcing are possible: a Lower Cretaceous lacustrine saline source, similar to the presalt basins of Gabon or a marine Upper Cretaceous to lower Tertiary source, similar to the neighbouring Rio del Rey/Niger Delta Complex. Additionally, seismic reflection data also demonstrate a variety of reservoir horizons, including submarine fans, channel-like features and buried paleohighs, all interbedded within regionally extensive, uniformity bounded mudstone units. Hence, it is now quite evident that within this basin, there exist a vast potential for a wide variety of stratigraphic, structural and combined traps. These features, which are considered to have significantly enhanced the prospectivity of this basin, will be discussed in this paper.

Batupe, M.; Tampu, S.; Aboma, R.S. [National Hydrocarbons Corporation, Yaounde (Cameroon)

1995-08-01T23:59:59.000Z

309

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

310

NUFinancials Supply Chain  

E-Print Network [OSTI]

NUFinancials Supply Chain FMS801 & 803 Purchasing Glossary 03/31/2010 © 2010 Northwestern University FMS801 & 803 1 Purchasing Glossary Guide to terms used in iBuyNU and NUFinancials purchasing Term, faculty salary, office supplies. Similar to CUFS Object Code, Revenue Source, and Balance Sheet. Note

Shull, Kenneth R.

311

Supply, Demand, and Export Outlook for North American Oil and...  

Gasoline and Diesel Fuel Update (EIA)

Supply, Demand, and Export Outlook for North American Oil and Gas For Energy Infrastructure Summit September 15, 2014 | Houston, TX By Adam Sieminski, EIA Administrator 0 20 40 60...

312

Assessment of district energy supply from Schiller Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the Public Service of New Hampshire Schiller Generating Station to supply district heating to potential customers. The project involved analysis of power plant retrofit and comparison of district heating cost to the cost of heat supplied with gas boilers for a housing development in close proximity to the Schiller Station.

Hitchko, M. [Public Service Company of New Hampshire, Portsmouth, NH (United States); Major, W. [Joseph Technology Corporation, Inc., Woodcliff Lake, NJ (United States)

1995-06-01T23:59:59.000Z

313

Divergent/passive margin basins  

SciTech Connect (OSTI)

This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

Edwards, J.D. (Shell Oil Company (US)); Santogrossi, P.A. (Shell Offshore Inc. (US))

1989-01-01T23:59:59.000Z

314

Technology Key to Harnessing Natural Gas Potential | Department...  

Energy Savers [EERE]

- for a total of 30 million - that will pursue innovations in natural gas storage tanks and fueling stations, helping to harness our abundant supplies of domestic natural gas...

315

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

316

Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

Pollock, George G. (San Ramon, CA)

1997-01-01T23:59:59.000Z

317

Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow  

DOE Patents [OSTI]

Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

Pollock, G.G.

1997-01-28T23:59:59.000Z

318

Monthly/Annual Energy Review - natural gas section  

Reports and Publications (EIA)

Monthly and latest annual time-series and recent statistics on natural gas supply, disposition, and price.

2015-01-01T23:59:59.000Z

319

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

320

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect (OSTI)

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

322

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

E-Print Network [OSTI]

use and greenhouse gas (GHG) emissions of a variety of goodsto the supply chain energy and GHG footprints of goods andto estimate achievable household GHG footprint reductions

Masanet, Eric

2010-01-01T23:59:59.000Z

323

Facies, stratigraphic architecture, and lake evolution of the oil shale bearing Green River Formation, Eastern Uinta Basin, Utah.  

E-Print Network [OSTI]

??Lacustrine basin systems have historically been valued for their abundant conventional oil and gas reserves, but they also contain a vast potential for unconventional petroleum (more)

Rosenberg, Morgan Joshua

2013-01-01T23:59:59.000Z

324

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

January 30, 2013 | Release Date: January 31, January 30, 2013 | Release Date: January 31, 2013 | Next Release: February 7, 2013 Previous Issues Week: 01/19/2014 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural gas dry production at selected points in the United States Rocky Mountain region have rebounded during the final two weeks of January, according to data from BENTEK Energy LLC (Bentek). Production declines took place in this region during the middle of the month, likely due to the effect of a cold front that moved into the region. The cold weather led to a number of reported wellhead freeze-offs, and correlated with production decreases in the San Juan, Green River, Uinta and Piceance basins, according to Bentek. This was particularly the case in the San Juan Basin, located in Colorado

325

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

2, 2013 | Release Date: October 3, 2, 2013 | Release Date: October 3, 2013 | Next Release: October 10, 2013 Previous Issues Week: 12/29/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: New lateral increases customer access to Denver-Julesburg gas production Full service is expected to begin by November on the High Plains pipeline's newly built Lancaster Lateral in northern Colorado. Once this occurs, High Plains, which is part of Kinder Morgan subsidiary El Paso Pipeline Partners' Colorado Interstate Gas (CIG) pipeline system, would have firm contract agreements to carry 0.22 billion cubic feet per day (Bcf/d) and could eventually carry 0.59 Bcf/d of additional natural gas from the Denver-Julesburg production basin 7.5 miles north to the Cheyenne

326

Barloworld Supply Chain Software USA  

E-Print Network [OSTI]

Barloworld Supply Chain Software USA Supply Chain Consultant / Inventory Analyst Position November 2011 #12;Barloworld SCS USA ­ Supply Chain / Inventory Analyst Aug 2011 Page 2 of 4 INTRODUCTION Barloworld Supply Chain Software (SCS) USA would like to invite you to apply for a Supply Chain

Heller, Barbara

327

Power Supply Fundamentals  

Science Journals Connector (OSTI)

Liquid Crystal Displays require dedicated power supply circuits to support their specific requirements. Many different display technologies coexist in the market and compete for their market share. While the p...

Oliver Nachbaur

2012-01-01T23:59:59.000Z

328

GSA Wind Supply Opportunity  

Office of Environmental Management (EM)

Wind Supply Opportunity 1 2 3 Proposed Location * Size: 100-210 MegaWatts *Location: Bureau County, IL *Planned COD: December 2014 or 2015 *Site Control: 17,000 acres *Wind...

329

European supply chain study  

E-Print Network [OSTI]

Introduction: Supply chain management has been defined as, "..a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that merchandise is produced and distributed at the ...

Puri, Mohitkumar

2009-01-01T23:59:59.000Z

330

Washington's power supply collapse  

Science Journals Connector (OSTI)

... ON 25 July 1983 the Washington Public Power Supply System (WPPSS) defaulted on 2,250 million of municipal revenue bonds. This, ... has been polemical and accusatory in nature, blaming the Washington State Supreme Court, the Bonneville ...

Roger H. Bezdek

1985-09-26T23:59:59.000Z

331

Chapter Nine - Gas Sweetening  

Science Journals Connector (OSTI)

Abstract This chapter begins by reviewing the processing of natural gas to meet gas sales contract specifications. It then describes acid gas limitations for pipelines and gas plants, before detailing the most common acid gas removal processes, such as solid-bed, chemical solvent processes, physical solvent processes, direct conversion processes, distillation process, and gas permeation processes. The chapter discusses the selection of the appropriate removal process for a given situation, and it provides a detailed design procedure for a solid-bed and chemical solvent process. The chapter ends by supplying a sample design for a solid-bed and chemical solvent process.

Maurice I. Stewart Jr.

2014-01-01T23:59:59.000Z

332

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

333

Origin of cratonic basins  

SciTech Connect (OSTI)

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

334

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

335

Minturn Formation of Eagle basin: an exploration frontier  

SciTech Connect (OSTI)

The Eagle basin, a predominantly Desmoinesian evaporite basin in northwestern Colorado, contains many targets for oil and gas reserves. Facies patterns of the Minturn Formation of the Eagle basin are strikingly similar to those of the prolific Paradox Formation of the Paradox basin. Both basins and formations also contain lens-shaped carbonate algal-bioherms. These algal-bioherms are particularly attractive reservoirs where they flank halite-basin margins, the areas of optimum dolomitization. The Minturn formation has been subdivided into individual rock packages using subsurface control. Facies maps constructed for individual units indicate the Eagle basin is a series of smaller basins, each having served as a center for halite deposition. Data support a deep-water model for the deposition of halite; however, a sabkhalike environment existed between the halite basins and the normal marine facies. Halite depocenters appear to have been structurally controlled. The Minturn Formation is very thick and may contain multiple prospective zones at any one location. Within the past year, two and possibly three Minturn discoveries have been made in northwestern Colorado.

Dodge, C.J.N.; Bartleson, B.

1986-08-01T23:59:59.000Z

336

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

337

VALUING FLARED NATURAL GAS  

Science Journals Connector (OSTI)

LAST YEAR , enough natural gas to supply 27% of U.S. needs was burned off as waste around the world, according to a new report by the World Bank. Flared natural gas is a by-product of petroleum production and is not generally considered worth capture and ...

2007-09-10T23:59:59.000Z

338

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

339

Atlantic Basin Refining Dynamics from U.S. Perspective  

Gasoline and Diesel Fuel Update (EIA)

This presentation focuses on the current refining situation in the Atlantic Basin, This presentation focuses on the current refining situation in the Atlantic Basin, Page 1 including some discussion on how we got here, and on drivers that will influence the next 5 years. I will focus on three topics today that are critical to the petroleum product dynamics of Page 2 the Atlantic Basin over the next several years. The first is product demand growth - something that has been affected both by the recession and legislation. Next I will cover the supply situation for gasoline and distillates in the Atlantic Basin, since Europe and the U.S. are closely entwined in these markets. Last, we will visit the outlook for those drivers affecting profitability - an area of large uncertainty. I will begin today with a short discussion of important underlying long-term trends in U.S.

340

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

342

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

343

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

344

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

345

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

346

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

347

Williston in the family of cratonic basins  

SciTech Connect (OSTI)

The Williston basin is one of a clan of subcircular to elliptical elements in the interiors of all cratons; such basins are distinguished by characteristics common to all. In each, the basement consists of continental crust and each basin is surrounded by areas of continental crust. Subsidence rates are typically low, so that conditions near depositional base level prevailed during much of the history of sediment accumulation. Episodic subsidence occurred over time spans of 10/sup 7/-10/sup 8/ years; major episodes of subsidence are broadly concurrent on all cratons. Tectonic tempo and mode of subsidence evolved synchronously on all cratons; therefore, similar isopach and facies patterns (and similar oil or gas maturation, migration, and trap potentials) occur on all cratons. All members of the clan exhibit a range of individual variations imposed by latitude and climate. Intraplate tectonism and volcanism, approach to or distance from source areas, and distribution paths of detrital sediment. Nevertheless, facts and concepts developed by intensive study of basins with high-density documentation (outcrop and subsurface) are commonly applicable to basins such as the Williston, which is in a less mature stage of exploration.

Sloss, L.L.

1985-05-01T23:59:59.000Z

348

K-Basins.pub  

Broader source: Energy.gov (indexed) [DOE]

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

349

NETL: Shale Gas and Other Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

350

Optimization Online - Solving Power-Constrained Gas ...  

E-Print Network [OSTI]

Nov 24, 2014 ... Solving Power-Constrained Gas Transportation Problems using an ... quantities but further incorporate heat power supplies and demands as...

Bjrn Geiler

2014-11-24T23:59:59.000Z

351

Petroleum Supply Monthly Archives  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Supply Monthly Petroleum Supply Monthly Petroleum Supply Monthly Archives With Data for December 2011 | Release Date: February 29, 2012 Changes to Table 26. "Production of Crude Oil by PAD District and State": Current State-level data are now included in Table 26, in addition to current U.S. and PAD District sums. State offshore production for Louisiana, Texas, Alaska, and California, which are included in the State totals, are no longer reported separately in a "State Offshore Production" category. Previously, State-level values lagged 2 months behind the U.S. and PAD District values. Beginning with this publication, they will be on the same cycle. Also included in this publication are two additional pages for Table 26 that provide October and November data. With the release of

352

Alternate Water Supply System  

Office of Legacy Management (LM)

Alternate Water Supply Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank

353

Page 1 of 21 Vertical integration in a growing industry: security of supply  

E-Print Network [OSTI]

is to secure supply and mitigate risks of price volatility. Oil and gas firms move upstream to enhance securityPage 1 of 21 Vertical integration in a growing industry: security of supply and market access of the industry boundaries, (ii) security of supply and (iii) access to market. The permeability of industry

Aickelin, Uwe

354

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

355

Health risks and natural gas  

Science Journals Connector (OSTI)

... SIR - We have found that oxide coat-ings on gas burners in Polish houses 5 to 100 km away from ... burners in Polish houses 5 to 100 km away from gas deposits in the Rotliegendes basin contain high concen-trations of Pb, Cu, Ag and ...

H. Kucha; K. Slupczynski; W. Prochaska

1993-06-24T23:59:59.000Z

356

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF Table 15. Natural Gas Plant Net Production and Stocks of Petroleum Products by PAD and Refining Districts, January 2013 (Thousand Barrels) Commodity Production PAD District 1...

357

Investigacin Supply chain collaboration  

E-Print Network [OSTI]

. These interactions among firms' decisions ask for alignment and coordination of actions. Therefore, game theory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain

Boucherie, Richard J.

358

Negotiations Within Supply Chains  

Science Journals Connector (OSTI)

In this paper we consider a negotiation between a supplier and its retailer. Due to the supplier's commitments with other customers the negotiation is about the maximum order quantity the retailer can order at a fixed price. We propose a structuring ... Keywords: capacity, contract, cooperation, negotiations, scenario, supply chain management

Carsten Homburg; Christoph Schneeweiss

2000-05-01T23:59:59.000Z

359

The Influences of Human Activities on the Waters of the Pecos Basin of Texas: A Brief Overview  

E-Print Network [OSTI]

is not fully understood at this point. Lower Pecos River near Pandale #24; The Pecos Basin was once covered by the shallow Permian Sea. When the sea receded, significant amounts of evaporated gypsum, halites and related salts were left in soils and rock... Irrigation in the Pecos Basin of Texas Historically, the majority of early efforts to develop irrigation in the Pecos Basin were focused on flowing streams and the river, shallow alluvial aquifers and sites with plentiful groundwater supplies. In the late...

Jensen, R.; Hatler, W.; Mecke, M.; Hart, C.

2006-01-01T23:59:59.000Z

360

Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product  

SciTech Connect (OSTI)

For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Importance of Geochemical Parameters and Shale Composition on Rock Mechanical Properties of Gas Shale Reservoirs: a Case Study From the Kockatea Shale and Carynginia Formation From the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Evaluation of the gas shale mechanical properties is very important screening criteria ... for hydraulic fracturing and as a result in gas shale sweet spot mapping. Youngs modulus and ... mechanical properties t...

Mohammad Mahdi Labani; Reza Rezaee

2014-06-01T23:59:59.000Z

362

Gas Companies Right-of-Way (Maryland)  

Broader source: Energy.gov [DOE]

Corporations engaged in the business of transmitting or supplying natural gas, artificial gas, or a mixture of natural and artificial gases may acquire by condemnation the rights-of-way or...

363

Well blowout rates in California Oil and Gas District 4--Update and Trends  

E-Print Network [OSTI]

geologic assessment of oil and gas in the San Joaquin BasinRates in California Oil and Gas District 4 Update andoccurring in California Oil and Gas District 4 during the

Benson, Sally M.

2010-01-01T23:59:59.000Z

364

Supply Stores | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supply Stores Supply Stores Supply Stores DOE Self Service Supply Stores at Headquarters Operated by: Paperclips, Etc. and the Winston-Salem Industries for the Blind DOE Self-Service Supply Stores Hours of Operation: 9:00 a.m. through 4:00 p.m. Monday through Friday DOE Supply Stores Locations Location Phone Fax Forrestal Room GA-171 (202) 554-1451 (202) 554-1452 (202) 554-7074 Germantown Room R-008 (301) 515-9109 (301) 515-9206 (301) 515-8751 The stores provide an Office Supply Product inventory that is tailored to meet the DOE customer's requirements. Office Supply items that are not carried in the store inventory can be special ordered, see the Catalog Order Form section below. The stores are operated for the Department of Energy, Office of Administration, Office of Logistics and Facility Operations, for the Supply

365

EIA - Natural Gas Publications & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Publications & Analysis Publications & Analysis Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S. Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot. Natural Gas Monthly U.S. production, supply, consumption, disposition, storage, imports, exports, and prices. Natural Gas Annual Provides comprehensive information on the supply and disposition of natural gas in the U.S. ... see complete list of Natural Gas Publications Basics All Prices Exploration & Reserves Production Imports/Exports & Pipelines Storage Consumption Natural Gas Survey Forms Natural Gas Section from International Energy Annual Forecasts & Analysis Includes petroleum and natural gas forecasts and analysis for consumption, production, prices, and sales.

366

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

367

Geological development, origin, and energy and mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston Basin of North Dakota, Montana, South Dakota, and S.-Central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Located on the western periphery of the Phanerozoic North American Craton, the Williston Basin has undergone only relatively mild tectonic distortion during Phanerozoic time. This distortion is related largely to movement of Precambrian basement blocks. Oil exploration and development in the US portion of the Williston basin from 1972 to present have given impetus to restudy of basin evolution and geologic controls for energy resource locations. Major structures in the basin, and the basin itself, may result from left-lateral shear along the Colorado-Wyoming and Eromberg zones during pre-Phanerozoic time. Deeper drilling in the basin has established several major new structures with indications of others.

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-05-01T23:59:59.000Z

368

Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado  

SciTech Connect (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

1989-07-01T23:59:59.000Z

369

The world energy supply  

Science Journals Connector (OSTI)

The pattern of the world's energy supply has undergone dramatic changes over the last century, and particularly over the last twenty years. The growth in the world's population and the ever-greater demand for energy will lead to the global environment being subjected to considerable strain. The world will require a new type of energy system, one that is technically feasible, but which will face many difficulties in gaining social and economic acceptance. The world's future energy supply will depend upon the rational exploitation of resources and the development of high technical standards in the fields of reliability and safety. The required social changes will include a change to more energy-conserving life styles and a strengthening of international co-operation in long-term energy and environmental research and development.

L.H.Th. Rietjens

1991-01-01T23:59:59.000Z

370

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

3.PDF 3.PDF Table 13. Crude Oil Supply, Disposition, and Ending Stocks by PAD District, January 2012 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production .................................................... 734 29,902 109,919 12,961 36,593 190,109 6,133 Alaskan ............................................................. - - - - - - - - - 18,374 593 Lower 48 States ................................................ - - - - - 171,734 5,540 Imports (PAD District of Entry) ............................. 26,368 53,695 142,073 10,783 31,429 264,348 8,527 Commercial ...................................................... 26,368 53,695 142,073 10,783 31,429 264,348 8,527 Strategic Petroleum Reserve (SPR) ................. - - - - - - - Net Receipts .........................................................

371

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

372

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

Imports by SPR - - 0 - - - - - - Imports into SPR by Others - - 0 - - - - - - Natural Gas Liquids and LRGs 45,013 10,597 12,744 - -29,287 17,214 1,700 78,727 117,581 Pentanes...

373

Interaction of Fracture Fluid With Formation Rock and Proppant on Fracture Fluid Clean-up and Long-term Gas Recovery in Marcellus Shale Reservoirs.  

E-Print Network [OSTI]

??The exploitation of unconventional gas reservoirs has become an integral part of the North American gas supply. The economic viability of many unconventional gas developments (more)

Yue, Wenting

2012-01-01T23:59:59.000Z

374

An Embarrassment Of Riches- Canada'S Energy Supply Resources | Open Energy  

Open Energy Info (EERE)

Embarrassment Of Riches- Canada'S Energy Supply Resources Embarrassment Of Riches- Canada'S Energy Supply Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Embarrassment Of Riches- Canada'S Energy Supply Resources Details Activities (0) Areas (0) Regions (0) Abstract: We review the size and availability of Canada's energy supply resources, both non-renewable and renewable. Following a brief discussion of the energy fuel-mix in Canada from 1870 to 1984, and the current provincial breakdown of energy production and use, we provide a source-by-source review of energy supply resources, including oil, natural gas, coal, uranium, peat, wood, agricultural and municipal waste, and also hydro-electric, tidal, geothermal, wind and solar energy. An attempt is made to assess these resources in terms of resource base (the physical

375

Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin  

SciTech Connect (OSTI)

The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

2013-10-31T23:59:59.000Z

376

Natural Gas Exports from Iran  

Reports and Publications (EIA)

This assessment of the natural gas sector in Iran, with a focus on Irans natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.

2012-01-01T23:59:59.000Z

377

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network [OSTI]

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity...

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

378

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

379

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

380

Natural gas hydrates on the continental slope off Pakistan: constraints from seismic techniques  

Science Journals Connector (OSTI)

......2000 research-article Articles Natural gas hydrates on the continental slope...J. Int. (2000) 140, 295310 Natural gas hydrates on the continental slope...adequate gas supplies for hydrate Natural gas hydrates (clathrates) are a crystalline......

Ingo Grevemeyer; Andreas Rosenberger; Heinrich Villinger

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network [OSTI]

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

Jagoe, Bryan Keith

2012-06-07T23:59:59.000Z

382

Origin of gaseous hydrocarbons from Upper Cretaceous and Tertiary strata in the Piceance basin, western Colorado  

E-Print Network [OSTI]

Natural gas samples were collected for geochemical analyses from Upper Cretaceous and Tertiary strata of the Piceance basin in western Colorado to: 1) determine the origin of gases (i.e., microbial versus thermogenic), 2) determine the thermogenic...

Katz, David Jonathan

2012-06-07T23:59:59.000Z

383

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

384

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 February 2012 Energy Information Administration/Petroleum Supply Monthly, ii December 2011 EIA DATA ARE AVAILABLE IN ELECTRONIC FORM All current EIA publications are available on the EIA web site. Users can view and download selected pages or entire reports, search for information, download EIA data and analysis applications, and find out about new EIA information products and services: World Wide Web: http://www.eia.doe.gov FTP: ftp://ftp.eia.doe.gov Customers who do not have access to the Internet may call the National Energy Information Center (NEIC) to request a single print-

385

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

With Data for September 2013 With Data for September 2013 November 2013 Energy Information Administration/Petroleum Supply Monthly, ii September 2013 EIA DATA ARE AVAILABLE IN ELECTRONIC FORM All current EIA publications are available on the EIA web site. Users can view and download selected pages or entire reports, search for information, download EIA data and analysis applications, and find out about new EIA information products and services: World Wide Web: http://www.eia.doe.gov FTP: ftp://ftp.eia.doe.gov Customers who do not have access to the Internet may call the National Energy Information Center (NEIC) to request a single print-

386

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

9 9 Decemer 2011 Appendix D Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy

387

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 September 2013 Appendix D Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy

388

Petroleum supply monthly, October 1991. [Contains glossary  

SciTech Connect (OSTI)

Data presented in this report describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importer, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. Data are divided into two sections (1) the Summary Statistics and (2) the Detailed Statistics 14 figs., 56 tabs.

Not Available

1991-10-30T23:59:59.000Z

389

Petroleum Supply Monthly, September 1990. [Contains glossary  

SciTech Connect (OSTI)

Data presented in this PSM describe the supply and disposition of petroleum products in the United States and major US geographic regions. The data series describe production, imports and exports, inter-Petroleum Administration for Defense (PAD) District movements, and inventories by the primary suppliers of petroleum products in the United States (50 States and the District of Columbia). The reporting universe includes those petroleum sectors in Primary Supply. Included are: petroleum refiners, motor gasoline blenders, operators of natural gas processing plants and fractionators, inter-PAD transporters, importers, and major inventory holders of petroleum products and crude oil. When aggregated, the data reported by these sectors approximately represent the consumption of petroleum products in the United States. 12 figs., 46 tabs.

Whited, D.; Jacobus, P. (eds.)

1990-11-28T23:59:59.000Z

390

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

391

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini

2004-02-05T23:59:59.000Z

392

Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach  

SciTech Connect (OSTI)

Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

Amy Childers

2011-03-30T23:59:59.000Z

393

Coalbed methane potential assessed in Forest City basin  

SciTech Connect (OSTI)

This paper reports that the Forest City basin is a shallow cratonic depression located in northeastern Kansas, southeastern Nebraska, southern Iowa and northern Missouri. Historically, the Forest City basin in northeastern Kansas has been a shallow oil and gas province with minor coal production. The Iowa and Missouri portion has had minor oil production and moderate coal mining. In recent years there has been little coal mining in the Forest City in Iowa and Kansas and only minor production in Missouri. Before 1940, gas was produced from coal beds and shales in the Kansas portion of the Forest City basin. The Cherokee group (Altokan and Desmoinesian age) includes section containing the largest number of actively mined coals and has the greatest available data for coalbed methane evaluation.

Tedesco, S.A. (CST Oil and Gas Corp., Denver, CO (US))

1992-02-10T23:59:59.000Z

394

Petroleum Supply Monthly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Imports by SPR - - 0 - - - - - - Imports into SPR by Others - - 0 - - - - - - Natural Gas Liquids and LRGs 44,256 11,778 11,889 - 1,091 13,034 1,436 52,362 156,616 Pentanes Plus...

395

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-1 I. CANADA SUMMARY Canada has a series of large hydrocarbon basins with thick, organic-rich shales that are assessed by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in Western Canada. Figure I-1. Selected Shale Gas and Oil Basins of Western Canada Source: ARI, 2012. I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 I-2 The full set of Canadian shale gas and shale oil basins assessed in this study include:

396

Regional stratigraphy and general petroleum geology, Williston Basin  

SciTech Connect (OSTI)

Paleozoic sedimentary rocks in the Northern Great Plains and northern Rocky Mountain region include a sequence of dominantly shallow-water marine carbonate, clastic, and evaporite deposits of Middle Cambrian through Early Permian age. The lower part of the Paleozoic section is a sequence of marine sandstone, shale, and minor limestone, rangeing in age from Middle Cambrian through Middle Ordovician. Some porous sandstone beds occur in this section, mainly in the eastern and southern bordering areas of the Williston basin and Central Montana trough. Upper Ordovician through middle Upper Mississippian rocks are primarily carbonate beds, which contain numerous widespread cyclic interbeds of evaporite and fine-grained clastic deposits. Carbonate mounds or banks were deposited through most of this time in the shallow-water areas of the Williston basin and northern Rocky Mountains. Porous units, mainly dolomite or dolomitic limestone, are common but discontinuous in most of this sequence, and are more widespread in the eastern and southern margins of the Williston basin. Cumulative petroleum production (January 1982) in the United States part of the Williston basin was about 1.1 billion bbl of oil and 1.6 tcf gas. Estimated remaining recoverable reserves are about 400 million bbl of oil and 0.8 tcf gas. U.S. Geological Survey 1980 estimates of undiscovered recoverable oil and gas resources are about 900 million bbl of oil and 3.5 tcf gas.

Peterson, J.A.; Maccary, L.M.

1985-05-01T23:59:59.000Z

397

Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1--September 30, 1994  

SciTech Connect (OSTI)

Research continued in the detection of naturally fractured tight gas reservoirs. Tasks include modeling, data analysis, geologic assessment of the Piceance Basin, and remote sensing.

NONE

1997-05-01T23:59:59.000Z

398

Study of coal sorption characteristics and gas drainage in hard-to-drain seams.  

E-Print Network [OSTI]

??The subject of coal sorption characteristics and investigations into the reasons for coal seam gas drainability of the Bulli seam in Sydney Basin were undertaken (more)

Zhang, Lei

2012-01-01T23:59:59.000Z

399

Top-down and bottom-up estimates of CO2 storage capacity in the United Kingdom sector of the southern North Sea basin  

Science Journals Connector (OSTI)

...formations oil and gas fields, if any...on the injection strategy, the reservoir properties...except in oil- and gas-bearing regions...Combined Cycle Gas Turbine power plant. Their...has been a prolific gas-producing basin...gas fields under development. This is realistic...

Sam Holloway; Ceri J. Vincent; Michelle S. Bentham; Karen L. Kirk

400

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Where is shale gas found Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16 states. 1 U.S. Government Accountability Office, Report to Congressional Requesters, "Oil and Gas: Information on Shale Resources, Development, and

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Localization of motor neuron pools supplying identified muscles in normal and supernumerary legs of chick embryo  

Science Journals Connector (OSTI)

...University, St. Louis, Missouri 63130 Contributed by Viktor...neurons supplying the gas- trocnemius muscle of...with a bright-field oil immersion objective at...or not the transplant gas- trocnemius is innervated...short, the transplant gas- trocnemius is not innervated...

M Hollyday; V Hamburger; J M Farris

1977-01-01T23:59:59.000Z

402

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

403

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

404

Switching power supply  

DOE Patents [OSTI]

The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

Mihalka, A.M.

1984-06-05T23:59:59.000Z

405

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

406

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

407

Method for detecting organic contaminants in water supplies  

DOE Patents [OSTI]

A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

Dooley, Kirk J. (Shelley, ID); Barrie, Scott L. (Idaho Falls, ID); Buttner, William J. (White Bear Lake, MN)

1999-01-01T23:59:59.000Z

408

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

409

Petroleum Supply Annual, Volume 2  

U.S. Energy Information Administration (EIA) Indexed Site

Volume 2 - Final monthly statistics for the supply and disposition of crude oil and petroleum products. Volume 2 Tables All Tables All Tables Detailed Statistics Tables National...

410

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

411

Russian metallurgical coal supplies. A near-term perspective  

SciTech Connect (OSTI)

Calculations were made to estimate the changes in metallurgical coal supplies during the next 10 years. These calculations are based on three sets of data for the forecast period: (1) estimated changes in production at existing coal production and cleaning facilities in Kuznetsk, Pechora, and South Yakutsk basins; (2) production from new facilities as stipulated in licensing agreements for metallurgical coal production; and (3) Russian output of coke and washed coals. Estimates are given for two years: 2010 and 2015. A two-year base period of 2004 and 2005 was chosen because production was low in 2005 due to poor market conditions in the metal industry.

B.P. Kiselev; S.A. Liskovets [FGUP Eastern Coal Chemistry Research Institute (Russian Federation)

2007-01-15T23:59:59.000Z

412

DOE Updated U.S. Geothermal: Supply Curve (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii Geothermal Technologies Program (GTP) DOE Updated U.S. Geothermal Supply Curve Chad Augustine National Renewable Energy Laboratory Strategic Energy Analysis Center Chad.Augustine@nrel.gov February 1, 2010 Chad Augustine (NREL) Katherine R. Young (NREL) Arlene Anderson (DOE-GTP) NREL/PR-6A2-47527 Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 | 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov

413

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 32. Blender Net Inputs of Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 308 5 313 45 44 345 434 Pentanes Plus ...................................................... - - - - 2 75 77 Liquefied Petroleum Gases .................................. 308 5 313 45 42 270 357 Normal Butane .................................................. 308 5 313 45 42 270 357 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

414

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF 0.PDF Table 20. Blender Net Inputs of Petroleum Products by PAD Districts, January 2012 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 158 5 163 47 18 168 233 Pentanes Plus ...................................................... 5 - 5 - - 5 5 Liquefied Petroleum Gases .................................. 153 5 158 47 18 163 228 Normal Butane .................................................. 153 5 158 47 18 163 228 Isobutane .......................................................... - - - - - - - Other Liquids ..........................................................

415

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF 5.PDF Table 35. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products by PAD District and State, January 2012 (Thousand Barrels) Commodity Motor Gasoline Motor Gasoline Blending Components Kerosene Reformulated Conventional Total Reformulated Conventional Total PAD District 1 ............................................ 244 3,987 4,231 16,344 28,462 44,806 1,585 Connecticut ............................................. - - - 927 - 927 28 Delaware ................................................ - - - 887 652 1,539 148 District of Columbia ................................ - - - - - - - Florida ..................................................... - 978 978 - 5,532 5,532 - Georgia ................................................... - 370 370 - 2,767 2,767 20 Maine ......................................................

416

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect (OSTI)

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

417

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

418

EA-64 Basin Electric Power Cooperative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

419

Crude Oil Supply  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Supply Domestic Production (a) .......................................... 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Alaska .................................................................. 0.58 0.53 0.44 0.55 0.54 0.51 0.48 0.52 0.51 0.47 0.42 0.49 0.53 0.51 0.47 Federal Gulf of Mexico (b) .................................... 1.34 1.19 1.18 1.36 1.30 1.22 1.27 1.29 1.34 1.36 1.37 1.45 1.27 1.27 1.38 Lower 48 States (excl GOM) ................................ 4.31 4.57 4.80 5.11 5.28 5.56 5.87 6.16 6.41 6.61 6.77 6.91 4.70 5.72 6.68 Crude Oil Net Imports (c) ......................................... 8.55 8.88 8.52 7.89 7.47 7.61 7.94 7.36 6.66 6.78 6.83 6.06 8.46 7.60 6.58 SPR Net Withdrawals ..............................................

420

Natural Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 86. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 13. Natural Gas Supply, Disposition, and Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South Central Table 27. Carbon Dioxide Emissions by Sector and Source - West South

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Weekly Update, Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

supply to MRT's East Line or reduce applicable delivery volumes. Colorado Interstate Gas Company announced on December 6 that the Cheyenne Compressor Stations unit that had...

422

Reserve estimates in western basins: Unita Basin. Final report, Part III  

SciTech Connect (OSTI)

This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

NONE

1995-10-01T23:59:59.000Z

423

Coalbed Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

424

Evaluation of Devonian shale potential in the Michigan basin  

SciTech Connect (OSTI)

The purpose of this report is to inform interested oil and gas operators about EGSP results as they pertain to the Devonian gas shales of the Michigan basin. Geologic data and interpretations are summarized, and areas where the accumulation of gas may be large enough to justify commercial production are outlined. Because the data presented in this report are generalized and not suitable for evaluation of specific sites for exploration, the reader should consult the various reports cited for more detail and discussion of the data, concepts, and interpretations presented. However, a conservative estimate of in place resource for the Michigan basin is 76 TCF (Zielinski and McTver 1980. How much of this resource can be recovered using present technology has not been estimated. 27 refs., 15 figs., 2 tabs.

Not Available

1981-01-01T23:59:59.000Z

425

Gas Retention and Accumulation in Stellar Clusters and Galaxies: Implications for Star Formation and Black Hole Accretion.  

E-Print Network [OSTI]

??Star formation cannot proceed without the existence of an extensive gas reservoir. In particular, the supply of gas to form stars in dwarf galaxies and (more)

Naiman, Jill Palmer

2014-01-01T23:59:59.000Z

426

Repetitive resonant railgun power supply  

DOE Patents [OSTI]

A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

Honig, E.M.; Nunnally, W.C.

1985-06-19T23:59:59.000Z

427

Basic Costs in Electricity Supply  

Science Journals Connector (OSTI)

... ONE of the principal problems in the management of public electricity supply companies is how to reconcile the ... supply companies is how to reconcile the costs with the charges not only from year to year but also in their irregular secular ...

1941-07-12T23:59:59.000Z

428

WATER SUPPLY A Handbook on  

E-Print Network [OSTI]

WATER SUPPLY HANDBOOK A Handbook on Water Supply Planning and Resource Management Institute for Water Resources Water Resources Support Center U.S. Army Corps of Engineers 7701 Telegraph Road Studies Division December 1998 Revised IWR Report 96-PS-4 #12;U.S. Army Institute for Water Resources

US Army Corps of Engineers

429

Developing a strategic roadmap for supply chain process improvement in a regulated utility  

E-Print Network [OSTI]

This thesis covers work done at Tracks Energy, a regulated utility, to develop a strategic roadmap for supply chain process improvement. The focus of Tracks Energy has always been on keeping the lights on and the gas flowing ...

Yoder, Brent E. (Brent Edward)

2013-01-01T23:59:59.000Z

430

electricity supply | OpenEI  

Open Energy Info (EERE)

supply supply Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting, among other things, data on the U.S. electricity supply. Source NREL Date Released March 05th, 2006 (8 years ago) Date Updated Unknown Keywords electricity supply NREL Data application/vnd.ms-excel icon Electricity Supply (13 worksheets) (xls, 1.2 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment

431

Petroleum Supply Annual, Volume 1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 With Data for 2012 | Release Date: September 27, 2013 | Next Release Date: August 28, 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go Re-release of the Petroleum Supply Annual with data for 2011 Volume 1 - Final annual data for the supply and disposition of crude oil and petroleum products. Volume 1 Tables All Tables All Tables Detailed Statistics Tables National Statistics 1 U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products PDF CSV 2 U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products PDF CSV Supply and Disposition of Crude Oil and Petroleum Products 3 PAD District 1 PDF CSV 4 Daily Average PAD District 1 PDF CSV

432

Accuracy of Petroleum Supply Data  

Gasoline and Diesel Fuel Update (EIA)

Accuracy of Petroleum Supply Data Accuracy of Petroleum Supply Data by Tammy G. Heppner and Matthew M. Breslin Overview For 2007, 66 petroleum supply data series were analyzed to determine how close the PSM values were to the final PSA values. For these series, 50 out of the 66 PSM values were within 1 percent of the PSA values in terms of mean absolute percent error as compared to 38 out of 66 in 2006. Sixty-two petroleum supply data series were analyzed to see how close the MFW estimates were to the final PSA values. For these 62 series, 22 MFW estimates were within 2 percent of the PSA values in terms of mean absolute percent error and, of those, 9 were within 1 percent, compared to 27 and 10, respectively, for 2006. Petroleum supply data collected by the Petroleum Division

433

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

434

Petroleum basin studies  

SciTech Connect (OSTI)

This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

Shannon, P.M. (Univ. College, Dublin (IE)); Naylor, D. (Westland Exploration Ltd., Dublin (IE))

1989-01-01T23:59:59.000Z

435

Caribbean basin framework, 3: Southern Central America and Colombian basin  

SciTech Connect (OSTI)

The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas of Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.

Kolarsky, R.A.; Mann, P. (Univ. of Texas, Austin (United States))

1991-03-01T23:59:59.000Z

436

Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply Chain  

E-Print Network [OSTI]

1 Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply address the design and planning of an integrated ethanol and gasoline supply chain. We assume, distribution centers where blending takes place, and the retail gas stations where different blends of gasoline

Grossmann, Ignacio E.

437

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 September 2013 Table 49. Exports of Crude Oil and Petroleum Products by PAD District, September 2013 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 94 2,282 598 1 - 2,975 99 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 453 2,129 10,579 380 396 13,937 465 Pentanes Plus .................................................. 300 1,599 652 346 92 2,989 100 Liquefied Petroleum Gases .............................. 153 530 9,927 34 304 10,947 365 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 126 199 9,412 4 299 10,040 335 Normal Butane/Butylene ...............................

438

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8.PDF 8.PDF Table 18. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, January 2012 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 22,762 2,792 25,554 70,449 14,098 23,700 108,247 Natural Gas Plant Liquids ...................................... 544 - 544 2,607 144 644 3,395 Pentanes Plus ...................................................... - - - 689 5 267 961 Liquefied Petroleum Gases .................................. 544 - 544 1,918 139 377 2,434 Normal Butane ..................................................

439

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

5.PDF 5.PDF Table 25. Imports of Crude Oil and Petroleum Products by PAD District, January 2012 (Thousand Barrels, Except Where Noted) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1,2 ................................................................................. 26,390 54,466 143,796 8,286 31,410 264,348 8,527 Natural Gas Plant Liquids and Liquefied Refinery Gases ...... 1,606 2,797 1,838 502 192 6,935 224 Pentanes Plus .......................................................................... - 11 1,688 - - 1,699 55 Liquefied Petroleum Gases ...................................................... 1,606 2,786 150 502 192 5,236 169 Ethane .................................................................................. - - - - - - - Ethylene ................................................................................

440

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 September 2013 Table 30. Refinery Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels, Except Where Noted) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 29,611 2,906 32,517 67,983 12,033 22,460 102,476 Natural Gas Plant Liquids ...................................... 485 - 485 1,969 56 687 2,712 Pentanes Plus ...................................................... - - - 777 - 265 1,042 Liquefied Petroleum Gases .................................. 485 - 485 1,192 56 422 1,670 Normal Butane ..................................................

Note: This page contains sample records for the topic "gas supply basins" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

4 4 December 2011 Table 50. Year-to-Date Exports of Crude Oil and Petroleum Products by PAD District, January-December 2011 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Crude Oil 1 ............................................................ 2,147 13,574 1,237 191 9 17,158 47 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 3,739 15,542 42,403 2,288 6,081 70,053 192 Pentanes Plus .................................................. 2,075 11,913 179 1,415 340 15,922 44 Liquefied Petroleum Gases .............................. 1,664 3,628 42,224 873 5,741 54,131 148 Ethane/Ethylene ........................................... - - - - - - - Propane/Propylene ....................................... 401 514 40,084 58 4,187 45,243

442

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 28. Refinery and Blender Net Input of Crude Oil and Petroleum Products by PAD and Refining Districts, September 2013 (Thousand Barrels) Commodity PAD District 1 - East Coast PAD District 2 - Midwest East Coast Appalachian No. 1 Total Indiana, Illinois, Kentucky Minnesota, Wisconsin, North and South Dakota Oklahoma, Kansas, Missouri Total Crude Oil ................................................................. 29,611 2,906 32,517 67,983 12,033 22,460 102,476 Natural Gas Plant Liquids and Liquefied Refinery Gases ....................................................... 793 5 798 2,014 100 1,032 3,146 Pentanes Plus ...................................................... - - - 777 2 340 1,119 Liquefied Petroleum Gases .................................. 793 5 798 1,237 98 692 2,027

443

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

444

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

445

Natural gas annual 1992: Volume 1  

SciTech Connect (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

Not Available

1993-11-22T23:59:59.000Z

446

Formation mechanism and geochemical characteristics of shallow natural gas in heavy oil province, China  

Science Journals Connector (OSTI)

Shallow gas reservoirs are distributed widely in Chinese heavy oil-bearing basins. At present, shallow gas resources have opened up giant potentials. The previous researches indicate the intimate genetic relat...

GuangYou Zhu; ShuiChang Zhang; WenZhi Zhao

2008-05-01T23:59:59.000Z

447

Gas Shale Plays… The Global Transition  

U.S. Energy Information Administration (EIA) Indexed Site

XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment May 17, 2013 XX-1 XX. CHINA SUMMARY China has abundant shale gas and shale oil potential in seven prospective basins: Sichuan, Tarim, Junggar, Songliao, the Yangtze Platform, Jianghan and Subei, Figure XX-1. Figure XX-1. China's Seven Most Prospective Shale Gas and Shale Oil Basins are the Jianghan, Junggar, Sichuan, Songliao, Subei, Tarim, and Yangtze Platform. Source: ARI, 2013. XX. China EIA/ARI World Shale Gas and Shale Oil Resource Assessment

448

Interpretation of subhorizontal crustal reflections by metamorphic and rheologic effects in the eastern part of the Pannonian Basin  

Science Journals Connector (OSTI)

......the deep basins has modified this model. Heating up of basin sediments was relatively late...framework of an agreement between MOL Hungarian Oil and Gas Co. and Eotvos Lorand Geophysical...Tectonophysics, 282, 129-145. Fyfe W.S. , Price N.J., Thompson A.B.,1978. Fluids......

Kroly Posgay; Tams Bodoky; Zoltn Hajnal; Tivadar M. Tth; Tams Fancsik; Endre Heged?s; Attila Cs. Kovcs; Ern? Takcs

2006-10-01T23:59:59.000Z

449

Hydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3  

E-Print Network [OSTI]

-dimensional (longitudinal-vertical) water quality and hydrodynamic computer simulation model that was originally developed of the Lower Snake River in the Northwestern USA; the Bull Run River basin composed of 3 water supply and computes water levels, horizontal and vertical velocities, temperature, and 21 other water quality

Wells, Scott A.

450

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

451

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

452

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

453

Water supply and demand in an energy supply model  

SciTech Connect (OSTI)

This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

Abbey, D; Loose, V

1980-12-01T23:59:59.000Z

454

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

455

NETL: Oil & Natural Gas Projects - Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

456

Multiple resonant railgun power supply  

DOE Patents [OSTI]

A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

Honig, E.M.; Nunnally, W.C.

1985-06-19T23:59:59.000Z

457

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

458

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

U.S. Energy Information Administration (EIA) Indexed Site

States Dependent on Interstate Pipelines States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New York, District of Columbia Midwest - Illinois, Indiana, Minnesota, Ohio, Wisconsin Central - Iowa, Missouri, Nebraska, South Dakota West - Arizona, California, Idaho,