Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COAL CLEANING BY GAS AGGLOMERATION  

SciTech Connect

The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

1998-09-30T23:59:59.000Z

2

Coal Beneficiation by Gas Agglomeration  

DOE Patents (OSTI)

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Thomas D. Wheelock; Meiyu Shen

2000-03-15T23:59:59.000Z

3

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

4

Changes related to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

5

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

6

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

7

Coal seam natural gas producing areas (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

8

Geomechanics of coal-gas interactions : the role of coal permeability evolution.  

E-Print Network (OSTI)

??[Truncated abstract] Complex interactions between stress and sorptive chemistry exert strong influence on coal geomechanics. These include influences on gas sorption and flow, coal deformation,… (more)

Chen, Zhongwei

2012-01-01T23:59:59.000Z

9

Prediction of Coal /Gas Outbursts Based on Selective Ensemble Learning  

Science Conference Proceedings (OSTI)

For the purpose of achieving accurate and reliable coal /gas outbursts prediction, a coal /gas outbursts prediction algorithm based on selective ensemble learning is presented. The component learners consisted of RS-PNN network, and the redundant component ... Keywords: Coal and gas outburst, selective ensemble learning, RS-PNN classifier, classification

Wang Heng, Shao Liangshan, Liu Shuanhong, Lu Lin

2013-01-01T23:59:59.000Z

10

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

11

Gas, oil, and coal biotechnology I  

SciTech Connect

This papers presented at the First International IGT Symposium on Gas, Oil, and Coal Biotechnology, New Orleans, Louisiana, December 5-7, 1988, are reproduced in this book. This symposium was designed to provide a forum for the exchange of ideas among leading scientists, engineers, managers, and administrators in this rapidly advancing branch of biotechnology. The presentations and discussions by scientists and engineers from the academic, industrial, and government research laboratories, along with technical program managers and administrators, emphasized the biotechnological approaches to interrelated issues of energy utilization, supply, and environment. The symposium papers are organized in this book under topics that reflect the following program sessions. These topics are: (1) An Emerging Industry, and Programs to Encourage its Development; (2) Coal Biotechnology; (3) Gas Biotechnology; (4) Oil Biotechnology; and (5) Environmental Biotechnology. Twenty-three papers have been indexed separately for inclusion on the data base.

Akin, C.; Smith, J. (eds.)

1990-01-01T23:59:59.000Z

12

Detecting of Coal Gas Weak Signals Using Lyapunov Exponent under Strong Noise Background  

Science Conference Proceedings (OSTI)

In coal gas monitoring system, the early detecting of gas concentration is key technique for preventing the gas explosion because the coal gas signals are very weak under strong noise background in mining digging laneway. In this paper, the coal gas ... Keywords: Coal gas, weak signals, coal mine underground, Lyapunov exponent, Duffing chaotic oscillator

Ma Xian-Min

2013-01-01T23:59:59.000Z

13

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

14

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

15

Coal seam natural gas producing areas (Louisiana) | Open Energy...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal seam natural gas producing areas (Louisiana) This is the approved revision of this...

16

Prod. of Oil, Gas & Coal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Production of oil, gas, and coal. Projected supply and disposition of crude oil. The model now uses the EIA’s projections of production, imports, and consumption of ...

17

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

18

Gas transport, sorption, and mechanical response of fractured coal.  

E-Print Network (OSTI)

??Fractured coal exhibits strong and dynamic coupling between fluid transport and mechanical response especially when the pore fluid is a sorbing gas. This complex interaction… (more)

Wang, Shugang

2012-01-01T23:59:59.000Z

19

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

20

Advanced coal-fueled gas turbine systems  

DOE Green Energy (OSTI)

Westinghouse's Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO[sub x] emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO[sub x] levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Production of Substitute Natural Gas from Coal  

DOE Green Energy (OSTI)

The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

Andrew Lucero

2009-01-31T23:59:59.000Z

22

Study breaks tenuous truce in coal, gas fuel war  

Science Conference Proceedings (OSTI)

The long-simmering battle between the coal and gas industries for market share in the electric generation market heated up again last week with the release of a report by Energy Ventures Analysis showing that baseload coal-fired plants will cost at least 22 percent less than power from baseload gas plants after 2000.

Kaplan, D.

1994-06-03T23:59:59.000Z

23

Pages that link to "Coal seam natural gas producing areas (Louisiana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal seam natural gas producing areas (Louisiana)" Coal seam natural gas producing areas...

24

Coal seam natural gas producing areas (Louisiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) Coal seam natural gas producing areas (Louisiana) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting Provider Louisiana Department of Natural Resources In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is authorized, as provided in this law, to establish a single unit to be served by one or more wells for a coal seam natural gas producing area. Without in any way modifying the authority granted to the commissioner to establish a drilling unit or

25

Fact book: synthetic pipeline gas from coal. 1982 update  

SciTech Connect

This book illustrates the major advantages of synthetic pipeline gas from coal. Progress on many of the coal gasification projects envisioned over the past decade has been thwarted by regulatory, permitting, and financing delays. The rationale for developing a synthetic pipeline gas industry remains as strong as ever from the nation's viewpoint, and the pioneer US commercial scale high-Btu coal gasification plant is now under construction-the Great Plains coal gasification plant in North Dakota. Also, the US Synthetic Fuels Corporation is now operational and can move forward to provide the guarantees which are necessary to overcome the financial barriers to a commercial synfuels capability in the United States. Compared to other principal means of utilizing America's vast coal reserves, coal gasification uses coal and land more efficiently, uses less water, emits less air pollutants, requires less capital and results in a lower cost of energy to consumers. (DP)

Not Available

1982-01-01T23:59:59.000Z

26

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

1986-09-01T23:59:59.000Z

27

Overview of SOFC Anode Interactions with Coal Gas Impurities  

SciTech Connect

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

2010-03-01T23:59:59.000Z

28

Prediction of light gas composition in coal devolatilization  

Science Conference Proceedings (OSTI)

The chemical percolation devolatilization (CPD) model describes the devolatilization behavior of rapidly heated coal based on the chemical structure of the coal. It predicts the overall char, tar, and light gas yields. This paper presents an improved CPD model with improved capability for predicting light gas composition. This is achieved by incorporating a kinetic model that simulates the release of various light gas species from their respective sources/functional groups in coal. The improved CPD model is validated using experiments with a wire mesh reactor and published experimental observations.13 refs., 9 figs., 1 tab.

Ravichandra S. Jupudi; Vladimir Zamansky; Thomas H. Fletcher [GE Global Research, Bangalore (India)

2009-05-15T23:59:59.000Z

29

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2010-05-01T23:59:59.000Z

30

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

31

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

32

Coal liquefaction and gas conversion: Proceedings. Volume 1  

Science Conference Proceedings (OSTI)

Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-12-31T23:59:59.000Z

33

Economics of producing substitute natural gas from coal. Occasional pub  

Science Conference Proceedings (OSTI)

Using the cost levelization approach, the economics of producing substitute natural gas (SNG) are examined under different assumptions regarding conversion technologies, coal types and plant financing. A comparison of levelized constant dollar cost-of-service price estimated for Westinghouse and dry bottom Lurgi processes for 1990-2019 shows that SNG from coal produced at western sites is competitive with natural gas and fuel oils.

Rosenberg, J.I.; Ashby, A.B.

1983-07-01T23:59:59.000Z

34

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

35

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

36

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2009-08-11T23:59:59.000Z

37

Gas Cofiring Assessment for Coal Fired Utility Boilers  

Science Conference Proceedings (OSTI)

This study evaluates gas co-firing as one option for coal-fired utility boilers. It provides electric power generators an objective review of the potential, experience to date, and economics of five gas co-firing technologies, plus a sixth pilot-scale application.

2000-08-23T23:59:59.000Z

38

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

removal from flue gas of coal-fired power plants. Environ.Speciation in a 100-MW Coal-Fired Boiler with Low-NOxControl Technologies for Coal-Fired Power Plants, DOE/NETL

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

39

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

from flue gas of coal-fired power plants. Environ. Sci. &Technologies for Coal-Fired Power Plants, DOE/NETL Mercurynumber of coal-fired generating plants (1-3). The mercury is

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

40

Evaluation of biological conversion of coal-derived synthesis gas  

DOE Green Energy (OSTI)

Foster Wheeler USA Corporation conducted an evaluation study on the biological conversion of synthesis gas to methane which is under development at the University of Arkansas. A conceptual design of an integrated coal-based SNG plant, employing the bioconversion process route, was developed together with the corresponding capital and operating costs. The economics were compared to those for a coal-based SNG plant design using the conventional catalytic route for shift and methanation. 5 refs., 10 figs., 22 tabs.

Fu, R.K.; Mazzella, G.

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

42

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-12-01T23:59:59.000Z

43

Commercialization of coal-fueled gas turbine systems  

SciTech Connect

The overall goal of this program is to develop and demonstrate the technological bases for economically attractive, commercial, coal- fired gas turbine systems. Objectives to accomplish this goal include these: identify candidate technical approaches to meet the challenges of using coal as a turbine fuel, screen the candidate technical approaches by testing their relative performance and evaluating their effects on the economic attractiveness of commercial coal-fueled systems, demonstrate the most promising technologies and associated components in proof-of-concept system tests leading up to commercialization. This paper presents background information on the project, and results on cogeneration systems, combined cycle power plants to include performance and cost.

Wilkes, C.; Wenglarz, R.A.

1992-01-01T23:59:59.000Z

44

Solar coal gasification reactor with pyrolysis gas recycle  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

45

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (“syn-gas”). To date, however, no fuel cell system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana. The primary purpose of the test is to determine the effect of syn-gas contaminants on the performance and life of the carbonate fuel cell. This paper will describe the project objectives, design aspects of the pilot facility, and the status of the project.

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

1993-03-01T23:59:59.000Z

46

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

47

Study on Data Quality Evaluation of Coal and Gas Outburst  

Science Conference Proceedings (OSTI)

Data quality evaluation is an important part of the process of data mining. This article has build the information quality evaluation index system and evaluation model, determines the quantitative index for each quality dimension, and also demonstrates ... Keywords: coal and gas outburst, data quality, dimension, assessment metadata, data warehousing

Dong Lihong; Hou Yunbing

2010-05-01T23:59:59.000Z

48

Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

Grindley, Thomas (Morgantown, WV)

1989-01-01T23:59:59.000Z

49

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01T23:59:59.000Z

50

Electrochemical polishing of hydrogen sulfide from coal synthesis gas  

DOE Green Energy (OSTI)

An advanced process has been developed for the separation of H{sub 2}S from coal gasification product streams through an electrochemical membrane. This technology is developed for use in coal gasification facilities providing fuel for cogeneration coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. H{sub 2}S is removed from the syn-gas by reduction to the sulfide ion and H at the cathode. The sulfide ion migrates to the anode through a molten salt electrolyte suspended in an inert ceramic matrix. Once at the anode it is oxidized to elemental sulfur and swept away for condensation in an inert gas stream. The syn-gas is enriched with the H{sub 2}. Order-of-magnitude reductions in H{sub 2}S have been repeatably recorded (100 ppm to 10 ppm H{sub 2}S) on a single pass through the cell. This process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. Since there are no absorbents used, there is no absorption/regeneration step as with conventional technology. Elemental sulfur is produced as a by-product directly, so there is no need for a Claus process for sulfur recovery. This makes the process economically attractive since it is much less equipment intensive than conventional technology.

Gleason, E.F.; Winnick, J.

1995-11-01T23:59:59.000Z

51

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

52

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

53

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

54

Ni/YSZ Anode Interactions with Impurities in Coal Gas  

DOE Green Energy (OSTI)

Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

2009-10-16T23:59:59.000Z

55

Slag processing system for direct coal-fired gas turbines  

SciTech Connect

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

56

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright © 2012 Inderscience Reservoir Modelling of Oil and Gas Producing Shale Reservoirs; Case Studies, Int. J. Oil, Gas, and Coal

Mohaghegh, Shahab

57

Does the presence of pseudovitrinite indicate gas-saturated coals? Some interesting observations from the Gething coals in Canada  

Science Conference Proceedings (OSTI)

The presence of pseudovitrinite at a depth of 1,000 m in the very gassy (up to 862 scf/ton total gas content, as-received basis) but low absolute permeability (0.5 mD), low-volatile bituminous Gething coals in the Canadian Foothills has been documented. Because oxidation is unlikely to occur at such depth, it is reasonable to expect that pseudovitrinite formed as a result of desiccation in a gas-saturated environment prior to the coals being uplifted to their present day depth. This raises the possibility that a coal that contains pseudovitrinite may have moisture content that is below its equilibrium moisture, which leads to higher methane adsorptive capacity compared with the same coal that has normal vitrinite (collotelinite). The presence of inertinite macerals in the coal, derived from wood fibers and charred remnants, has aided in the development and preservation of phyteral porosity and in the formation of interconnected microcavities, which should result in higher micropermeability and aid the flow of gas locally within the coal seam and surrounding strata. The Gething coals in the Highhat corehole share some of these characteristics, which may have important implications on the dynamics of coal-bed methane production. Volumetric strain (matrix shrinkage) of these gassy coals during production is conservatively estimated to be 0.5-0.75%, which may result in an absolute permeability increase of between 5 to 12 times, based on studies on coals of similar rank and gas content in United States basins. Although observations made in this preliminary study do not constitute a proof, they leave open the possibility of using pseudovitrinite, under certain circumstances, as an indicator of improved gas sorptive capacity and enhanced permeability in deep coals.

Gentzis, T. [Petron Resources LP, Frisco, TX (United States)

2008-07-01T23:59:59.000Z

58

Combustion research related to utilization of coal as a gas turbine fuel  

SciTech Connect

A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

Davis-Waltermine, D.M.; Anderson, R.J.

1984-06-01T23:59:59.000Z

59

Analysis of safety precautions for coal and gas outburst-hazardous strata  

Science Conference Proceedings (OSTI)

The author analyses coal and gas outbursts and generalizes the available data on the approaches to solving the problematics of these gas-dynamic events in the framework of Czech Republic Grant 'Estimate of the Safety Precautions for Coal and Gas Outburst Hazardous Strata'.

Hudecek, V. [Technical University of Ostrava, Ostrava (Czech Republic)

2008-09-15T23:59:59.000Z

60

Advanced coal-fueled gas turbine systems  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team's efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sticking of Iron Ore Pellets in Direct Reduction with Coal Gas  

Science Conference Proceedings (OSTI)

Abstract Scope, A series of reduction experiments of iron ore pellets with coal gasification gas were carried out in a laboratory scale shaft furnace. The sticking

62

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

63

The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1  

E-Print Network (OSTI)

1 The Future of Coal in a Greenhouse Gas Constrained World Howard Herzog1 , James Katzer1 1 M coal can make to the growing world energy demand during a period of increasing concern about global pursue in the short-term so that we can utilize coal in the longer-term and reduce its associated CO2

64

Method for increasing the calorific value of gas produced by the in situ combustion of coal  

DOE Patents (OSTI)

The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

Shuck, Lowell Z. (Morgantown, WV)

1978-01-01T23:59:59.000Z

65

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

66

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

67

CE to do 150-MW coal-gas-retrofit design study  

Science Conference Proceedings (OSTI)

Combustion Engineering (CE) has a $5 million DOE contract to design a coal gasifier that will convert eastern coal into a fuel gas and replace the oil and gas now burned in a Gulf States Utility unit. A pilot unit which has been converting Pittsburgh No. 8 seam coal into 110-Btu fuel gas will be scaled up. The company will also begin testing four other coal types. CE finds that retrofitting an air-blown atmospheric pressure system is cost-effective, but warns that the costs of a large-scale intergrated plant are still speculative. (DCK)

Not Available

1980-11-01T23:59:59.000Z

68

Overview of coal consumption and related environmental trends, and implications for greenhouse gas emissions  

SciTech Connect

This paper reviews world and regional trends in coal consumption, and its growing contribution to greenhouse gas emissions. The paper then discusses a number of options within the coal system where greenhouse gas emissions, particularly CO{sub 2}, can be reduced. The commercial status and environmental performance of the main power plant technology options are briefly reviewed.

Johnson, C.J.; Wang, X.

1997-06-01T23:59:59.000Z

69

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience, Gas, and Coal Technology, Vol. 2, No. 1, pp.2­23. Biographical notes: Shahab D. Mohaghegh is currently

Mohaghegh, Shahab

70

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience using neural networks', Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, pp.65­80. Biographical

Mohaghegh, Shahab

71

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

72

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated April 28, 2004) Spot coal prices in the East rose steadily since Labor Day 2003, with rapid escalations ...

73

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated September 26) The average spot prices for reported coal purchases rose once again ...

74

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

75

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

76

Silica membranes for hydrogen separation from coal gas. Final report  

DOE Green Energy (OSTI)

This project is a continuation of a previous DOE-UCR project (DE-FG22- 89PC89765) dealing with the preparation of silica membranes highly permselective to hydrogen at elevated temperatures, suitable for hydrogen separation from coal gas. The membranes prepared in the previous project had very high selectivity but relatively low permeance. Therefore, the general objectives of this project were to improve the permeance of these membranes and to obtain fundamental information about membrane structure and properties. The specific objectives were: (1) to explore new silylation reagents and reaction conditions with the purpose of reducing the thickness and increasing the permeance of silica membranes prepared by chemical vapor deposition (CVD), (2) to characterize the membrane structure, (3) to delineate mechanism and kinetics of deposition, (4) to measure the permeability of silica layers at different extents of deposition, and (5) to mathematically model the relationship between structure and deposition kinetics.

Gavalas, G.R.

1996-01-01T23:59:59.000Z

77

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

1990-12-01T23:59:59.000Z

78

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated August 12) According to Platts Coal Outlook’s Weekly Price Survey (August 11), the ...

79

Coal....  

U.S. Energy Information Administration (EIA)

Coal Prices and Earnings (updated September 2) The average spot prices for coal traded last week were relatively ...

80

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Co-Production of Substitute Natural Gas/Electricity Via Catalytic Coal Gasification  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Co-ProduCtion of SubStitute natural GaS / eleCtriCity via CatalytiC Coal GaSifiCation Description The United States has vast reserves of low-cost coal, estimated to be sufficient for the next 250 years. Gasification-based technology, such as Integrated Gasification Combined Cycle (IGCC), is the only environmentally friendly technology that provides the flexibility to co-produce hydrogen, substitute natural gas (SNG), premium hydrocarbon liquids including transportation fuels, and electric power in desired combinations from coal and other carbonaceous feedstocks. Rising costs and limited domestic supply of crude oil and natural gas provide a strong incentive for the development of coal gasification-based co-production processes. This project addresses the co-production of SNG and electricity from coal via gasification

82

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

83

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

168 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, 2009 Copyright © 2009 Inderscience.Y. (2009) `Geology and coal potential of Somaliland', Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 2, pp.168­185. Biographical notes: Mohammed Y. Ali has a degree in Exploration Geology, MSc

Ali, Mohammed

84

How much coal, natural gas, or petroleum is used to generate a ...  

U.S. Energy Information Administration (EIA)

How much coal, natural gas, or petroleum is used to generate a kilowatt-hour of electricity? The amount of fuel used to generate electricity depends on the efficiency ...

85

Steady-state model for estimating gas production from underground coal gasification  

Science Conference Proceedings (OSTI)

A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

Greg Perkins; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2008-11-15T23:59:59.000Z

86

The competition between coal and natural gas : the importance of sunk costs  

E-Print Network (OSTI)

This paper explores the seeming paradox between the predominant choice of natural gas for capacity additions to generate electricity in the United States and the continuing large share of coal in meeting incremental ...

Ellerman, A. Denny

1996-01-01T23:59:59.000Z

87

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

88

Modeling of gas generation from the Cameo coal zone in the Piceance Basin Colorado  

Science Conference Proceedings (OSTI)

The gas generative potential of the Cretaceous Cameo coal in the Piceance Basin, northwestern Colorado, was evaluated quantitatively by sealed gold tube pyrolysis. The H/C and O/C elemental ratios show that pyrolyzed Cameo coal samples follow the Van Krevelen humic coal evolution pathway, reasonably simulating natural coal maturation. Kinetic parameters (activation energy and frequency factor) for gas generation and vitrinite reflectance (R{sub o}) changes were calculated from pyrolysis data. Experimental R{sub o} results from this study are not adequately predicted by published R{sub o} kinetics and indicate the necessity of deriving basin-specific kinetic parameters when building predictive basin models. Using derived kinetics for R{sub o}, evolution and gas generation, basin modeling was completed for 57 wells across the Piceance Basin, which enabled the mapping of coal-rank and coalbed gas potential. Quantities of methane generated at approximately 1.2% R{sub o} are about 300 standard cubic feet per ton (scf/ton) and more than 2500 scf/ton (in-situ dry-ash-free coal) at R{sub o}, values reaching 1.9%. Gases generated in both low- and high-maturity coals are less wet, whereas the wetter gas is expected where R{sub o} is approximately 1.4-1.5%. As controlled by regional coal rank and net coal thickness, the largest in-place coalbed gas resources are located in the central part of the basin, where predicted volumes exceed 150 bcf/mi, excluding gases in tight sands.

Zhang, E.; Hill, R.J.; Katz, B.J.; Tang, Y.C. [Shell Exploration and Production Co., BTC, Houston, TX (United States)

2008-08-15T23:59:59.000Z

89

Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications  

Science Conference Proceedings (OSTI)

The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

2005-08-15T23:59:59.000Z

90

Coal....  

U.S. Energy Information Administration (EIA)

DOE EIA WEEKLY COAL ... Coal Prices and Earnings (updated July 7, 2004) In the trading week ended July 2, the average spot coal prices tracked by EIA were mixed.

91

Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents (OSTI)

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

Grindley, T.

1988-04-05T23:59:59.000Z

92

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

93

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

94

Liquefaction and desulfurization of coal using synthesis gas  

DOE Patents (OSTI)

A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

Fu, Yuan C. (Bethel Park, PA)

1977-03-08T23:59:59.000Z

95

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

96

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

97

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

98

Repowering oil-fired boilers with combustion turbines fired with gas from coal. Final report  

Science Conference Proceedings (OSTI)

The results of a study on repowering of oil fired reheat steam plants using combustion turbines and coal gas from the Texaco oxygen blown gasifier are presented. The steam plant utilizes combustion turbine exhaust gas as its combustion air supply. In some examples coal gas is fired in both the combustion turbines and the main boiler, while, in other cases, oil firing is retained in the boiler. Plant configurations, equipment changes, and performance are determined for three basic forms: (1) repowering based on coal gas supplied by pipeline (remote source); (2) repowering based on complete integration of the gasification system with the power plant; and (3) repowering based on partial integration of the gasification system wherein the boiler retains oil firing.

Garland, R.V.

1981-07-01T23:59:59.000Z

99

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

100

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Estimating Gas Concentration of Coal Mines Based on ISGNN  

Science Conference Proceedings (OSTI)

Online detecting failure of gas sensors in mine wells is an important problem. A key step for solution of the problem is estimating sample values of detected gas sensor, according to sample values of other gas sensors. We propose a scheme based on ISGNN ... Keywords: Estimating gas concentration, Gas concentration modeling, Generating Neural Networks, ISGNN

Aiguo Li; Lina Song

2009-11-01T23:59:59.000Z

102

Results Summary Investigating the Use of Liquid CO2 Coal Slurry for Feeding Low Rank Coal to the E-Gas™ Gasifier  

Science Conference Proceedings (OSTI)

This report summarizes the results of US Department of Energy (DOE) Award No. DE-FE0007977, Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers, which investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas gasifier in an integrated-gasification–combined-cycle (IGCC) electric power generation plant configuration.Liquid CO2 (LCO2) has several property differences from water that ...

2013-12-11T23:59:59.000Z

103

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

104

Novel carbons from Illinois coal for natural gas storage. Technical report, March 1--May 31, 1995  

DOE Green Energy (OSTI)

Goal is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate their potential application for storing natural gas for use in emerging low pressure, natural gas vehicles (NGVs). Focus is to design and engineer adsorbents that meet or exceed performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons adsorbent could be consumed in NGVs by year 2000. If successful, the results could lead to use of Illinois coal in a market that could exceed 6 million tons per year. Activated carbon samples were prepared from IBC-106 coal by controlling both the preoxidation temperature and time, and the devolatilization temperature in order to eliminate coal caking. A 4.6 cc pressurized vessel was constructed to measure the Vm/Vs methane adsorption capacity (volume of stored methane at STP per volume storage container). Several IBC-106 derived activated carbons showed methane adsorption capacities comparable to that of a 1000 m{sup 2}/g commercial activated carbon. Results indicated that surface area and micropore volume of activated carbons are important for natural gas storage. Work is in progress to synthesize samples from IBC-106 coal with optimum pore diameter for methane adsorption.

Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A.

1995-12-31T23:59:59.000Z

105

Solar coal-gasification reactor with pyrolysis-gas recycle. [Patent application  

DOE Patents (OSTI)

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor, and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor. A pyrolysis zone is produced immediately above the coal level. Steam, injected into the reactor adjacent to the gasification zone, reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases flow from the gasification zone to the pyrolysis zone to generate hot char. Gases are withdrawn from the pyrolysis zone and reinjected into the region of the reactor adjacent the gasification zone. This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas is withdrawn from a region of the reactor between the gasification zone and the pyrolysis zone. The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, W.R.; Gregg, D.W.

1981-04-06T23:59:59.000Z

106

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

107

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

DOE Green Energy (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

108

Development of a coal-fired gas turbine cogeneration system: Status report  

SciTech Connect

The Allison Advanced Coal-Fueled Turbine Program is now in the sixth year of a development effort that has led to a POC engine demonstration test on a Coal-Water-Slurry (CWS) fuel. Earlier forecasts by CWS suppliers that suitable CWS fuels would be commercially available at an economic price have not been realized. A program replan has, therefore, been executed that incorporates the use of readily available dry pulverized coal. To support this program, technology issues relating to combustor performance and emission control, hot gas cleanup, and turbine deposition, erosion and corrosion (DEC) have been addressed. In addition, system assessment studies have been performed to evaluate the commercial prospects for small (<8 MWe) coal-fired industrial cogeneration systems and the application of the rich-quench-lean (RQL) coal-combustion technology to larger (> 100 MWe) utility-sized gas turbines. These results are reported by Wenglarz (1992). Combustor and engine tests on dry coal are now planned in preparation for a commercial demonstration that will follow the completion of this program.

Wilkes, C.; Wenglarz, R.A.; Hart, P.J.; Thomas, W.H.; Rothrock, J.W.; Harris, C.N.; Bourke, R.C.

1992-01-01T23:59:59.000Z

109

Improved anode catalysts for coal gas-fueled phosphoric acid fuel cells  

Science Conference Proceedings (OSTI)

The feasibility of adapting phosphoric acid fuel cells to operate on coal gas fuels containing significant levels of contaminants such as CO, H{sub 2}S and COS has been investigated. The overall goal was the development of low-cost, carbon-supported anode fuel cell catalysts that can efficiently operate with a fossil fuel-derived hydrogen gas feed contaminated with carbon monoxide and other impurities. This development would reduce the cost of gas cleanup necessary in a coal gas-fueled PAFC power plant, thereby reducing the final power cost of the electricity produced. The problem to date has been that the contaminant gases typically adsorb on catalytic sites and reduce the activity for hydrogen oxidation. An advanced approach investigated was to modify these alloy catalyst systems to operate efficiently on coal gas containing higher levels of contaminants by increasing the alloy catalyst impurity tolerance and ability to extract energy from the CO present through (1) generation of additional hydrogen by promoting the CO/H{sub 2} water shift reaction or (2) direct oxidation of CO to CO{sub 2} with the same result. For operation on anode gases containing high levels of CO, a Pt-Ti-Zn and Pt-Ti-Ni anode catalyst showed better performance over a Pt baseline or G87A-17-2 catalyst. The ultimate aim of this effort was to allow PAFC-based power plants to operate on coal gas fuels containing increased contaminant concentrations, thereby decreasing the need for and cost of rigorous coal gas cleanup procedures. 4 refs., 15 figs., 10 tabs.

Kackley, N.D.; McCatty, S.A.; Kosek, J.A.

1990-07-01T23:59:59.000Z

110

Coal gasification via the Lurgi process: Topical report: Volume 1, Production of SNG (substitute material gas)  

Science Conference Proceedings (OSTI)

A Lurgi baseline study was requested by the DOE/GRI Operating Committee of the Joint Coal Gasification Program for the purpose of updating the economics of earlier Lurgi coal gasification plant studies for the production of substitute natural gas (SNG) based on commercially advanced technologies. The current study incorporates the recent experience with large size Lurgi plants in an effort to improve capital and operating costs of earlier plant designs. The present coal gasification study is based on a mine mouth plant producing 250 billion Btu (HHV) per day of SNG using the Lurgi dry bottom coal gasification technology. A Western subbituminous coal was designated as the plant food, obtained from the Rosebud seam at Colstrip, Montana. This study presents the detailed description of an integrated facility which utilizes coal, air, and water to produce 250 billion Btu (HHV) per day of SNG. The plant consists of coal handling and preparation, twenty-six Lurgi dry bottom gasifiers, shift conversion, acid gas removal, methanation, compression and drying of product gas, sulfur recovery, phenol and ammonia recovery, as well as necessary support facilities. The plant is a grass roots, mine mouth facility located in a Western location similar to the town of Colstrip in Rosebud County, Montana. The Lurgi Corporation assisted in this study, under subcontract to Foster Wheeler, by supplying the heat and material balances, flow sheets, utilities, catalysts and chemical requirements, and cost data for Lurgi designed process sections. Details of material supplied by Lurgi Corporation are presented in Appendix A. 52 refs., 36 figs., 64 tabs.

Zahnstecher, L.W.

1984-09-01T23:59:59.000Z

111

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

112

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants  

SciTech Connect

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

Kenneth A. Yackly

2004-09-30T23:59:59.000Z

113

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO[sub x] concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

114

Characterization and control of exhaust gas from diesel engine firing coal-water mixture  

DOE Green Energy (OSTI)

Exhaust from the GE-TS single cylinder diesel engine, fitted with hardened metal, and diamond-tipped metal fuel injection nozzles, and firing coal-water mixture (CWM) has been characterized with respect to gas composition, particulate size distribution, and particulate filtration characteristics. The measured flue gas compositions are roughly in keeping with results from combustion calculations. The time variations of the hydrocarbon, CO, and NO{sub x} concentrations are also understood in terms of known reaction mechanisms.

Samuel, E.A.; Gal, E.; Mengel, M.; Arnold, M.

1990-03-01T23:59:59.000Z

115

The Settlement on Coal Pillar Width of District Sublevel in High Gas Mine of Tongchuan  

Science Conference Proceedings (OSTI)

Abstract: Based on the actual geology situation of district in Tongchuan some mine, the influence on the stability of surrounding rock of roadway?the stress distribution rule on coal pillar and the distribution rule of plastic area was studied ... Keywords: High gas, district, district sublevel, plastic area

Xiao-Xiang Chen; Pan-Feng Gou; Si-Jiang Wei

2009-05-01T23:59:59.000Z

116

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

117

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanest Coal Technology Clean Coal 101 Lesson 5: The Cleanest Coal Technology-A Real Gas Don't think of coal as a solid black rock. Think of it as a mass of atoms. Most of the...

118

System and method for producing substitute natural gas from coal  

DOE Patents (OSTI)

The present invention provides a system and method for producing substitute natural gas and electricity, while mitigating production of any greenhouse gasses. The system includes a hydrogasification reactor, to form a gas stream including natural gas and a char stream, and an oxygen burner to combust the char material to form carbon oxides. The system also includes an algae farm to convert the carbon oxides to hydrocarbon material and oxygen.

Hobbs, Raymond (Avondale, AZ)

2012-08-07T23:59:59.000Z

119

Electricity generation from coal and natural gas both ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

120

Program on Technology Innovation: Wavelength-Multiplexed Diode Laser Absorption Sensors for Rapid Monitoring of Coal-Derived Synthesis Gas  

Science Conference Proceedings (OSTI)

Sensors are needed to monitor gas temperature and synthesis products during coal gasificationin the reactor, at the reactor exit, and along the path to potential use by gas turbines. The harsh operating conditions of coal gasification create a challenging measurement environment. In particular, an optimized gasifier is operated at pressures of 20–40 atm (2027–4053 kPa) with the expectation for operation at even higher pressures. The synthesis gas is also heavily laden with particulate, and the gasifier r...

2012-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur  

SciTech Connect

Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced Vision 21 plants that produce electric power and clean transportation fuels with coal and natural gas. These Vision 21 plants will require highly clean coal gas with H{sub 2}S below 1 ppm and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation Vision 21 plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

K.C. Kwon

2005-11-01T23:59:59.000Z

122

Process of producing combustible gas and for carbonizing coal  

SciTech Connect

This patent describes a process of producing combustible gas by supporting a column of fuel in a shaft furnace, intermittently blasting a combustion-supporting gas transversely through a mid portion of said column to produce a mid zone of sufficiently high temperature to decompose steam. The steam then circulated upwardly through said column between said blasting operations.

Doherty, H.L.

1922-08-15T23:59:59.000Z

123

Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal  

Science Conference Proceedings (OSTI)

This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

Eric P. Robertson

2007-09-01T23:59:59.000Z

124

Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers  

E-Print Network (OSTI)

Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate emissions in coal-fired industrial boilers. In many cases, these chemical conditioning agents have increased the efficiency of electrostatic precipitators and mechanical collectors by more than fifty percent. The effectiveness of this technology has been demonstrated on units generating 50,000 to 200,000 lbs./hr. steam. Results achieved at various industrial plants under actual operating conditions are presented.

Miller, B.; Keon, E.

1980-01-01T23:59:59.000Z

125

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

126

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

127

Future power market shares of coal, natural gas generators depend ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle capacity represented only 7% of total capacity in the region in 2011, but is projected to rise to 11% in 2040 in the Reference Case.

128

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream  

SciTech Connect

A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

E.A. Boiko; S.V. Pachkovskii [Polytechnic Institute, Federal University of Siberia, Krasnoyarsk (Russian Federation)

2008-12-15T23:59:59.000Z

129

Status of METC investigations of coal gas desulfurization at high temperature. [Zinc ferrite  

DOE Green Energy (OSTI)

This report documents the continuing effort at the US Department of Energy/Morgantown Energy Technology Center (METC) to develop a hot-gas desulfurization process for coal-derived gas, primarily for application to molten carbonate fuel cells. Metal oxide sorbents were tested on lab-scale test equipment, and it was determined that scale-up of the process was warranted. A larger, skid-mounted test unit was therefore designed, constructed, and installed on a sidestream of the DOE/METC fixed-bed gasifier. A first series of tests was conducted during Gasifier Run 101. These tests served to shake down the test unit, and provide data on the performance of the test unit operating on coal-derived gas. Overall, the process operated well on fixed-bed, air-blown gasifier gas. Sulfur levels in exit dry gas were reduced to less than 10 ppM. Regeneration appears to restore the sulfur-removing capacity of the sorbent. Sorbent integrity was maintained during the test period, which incorporated three sulfidations. It is recommended that treatment of the regeneration offgas be investigated, and that testing and development of a system to reduce the sulfur in this gas to elemental sulfur be initiated. In addition, it is suggested that a multiple reactor system be planned for continuous operation, to allow for long-term tests of downstream users of desulfurized gas. 7 references, 18 figures, 9 tables.

Steinfeld, G.

1984-03-01T23:59:59.000Z

130

Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development  

SciTech Connect

Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

Stephenson, M.

1994-03-01T23:59:59.000Z

131

1 2Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90 % capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the

Sarah Bashadi; Howard Herzog; Dava J. Newman; Sarah Bashadi

2010-01-01T23:59:59.000Z

132

Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum  

DOE Green Energy (OSTI)

The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

Jain, M.K.

1991-01-01T23:59:59.000Z

133

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

134

Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques  

Science Conference Proceedings (OSTI)

Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

Mastalerz, Maria [Indiana Geological Survey; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Rupp, John A [ORNL

2012-01-01T23:59:59.000Z

135

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

136

Durable zinc oxide-containing sorbents for coal gas desulfurization  

DOE Patents (OSTI)

Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel as a matrix material, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

Siriwardane, R.V.

1994-12-31T23:59:59.000Z

137

Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994  

DOE Green Energy (OSTI)

The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

1994-12-31T23:59:59.000Z

138

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

Science Conference Proceedings (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

139

104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright 2011 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

approach in modelling and simulation of shale gas reservoirs: application to New Albany Shale', Int. J. Oil104 Int. J. Oil, Gas and Coal Technology, Vol. 4, No. 2, 2011 Copyright © 2011 Inderscience Enterprises Ltd. A new practical approach in modelling and simulation of shale gas reservoirs: application

Mohaghegh, Shahab

140

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticles—particles with diameters less than 100 nanometers—can occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industry’s attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

142

Pore structure and reactivity changes in hot coal gas desulfurization sorbents  

Science Conference Proceedings (OSTI)

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

143

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia.

K.C. Kwon

2004-01-01T23:59:59.000Z

144

KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR  

DOE Green Energy (OSTI)

The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The pressure of the reactor is maintained at 40-170 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the bubble reactor is maintained at 2 for all the reaction experiment runs.

K.C. Kwon

2005-01-01T23:59:59.000Z

145

Fuel Industry Response to Power Industry Environmental Pressures: An Analysis of Risk and Investment in the Coal Supply Chain and Na tural Gas Industry  

Science Conference Proceedings (OSTI)

This report examines the question of how mounting environmental pressures on coal-fired generation will impact investment in fuel supply and transportation. If destined for demise, are coal companies cutting back investments or exiting the business? Alternatively, are natural gas companies gearing up for a financial boom? The study specifically investigates a "clean coal" case of greatly tightened NOx and SO2 limits as well as a "low coal" case of much reduced coal use to meet CO2 control objectives.

1999-07-02T23:59:59.000Z

146

Coal Blending for the Reduction of Acid Gas Emissions: A Characterization of the Milling and Combustion Blends of Powder River Basin Coal and Bituminous Coal  

Science Conference Proceedings (OSTI)

This report describes a systematic study of performance and emission parameters from the combustion of Eastern bituminous coal, a Powder River Basin (PRB) coal, and various blends of these two coals. This study also investigated the effects of coal blending on mill performance, combustion, particulate emissions, and various emissions.

2004-09-21T23:59:59.000Z

147

Investigation of Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Coal Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts Background Coal-Biomass-to-Liquids (CBTL) processes gasify coal, biomass, and mixtures of coal/ biomass to produce synthesis gas (syngas) that can be converted to liquid hydrocarbon fuels. Positive benefits of these processes include the use of feedstocks from domestic sources and lower greenhouse gas production than can be achieved from using conventional petroleum-based fuels. However, syngas generated by coal and biomass co-gasification contains a myriad of trace contaminants that may poison the water- gas-shift (WGS) and Fischer-Tropsch (FT) catalysts used in the gas-to-liquid processes. While the effect of coal contaminants on FT processes is well studied, more research

148

PRELIMINARY CHARACTERIZATION OF CO2 SEPARATION AND STORAGE PROPERTIES OF COAL GAS RESERVOIRS  

SciTech Connect

An attractive alternative of sequestering CO{sub 2} is to inject it into coalbed methane reservoirs, particularly since it has been shown to enhance the production of methane during near depletion stages. The basis for enhanced coalbed methane recovery and simultaneous sequestration of carbon dioxide in deep coals is the preferential sorption property of coal, with its affinity for carbon dioxide being significantly higher than that for methane. Yet, the sorption behavior of coal under competitive sorptive environment is not fully understood. Hence, the original objective of this research study was to carry out a laboratory study to investigate the effect of studying the sorption behavior of coal in the presence of multiple gases, primarily methane, CO{sub 2} and nitrogen, in order to understand the mechanisms involved in displacement of methane and its movement in coal. This had to be modified slightly since the PVT property of gas mixtures is still not well understood, and any laboratory work in the area of sorption of gases requires a definite equation of state to calculate the volumes of different gases in free and adsorbed forms. This research study started with establishing gas adsorption isotherms for pure methane and CO{sub 2}. The standard gas expansion technique based on volumetric analysis was used for the experimental work with the additional feature of incorporating a gas chromatograph for analysis of gas composition. The results were analyzed first using the Langmuir theory. As expected, the Langmuir analysis indicated that CO{sub 2} is more than three times as sorptive as methane. This was followed by carrying out a partial desorption isotherm for methane, and then injecting CO{sub 2} to displace methane. The results indicated that CO{sub 2} injection at low pressure displaced all of the sorbed methane, even when the total pressure continued to be high. However, the displacement appeared to be occurring due to a combination of the preferential sorption property of coal and reduction in the partial pressure of methane. As a final step, the Extended Langmuir (EL) model was used to model the coal-methane-CO{sub 2} binary adsorption system. The EL model was found to be very accurate in predicting adsorption of CO{sub 2}, but not so in predicting desorption of methane. The selectivity of CO{sub 2} over methane was calculated to be 4.3:1. This is, of course, not in very good agreement with the measured values which showed the ratio to be 3.5:1. However, the measured results are in good agreement with the field observation at one of the CO{sub 2} injection sites. Based on the findings of this study, it was concluded that low pressure injection of CO{sub 2} can be fairly effective in displacing methane in coalbed reservoirs although this might be difficult to achieve in field conditions. Furthermore, the displacement of methane appears to be not only due to the preferential sorption of methane, but reduction in partial pressure as well. Hence, using a highly adsorbing gas, such as CO{sub 2}, has the advantages of inert gas stripping and non-mixing since the injected gas does not mix with the recovered methane.

John Kemeny; Satya Harpalani

2004-03-01T23:59:59.000Z

149

Status of Westinghouse hot gas filters for coal and biomass power systems  

SciTech Connect

Several advanced, coal and biomass-based combustion turbine power generation technologies using fuels (IGCC, PFBC, Topping-PFBC, HIPPS) are currently under development and demonstration. A key developing technology in these power generation systems is the hot gas filter. These power generation technologies must utilize highly reliable and efficient hot gas filter systems if their full thermal efficiency and cost potential is to be realized. This paper reviews the recent test and design progress made by Westinghouse in the development and demonstration of hot gas ceramic barrier filters toward the goal of reliability. The objective of this work is to develop and qualify, through analysis and testing, practical hot gas ceramic barrier filter systems that meet the performance and operational requirements for these applications.

Newby, R.A.; Lippert, T.E.; Alvin, M.A.; Burck, G.J.; Sanjana, Z.N. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1999-07-01T23:59:59.000Z

150

Coal pump  

DOE Patents (OSTI)

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

151

Preliminary technical data report: WyCoalGas project water system. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project, Converse County, Wyoming  

SciTech Connect

The WyCoalGas, Inc. Proposed coal gasification plant site is approximately 16 miles north of Douglas, Wyoming, located generally in Sections 27 and 34, T35N, R70W of the sixth prinicpal meridian. The plant site is located in typical high plateau plains of central Wyoming. Climate in the area is typical of semi-arid central Wyoming and is subject to wide variations in temperature. Precipitation in the area averages about 14 inches per year, of which about 10 inches fall during the April-September irrigation season. Projected water requirements at the plant site are 6020 acre-feet per year. Since the proposed plant site is not near any major streams or rivers, water must be transported to it. Water will be supplied from four sources - two surface water and two groundwater. The two surface water sources are LaPrele Reservoir and flood flows from the North Platte River with a 1974 appropriations date. LaPrele Reservoir is located approximately 14 miles west of Douglas, Wyoming, and is shown on Figure A-1. Water will be released from LaPrele Reservoir and flow down LaPrele Creek to the North Platte River. Water from the North Platte River will be diverted at a point in Section 7 of T33N, R71W. The LaPrele water and excess water from the North Platte will be pumped from the river and stored in Panhandle Reservoir No. 1, which is also referred to as Combs Reservoir. A pipeline will convey water from Panhandle Reservoir No. 1 to the coal gasification plant site. The two groundwater sources are located north of Douglas and west of Douglas.

1982-01-01T23:59:59.000Z

152

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

153

Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992  

Science Conference Proceedings (OSTI)

Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program seeks to clarify the contributions and to identify the controlling mechanisms of coining natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization. The first two quarters focused on the ignition delay measurements and their analysis, along with the incorporation of particle porosity into the burning rate model. The emphasis of the third quarter was on a more detailed understanding of the burning rate process, as well as understanding of cofiring`s effects on sulfur retention. The contributions of particle burning area to the quantification of the particle burning mechanisms have been shown to be important and continue to be investigated. Ash samples for various methane concentrations under similar other conditions have shown positive trends in reducing S0{sub 2} emission through increased sulfur capture in the ash.

Buckius, R.O.; Peters, J.E.; Krier, H.

1992-10-01T23:59:59.000Z

154

Reclamation of abandoned surface coal mined land using flue gas desulfurization products  

SciTech Connect

Details are given of a field-scale research project where the Fleming site, in Ohio, of highly degraded and acid-forming abandoned surface coal-mined land, was reclaimed using a dry flue gas desulfurization product from an atmospheric fluidized bed combustion burner at a General Motors plant Pontiac, MI, which burned eastern Ohio coal and used dolomitic limestone for desulfurization. Plots were seeded with a mixture of grasses, wheat and clover, in 1994 and soil and water samples were analysed in 1995 and in 2009. It was found that FGD-treated plots promoted good regenerative growth, similar to that in plots using more concentrated re-soil material. The FGD treatment also greatly improved overall water quality. 3 figs., 4 tabs.

Chen, L.; Kost, D.; Dick, W.A. [Ohio State University, OH (United States)

2009-07-01T23:59:59.000Z

155

Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers  

SciTech Connect

The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1995-11-01T23:59:59.000Z

156

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

157

Novel carbons from Illinois coal for natural gas storage. Quarterly report, 1 December 1994--28 February 1995  

DOE Green Energy (OSTI)

The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). The focus of the project is to design and engineer adsorbents that meet or exceed the performance and cost targets established for low-pressure natural gas storage materials. Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a sowing and profitable market that could exceed 6 million tons per year. During this reporting period, a series of experiments were made to evaluate the effect of coal pre-oxidation, coal pyrolysis, and char activation on the surface area development and methane adsorption capacity of activated carbons/chars made from IBC-102. The optimum production conditions were determined to be: coal oxidation in air at 225C, oxicoal (oxidized coal); devolatilization in nitrogen at 400C; and char gasification in 50% steam in nitrogen at 850C. Nitrogen BET surface areas of the carbon products ranged from 800--1100 m{sup 2}/g. Methane adsorption capacity of several Illinois coal derived chars and a 883 m{sup 2}/g commercial activated carbon were measured using a pressurized thermogaravimetric analyzer at pressures up to 500 psig. Methane adsorption capacity (g/g) of the chars were comparable to that of the commercial activated carbon manufactured by Calgon Carbon. It was determined that the pre-oxidation is a key processing step for producing activated char/carbon with high surface area and high methane adsorption capacity. The results to date are encouraging and warrant further research and development in tailored activated char from Illinois coal for natural gas storage.

Rostam-Abadi, M.; Sun, Jian; Lizzio, A.A. [Illinois State Geological Survey, Urbana, IL (United States); Fatemi, M. [Sperry Univac, St. Paul, MN (United States)

1995-12-31T23:59:59.000Z

158

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

159

THE DEVELOPMENT AND APPLICATION OF GAS TURBINES IN SOUTH AFRICA WITH SPECIAL REFERENCE TO COAL AND NUCLEAR FUELS  

SciTech Connect

Aspects of gas turbine development with emphasis on applications in South Africa are discussed. A review of developmental work in various parts of the world on coal burning turbines is presented and local efforts on conventional combustion chambers and resonant combustion systems are outlined. The possible applications of gas turbines to nuclear reactors in South Africa are also examined. (J.R.D.)

Grant, W.L.; Roux, A.J.A.

1959-07-01T23:59:59.000Z

160

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High-pressure coal-fired ceramic air heater for gas turbine applications. Technical quarterly progress report, May 1994--July 1994  

SciTech Connect

Progress is reported on the development of a coal-fired ceramic air heater for gas turbine applications. This report describes component development.

1996-02-01T23:59:59.000Z

162

Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995  

Science Conference Proceedings (OSTI)

ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

NONE

1998-12-31T23:59:59.000Z

163

Full-scale and bench-scale testing of a coal-fueled gas turbine system  

SciTech Connect

Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1992-01-01T23:59:59.000Z

164

Full-scale and bench-scale testing of a coal-fueled gas turbine system  

SciTech Connect

Components for a coal-fueled industrial gas turbine were developed and tested at both benchscale and full-scale. The components included a two stage slagging combustor, a particulate rejection impact separator (PRIS), and a secondary particulate filter. The Integrated Bench Scale Test Facility (IBSTF) was used for the filter tests ana some of the PRIS testing. Full-scale combustor testing has been carried-out both with and without the PRIS. Bench-scale testing has included evaluating the feasibility of on-site CWM preparation, developing a water-cooled impactor and an extended run with new secondary candle filters.

Roberts, P.B.; LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1992-12-31T23:59:59.000Z

165

Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass  

SciTech Connect

This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

Huffman, Gerald

2012-12-31T23:59:59.000Z

166

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris™ membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

167

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

168

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

169

Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals  

SciTech Connect

Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

Kloosterman, Jeff

2012-12-31T23:59:59.000Z

170

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

Science Conference Proceedings (OSTI)

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15T23:59:59.000Z

171

Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future of conventional energy and how tribal business interests are evolving to meet the interests and needs of new tribal energy economies. The third of a series of planned DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum will provide an opportunity for Tribal leaders, federal

172

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

173

Enhancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved d,emonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit #1, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. `At each site where the technologies were to be demonstrated, performance goals were set to achieve air emission reductions of 60 percent for NOX and 50 percent for S02. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NO, emissions were reduced by 67.2?40 and SOZ emissions by 52.6Y0. For the cyclone-fired unit, NO, emissions were reduced by 62.9% and SOZ emissions by 57.9Y0.

None

1998-06-01T23:59:59.000Z

174

Enahancing the Use of Coals by Gas Reburning - Sorbent Injection Volume 5 - Guideline Manual  

Science Conference Proceedings (OSTI)

The purpose of the Guideline Manual is to provide recommendations for the application of combined gas reburning-sorbent injection (GR-SI) technologies to pre-NSPS boilers. The manual includes design recommendations, performance predictions, economic projections and comparisons with competing technologies. The report also includes an assessment of boiler impacts. Two full-scale demonstrations of gas reburning-sorbent injection form the basis of the Guideline Manual. Under the U.S. Department of Energy's Clean Coal Technology Program (Round 1), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, specifically oxides of nitrogen (NOX) and sulfur dioxide (S02). Other project sponsors were the Gas Research Institute and the Illinois State Department of Commerce and Community Affairs. The project involved demonstrating the combined use of Gas Reburning and Sorbent Injection (GR-SI) to assess the air emissions reduction potential of these technologies.. Three potential coal-fired utility boiler host sites were evaluated: Illinois Power's tangentially-fired 71 MWe (net) Hennepin Unit W, City Water Light and Power's cyclone- fired 33 MWe (gross) Lakeside Unit #7, and Central Illinois Light Company's wall-fired 117 MWe (net) Edwards Unit #1. Commercial demonstrations were completed on the Hennepin and Lakeside Units. The Edwards Unit was removed from consideration for a site demonstration due to retrofit cost considerations. Gas Reburning (GR) controls air emissions of NOX. Natural gas is introduced into the furnace hot flue gas creating a reducing reburning zone to convert NOX to diatomic nitrogen (N,). Overfire air is injected into the furnace above the reburning zone to complete the combustion of the reducing (fuel) gases created in the reburning zone. Sorbent Injection (S1) consists of the injection of dry, calcium-based sorbents into furnace hot flue gas to achieve S02 capture. At each site where the techno!o@es were to be demonstrated, petiormance goals were set to achieve air emission reductions of 60 percent for NO. and 50 percent for SO2. These performance goals were exceeded during long term demonstration testing. For the tangentially fired unit, NOX emissions were reduced by 67.2% and S02 emissions by 52.6%. For the cyclone-fired unit, NOX emissions were reduced by 62.9% and SOZ emissions by 57.9%.

None

1998-09-01T23:59:59.000Z

175

Combustion of ultrafine coal/water mixtures and their application in gas turbines: Final report  

Science Conference Proceedings (OSTI)

The feasibility of using coal-water fuels (CWF) in gas turbine combustors has been demonstrated in recent pilot plant experiments. The demands of burning coal-water fuels with high flame stability, complete combustion, low NO/sub x/ emission and a resulting fly ash particle size that will not erode turbine blades represent a significant challenge to combustion scientists and engineers. The satisfactory solution of these problems requires that the variation of the structure of CWF flames, i.e., the fields of flow, temperature and chemical species concentration in the flame, with operating conditions is known. Detailed in-flame measurements are difficult at elevated pressures and it has been proposed to carry out such experiments at atmospheric pressure and interpret the data by means of models for gas turbine combustor conditions. The research was carried out in five sequential tasks: cold flow studies; studies of conventional fine-grind CWF; combustion studies with ultrafine CWF fuel; reduction of NO/sub x/ emission by staged combustion; and data interpretation-ignition and radiation aspects. 37 refs., 61 figs., 9 tabs.

Toqan, M.A.; Srinivasachar, S.; Staudt, J.; Varela, F.; Beer, J.M.

1987-10-01T23:59:59.000Z

176

A Perspective of petroleum, natural gas, and coal bed methane on the energy security of India  

Science Conference Proceedings (OSTI)

The global energy requirement has grown at a phenomenal rate and the consumption of primary energy sources has been a very high positive growth. This article focuses on the consumption of different primary energy sources and it identifies that coal will continue to remain as the prime energy in the foreseeable future. It examines energy requirement perspectives for India and demands of petroleum, natural gas, and coal bed methane in the foreseeable future. It discusses the state of present day petroleum and petrochemical industries in the country and the latest advances in them to take over in the next few years. The regional pattern of consumption of primary energy sources shows that oil remains as the largest single source of primary energy in most parts of the world. However, gas dominates as the prime source in some parts of the world. Economic development and poverty alleviation depend on securing affordable energy sources and for the country's energy security; it is necessary to adopt the latest technological advances in petroleum and petrochemical industries by supportive government policies. But such energy is very much concerned with environmental degradation and must be driven by contemporary managerial acumen addressing environmental and social challenges effectively. Environmental laws for the abatement of environmental degradation are discussed in this paper. The paper concludes that energy security leading to energy independence is certainly possible and can be achieved through a planned manner.

Ghose, M.K.; Paul, B. [Indian School of Mines University, Dhanbad (India)

2008-07-01T23:59:59.000Z

177

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

of Fractured Sandstone/Coal Samples Smeulders, D.M.J. ,stress on permeability of coal. Int. J. Rock Mech. Min. Sci.of Fractured Sandstone/Coal Samples under Variable Con?ning

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

178

Coal-type gas provinces in China and their geochemical characteristics  

SciTech Connect

The distribution of coal - type gases in China can be divided into the east gas province, the central gas province and the west gas province the east gas province lies in the East China Meso - Cenozoic Rift Belt, including Donghai Basin and Bohaiwan Basin. The ages of gas source rocks are Carbo - Permian and Tertiary. The types of gas reservoirs are a anticline or a hidden mountain - fault block combination reservoir. The CH[sub 4] content ofthe gases there is 83 -90%, with [delta][sup 13]C[sub 1] -35.5 [approximately] -39.9[per thousand], and [delta][sup 13]C[sub 2] -24.0 [approximately] -26.8[per thousand]. The [delta][sup 13]C of condensate oils associated with the gases ranges from -25.4[per thousand] to -26.8[per thousand]. The central gas province is inside the Central China Paleozoic Plates, including Orclos Basin and Sichuan Basin. The gas source rocks are Carbo - Permian and Triassic. The types of gas reservoirs are an anticline-fault combination or a lithological-tectonic combination reservoir. The [delta][sup 13]C[sub 1] of the gases there is -37.9 [approximately] -37. l[per thousand], with the [delta][sup 13]C of condensate oil accompanying them - 25.1 [approximately] -26.6[per thousand]. The west gas province is within the West China Late Paleozoic Intracontinental Compressive Belt, including Tarim Basin, Jungar Basin and Tuna Basin. The age of gas source rocks is Jurassic. The types of gas reservoirs are an anticline or an anticline-fault reservoir. The CH[sub 4] content of the gases there varies from 60 to 90%, with [delta][sup 13]C[sub 1] from - 38.7 to -43.7[per thousand] and [delta] [sup 13]C[sub 2] from -25.9[per thousand] to -29.9[per thousand]. The [delta] [sup 13]C of light oils and condensate oils accompanying the gases changes from 24.3[per thousand] to 27.8[per thousand].

Zhang Xiaobao; Xu Yonghang; Shen Ping (Lanzhou Institute of Geology, Ianzhou (China))

1996-01-01T23:59:59.000Z

179

Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996  

DOE Green Energy (OSTI)

A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

NONE

1996-05-01T23:59:59.000Z

180

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Flue Gas Cleanup at Temperatures about 1400 C for a Coal Fired Combined Cycle Power Plant: State and Perspectives in the Pressurized Pulverized Coal Combustion (PPCC) Project  

Science Conference Proceedings (OSTI)

The PPCC technology, a combined cycle, requires comprehensive cleaning of the flue gases because coal contains a large variety of minerals and other substances. This would lead to fast destruction of the gas turbine blades due to erosion and corrosion. The present specifications of the turbine manufacturers for the required flue gas quality are at a maximum particulate content of 5 mg/m3 s.t.p., diameter of Kraftwerke GmbH, SaarEnergie GmbH, Siemens AG, and Steag AG.

Foerster, M.E.C.; Oeking, K.; Hannes, K.

2002-09-18T23:59:59.000Z

182

Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas  

DOE Green Energy (OSTI)

A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.

Siriwardane, R.V.; Tian, H.; Simonyi, T.; Webster, T.

2007-08-01T23:59:59.000Z

183

Delineation of Coal Tar Dense Nonaqueous Phase Liquid and Groundwater Plumes at a Former Manufactured Gas Plant Site  

Science Conference Proceedings (OSTI)

This report presents the results of a field investigation at a former manufactured gas plant (MGP) site in the Midwest. The focus of the investigation was delineating the distribution of coal tar (a dense nonaqueous phase liquid) and the associated dissolved-phase constituents in groundwater using a combination of analysis methodologies. The results will be used to determine remediation needs at the site.

1998-12-30T23:59:59.000Z

184

Air extraction and LBTU coal gas combustion in gas turbines for IGCC systems  

SciTech Connect

The primary objective of the cold flow experiments is to study the effects of air extraction from two sites in a heavy-frame gas turbine: (1) the engine wrapper or manholes and (2) the compressor/combustor prediffuser inlet. The experiments involve a scale model of components of a state-of-the-art, US made gas turbine between the compressor exit and the turbine inlet Specifically, the purpose is to observe and measure how air extraction affects the flow distribution around the combustor cans and the impingement cooling flow rates on transition pieces of the combustor. The experimental data should provide turbine manufacturers the information needed to determine their preferred air extraction site. The secondary objectives for the experiments are as follows: (1) to identify regions with high-pressure losses, (2) to develop a dam base which will validate computational fluid dynamic calculations, and (3) to establish an experimental facility which may be used to assist the US industry in improving the aerodynamic design of nonrotating components of a heavy-frame gas turbine.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1992-01-01T23:59:59.000Z

185

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

186

Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1996-03-01T23:59:59.000Z

187

Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gokhan O. Alptekin, PhD Robert Copeland, PhD Gokhan O. Alptekin, PhD Robert Copeland, PhD (Primary Contact) TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: copeland@tda.com Email: galptekin@tda.com Tel: (303) 940-2323 Tel: (303) 940-2349 Fax: (303) 422-7763 Fax: (303) 422-7763 Margarita Dubovik Yevgenia Gershanovich TDA Research, Inc TDA Research, Inc 12345 W. 52 nd Avenue 12345 W. 52 nd Avenue Wheat Ridge, CO 80033 Wheat Ridge, CO 80033 Email: dubovik@tda.com Email: ygershan@tda.com Tel: (303) 940-2316 Tel: (303) 940-2346 Fax: (303) 422-7763 Fax: (303) 422-7763 Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas

188

Enhancing the Use of Coals by Gas Reburning-Sorbent Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Enhancing the Use of Coals by Gas Reburning-Sorbent Injection A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial

189

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents (OSTI)

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are presented in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (Drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, R.V.

1995-12-31T23:59:59.000Z

190

Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas  

DOE Patents (OSTI)

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1997-01-01T23:59:59.000Z

191

Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas  

DOE Patents (OSTI)

Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

Siriwardane, Ranjani V. (Morgantown, WV)

1999-01-01T23:59:59.000Z

192

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

DOE Green Energy (OSTI)

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

193

Energy and environmental research emphasizing low-rank coal -- Task 3.10, Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy and Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800 C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport or in the molecular sieving region of mass transport phenomena. In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. Specific questions to be answered in this project include: what are the effects of membrane properties (i.e., surface area, pore size, and coating thickness) on permeability and selectivity of the desired gases; what are the effects of operating conditions (i.e., temperature, pressure, and flow rate) on permeability and selectivity; what are the effects of impurities (i.e., small particulate, H{sub 2}S, HCl, NH{sub 3}, etc.) on membrane performance?

Swanson, M.L.

1995-08-01T23:59:59.000Z

194

DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS  

DOE Green Energy (OSTI)

The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

2012-09-30T23:59:59.000Z

195

Chemicals from coal  

Science Conference Proceedings (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

196

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

197

Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification  

Science Conference Proceedings (OSTI)

This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

None

1982-01-01T23:59:59.000Z

198

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

199

Evaluation of sorbents for the cleanup of coal-derived synthesis gas at elevated temperatures  

E-Print Network (OSTI)

Integrated Gasification Combined Cycle (IGCC) with carbon dioxide capture is a promising technology to produce electricity from coal at a higher efficiency than with traditional subcritical pulverized coal (PC) power plants. ...

Couling, David Joseph

2012-01-01T23:59:59.000Z

200

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"2. Craig","Coal","Tri-State G & T Assn, Inc",1304 "3. Fort St Vrain","Gas","Public Service Co of Colorado",969  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "1. Comanche","Coal","Public Service Co of Colorado",1426 "2. Craig","Coal","Tri-State G & T Assn, Inc",1304 "3. Fort St Vrain","Gas","Public Service Co of Colorado",969 "4. Cherokee","Coal","Public Service Co of Colorado",717 "5. Rawhide","Coal","Platte River Power Authority",666 "6. Rocky Mountain Energy Center","Gas","Rocky Mountain Energy Ctr LLC",601 "7. Pawnee","Coal","Public Service Co of Colorado",505 "8. Front Range Power Project","Gas","Colorado Springs City of",462 "9. Hayden","Coal","Public Service Co of Colorado",446

202

Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario  

SciTech Connect

In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

2004-10-06T23:59:59.000Z

203

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal prices have been far less volatile than natural gas prices.Coal Prices Figure 9 is similar to Figure 8 except the natural gas pricesCoal Wind Hybrid: Economic Analysis interested in natural gas prices

Phadke, Amol

2008-01-01T23:59:59.000Z

204

Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991  

DOE Green Energy (OSTI)

The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

Jain, M.K.

1991-12-31T23:59:59.000Z

205

Thermodynamic simulation of transfer of lead, cadmium, and zinc to the gas phase during oxidative and reductive thermal treatment of coals from some coal deposits of the Russian federation  

SciTech Connect

The results of thermodynamic study of the distribution of Pb, Cd, and Zn during the thermal processing of coals from the Kuznetsk and Moscow basins and the Berezovskoe coal deposit of the Kansk-Achinsk basin at different excess oxidant (air) factors and in an inert (argon) medium are presented. The equilibrium forms of compounds were revealed, and their concentrations in the gas and condensed phase were calculated. Trace elements get into the gas phase during the heat treatment of coals in both oxidizing and reducing media. Their most intense transfer to the gas phase takes place at a = 0.4. An increase in temperature enhances this process, and an increase in the ash content of coal decreased the extent of transfer. 9 refs., 10 tabs.

L.N. Lebedeva; L.A. Kost; E.G. Gorlov; E.V. Samuilov [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

2007-02-15T23:59:59.000Z

206

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

SciTech Connect

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

207

Systems Study for Improving Gas Turbine Performance for Coal/IGCC Application  

DOE Green Energy (OSTI)

This study identifies vital gas turbine (GT) parameters and quantifies their influence in meeting the DOE Turbine Program overall Integrated Gasification Combined Cycle (IGCC) plant goals of 50% net HHV efficiency, $1000/kW capital cost, and low emissions. The project analytically evaluates GE advanced F class air cooled technology level gas turbine conceptual cycle designs and determines their influence on IGCC plant level performance including impact of Carbon capture. This report summarizes the work accomplished in each of the following six Tasks. Task 1.0--Overall IGCC Plant Level Requirements Identification: Plant level requirements were identified, and compared with DOE's IGCC Goal of achieving 50% Net HHV Efficiency and $1000/KW by the Year 2008, through use of a Six Sigma Quality Functional Deployment (QFD) Tool. This analysis resulted in 7 GT System Level Parameters as the most significant. Task 2.0--Requirements Prioritization/Flow-Down to GT Subsystem Level: GT requirements were identified, analyzed and prioritized relative to achieving plant level goals, and compared with the flow down of power island goals through use of a Six Sigma QFD Tool. This analysis resulted in 11 GT Cycle Design Parameters being selected as the most significant. Task 3.0--IGCC Conceptual System Analysis: A Baseline IGCC Plant configuration was chosen, and an IGCC simulation analysis model was constructed, validated against published performance data and then optimized by including air extraction heat recovery and GE steam turbine model. Baseline IGCC based on GE 207FA+e gas turbine combined cycle has net HHV efficiency of 40.5% and net output nominally of 526 Megawatts at NOx emission level of 15 ppmvd{at}15% corrected O2. 18 advanced F technology GT cycle design options were developed to provide performance targets with increased output and/or efficiency with low NOx emissions. Task 4.0--Gas Turbine Cycle Options vs. Requirements Evaluation: Influence coefficients on 4 key IGCC plant level parameters (IGCC Net Efficiency, IGCC Net Output, GT Output, NOx Emissions) of 11 GT identified cycle parameters were determined. Results indicate that IGCC net efficiency HHV gains up to 2.8 pts (40.5% to 43.3%) and IGCC net output gains up to 35% are possible due to improvements in GT technology alone with single digit NOx emission levels. Task 5.0--Recommendations for GT Technical Improvements: A trade off analysis was conducted utilizing the performance results of 18 gas turbine (GT) conceptual designs, and three most promising GT candidates are recommended. A roadmap for turbine technology development is proposed for future coal based IGCC power plants. Task 6.0--Determine Carbon Capture Impact on IGCC Plant Level Performance: A gas turbine performance model for high Hydrogen fuel gas turbine was created and integrated to an IGCC system performance model, which also included newly created models for moisturized syngas, gas shift and CO2 removal subsystems. This performance model was analyzed for two gas turbine technology based subsystems each with two Carbon removal design options of 85% and 88% respectively. The results show larger IGCC performance penalty for gas turbine designs with higher firing temperature and higher Carbon removal.

Ashok K. Anand

2005-12-16T23:59:59.000Z

208

Coal feed lock  

DOE Patents (OSTI)

A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

Pinkel, I. Irving (Fairview Park, OH)

1978-01-01T23:59:59.000Z

209

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

210

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

211

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

212

Estimating the Amount of Coal Tar Weathering in Sediments by Two-Dimensional Automated-Sequential Gas Chromatography/Mass Spectrometry (GC-GC/MS) and Comprehensive Gas Chromatography/Mass Spectrometry (GCxGC/MS) Techniques — Phase III  

Science Conference Proceedings (OSTI)

This report is intended to inform scientists and engineers concerned with assessing and remediating former manufactured gas plants and other coal tar-contaminated sites. Although the report focuses on coal tar in sediment, the results are equally applicable to studies investigating and remediating coal tar, crude oil, and their by-products in the vadose zone or in ground or pore waters, as well as marine animals. The data provided in this report should allow more accurate analyses to better direct remedi...

2012-03-14T23:59:59.000Z

213

Pore structure and reactivity changes in hot coal gas desulfurization sorbents. Final report, September 1987--January 1991  

SciTech Connect

The primary objective of the project was the investigation of the pore structure and reactivity changes occurring in metal/metal oxide sorbents used for desulfurization of hot coal gas during sulfidation and regeneration, with particular emphasis placed on the effects of these changes on the sorptive capacity and efficiency of the sorbents. Commercially available zinc oxide sorbents were used as model solids in our experimental investigation of the sulfidation and regeneration processes.

Sotirchos, S.V.

1991-05-01T23:59:59.000Z

214

Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company  

Science Conference Proceedings (OSTI)

Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

NONE

1994-10-01T23:59:59.000Z

215

Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan  

SciTech Connect

With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

Tegen, S.

2006-05-01T23:59:59.000Z

216

Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint  

SciTech Connect

With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

Tegen, S.

2005-08-01T23:59:59.000Z

217

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

SciTech Connect

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

218

Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report  

DOE Green Energy (OSTI)

This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

Not Available

1992-08-01T23:59:59.000Z

219

Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program  

DOE Green Energy (OSTI)

This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

Not Available

1992-08-01T23:59:59.000Z

220

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Losses and Costs Associated with Coal vs. Natural Gas Firing at Hanes Dye and Finishing.  

E-Print Network (OSTI)

??Due to decreasing production and rising coal prices, the engineering and management staff at Hanes Dye and Finishing in Winston Salem, NC have been investigating… (more)

Gibides, Justin Tyler

2009-01-01T23:59:59.000Z

222

INVESTIGATION INTO THE EFFECTS OF TRACE COAL SYN GAS SPECIES ON THE PERFORMANCE OF SOLID OXIDE FUEL CELL ANODES.  

E-Print Network (OSTI)

??Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be… (more)

Trembly, Jason P.

2007-01-01T23:59:59.000Z

223

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

224

Coal Tar and Bedrock  

Science Conference Proceedings (OSTI)

The characterization of bedrock groundwater and coal tar impacts is one of the most complicated tasks associated with managing manufactured gas plant (MGP) sites. This report provides an overview of the fate and transport of coal tar in bedrock and the methods available to investigate coal tar at particular sites and discusses how to develop a decision-making framework for coal tar investigations.

2007-02-22T23:59:59.000Z

225

Advanced coal-fueled gas turbine systems reference system definition update  

Science Conference Proceedings (OSTI)

The objective of the the Direct Coal-Fueled 80 MW Combustion Turbine Program is to establish the technology required for private sector use of an advanced coal-fueled combustion turbine power system. Under this program the technology for a direct coal-fueled 80 MW combustion turbine is to be developed. This unit would be an element in a 207 MW direct coal-fueled combustion turbine combined cycle which includes two combustion turbines, two heat recovery steam generators and a steam turbine. Key to meeting the program objectives is the development of a successful high pressure slagging combustor that burns coal, while removing sulfur, particulates, and corrosive alkali matter from the combustion products. Westinghouse and Textron (formerly AVCO Research Laboratory/Textron) have designed and fabricated a subscale slagging combustor. This slagging combustor, under test since September 1988, has been yielding important experimental data, while having undergone several design iterations.

Not Available

1991-09-01T23:59:59.000Z

226

In situ parametric study of alkali release in pulverized coal combustion: Effects of operating conditions and gas composition  

Science Conference Proceedings (OSTI)

This work concerns a parametric study of alkali release in a lab-scale, pulverized coal combustor (drop tube reactor) at atmospheric pressure. Measurements were made at steady reactor conditions using excimer laser fragmentation fluorescence (ELIF) and with direct optical access to the flue gas pipe. In this way, absolute gas-phase alkali species could be determined in situ, continuously, with sub-ppb sensitivity, directly in the flue gas. A hard coal was fired in the range 1000-1300{sup o}C, for residence times in the range 3-5 s and for air numbers {lambda} (air/fuel ratios) from 1.15 to 1.50. In addition, the amount of chlorine, water vapor and sulfur, respectively, was increased in known amounts by controlled dosing of HCl, H{sub 2}O and SO{sub 2} into the combustion gas to determine effects of these components on release or capture of the alkali species. The experimental results are also compared with values calculated using ash/fuel analyses and sequential extraction to obtain a fuller picture of alkali release in pulverized fuel combustion. 27 refs., 7 figs., 1 tab.

H. Schuermann; P.B. Monkhouse; S. Unterberger; K.R.G. Hein [Universitaet Stuttgart, Stuttgart (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

2007-07-01T23:59:59.000Z

227

Coal gasification  

Science Conference Proceedings (OSTI)

A standard series of two staged gas generators (GG) has been developed in the United States for producing gas with a combustion heat from 4,700 to 7,600 kilojoules per cubic meter from coal (U). The diameter of the gas generators is from 1.4 to 3.65 meters and the thermal capacity based on purified cold gas is from 12.5 to 89 million kilojoules per hour. Certain standard sized gas generators have undergone experimental industrial tests which showed that it is most expedient to feed the coal into the gas generators pneumatically. This reduces the dimensions of the charging device, makes it possible to use more common grades of structural steels and reduces the cost of the gas. A double valve reliably prevents ejections of the gasification product and promotes the best distribution of the coal in the gas generator. The gas generators may successfully operate on high moisture (up to 36 percent) brown coal. Blasting with oxygen enriched to 38 percent made it possible to produce a gas with a combustion heat of 9,350 kilojoules per cubic meter. This supports a combustion temperature of 1,700C.

Rainey, D.L.

1983-01-01T23:59:59.000Z

228

Hot coal gas desulfurization with manganese-based sorbents. Quarterly report, October--December 1993  

SciTech Connect

The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al{sub 2}O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hepworth, M.T.; Slimane, R.B.

1994-01-01T23:59:59.000Z

229

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

of Catalysts for Oxidation of Mercury in Flue Gas, Environ.mercury oxidation when the chlorine concentration in flue gas

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

230

Hard truths: facing the hard truths about energy. Topic Paper No. 18: Coal to liquids and gas  

Science Conference Proceedings (OSTI)

The report presents the issues associated with and the potential of coal to liquids (CTL) and coal to gas (CTG) technologies. The other important outcome from this report is to view and understand the inputs and assumptions from various publications and the range of production estimates from CTG and CTL technology. The examination of the publications demonstrates a large uncertainty for CTL, due to various assumptions from petroleum price to technological abilities. Key assumptions are left unexamined, such as product transportation, labor, equipment availability, and environmental risk. Overall, the published CTL production estimates are small in the total global petroleum market perspective; even in the most optimistic scenario the volume from CTL amounts to only 20% of the U.S. petroleum market in the Southern States Energy Board (SSEB) report. The National Coal Council (NCC) saw a 10% market share, whereas the various Energy Information Administration (EIA) scenarios saw 0% to 6% of the U.S market share. The NCC and SSEB both mentioned the added benefit of using the CO{sub 2} for enhanced oil recovery (EOR). It begins by introducing the process, giving a detailed technological understanding, and then outlining each issue with each report from coal availability to oil price assumptions. The incremental gains from CTL and other technology areas, such as oil shale, could have a significant impact on U.S. energy cost and foreign dependency. The use of coal allows the added benefit of relying on a resource that is domestically more plentiful than petroleum, but this reliance must be carefully balanced with the economics of developing the resource, since CTL facilities can cost more than $1 billion per 10,000 days of production, which implicates the competitiveness of the U.S. economy within the global economy. 33 refs.

NONE

2007-07-18T23:59:59.000Z

231

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 7.2;" 2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

232

,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"  

U.S. Energy Information Administration (EIA) Indexed Site

Relative Standard Errors for Table 7.1;" Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related","All"

233

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and ADA Environmental Solutions have begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During the second reporting quarter for this project, design and development is continuing on an electrostatic tensiometer to measure cohesion of flyash layers. A dedicated test fixture to automate flyash electrical resistivity testing is also underway. Ancillary instrumentation to control gas humidification within these test fixtures is also under construction.

Kenneth E. Baldrey

2000-09-01T23:59:59.000Z

234

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

March 2011 DOEEIA-0121 (201004Q) Revised: July 2012 Quarterly Coal Report October - December 2010 March 2011 U.S. Energy Information Administration Office of Oil, Gas, and Coal...

235

JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas  

Science Conference Proceedings (OSTI)

This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

Ye Zhuang; Christopher Martin; John Pavlish

2009-03-31T23:59:59.000Z

236

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

hybrid combined cycle power plant natural gas combined cyclePower Plants study, Volume 1: Bituminous Coal and Natural Gas

Phadke, Amol

2008-01-01T23:59:59.000Z

237

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

238

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report  

SciTech Connect

A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

NONE

1996-02-01T23:59:59.000Z

239

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

1990-07-01T23:59:59.000Z

240

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Science Conference Proceedings (OSTI)

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

242

Where can I find shale gas and coal bed methane production and ...  

U.S. Energy Information Administration (EIA)

Where is the boundary for state and federal offshore oil and gas production? Which states consume and produce the most natural gas?

243

Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler  

SciTech Connect

Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

Khalid Omar

2008-04-30T23:59:59.000Z

244

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, progress was made in obtaining an industry partner for a long-term demonstration and in technology transfer activities. Engineering and equipment procurement activities related to the long-term demonstration were also completed.

Kenneth E. Baldrey

2001-10-01T23:59:59.000Z

245

High Conversion of Coal to Transportation Fuels for the Future With Low HC Gas Production  

DOE Green Energy (OSTI)

An announced objective of the Department of Energy in funding this work, and other current research in coal liquefaction, is to produce a synthetic crude from coal at a cost lower than $30.00 per barrel (Task A). A second objective, reflecting a recent change in direction in the synthetic fuels effort of DOE, is to produce a fuel which is low in aromatics, yet of sufficiently high octane number for use in the gasoline- burning transportation vehicles of today. To meet this second objective, research was proposed, and funding awarded, for conversion of the highly-aromatic liquid product from coal conversion to a product high in isoparaffins, which compounds in the gasoline range exhibit a high octane number (Task B).

Alex G. Oblad; Wendell H. Wiser

1996-07-01T23:59:59.000Z

246

Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony  

Science Conference Proceedings (OSTI)

The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

2011-02-27T23:59:59.000Z

247

Dry piston coal feeder  

SciTech Connect

This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

Hathaway, Thomas J. (Belle Meade, NJ); Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

248

User-Friendly Tool to Calculate Economic Impacts from Coal, Natural Gas, and Wind: The Expanded Jobs and Economic Development Impact Model (JEDI II); Preprint  

DOE Green Energy (OSTI)

In this paper we examine the impacts of building new coal, gas, or wind plants in three states: Colorado, Michigan, and Virginia. Our findings indicate that local/state economic impacts are directly related to the availability and utilization of local industries and services to build and operate the power plant. For gas and coal plants, the economic benefit depends significantly on whether the fuel is obtained from within the state, out of state, or some combination. We also find that the taxes generated by power plants can have a significant impact on local economies via increased expenditures on public goods.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-06-01T23:59:59.000Z

249

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

250

NETL: Coal & Coal Biomass to Liquids - Hydrogen and Clean Fuels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

251

NETL: Coal & Coal Biomass to Liquids - Systems Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

252

NETL: Coal & Coal Biomass to Liquids - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

253

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

DOE Green Energy (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

254

Effects of Ceric Oxide Coatings on Materials Performance of 430 Steel in Coal Synthetc Gas  

SciTech Connect

The surfaces of low silicon and aluminum 430 stainless steel (UNS 43000) coupons with and without ceria (CeO2) surface treatment were investigated after exposure to simulated coal syngas based fuel at 800 C. The results indicate a different mechanism of carburization for the ceria treated steel than that for the untreated steel.

Ziomek-Moroz, M. Jablonski, P

2011-12-21T23:59:59.000Z

255

NETL: Clean Coal Power Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

256

Quarterly Coal Report  

Annual Energy Outlook 2012 (EIA)

December 2010 DOEEIA-0121 (201003Q) Revised: July 2012 Quarterly Coal Report July - September 2010 December 2010 U.S. Energy Information Administration Office of Oil, Gas, and...

257

Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas  

Science Conference Proceedings (OSTI)

Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

Ye Zhuang; Stanley J. Miller [University of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center

2006-05-15T23:59:59.000Z

258

Optical Thin Films for Gas Sensing in Advanced Coal Fired Power ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

259

Coal Combustion Science  

SciTech Connect

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

260

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

262

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

263

Coal gas openhole completion well effectiveness in the Piceance Basin, Colorado: Preliminary results, South Shale Ridge [number sign]11-15 well  

SciTech Connect

Since 1983, the Deep Coal Seam Project (DCSP) and the Western Cretaceous Coal Seam Project (WCCSP) of the Gas Research institute has funded research efforts in the Piceance and San Juan basins of Colorado and New Mexico to further the knowledge of all facets of commercial coalbed natural gas reservoir development. Because of WCCSP research into openhole completion well effectiveness in the Fruitland play, and the need to complete a successful Cameo coal openhole well, the South Shale Ridge [number sign]11-15 well was deemed to be an excellent chance for technology transfer and evaluation. Because of implementation of carefully designed air mist drilling and controlled openhole completion techniques, along with a sufficient magnitude of cleat permeability, it appears that the [number sign]11-15 well is commercial. The cavity was installed without major problems. The initial gas production test rate of roughly 280 MCFGPD is one of the best in South Shale Ridge. The [number sign]11-15 well case study is quite important in that it may serve to emphasize the point that the conservative attitude towards commercialization of previously untapped petroleum resources is often not correct. It is now an open question as to whether the conventional wisdom that most of the Cameo coal gas play is too tight to enable commercial production is indeed true, or if by analogy with Fruitland openhole wells, Cameo coal wells that have been hydraulic fracture stimulated are commonly very poorly connected to the cleat permeability of the reservoir. There is no significant reason to believe that the South Shale Ridge area is geologically unique, and thus there is a distinct possibility that more widespread Cameo coal production than has been previously recorded can be achieved.

Close, J.C. (Resource Enterprises, Salt Lake City, UT (United States)); Dowden, D. (Conquest Oil Co., Greeley, CO (United States))

1992-01-01T23:59:59.000Z

264

Desulfurization of Fisher-Tropsch synthesis gas in coal-to-gasoline pilot plant  

SciTech Connect

In 1989, a coal-to-gasoline pilot plant was installed and operated successfully in China, and a dry desulfurization process was used in this plant. This paper presents an overview of the dry desulfurization process. It includes design and operation of the process, and a description of ST801, T305 adsorbents and TGH COS hydrolysis catalyst. In addition, the desulfurization process used in a planned demonstration plant scheduled for completion in 1991 is presented.

Shishao, T.; Ju, S.; Shenzhao, L.; Maoqian, M.; Hanxian, G. (Dept. of Chemical Engineering, Taiyuan Univ. of Technology, Taiyuan, Shanxi (CN))

1990-01-01T23:59:59.000Z

265

Optimum cycle parameters of coal fired closed cycle gas turbine in regenerative and combined cycle configurations  

Science Conference Proceedings (OSTI)

This paper presents the methodology developed for the estimation of thermodynamic performance and reports the optimum cycle parameters of coal fired CCGT in regenerative and combined cycle configurations using air, helium and carbon dioxide as working gases. A rigorous approach has been followed for the determination of the cycle efficiency by assuming the specific heat of working gases as a continuous function of temperature for accurate estimation of cycle parameters. 14 refs.

Rao, J.S.

1982-01-01T23:59:59.000Z

266

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

267

Turmoil in U.S. Coal Markets: Integrating Pressures from Environmental Regulations, Renewables, Natural Gas and Globalization  

Science Conference Proceedings (OSTI)

U.S. coal markets are changing due to intensifying domestic and international forces. This report reviews the extent of these changes, examines recent trends in supply and demand for coals from each major U.S. coal-producing region, and delineates the principal forces of change and their impacts now and in the future. The report quantifies changes due to environmental regulations, coal plant retirements, and power plant installation environmental controls that reduce the need for the lowest sulfur coals....

2011-12-30T23:59:59.000Z

268

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

269

Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

Cost and Performance Cost and Performance Baseline for Fossil Energy Plants Volume 2: Coal to Synthetic Natural Gas and Ammonia July 5, 2011 DOE/NETL- 2010/1402 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

270

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

271

Method for fluorinating coal  

DOE Patents (OSTI)

Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

Huston, John L. (Skokie, IL); Scott, Robert G. (Westmont, IL); Studier, Martin H. (Downers Grove, IL)

1978-01-01T23:59:59.000Z

272

Monthly coal- and natural gas-fired generation equal for first ...  

U.S. Energy Information Administration (EIA)

Recently published electric power data show that, for the first time since EIA began collecting the data, generation from natural gas-fired plants is ...

273

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

efficiency by sulfur and/or chlorine containing compounds atfired Flue Gas by Sulfur-chlorine Compounds Nai-Qiang Yanremoval. Two sulfur-chlorine compounds, sulfur dichloride (

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

274

Co-Removal of Mercury from Coal-Fired Power Plant Flue Gas with...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion conditions, and air pollution control devices upstream of a power plant FGD system have an impact on the types and concentration of flue gas mercury at the...

275

How much coal, natural gas, or petroleum is used to generate a ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

276

Coal market momentum converts skeptics  

SciTech Connect

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

277

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

278

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

279

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

Science Conference Proceedings (OSTI)

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

280

Integrated coal liquefaction process  

DOE Patents (OSTI)

In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

Effron, Edward (Springfield, NJ)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Gasification of Lignite Coal  

Science Conference Proceedings (OSTI)

This report on the gasification of lignite coal is presented in two parts. The first includes research into technology options for preparing low-rank fuels for gasification, gasifiers for converting the coal into synthesis gas, and technologies that may be used to convert synthesis gas into valuable chemical products. The second part focuses on performance and cost screening analyses for either Greenfield or retrofit gasification options fueled by low-rank lignite coal. The work was funded through Tailor...

2009-01-23T23:59:59.000Z

282

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

Nick Degenstein; Minish Shah; Doughlas Louie

2012-05-01T23:59:59.000Z

283

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

284

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

285

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

DOE Green Energy (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

286

Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas  

Science Conference Proceedings (OSTI)

The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

287

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

288

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

E-Print Network (OSTI)

Shi, J.B. ; Feng, X.B. Mercury Pollution in China. Environ.J T. DOE/NETL’s Phase II Mercury Control Technology Fieldoxidants for the oxidation of mercury gas. Ind. vEng. Chem.

Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

2008-01-01T23:59:59.000Z

289

Process for the production of a chemical synthesis gas from coal  

SciTech Connect

A process is described for the production of a chemical synthesis product gas from a carbonaceous feed material and steam which comprises: (A) reacting said steam with said carbonaceous feed material in a reaction zone at a reaction temperature between about 1000F and about 1500/sup 0/F and at a reaction pressure in excess of about 100 psia, in the presence of a carbon-alkali metal catalyst and sufficient added hydrogen and carbon monoxide to provide substantially equilibrium quantities of hydrogen and carbon monoxide in said reaction zone at said reaction temeperature and said reaction pressure; (B) withdrawing from said reaction zone an effluent gas containing substantially equilibrium quantities, at said reaction temperature and pressure, of methane, carbon dioxide, steam, hydrogen and carbon monoxide; (C) treating said effluent gas for the removal of steam and acid gases to produce a treated gas containing primarily carbon monoxide, hydrogen and methane; (D) recovering substantially all of the carbon monoxide and hydrogen from said treated gas as a chemical synthesis product gas, thereby producing a gas comprised substantially of methane; (E) contacting the gas produced in step (D) comprised substantially of methane with steam in a steam reforming zone under conditions such tat at least a portion of the methane present reacts with said steam to produce hydrogen and carbon monoxide; and (F) passing the effluent from said steam reforming zone into said reaction zone without substantial cooling, thereby supplying said added hydrogen and carbon monoxide required in said reaction zone and wherein said reforming zone is operated at conditions such that the heat content of said effluent from said steam reforming zone is sufficient to supply substantially all of the heat needed to preheat said carbonaceous feed material to said reaction temperature.

Eakman, J.; Kalina, T.; Marshall, H.

1980-07-08T23:59:59.000Z

290

Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, 1 April--30 June 1994  

DOE Green Energy (OSTI)

The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H{sub 2}-CO{sub 2}; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following. Butyrate production was enhanced during H{sub 2}/CO{sub 2} (50/50) batch fermentation. Isolation of CO-utilizing anaerobic strains is in progress. Pressure (15 psig) fermentation was evaluated as a means of increasing CO availability. Polyurethane foam packing material was selected for trickle bed solid support. Cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8. Trickle bed and gas lift fermentor designs were modified after initial water testing. Pervaporation system was constructed. No alcohol selectivity was shown with the existing membranes during initial start-up.

Jain, M.K.; Worden, R.M.; Grethlein, A.

1994-07-18T23:59:59.000Z

291

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

292

Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature range during Coal Combustion  

SciTech Connect

A number basic sorbents based on CaO were synthesized, characterized with novel techniques and tested for sorption of CO{sub 2} and selected gas mixtures simulating flue gas from coal fired boilers. Our studies resulted in highly promising sorbents which demonstrated zero affinity for N{sub 2}, O{sub 2}, SO{sub 2}, and NO very low affinity for water, ultrahigh CO{sub 2} sorption capacities, and rapid sorption characteristics, CO{sub 2} sorption at a very wide temperature range, durability, and low synthesis cost. One of the 'key' characteristics of the proposed materials is the fact that we can control very accurately their basicity (optimum number of basic sites of the appropriate strength) which allows for the selective chemisorption of CO{sub 2} at a wide range of temperatures. These unique characteristics of this family of sorbents offer high promise for development of advanced industrial sorbents for the effective CO{sub 2} removal.

Panagiotis Smirniotis

2002-09-17T23:59:59.000Z

293

Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas  

DOE Green Energy (OSTI)

This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

2008-05-31T23:59:59.000Z

294

Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification  

SciTech Connect

In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

Meyer, J. P.; Edwards, M. S.

1978-06-01T23:59:59.000Z

295

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

296

Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts  

SciTech Connect

Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants investigated were sodium chloride (NaCl), potassium chloride (KCl), hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), ammonia (NH{sub 3}), and combinations thereof. This report details the thermodynamic studies and the individual and multi-contaminant results from this testing program.

Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

2010-12-31T23:59:59.000Z

297

A new coal-permeability model: Internal swelling stress and fracture-matrix interaction  

E-Print Network (OSTI)

of carbon dioxide in coal with enhanced coalbed methaneL. Adsorption-induced coal swelling and stress: Implicationsand acid gas sequestration into coal seams. J Geophys Res. (

Liu, H.H.

2010-01-01T23:59:59.000Z

298

A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction  

E-Print Network (OSTI)

L. : Adsorption-induced coal swelling and stress:acid gas sequestration into coal seams. J Geophys. Res. (fracturing on permeability of coal. Min. Sci. Technol. 3,

Liu, Hui-Hai; Rutqvist, Jonny

2010-01-01T23:59:59.000Z

299

Underground gasification of coal  

DOE Patents (OSTI)

There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV); Komar, Charles A. (Uniontown, PA)

1976-01-20T23:59:59.000Z

300

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds  

SciTech Connect

Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

2008-07-02T23:59:59.000Z

302

Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers  

SciTech Connect

There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

1995-12-31T23:59:59.000Z

303

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report Number 8, 1 July, 1993--30 September, 1993  

DOE Green Energy (OSTI)

Task 1, the preparation of catalyst materials, is proceeding actively. At WVU, catalysts based on Mo are being prepared using a variety of approaches to alter the oxidation state and environment of the Mo. At UCC and P, copper-based zinc chromite spinel catalysts will be prepared and tested. The modeling of the alcohol-synthesis reaction in a membrane reactor is proceeding actively. Under standard conditions, pressure drop in the membrane reactor has been shown to be negligible. In Task 2, base case designs had previously been completed with a Texaco gasifier. Now, similar designs have been completed using the Shell gasifier. A comparison of the payback periods or production cost of these plants shows significant differences among the base cases. However, a natural gas only design, prepared for comparison purposes, gives a lower payback period or production cost. Since the alcohol synthesis portion of the above processes is the same, the best way to make coal-derived higher alcohols more attractive economically than natural gas-derived higher alcohols is by making coal-derived syngas less expensive than natural gas-derived syngas. The maximum economically feasible capacity for a higher alcohol plant from coal-derived syngas appears to be 32 MM bbl/yr. This is based on consideration of regional coal supply in the eastern US, coal transportation, and regional product demand. The benefits of economics of scale are illustrated for the base case designs. A value for higher alcohol blends has been determined by appropriate combination of RVP, octane number, and oxygen content, using MTBE as a reference. This analysis suggests that the high RVP of methanol in combination with its higher water solubility make higher alcohols more valuable than methanol.

Not Available

1993-10-01T23:59:59.000Z

304

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

305

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

306

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

307

DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS  

Science Conference Proceedings (OSTI)

Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc. (ATS) as a secondary DOE contractor on this project, assessed the sampling and analytical plans and the emission reports of the five primary contractors to determine how successful the contractors were in satisfying their defined objectives. ATS identified difficulties and inconsistencies in a number of sampling and analytical methodologies in these studies. In particular there was uncertainty as to the validity of the sampling and analytical methods used to differentiate the chemical forms of mercury observed in coal flue gas. Considering the differences in the mercury species with regard to human toxicity, the rate of transport through the ecosystem and the design variations in possible emission control schemes, DOE sought an accurate and reliable means to identify and quantify the various mercury compounds emitted by coal-fired utility boilers. ATS, as a contractor for DOE, completed both bench- and pilot-scale studies on various mercury speciation methods. The final validation of the modified Ontario-Hydro Method, its acceptance by DOE and submission of the method for adoption by ASTM was a direct result of these studies carried out in collaboration with the University of North Dakota's Energy and Environmental Research Center (UNDEERC). This report presents the results from studies carried out at ATS in the development of analytical methods to identify and quantify various chemical species, particularly those of mercury, in coal derived flue gas. Laboratory- and pilot-scale studies, not only on mercury species, but also on other inorganics and organics present in coal combustion flue gas are reported.

Terence J. McManus, Ph.D.

1999-06-30T23:59:59.000Z

308

Data Mining of Coal Mining Gas Time Series and Knowledge Discovery  

Science Conference Proceedings (OSTI)

Use the data mining techniques to discover the regularity knowledge from the gas sensor monitoring history database is very important approach for the supervisors to identify the reason causing the exceptional fluctuation automatically and make the correct ... Keywords: data mining, time series, clustering, shape measure, knowledge discovery

Shisong Zhu; Yunjia Wang; Lifang Kong

2011-10-01T23:59:59.000Z

309

Simulated coal gas MCFC power plant systems verification. Technical progress report  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-04-01T23:59:59.000Z

310

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

face of oil and natural gas price rises, coal’s share may becoal consumption declined from 1996 to 2006, but rebounded in 2006; unless residential natural gas prices

Aden, Nathaniel

2010-01-01T23:59:59.000Z

311

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

1982-01-01T23:59:59.000Z

312

Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming  

SciTech Connect

Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

Not Available

1982-01-01T23:59:59.000Z

313

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

314

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

315

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

compressibility for coal-bed methane (CBM) reservoirs (Bumband gas, tar sands, coal bed methane etc. can proceed whengas, shale gas, or coal bed methane gas to compete in the

Moridis, G.J.

2011-01-01T23:59:59.000Z

316

Proceedings, twenty-fourth annual international Pittsburgh coal conference  

SciTech Connect

Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

NONE

2007-07-01T23:59:59.000Z

317

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

318

Proceedings, twenty-five annual international Pittsburgh coal conference  

SciTech Connect

The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

NONE

2008-07-01T23:59:59.000Z

319

Coal: the new black  

SciTech Connect

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

320

NETL: Clean Coal Demonstrations - Project Performance Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

322

Coal sector profile  

SciTech Connect

Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

1990-06-05T23:59:59.000Z

323

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Topical report 5, Process analysis  

DOE Green Energy (OSTI)

The economics of converting coal to ethanol by a biological process is quite attractive. When processing 1500 tons of coal per day, the plant generates 85 million gallons of ethanol per year. The return on investment for the process is 110 percent and the payout is 0.9 years.

NONE

1995-11-01T23:59:59.000Z

324

Coal's share of total U.S. electricity generation falls below 40% ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle units operate at higher efficiency than do older, coal-fired units, which increases the competitiveness of natural gas relative to coal.

325

Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments  

SciTech Connect

Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a useful tool to help reduce the number of iterations necessary to perform laboratory experiments or alloy development. However, we clearly are not able to rely solely on computational techniques in the development of high temperature materials for IGT applications. A significant amount of experimentation will continue to be required.

G.E. Fuchs

2007-12-31T23:59:59.000Z

326

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

Not Available

1992-11-01T23:59:59.000Z

327

DOE-Fossil Energy: 1998 University Coal Research Selections  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE FOSSIL ENERGY TECHLINE Issued on April 16, 1998 DOE Funds University Coal Grants, Selects Ideas For "Vision 21," Greenhouse Gas Reduction and Coal Science Secretary of Energy...

328

Advanced coal-fueled gas turbine systems. Technical progress report, October--December 1992  

Science Conference Proceedings (OSTI)

Activity towards completing Advanced Turbine Systems (ATS) Phase I work was begun again in December. Effort to complete the Phase I work was temporarily suspended upon receipt of the ATS Phase II RFP the last week in August. The Westinghouse ATS team`s efforts were directed at preparing the ATS Phase II proposal which was submitted November 18. It is planned to finish Phase I work and submit the topical report by the end of February 1993. The objective of the four slogging combustor tests conducted during this reporting period (i.e., tests SL3-1 through SL3-4) were to perform sulfur capture experiments using limestoneand iron oxide based sorbents and to collect exhaust vapor phase and solids bound alkali measurements using the Westinghouse and Ames Laboratory alkali probes/monitors. The most significant, if not outstanding result revealed by these tests is that the Ames alkali monitor indicates that the vapor phase sodium is approximately 23--30 ppbw and the vapor phase potassium is approximately 5--20 ppbw. For reference, alkalilevels of 20 ppbw are acceptable in Westinghouse gas turbines fueled with crude oil.

Not Available

1993-02-03T23:59:59.000Z

329

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

Science Conference Proceedings (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

330

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Progress report No. 12, September--December 1994  

SciTech Connect

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. There are two basic arrangements of our HIPPS cycle. Both are coal-fired combined cycles. One arrangement is the 35% natural gas HIPPS. Coal is converted to fuel gas and char in a pyrolysis process, and these fuels are fired in separate parts of a high temperature advanced furnace (HITAF). The char-fired furnace produces flue gas that is used to heat gas turbine air up to 1400 F. Alloy tubes are used for these tube banks. After leaving the alloy tube banks, the gas turbine air goes through a ceramic air heater where it is heated from 1400 F to 1800 F. The flue gas that goes through the ceramic air heater comes from the combustion of the fuel gas that is produced in the pyrolysis process. This fuel gas is cleaned to remove particulates and alkalies that would corrode and plug a ceramic air heater. The air leaving the ceramic air heater needs to be heated further to achieve the efficiency goal of 47%, and this is done by firing natural gas in the gas turbine combustor. An alternative arrangement of the HIPPS cycle is called the All Coal HIPPS. With this arrangement, the char is used to heat the gas turbine air to 1400 F as before, but instead of then going to a ceramic air heater, the air goes directly to the gas turbine combustor. The fuel gas generated in the pyrolyzer is used as fuel in the gas turbine combustor. In both cycle arrangements, heat is transferred to the steam cycle in the HITAF and a heat recovery steam generator (HRSG).

1995-06-01T23:59:59.000Z

331

Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts  

Science Conference Proceedings (OSTI)

Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H{sub 2}S, NH{sub 3}, HCN, AsH{sub 3}, PH{sub 3}, HCl, NaCl, KCl, AS{sub 3}, NH{sub 4}NO{sub 3}, NH{sub 4}OH, KNO{sub 3}, HBr, HF, and HNO{sub 3}) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts; ferrochrome-based high-temperature WGS catalyst (HT-WGS, Shiftmax 120�, Süd-Chemie), low-temperature Cu/ZnO-based WGS catalyst (LT-WGS, Shiftmax 230�, Süd-Chemie), and iron- and cobalt-based Fischer-Trospch synthesis catalysts (Fe-FT & Co-FT, UK-CAER). In this project, TDA Research, Inc. collaborated with a team at the University of Kentucky Center for Applied Energy Research (UK-CAER) led by Dr. Burt Davis. We first conducted a detailed thermodynamic analysis. The three primary mechanisms whereby the contaminants may deactivate the catalyst are condensation, deposition, and reaction. AsH{sub 3}, PH{sub 3}, H{sub 2}S, HCl, NH{sub 3} and HCN were found to have a major impact on the Fe-FT catalyst by producing reaction products, while NaCl, KCl and PH{sub 3} produce trace amounts of deposition products. The impact of the contaminants on the activity, selectivity, and deactivation rates (lifetime) of the catalysts was determined in bench-scale tests. Most of the contaminants appeared to adsorb onto (or react with) the HT- and LT-WGS catalysts were they were co-fed with the syngas: � 4.5 ppmv AsH{sub 3} or 1 ppmv PH{sub 3} in the syngas impacted the selectivity and CO conversion of both catalysts; � H{sub 2}S slowly degraded both WGS catalysts; - A binary mixture of H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv) impacted the activity of the LT-WGS catalyst, but not the HT-WGS catalyst � Moderate levels of NH{sub 3} (100 ppmv) or HCN (10 ppmv) had no impact � NaCl or KCl had essentially no effect on the HT-WGS catalyst, but the activity of the LT-WGS catalyst decreased very slowly Long-term experiments on the Co-FT catalyst at 260 and 270 °C showed that all of the contaminants impacted it to some extent with the exception of NaCl and HF. Irrespective of its source (e.g., NH{sub 3}, KNO{sub 3}, or HNO{sub 3}), ammonia suppressed the activity of the Co-FT catalyst to a moderate degree. There was essentially no impact the Fe-FT catalyst when up to 100 ppmw halide compounds (NaCl and KCl), or up to 40 ppmw alkali bicarbonates (NaHCO{sub 3} and KHCO{sub 3}). After testing, BET analysis showed that the surface areas, and pore volumes and diameters of both WGS catalysts decreased during both single and binary H2S and NH3 tests, which was attributed to sintering and pore filling by the impurities. The HT-WGS catalyst was evaluated with XRD after testing in syngas that contained 1 ppmv PH{sub 3}, or 2 ppmv H{sub 2}S, or both H{sub 2}S (60 ppmv) and NH{sub 3} (38 ppmv). The peaks became sharper during testing, which was indicative of crystal growth and sintering, but no new phases were detected. After LT-WGS tests (3-33 ppmv NH{sub 3} and/or 0-88 ppmv H{sub 2}S) there were a few new phases that appeared, including sulfides. The fresh Fe-FT catalyst was nanocrystalline and amorphous. ICP-AA spectroscopy and other methods (e.g., chromatography) were used to analyze for

Gokhan Alptekin

2012-09-30T23:59:59.000Z

332

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

333

Powdered coal air dispersion nozzle  

SciTech Connect

An improved coal/air dispersion nozzle introduces fuel into the combustion chamber of a gas turbine engine as a finely atomized, dispersed spray for a uniform combustion. The nozzle has an inlet that receives finely powdered coal from a coal transport or coal/air fluidizer system and a scroll swirl generator is included within the nozzle to swirl a fluidized coal/air mixture supplied to the inlet of the nozzle. The scroll is in the form of a thin, flat metal sheet insert, twisted along its length, and configured to prevent build-up of coal particles within the nozzle prior to ejection from its outlet. Airblast air jets are included along the length of the nozzle body to assist in the discharge of the fluidized coal from the nozzle outlet and an angular pintle tip overlies the outlet to redirect coal/air mixture through a desired fluidized coal spray angle.

Kosek, T.P.; Steinhilper, E.A.

1981-10-27T23:59:59.000Z

334

The Caterpillar Coal Gasification Facility  

E-Print Network (OSTI)

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year' in 1981 and won the 'energy conservation award' for 1983. The decision to install and operate a coal gasification plant was based on severe natural gas curtailments at York with continuing supply interruptions. This paper will present a detailed description of the equipment used in the coal gasification system and the process itself. It also includes operating and gas production information along with an economic analysis. The characteristics of producer gas and its use in the various plant applications will be reviewed and compared with natural gas. In summary, this paper deals with caterpillar's experience with coal gasification to date. Caterpillar concludes that the coal gas system has the potential to favorably affect the corporation's commitment to stimulate coal utilization. The three years' operating experience at the York plant has demonstrated the practical use of coal gas as well as the economics associated with producing gas from coal.

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

335

Effect of cavitation on the properties of coal-tar pitch as studied by gas-liquid chromatography  

SciTech Connect

The applicability of the cavitation-wave effect to coal-tar pitch processing is considered. The results of the GLC analysis of the test material before and after rotor-pulsation cavitation treatment are given. The organic matter of coal-tar pitch was found to degrade upon cavitation; as a result of this, the yields of light and medium fractions considerably increased. 5 refs., 2 figs., 4 tabs.

M.I. Baikenov; T.B. Omarbekov; S.K. Amerkhanova (and others) [Buketov State University, Karaganda (Kazakhstan)

2008-02-15T23:59:59.000Z

336

WCI Case for Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

337

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-01-29T23:59:59.000Z

338

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2003-10-31T23:59:59.000Z

339

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-08-06T23:59:59.000Z

340

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

2004-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS  

SciTech Connect

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001 ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC baghouse. Activated carbon was injected between the ESP and COHPAC units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC unit. The test also showed that activated carbon was effective in removing both forms of mercury: elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Tom Millar

2003-07-30T23:59:59.000Z

342

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2006-01-27T23:59:59.000Z

343

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2006-04-24T23:59:59.000Z

344

Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas  

Science Conference Proceedings (OSTI)

With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Cindy Larson

2005-10-24T23:59:59.000Z

345

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, January 1, 1994--March 31, 1994  

DOE Green Energy (OSTI)

This report presents results from the solvent selection, fermentation, and product recovery studies performed thus far in the development of a bench scale unit for the production of ethanol from coal-derived synthesis gas. Several additional solvents have been compared for their ability to extract ethanol from aqueous solutions of ethanol in water and fermentation permeate. The solvent 2,6-dimethyl-4-heptanol still appears to be the solvent of choice. Liquid-liquid equilibrium data have been collected for ethanol and 2,6-dimethyl-4-heptanol.

Not Available

1994-06-01T23:59:59.000Z

346

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

347

Coal combustion system  

SciTech Connect

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

348

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

DOE Green Energy (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

349

Desulfurization of hot fuel gas produced from high-chlorine Illinois coals. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

In this project, simulated gasifier-product streams were contacted with the zinc titanate desulfurization sorbent in a bench-scale atmospheric fluidized-bed reactor at temperatures ranging from 538 to 750 {degree}C (1000 to 1382 {degree}F). The first set of experiments involved treating a medium-Btu fuel gas (simulating that of a ``Texaco`` oxygen-blown, entrained-bed gasifier) containing 1.4 percent H{sub 2}S and HCl concentrations of 0, 200, and 1500 ppmv. The second experimental set evaluated hot-gas desulfurization of a low-Btu fuel gas (simulating the product of the ``U-Gas`` air-blown gasifier), with HCl concentrations of 0, 200, and 800 ppmv. These operating conditions were typical of the gas-treatment requirements of gasifiers fueled by Illinois basin coals containing up to 0.6 percent chlorine. The results of the experiments at 538 and 650 {degree}C at all the HCl concentrations revealed no deleterious effects on the capability of the sorbent to remove H{sub 2}S from the fuel gas mixtures. In most cases, the presence of the HCl significantly enhanced the desulfurization reaction rate. Some zinc loss, however, was encountered in certain situations at 750 {degree}C when low-steam operating conditions were present. Also of interest, a portion of the incoming HCl was removed from the gas stream and was retained permanently by the sorbent. This behavior was examined in more detail in a limited set of experiments aimed at identifying ways to modify the sorbents composition so that the sorbent could act as a simultaneous desulfurization and dechlorination agent in the hot-gas cleanup process.

O`Brien, W.S. [Southern Illinois Univ., Carbondale, IL (United States); Gupta, R.P. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-12-31T23:59:59.000Z

350

A review of the efficacy of silicon carbide hot-gas filters in coal gasification and pressurized fluidized bed combustion environments  

SciTech Connect

Reviews of relevant literature and interviews with individuals cognizant of the state of the art in ceramic filters for hot-gas cleaning were conducted. Thermodynamic calculations of the stability of various ceramic phases were also made. Based on these calculations, reviews, and interviews, conclusions were reached regarding the use of silicon carbide-based ceramics at hot-gas filter media. Arguments are presented that provide the basis for the conclusion that high-purity silicon carbide is a viable material in the integrated coal gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC) environments which were examined. Clay-bonded materials are, the authors concluded, suspect for these applications, their extensive use notwithstanding. Operations data reviewed focused primarily on clay-bonded filters, for which a great deal of experience exists. The authors used the clay-bonded filter experience as a point of reference for their review and analysis.

Judkins, R.R.; Stinton, D.P.; DeVan, J.H. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1996-07-01T23:59:59.000Z

351

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

352

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

353

Method of extracting coal from a coal refuse pile  

DOE Patents (OSTI)

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

354

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

355

Catalytic conversion of oxygenated compounds to low molecular weight olefins. Progress report, January 1-July 31, 1979. [Methanol from synthesis gas from coal gasification  

DOE Green Energy (OSTI)

An attractive route for producing ethylene and propylene from coal is to gasify the coal to produce synthesis gas, convert the synthesis gas to methanol, and then convert methanol to the olefins. During this report period the reactions of methanol over chabazite ion exchanged with rare earth chlorides have been studied at reciprocal liquid hourly space velocities of 1.5 to 15, at temperatures of 259, 271, 304, 352, and 427/sup 0/C, and at pressure 2.7 atm. At 259 and 271/sup 0/C the principle product was dimethyl ether. As the temperature was increased the conversion of methanol to olefins and alkanes increased to 54% and 32%, respectively. A mixture of dimethyl ether, water, and methanol was fed to the Berty reactor. This mixture was near the equilibrium concentrations for converting pure methanol to dimethyl ether and water at 275/sup 0/C. The Berty reactor temperature was 427/sup 0/C. Initially the yields were similar to those obtained when feeding pure methanol. However, the catalyst activity decreased at a faster rate. Rate models are being developed to correlate the catalyst activity and rate as a function of time on stream and partial pressures. A promising model is presented.

Anthony, R.G.

1979-07-31T23:59:59.000Z

356

Coal Devolatilization in a Moving-Bed Gasifier  

Science Conference Proceedings (OSTI)

During moving-bed coal gasification, coal volatile matter entering the product gas phase affects gas yields and composition. The coal devolatilization database and empirical model developed here can be used to predict the yield and composition of the major coal devolatilization products in moving-bed gasifiers at atmospheric and elevated pressure.

1990-10-15T23:59:59.000Z

357

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal  

Science Conference Proceedings (OSTI)

The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

Monica Zanfir; Rahul Solunke; Minish Shah

2012-06-01T23:59:59.000Z

358

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

359

Putting downward pressure on natural gas prices: The impact of renewable energy and energy efficiency  

E-Print Network (OSTI)

forecasts of U.S. coal minemouth prices and total U.S. coalInverse Price Elasticities for Gas, Coal, and implicitdisplace coal over time, muting the impact on gas prices. As

Wiser, Ryan; Bolinger, Mark; St. Clair, Matthew

2004-01-01T23:59:59.000Z

360

Pretreatment of coal during transport  

SciTech Connect

Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

Johnson, Glenn E. (Pittsburgh, PA); Neilson, Harry B. (Clairton, PA); Forney, Albert J. (Coraopolis, PA); Haynes, William P. (Pittsburgh, PA)

1977-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

362

NETL: News Release - 23rd University Coal Grant Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

is an objective of the Vision 21 program; Conversion of Coal-Derived Synthesis Gas to Fischer-Tropsch Liquids - converting coal-based gas to liquids using iron-based catalysts....

363

The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report number 12, July 1--September 30, 1994  

DOE Green Energy (OSTI)

Both plug-flow microreactor systems at WVU are now functioning. Screening runs on these systems were started using carbide and nitride catalysts first, to avoid any question of contamination of the system with sulfur. The carbide and nitride catalysts are characterized by high activity but low selectivity towards alcohols. The Chevrel-phase catalysts tested have much lower activities but may be more selective to alcohols. Catalyst synthesis procedures are attempting to offset this tendency, and also to characterize and prepare sulfide catalyst by other approaches. At UCC and P, test runs on the reactor system have commenced. Higher alcohols up to butanol were observed and identified at high temperatures. Modeling studies have concentrated on the catalytic membrane reactor. The topical report, originally submitted last quarter, was revised after some errors were found. This report includes the design and economics for the seven cases discussed in previous quarterly reports. In the topical report, it is shown that a judicious choice of coal:natural gas feed ratio to the alcohol synthesis process allows the Shell Gasifier to be nearly competitive with natural gas priced at of $3.00/MMBtu. The advantage of the Shell Gasifier over the Texaco Gasifier is that the former produces a syngas with a lower H{sub 2}:CO ratio. When the feed to the process is coal only, there is no difference in the projected economics that would favor one gasifier over the other. The potential of co-generation of electric power with high alcohol fuel additives has been investigated. Preliminary results have revealed that a once-through alcohol synthesis process with minimal gas clean-up may provide an attractive alternative to current designs given the prevailing economic status of IGCC units.

NONE

1994-10-01T23:59:59.000Z

364

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers for lignite gasification with KRW gasifiers for gasification of coal fines. Topical report (Final), April 1985-January 1986  

Science Conference Proceedings (OSTI)

A first-pass design and cost estimate was prepared for a plant to convert lignite to substitute natural gas (SNG) using Lurgi dry-bottom gasifiers to gasify the coal and the KRW fluid-bed gasifiers to gasify the coal fines. The overall plant thermal efficiency is between that of the Lurgi and KRW base case designs. The study-case design is of commercial interest compared to a Lurgi plant when the Lurgi plant coal fines cannot be sold. The study case is more capital-intensive because it requires more-expensive boilers and more of different types of process units than either base case. There is no advantage over a KRW plant design that provides a 30% lower cost of gas.

Smelser, S.C.

1986-01-01T23:59:59.000Z

365

Materials in Clean Power Systems VI: Clean Coal-, Hydrogen Based ...  

Science Conference Proceedings (OSTI)

clean coal technologies, carbon sequestration, membrane-based gas separations, biofuel production, hydrogen production from various sources, etc. With an ...

366

Design and economics of a plant to convert western subbituminous coal to SNG (substitute natural gas) using KRW (KRW Energy Systems Inc. ) gasifiers. Topical report (Final) May 1985-January 1986  

SciTech Connect

A first-pass design and cost estimate indicates that the levelized constant-dollar cost of gas for a 125 billion Btu/day plant to convert western subbituminous coal to substitute natural gas (SNG) using KRW gasifiers is $4.70/MMBtu. Process development allowances (PDA) increase the gas cost to $5.09/MMBtu. The levelized constant-dollar gas cost for a scaled-up 250 billion Btu/day plant is estimated at $4.17/MMBtu, indicating that smaller plants can be constructed with less capital risk while producing methane at only slightly higher costs.

Smith, J.T.; Hanny, D.J.; Smelser, S.C.

1986-01-01T23:59:59.000Z

367

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

368

A commitment to coal  

SciTech Connect

Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

Shea, Q. [Edison Electric Institute, Washington, DC (United States)

2006-07-15T23:59:59.000Z

369

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report › Monthly Energy Review › Residential Energy ... Solar › Energy in Brief. What's ... to test the influence of shale gas ...

370

Challenges and Opportunities for the Illinois Coal Industry  

E-Print Network (OSTI)

brought natural gas prices down, which compounded the problem for coal producers27 (see Appendix F. The use of natural gas requires contracts to be made well in advance, while coal reserves can be stored. Furthermore, the growth of wind, nuclear, and natural gas sectors could chip away at coal's 45% market share

Illinois at Chicago, University of

371

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

372

Cost and Performance Comparison Baseline for Fossil Energy Plants, Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Baseline Baseline for Fossil Energy Plants Volume 3 Executive Summary: Low Rank Coal and Natural Gas to Electricity September 2011 DOE/NETL-2010/1399 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

373

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

374

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

375

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

376

Mechanism of instantaneous coal outbursts  

Science Conference Proceedings (OSTI)

Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

Guan, P.; Wang, H.Y.; Zhang, Y.X. [Peking University, Beijing (China). School of Earth & Space Science

2009-10-15T23:59:59.000Z

377

Economics of Lifecycle analysis and greenhouse gas regulations  

E-Print Network (OSTI)

cneaf /coal/page/acr/table34.html 9. Price of natural gasfor energy, the prices of coal, natural gas, and electricityPrice of coal energy 0.0020 ($/MJ) Price of natural gas en-

Rajagopal, Deepak

2009-01-01T23:59:59.000Z

378

Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes  

SciTech Connect

There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science

2009-07-15T23:59:59.000Z

379

The Influence of Flue Gas Recirculation on the Formation of NOx in the Process of Coal Grate-Fired  

Science Conference Proceedings (OSTI)

With the improvement of environmental protection requirements, the problems of NOx emission from industrial boiler become more and more notable. To explore a real effective method of low NOx combustion, the article discusses the influence of flue gas ... Keywords: flue gas recirculation, grate-fired, temperature, Nox

Li Xu; Jianmin Gao; Guangbo Zhao; Laifu Zhao; Zhifeng Zhao; Shaohua Wu

2011-03-01T23:59:59.000Z

380

A Life Cycle Comparison of Coal and Natural Gas for Electricity Generation and the Production of Transportation Fuels  

E-Print Network (OSTI)

, compressed natural gas (CNG), criteria emissions, demographic, E85, Energy Commission, environmental justice Category: Natural Gas for School Fleets, CNG Station, LNG or L/CNG Station · Bear Valley Unified School to the wholesale or retail distribution and sales stations. The projects will be assessed in two separate rounds

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices  

Science Conference Proceedings (OSTI)

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

382

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

383

Synthetic fuel production by indirect coal liquefaction  

E-Print Network (OSTI)

, the production of a synthetic crude oil product by direct contact of coal with an appropriate catalyst, with abundant domestic coal resources but lim- ited oil and gas resources, the conversion of coal into liquid in South Africa (for Fischer- Tropsch fuels). Also, the US Department of Energy an- nounced its financial

384

Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas  

Science Conference Proceedings (OSTI)

The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

385

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

all fuels including electricity and syngas will be used forGas Electricity Biomass Syngas Space Heating Coal Oil Gas

2006-01-01T23:59:59.000Z

386

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network (OSTI)

factors for production of coal products -- patent fuel, cokeoven coke,coke oven gas, blast furnace gas and briquettes (BKB) --

2006-01-01T23:59:59.000Z

387

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

388

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

389

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

390

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

Science Conference Proceedings (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

391

Abstract-Coal and hydro will be the main sources of electric energy in Chile for the near future, given that natural gas  

E-Print Network (OSTI)

Abstract- Coal and hydro will be the main sources of electric energy in Chile for the near future and the environmental dilemma faced by the country, where both coal and hydro produce some kind of impact. The role

Rudnick, Hugh

392

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents (OSTI)

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

393

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

E-Print Network (OSTI)

coal supply. The natural gas supply covers six categories:renewables, oil supply, natural gas supply, natural gasnation-wide natural gas market, equalizing supply with

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-01-01T23:59:59.000Z

394

Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases  

DOE Patents (OSTI)

This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

Ayala, Raul E. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

395

Process for electrochemically gasifying coal  

DOE Patents (OSTI)

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

396

Anaerobic processing of low-rank coals  

SciTech Connect

The overall goal of this project is to find biological methods to remove carboxylic functionalities from low-rank coals and to assess the properties of the modified coal towards coal liquefaction. The main objectives for this quarter were: (i) continuation of microbial consortia maintenance and completion of coal decarboxylation using batch reactor system, (ii) decarboxylation of model polymer, (iii) characterization of biotreated coals, and (iv) microautoclave liquefaction of the botreated coal. Progress is reported on the thermogravimetric analysis of coal biotreated in the absence of methanogens and under 5% hydrogen gas exhibits increased volatile carbon to fixed carbon ratio; that the microbial consortia developed on coal are being adapted to two different model polymers containing free carboxylic groups to examine decarboxylation ability of consortium; completion of experiments to decarboxylate two model polymers, polyacrylic acid and polymethyl methacrylate, have been completed; that the biotreated coal showed increase in THF-solubles.

Jain, M.K.; Narayan, R.; Han, O.

1992-01-01T23:59:59.000Z

397

NETL: Clean Coal Demonstrations - Coal 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal 101 Lesson 1: Cleaning Up Coal Clean Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still...

398

Table A5. Approximate Heat Content of Coal and Coal Coke, 1949 ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas Storage Report ... coal obtained from a refuse bank or slurry dam, anthracite culm,

399

U.S. coal’s share of total net generation continues to ...  

U.S. Energy Information Administration (EIA)

Amid historically low natural gas prices and the warmest March ever recorded in much of the United States, coal's share of total net generation dropped to 34%—the ...

400

U.S. coal’s share of total net generation continues to ...  

U.S. Energy Information Administration (EIA)

Amid historically low natural gas prices and the warmest March ever recorded in much of the United States, coal's share of total net generation ...

Note: This page contains sample records for the topic "gas supplants coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Iron catalyzed coal liquefaction process  

DOE Patents (OSTI)

A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

402

Fired heater for coal liquefaction process  

DOE Patents (OSTI)

A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

1985-01-01T23:59:59.000Z

403

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

404

Combined cycle power plant incorporating coal gasification  

DOE Patents (OSTI)

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01T23:59:59.000Z

405

Capacity modelling of the coal value chain at Sasol coal supply  

Science Conference Proceedings (OSTI)

Sasol, a petrochemical company in the Republic of South Africa, uses coal to produce oil and chemical products. The coal is mined in the area surrounding the Sasol plants and is transported with conveyor belts to the stockpiles at the gas production ... Keywords: coal conveyor simulation, modelling

Marthi Harmse; Johan Janse v Rensburg

2007-05-01T23:59:59.000Z

406

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...

407

How Competitive Market Dynamics Affect Coal, Nuclear and Gas Generation and Fuel Use -- A 10-Year Look Ahead  

Science Conference Proceedings (OSTI)

This report, the fourth in a series by EPRI and GRI addressing power industry deregulation, examines how restructuring is unleashing a new wave of merchant gas-fired plants. This phenomenon can lead to substantial regional changes in generation and fuel use, energy prices, and profitability-changes that have eluded analysts to date. Focusing on several regions in depth, this report breaks new ground in understanding the effects of turbulent, competitive market dynamics.

1999-05-22T23:59:59.000Z

408

Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.  

SciTech Connect

This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

Xie, X.; Wang, M.; Han, J. (Energy Systems)

2011-04-01T23:59:59.000Z

409

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high-temperature furnace (HITAF): Volume 4. Final report  

Science Conference Proceedings (OSTI)

An outgrowth of our studies of the FWDC coal-fired high performance power systems (HIPPS) concept was the development of a concept for the repowering of existing boilers. The initial analysis of this concept indicates that it will be both technically and economically viable. A unique feature of our greenfields HIPPS concept is that it integrates the operation of a pressurized pyrolyzer and a pulverized fuel-fired boiler/air heater. Once this type of operation is achieved, there are a few different applications of this core technology. Two greenfields plant options are the base case plant and a plant where ceramic air heaters are used to extend the limit of air heating in the HITAF. The greenfields designs can be used for repowering in the conventional sense which involves replacing almost everything in the plant except the steam turbine and accessories. Another option is to keep the existing boiler and add a pyrolyzer and gas turbine to the plant. The study was done on an Eastern utility plant. The owner is currently considering replacing two units with atmospheric fluidized bed boilers, but is interested in a comparison with HIPPS technology. After repowering, the emissions levels need to be 0.25 lb SO{sub x}/MMBtu and 0.15 lb NO{sub x}/MMBtu.

NONE

1996-05-01T23:59:59.000Z

410

Method of operating a coal gasifier  

DOE Patents (OSTI)

A method of operating an entrained flow coal gasifier which comprises the steps of firing coal at two levels in a combustion zone with near stoichiometric air, removing molten ash from the combustion zone, conveying combustion products upwardly from the combustion zone through a reduction zone, injecting additional coal into the combustion products in the reduction zone and gasifying at least a portion of the coal to form low BTU gas, conveying the gas to a point of use, including also reducing gasifier output by modifying the ratio of air to coal supplied to the upper level of the combustion zone so that the ratio becomes increasingly substoichiometric thereby extending the gasification of coal from the reduction zone into the upper level of the combustion zone, and maintaining the lower level of coal in the combustion zone at near stoichiometric conditions so as to provide sufficient heat to maintain effective slagging conditions.

Blaskowski, Henry J. (West Simsbury, CT)

1979-01-01T23:59:59.000Z

411

Coalbed methane producibility from the Mannville coals in Alberta, Canada: A comparison of two areas  

E-Print Network (OSTI)

recently completed coal bed methane (CBM) and oil and gas wells; · Develop more-comprehensive in-place coal is to conduct regional-scale, coal resource and reserve assessments of the significant coal beds in all major U the coal beds are thick, shallow, and gently dipping along the eastern margin of the Wyoming part

Paris-Sud XI, Université de

412

Flotation and flocculation chemistry of coal and oxidized coals  

SciTech Connect

The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

Somasundaran, P.

1990-01-01T23:59:59.000Z

413

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Plant Replaces Outdated Coal-Fired System Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace...

414

Integrating Coal Gasification into a Rotary Kiln Electric Furnace Plant  

Science Conference Proceedings (OSTI)

Coal gasification is a potential alternative to conventional coal or natural gas- fired power plants ... Fundamentals of Spark-Plasma Sintering: Net-Shaping and Size Effects ... Investigation on a Microwave High-Temperature Air Heat Exchanger.

415

The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations  

Science Conference Proceedings (OSTI)

The article introduces a predictive capability for mercury (Hg) retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given Hg speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO{sub 2}) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections show that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO{sub 2} absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO{sub 2} capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O{sub 2} levels and the FGD temperature; weakly dependent on SO{sub 2} capture efficiency; and insensitive to HgCl{sub 2}, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO{sub 3} levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg{sub 0} but only for inlet O{sub 2} levels that are much lower than those in full-scale FGDs. 12 refs., 5 figs., 3 tabs.

Stephen Niksa; Naoki Fujiwara [Niksa Energy Associates, Belmont, CA (US)

2005-07-01T23:59:59.000Z

416

High conversion of coal to transportation fuels for the future with low HC gas production. Progress report, October 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

Experimental coal liquefaction studies conducted in a batch microreactor in our laboratory have demonstrated potential for high conversions of coal to liquids with low yields of hydrocarbon (HC) gases, hence a small consumption of hydrogen in the primary liquefaction step. Ratios of liquids/HC gases as high as 30/1, at liquid yields as high as 82% of the coal by weight, have been achieved. The principal objective of this work is to examine how nearly we may approach these results in a continuous-flow system, at a size sufficient to evaluate the process concept for production of transportation fuels from coal.

Wiser, W.H.; Oblad, A.G.

1996-01-01T23:59:59.000Z

417

Division of Oil, Gas, and Mining Permitting  

E-Print Network (OSTI)

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

418

Inclined fluidized bed system for drying fine coal  

SciTech Connect

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

419

Gasifier feed - Tailor-made from Illinois coals  

SciTech Connect

The main purpose of this project is to produce a feedstock from preparation plant fines from an illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals.

Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology, (United States) Illinois Coal Association (United States))

1992-01-01T23:59:59.000Z

420

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

Science Conference Proceedings (OSTI)

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z