Sample records for gas storage company

  1. FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38...

    Energy Savers [EERE]

    FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38-LNG FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38-LNG The Office of Fossil Energy gives notice of...

  2. FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC- FE DKT. NO. 15-38-LNG- (FTA)

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 24, 2015, by Floridian Natural Gas Storage Company, LLC (Floridian) requesting long-term, multi-contract...

  3. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  5. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison

    2005-09-14T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  6. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  7. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-10T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  8. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-03-31T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  9. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  10. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-04-17T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

  11. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-07-15T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect (OSTI)

    Robert W. Watson

    2004-10-18T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing negotiations of the four sub-awards working toward signed contracts with the various organizations involved. Second, an Executive Council meeting was held at Penn State September 9, 2004. And third, the GSTC participated in the SPE Eastern Regional Meeting in Charleston, West Virginia, on September 16th and 17th. We hosted a display booth with the Stripper Well Consortium.

  13. Regulations For Gas Companies (Tennessee)

    Broader source: Energy.gov [DOE]

    The Regulations for Gas Companies, implemented by the Tennessee Regulatory Authority (Authority) outline the standards for metering, distribution and electricity generation for utilities using gas....

  14. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  15. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  16. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...

    Broader source: Energy.gov (indexed) [DOE]

    52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

  17. Natural gas annual 1993 supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

  18. New Mexico Gas Company- Commercial Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company Commercial Energy Efficiency programs provide energy savings for businesses using natural gas for cooking and water heating. Prescriptive incentives for specified...

  19. NATURAL GAS STORAGE ENGINEERING Kashy Aminian

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

  20. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12T23:59:59.000Z

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  1. Natural gas annual 1992: Supplement: Company profiles

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

  2. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

    2013-03-01T23:59:59.000Z

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  3. Intermountain Gas Company (IGC)- Gas Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

  4. Agenda: Natural Gas: Transmission, Storage and Distribution ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

  5. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  6. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  7. New Mexico Gas Company- Residential Efficiency Programs

    Broader source: Energy.gov [DOE]

    The New Mexico Gas Company provides incentives for energy saving measures and improvements to residential homes. Rebates are available for adding insulation and for homes which attain Energy Star...

  8. Gas storage plays critical role in deregulated U. S. marketplace

    SciTech Connect (OSTI)

    True, W.R.

    1994-09-12T23:59:59.000Z

    Oil Gas Journal for the first time has compiled a county-by-county list of underground natural-gas storage operating in the US on Sept. 1. Nearly 3.1 tcf of working gas in storage is currently operated. As will be discussed, several projects to add capacity are under way or planned before 2000. To collect the data, OGJ contacted every company reported by the American Gas Association, U.S. Federal Energy Regulatory Commission, or the US Department of Energy to have operated storage in the past 2 years. The results were combined with other published information to form Table 1 which provides base, working, and total gas capacities for storage fields, types of reservoirs used, and daily design injection and withdrawal rates. The paper also discusses deregulation, what's ahead, and salt cavern storage.

  9. Pacific Gas and Electric Company_14-36-NG_3422

    Broader source: Energy.gov (indexed) [DOE]

    ) PACIFIC GAS AND ELECTRIC COMPANY ) DOCKET NO. 14-36-NG ) ORDER GRANTING BLANKET AUTHORIZATION TO IMPORT NATURAL GAS FROM...

  10. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  11. Gas supplies of interstate/natural gas pipeline companies 1989

    SciTech Connect (OSTI)

    Not Available

    1990-12-18T23:59:59.000Z

    This publication provides information on the interstate pipeline companies' supply of natural gas during calendar year 1989, for use by the FERC for regulatory purposes. It also provides information to other Government agencies, the natural gas industry, as well as policy makers, analysts, and consumers interested in current levels of interstate supplies of natural gas and trends over recent years. 5 figs., 18 tabs.

  12. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  13. Regulation of Gas, Electric, and Water Companies (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

  14. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  17. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison

    2005-10-24T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2005 through September 30, 2005. During this time period efforts were directed toward (1) receiving proposals in response to the RFP, and (2) organizing and hosting the proposal selection meeting on August 30-31, 2005.

  18. Technical Progress Report for the Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-02-27T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

  19. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect (OSTI)

    Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

    1996-02-19T23:59:59.000Z

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  20. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

  1. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

  2. Gas Companies Operating Within the State of Connecticut (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply a broad definition of “gas company”, which includes any person or entity involved in the manufacture or transportation of gas within Connecticut. The regulations set...

  3. Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

  4. Management of a complex cavern storage facility for natural gas

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

  5. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Montana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Iowa Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Pennsylvania Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Oregon Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Colorado Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Indiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"Kansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Washington Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. Underground Storage of Natural Gas (Kansas)

    Broader source: Energy.gov [DOE]

    Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

  14. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  15. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  16. Natural gas storage - end user interaction. Task 2. Topical report

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. This paper discusses the storage of natural gas, storage facilities, and factors affecting the current, and future situation for natural gas storage.

  17. Laclede Gas Company- Residential High Efficiency Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential customers can qualify for rebates on boilers, furnaces,...

  18. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas Company Address Place Zip Website Abu

  19. IMPROVED NATURAL GAS STORAGE WELL REMEDIATION

    SciTech Connect (OSTI)

    James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

    2001-12-01T23:59:59.000Z

    This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

  20. FERC Order 636 spawns flurry of U. S. gas storage projects

    SciTech Connect (OSTI)

    Not Available

    1993-10-25T23:59:59.000Z

    Precisely how storage utilization will affect U.S. gas markets is uncertain because many new players are offering storage services through mostly untested contractual arrangements. But a positive development is that available gas storage capacity in the U.S. is increasing. And that is due in large part to storage's relative value in markets taking on added luster as a result of Federal Energy Regulatory Commission Order 636, which takes effect Nov. 1. Order 636 in most cases ends interstate pipeline companies merchant functions, unbundles pipeline interstate gas transportation services and fees, and opens interstate transmission capacity to access by any qualified shipper on firm or interruptible basis. Interstate pipeline gas storage capacity is among the transportation services affected. As markets set values on controlling or aggregating gas supplies at given points on the U.S. interstate pipeline grid and on transporting those volumes to end use customers, storage will be valued according to its contribution in each supply chain. And because Order 636 allows storage to play a greater role in the supply chain, its value to producers, shippers, and consumers will grow as well. The paper discusses gas storage expansions, supply area storage, seasonal versus peak storage, salt cavern storage, storage service flexibility, and several specific storage facilities.

  1. Faculty of MANAGEMENT Alberta Oil & Gas Company1

    E-Print Network [OSTI]

    Nakayama, Marvin K.

    Faculty of MANAGEMENT Alberta Oil & Gas Company1 Daphne Jackson, operations manager for Alberta Oil & Gas Company (AOGC) hangs up the phone in her home. Her boss, Will Russell, has phoned from Calgary's interest in the Waptaman oil field. Ordinarily, Will would lead such negotiations himself, but he has been

  2. Optimal gas storage valuation and futures trading under a high ...

    E-Print Network [OSTI]

    2015-05-19T23:59:59.000Z

    In contrast to storage space for consumer goods, natural gas storage is a ... In many cases, the owner of storage capacity does not own the gas, and thus a ...

  3. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31T23:59:59.000Z

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  4. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground Natural Gas Storage...

  5. Understanding the use of natural gas storage for generators of electricity

    SciTech Connect (OSTI)

    Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

  6. Panel 4, Hydrogen Energy Storage Policy Considerations

    Broader source: Energy.gov (indexed) [DOE]

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage...

  7. Natural gas storage in bedded salt formations

    SciTech Connect (OSTI)

    Macha, G.

    1996-09-01T23:59:59.000Z

    In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

  8. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  9. VEE-0043- In the Matter of Greenville Automatic Gas Company

    Broader source: Energy.gov [DOE]

    On March 11, 1997, Greenville Automatic Gas Company (Greenville) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  10. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  11. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Dhahran Saudi Arabia http www saudiaramco com en home html Saudi Aramco Mobile Refinery Company SAMREF Saudi Aramco Mobile Refinery Company SAMREF P O Box Yanbu S audi...

  12. Gas Companies Right-of-Way (Maryland)

    Broader source: Energy.gov [DOE]

    Corporations engaged in the business of transmitting or supplying natural gas, artificial gas, or a mixture of natural and artificial gases may acquire by condemnation the rights-of-way or...

  13. 1 INTRODUCTION Gas storage caverns were developed mainly for sea-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 INTRODUCTION Gas storage caverns were developed mainly for sea- sonal storage, with one or a few Tech, Palaiseau, France A. Frangi Politecnico di Milano, Milano, Italy ABSTRACT: Storage of natural gas in salt caverns had been developed mainly for seasonal storage, resulting in a small number of yearly

  14. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01T23:59:59.000Z

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  15. Baltimore Gas and Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BGE) offers the Smart Energy Savers Program for residential natural gas customers to improve the energy efficiency of eligible homes. Rebates are available...

  16. Natural Gas Pipe Line Companies (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations list standards and considerations for the design, construction, compression, metering, operation, and maintenance of natural gas pipelines, along with procedures for records,...

  17. Salt dome gas storage solves curtailment threat

    SciTech Connect (OSTI)

    Watts, J.

    1982-04-01T23:59:59.000Z

    In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

  18. French gas-storage project nearing completion

    SciTech Connect (OSTI)

    Laguerie, P. de (Geostock, Rueil-Malmaison (France)); Durup, J.G. (Gaz de France, La Pluine St. Denis (France))

    1994-12-12T23:59:59.000Z

    Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

  19. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01T23:59:59.000Z

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  20. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  1. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    E-Print Network [OSTI]

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-01-01T23:59:59.000Z

    Underground Storage of Natural Gas in the United States andEnergy Information Agency (2002). U.S. Natural Gas Storage.www.eia.doe.gov/oil_gas/natural_gas/info_glance/storage.html

  2. ,"Lower 48 States Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"AGA Producing Region Underground Natural Gas Storage - All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"AGA Western Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"AGA Eastern Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. abandons gas storage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratory worker with identification, storage, maintenance, Chemistry Websites Summary: Compressed Gas Safety The purpose of this section is to assist the laboratory worker....

  10. Revision Policy for EIA Weekly Underground Natural Gas Storage...

    Weekly Natural Gas Storage Report (EIA)

    April 26, 2005 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural...

  11. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","227...

  12. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  13. Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Arkansas Natural Gas Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February...

  14. Underground gas storage in New York State: A historical perspective

    SciTech Connect (OSTI)

    Friedman, G.M.; Sarwar, G.; Bass, J.P. [Brooklyn College of the City Univ., Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    New York State has a long history of underground gas storage activity that began with conversion of the Zoar gas field into a storage reservoir in 1916, the first in the United States. By 1961 another fourteen storage fields were developed and seven more were added between 1970 and 1991. All twenty-two operating storage reservoirs of New York were converted from depleted gas fields and are of low-deliverability, base-load type. Nineteen of these are in sandstone reservoirs of the Lower Silurian Medina Group and the Lower Devonian Oriskany Formation and three in limestone reservoirs are located in the gas producing areas of southwestern New York and are linked to the major interstate transmission lines. Recent developments in underground gas storage in New York involve mainly carbonate-reef and bedded salt-cavern storage facilities, one in Stuben County and the other in Cayuga County, are expected to begin operation by the 1996-1997 heating season.

  15. BNL Gas Storage Achievements, Research Capabilities, Interests...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal Hydride Center of Excellence Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials EA-1321: Final Environmental Assessment...

  16. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect (OSTI)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29T23:59:59.000Z

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  17. Natural gas: Governments and oil companies in the Third World

    SciTech Connect (OSTI)

    Davidson, A.; Hurst, C.; Mabro, R.

    1988-01-01T23:59:59.000Z

    It is asserted that oil companies claim to be generally receptive to gas development proposals; however, the lack of potential markets for gas, problems of foreign exchange convertibility, and lack of a legal framework often hinders their engagement. Governments, on the other hand, need to secure domestic energy supply and, if possible, gain some export earnings or royalties. An extensive discussion on the principles of pricing and fiscal regimes, potential points of disagreement is provided. A course of action is outlined from the managerial point of view to circumvent the most common pitfalls in planning and financing a gas project. Eight very detailed case studies are presented for Argentina, Egypt, Malaysia, Nigeria, Pakistan, Tanzania, Tunisia and Thailand.

  18. Pacific Gas and Electric Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump to:PPLPacific Gas and Electric

  19. Prince George's County Underground Storage Act (Maryland)

    Broader source: Energy.gov [DOE]

    A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

  20. ,"New Mexico Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:08:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

  1. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:17:17 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

  2. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:28 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  3. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:55 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

  4. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:27 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  5. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  6. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    none

    1998-09-30T23:59:59.000Z

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  7. Base Natural Gas in Underground Storage (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

  8. Evaluating metalorganic frameworks for natural gas storage

    E-Print Network [OSTI]

    suited for light-duty passenger vehicles. For instance, compressed natural gas (CNG) requires expensive

  9. Baltimore Gas and Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for Energy Star clothes washers,...

  10. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31T23:59:59.000Z

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  11. Two-tank working gas storage system for heat engine

    DOE Patents [OSTI]

    Hindes, Clyde J. (Troy, NY)

    1987-01-01T23:59:59.000Z

    A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

  12. Weekly Natural Gas Storage Report - EIA

    U.S. Energy Information Administration (EIA) Indexed Site

    Careers Feedback Contact Us Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption Total Energy Topics Analysis & Projections Environment Markets &...

  13. Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

  14. Underground Gas Storage Reservoirs (West Virginia)

    Broader source: Energy.gov [DOE]

    Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements,...

  15. Underground Natural Gas Working Storage Capacity - Methodology

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan FebFeet) Gas WellsNatural Gas Glossary

  16. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region About U.S. NaturalStorage Weekly

  17. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  18. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31T23:59:59.000Z

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  19. QER- Comment of Pacific Gas and Electric Company

    Broader source: Energy.gov [DOE]

    PG&E is committed to protecting our customers' privacy. To learn more, please visit http://www.pge.com/about/company/privacy/customer/

  20. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01T23:59:59.000Z

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  1. Avoca, New York Salt Cavern Gas Storage Facility

    SciTech Connect (OSTI)

    Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

    1995-09-01T23:59:59.000Z

    The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

  2. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O; Bell, Alexander; Bollinger, Benjamin R; Shang, Andrew; Chmiel, David; Richter, Horst; Magari, Patrick; Cameron, Benjamin

    2013-07-02T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  3. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange

    DOE Patents [OSTI]

    McBride, Troy O.; Bell, Alexander; Bollinger, Benjamin R.

    2012-08-07T23:59:59.000Z

    In various embodiments, efficiency of energy storage and recovery systems compressing and expanding gas is improved via heat exchange between the gas and a heat-transfer fluid.

  4. Storage Gas Water Heaters | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie Price Stephanie PriceStoller PrimeGas Water

  5. The Basics of Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale ProvedA(MillionGrossNatural Gas

  6. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas in

  7. Working Gas in Underground Storage Figure

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan Feb Marper3Working Gas

  8. San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Fact Sheet San Diego Gas & Electric Company v. Sellers of Energy and Ancillary Services Docket No. EL00-95-000 July 6, 2007 The Federal Energy Regulatory Commission today approved an $18 million uncontested settlement that resolves matters and claims related to BP Energy Company (BP) and California

  9. Baltimore Gas and Electric Company- Home Performance with Energy Star Rebates

    Broader source: Energy.gov [DOE]

    The Baltimore Gas and Electric Company (BG&E) offers the Home Performance with Energy Star Program that provides incentives for residential customers who have audits performed by participating...

  10. Gas storage valuation and hedging. A quantification of the model risk.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Gas storage valuation and hedging. A quantification of the model risk. Patrick Henaff (1), Ismail and hedging of gas storage facilities, using a spot- based valuation framework coupled with a financial and phrases. Energy markets; commodities; natural gas storage; model uncertainty. JEL Classification: C4; C5

  11. Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Constantinos Makassikis, Stephane Vialle

    E-Print Network [OSTI]

    Vialle, Stéphane

    Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Valuation Constantinos algorithm which is applied to gas storage valuation, and presents its experimental performances on two PC achieved in the field of gas storage valuation (see [2, 3] for example). As a result, many different price

  12. Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation

    E-Print Network [OSTI]

    Vialle, Stéphane

    Distribution of a Stochastic Control Algorithm Applied to Gas Storage Valuation Constantinos to speed-up and size-up some gas storage valuations, based on a Stochastic Dy- namic Programming algorithm. Such valuations are typically needed by investment projects and yield prices of gas storage spaces and facilities

  13. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess andStorage

  14. Regulatory, technical pressures prompt more U. S. salt-cavern gas storage

    SciTech Connect (OSTI)

    Barron, T.F. (PB-KBB Inc., Houston, TX (United States))

    1994-09-12T23:59:59.000Z

    Natural-gas storage in US salt caverns is meeting the need for flexible, high delivery and injection storage following implementation Nov. 1, 1993, of the Federal Energy Regulatory Commission's Order 636. This ruling has opened the US underground natural-gas storage market to more participants and created a demand for a variety of storage previously provided by pipelines as part of their bundled sales services. Many of these new services such as no-notice and supply balancing center on use of high-delivery natural gas storage from salt caverns. Unlike reservoir storage, nothing restricts flow in a cavern. The paper discusses the unique properties of salt that make it ideal for gas storage, choosing a location for the storage facility, cavern depth and shape, cavern size, spacing, pressures, construction, conversion or brine or LPG storage caverns to natural gas, and operation.

  15. Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)

  16. CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT

    SciTech Connect (OSTI)

    DeVries, Kerry L; Mellegard, Kirby D; Callahan, Gary D; Goodman, William M

    2005-06-01T23:59:59.000Z

    This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

  17. Baltimore Gas and Electric Company (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Baltimore Gas and Electric (BGE) provides incentives for technical assistance, retrofitting inefficient equipment, starting a new construction project, launching a major renovation, purchasing new...

  18. Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2005-09-24T23:59:59.000Z

    Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

  19. Washington Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas,Underground Storage

  20. Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Implications of a Regime-Switching Model on Natural Gas Storage Valuation and Optimal Operation-switching model for the risk adjusted natural gas spot price and study the implications of the model on the valuation and optimal operation of natural gas storage facilities. We calibrate the model parameters to both

  1. A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation

    E-Print Network [OSTI]

    Forsyth, Peter A.

    A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation Zhuliang Chen such as fuel and electricity, natural gas prices exhibit seasonality dynamics due to fluctuations in demand [28]. As such, natural gas storage facilities are constructed to provide a cushion for such fluctuations

  2. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01T23:59:59.000Z

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  3. An Analysis of the Effectiveness and Impact of Mandatory Company Greenhouse Gas Emission Reporting Under The Companies Act 2006 (Strategic Report and Directors’ Report) Regulations 2013 

    E-Print Network [OSTI]

    Plaza, Celina

    2014-11-22T23:59:59.000Z

    The intent of this research is to examine the effectiveness and impact of the UK’s mandatory reporting of company greenhouse gas emissions, otherwise known as carbon dioxide equivalent (CO2e) emissions, in accordance to ...

  4. Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas

    E-Print Network [OSTI]

    de Lijser, Peter

    Gas Cylinder Storage and Handling Serious accidents can result from the misuse, abuse, or mishandling of compressed gas cylinders. Safe procedures for their use are as follows: · All compressed gas combustible material. · Keep cylinders out of the direct sun and do not allow them to be overheated. · Gas

  5. EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

  6. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  7. 2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, Rates and the Customer

    E-Print Network [OSTI]

    © 2008 San Diego Gas & Electric Company. All copyright and trademark rights reserved. Smart Meters, OR #12;2 SDG&E Smart Meter Goals · Install AMI/smart metering for all SDG&E electric and gas business're starting to recreate our relationship with customers and transform our company #12;Smart Meter Business

  8. Comments of Baltimore Gas & Electric Company | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment. CashDay-June 22, 2015 |atfrom theBaltimore Gas

  9. Pacific Gas & Electric Company Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,Pacific Gas & Electric CoEnergy

  10. Comments of Baltimore Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational Broadband Plan byComments of Baltimore Gas &

  11. City of Gas City, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCity ofCity ofCity of Garnett,Gas

  12. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.

    1996-12-31T23:59:59.000Z

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  13. The Corporate Headquarters for Alabama Power Company--How One Utility is Promoting Cool Storage in a Big Way

    E-Print Network [OSTI]

    Reardon, J. G.; Penuel, K. M.

    to the company's technical and informational requirements. Mechanical' engineer David Michaeli, of Cosentini, devised the concept of developing a design/build per formance specification for the refrigeration plant and ice storage system with certain key... performance, space r~quirements, I quotes on maintenance contracts, etc. The i refrigeration subcontract includes a liquid4ted damages clause with penalties for the refriger ation subcontractor if the system does not ~eet specifications. The owner's team...

  14. A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern

    E-Print Network [OSTI]

    Boyer, Edmond

    A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern Pierre Bérest, Milano, Italy Abstract A small number of blow-outs from gas storage caverns (for example, in Moss Bluff and hydrogen storage in salt caverns. Compressed Air Energy Storage (CAES) is experiencing a rise in interest

  15. Net Withdrawals of Natural Gas from Underground Storage (Summary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

  16. Natural Gas Withdrawals from Underground Storage (Annual Supply...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

  17. The 'Supply-of-Storage' for Natural Gas in California

    E-Print Network [OSTI]

    Uria, Rocio; Williams, Jeffrey

    2005-01-01T23:59:59.000Z

    the Hedging Effectiveness of Natural Gas Futures. ” EnergyCommission. (2002). “Natural Gas Supply and Infrastructureand Price Dynamics in Natural Gas City Gate Markets. ”

  18. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 2. Accounting

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Law, E.; Rudshagen, C.; Yevchak, S.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF), performed by the Southern California Gas Company (SoCalGas), volume II of the six-volume set presents the results of the accounting portion, including sections on accounting adjustments and company-use gas. It identifies enhancements to accounting practices that make records more accurately reflect the physical activity occurring in the system. The result is an accounting record of gas volumes received and delivered which have been adjusted for the enhancements, and exclude accounting estimates and prior period adjustments.

  19. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 1. Project summary

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Law, E.; Ozenne, D.

    1993-01-01T23:59:59.000Z

    A study of unaccounted-for gas (UAF), performed by the Southern California Gas Company (SoCalGas) to determine the UAF gas volume in the SoCalGas system, to identify the factors contributing to UAF, and to estimate the gas volume associated with each factor, is described. It was found that measurement-related effects contributed more than 80% of SoCalGas' 1991 UAF volume. Less than 3% is associated with adjustments to SoCalGas' accounting system, and approximately 6% is associated with losses due to theft. Testing showed that the leakage element contributed only 8% of the UAF volume.

  20. The value of underground storage in today`s natural gas industry

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.

  1. Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the...

  2. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28T23:59:59.000Z

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  3. Injections of Natural Gas into Storage (Annual Supply & Disposition...

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

  4. Natural Gas Withdrawals from Underground Storage (Annual Supply...

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

  5. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    Gasoline and Diesel Fuel Update (EIA)

    Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground...

  6. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

  7. Spindletop salt-cavern points way for future natural-gas storage

    SciTech Connect (OSTI)

    Shotts, S.A.; Neal, J.R.; Solis, R.J. (Southwestern Gas Pipeline Inc., The Woodlands, TX (United States)); Oldham, C. (Centana Intrastate Pipeline Co., Beaumont, TX (United States))

    1994-09-12T23:59:59.000Z

    Spindletop underground natural-gas storage complex began operating in 1993, providing 1.7 bcf of working-gas capacity in its first cavern. The cavern and related facilities exemplify the importance and advantages of natural-gas storage in leached salt caverns. Development of a second cavern, along with continued leaching of the initial cavern, target 5 bcf of available working-gas capacity in both caverns by the end of this year. The facilities that currently make up the Spindletop complex include two salt dome gas-storage wells and a 24,000-hp compression and dehydration facility owned by Sabine Gas; two salt dome gas-storage wells and a 15,900-hp compression and dehydration facility owned by Centana; a 7,000-hp leaching plant; and three jointly owned brine-disposal wells. The paper discusses the development of the storage facility, design goals, leaching plant and wells, piping and compressors, dehydration and heaters, control systems, safety and monitoring, construction, first years operation, and customer base.

  8. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 4. Leakage

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Bruni, J.; Crebs, S.; Law, E.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF) at the Southern California Gas Company (SoCalGas), volume IV of the six-volume set reports on the UAF leakage volumes associated with the transmission and distribution piping systems, each analyzed separately. Unplanned gas releases in SoCalGas distribution and transmission operations contributed approximately 871,900 thousand cubic feet to the 1991 UAF volume. The study indicated that SoCalGas' current leak detection program has been successful in reducing the number of leaks throughout the distribution system, with the sensitive detection equipment finding leaks earlier in their development and reducing the average leakage rate.

  9. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael R. (Knoxville, TN)

    2002-11-05T23:59:59.000Z

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  10. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect (OSTI)

    R.E. Rogers

    1999-09-27T23:59:59.000Z

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  11. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-06-15T23:59:59.000Z

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  12. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  13. NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Unknown

    1999-12-01T23:59:59.000Z

    Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

  14. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect (OSTI)

    Hagoort, J. (Delft Univ. of Technology (Netherlands))

    1994-11-01T23:59:59.000Z

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  15. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    ScienceCinema (OSTI)

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-03-13T23:59:59.000Z

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  16. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    SciTech Connect (OSTI)

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-02-24T23:59:59.000Z

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  17. Public Service Companies, General Provisions (Virginia)

    Broader source: Energy.gov [DOE]

    Public Service Companies includes gas, pipeline, electric light, heat, power and water supply companies, sewer companies, telephone companies, and all persons authorized to transport passengers or...

  18. Risk assessment of converting salt caverns to natural gas storage. Final report, November 1994-July 1995

    SciTech Connect (OSTI)

    Harrison, M.R.; Ellis, P.F.

    1995-10-01T23:59:59.000Z

    The objective of this paper was an assessment of the risks of release of large quantities of natural gas from salt caverns converted from other uses to the storage of compressed natural gas (CNG). A total of 22 potential root causes for large releases of natural gas from converted salt converns were identified and ranked in terms of relative risk. While this project assessed the relative risks of major gas releases, the absolute risk was determined by implication to be extremely low, as indicated by the historical record.

  19. Natural Gas Storage Report, Weekly EIA-AGA Comparison

    Reports and Publications (EIA)

    2002-01-01T23:59:59.000Z

    This report is intended to aid data users by examining differences between the Energy Information Administration and American Gas Association weekly surveys and comparing the results of the two surveys for the brief period of time in which they overlapped.

  20. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 6. Databases

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Azma, M.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF) at the Southern California Gas Company (SoCalGas), the last volume of the six-volume set contains the supporting data and discussions of the methods used to extract and organize data from SoCalGas billing records to support the analysis of study elements. An overview of the analytical approach is presented, and detailed information on the related computational logic, program design, and input data requirements is provided. An appendix contains input data file descriptions.

  1. Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company LevelInput SupplementalNet

  2. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot) Year

  3. Improving Grid Performance with Electric Vehicle Charging 2011San Diego Gas & Electric Company. All copyright and trademark rights reserved.

    E-Print Network [OSTI]

    California at Davis, University of

    Improving Grid Performance with Electric Vehicle Charging © 2011San Diego Gas & Electric Company · Education SDG&E Goal ­ Grid Integrated Charging · More plug-in electric vehicles · More electric grid to a hairdryer) per PEV in the population · Instantaneous demand, 40 all-electric vehicles for one day (8

  4. Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousandUnderground Storage Volume

  5. Delaware Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0Cubic Feet) Underground Storage

  6. Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year%Underground Storage Volume

  7. Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan

  8. Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million Cubic

  9. Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16,% ofYear Jan

  10. Maryland Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet) Year Jan

  11. Maryland Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1Feet)Year Jan Feb

  12. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01T23:59:59.000Z

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  13. Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature

    SciTech Connect (OSTI)

    Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

    2007-10-15T23:59:59.000Z

    The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

  14. Seismic modeling to monitor CO2 geological storage: The Atzbach-Schwanenstadt gas field

    E-Print Network [OSTI]

    Santos, Juan

    ) and coal-bed methane production make CO2 geolog- ical storage cost-effective [e.g., Baines and Worden, describes the seismic properties of the reservoir rock saturated with CO2, methane and brine, and allows us response when injecting carbon dioxide (CO2) in a depleted gas reservoir. The petro-elastical model

  15. An Intelligent Portfolio Management Approach to Gas Storage Field Deliverability Maintenance and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    ;Outline Introduction Methodology & Software Results Objective Conclusions #12;Energy consumption by fuel Source: Energy Information Administration (EIA) Introduction #12;Introduction Typical gas storage fields operations in the same way. This is an optimization problem. Gaining the highest return with minimum risk

  16. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect (OSTI)

    Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  17. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  18. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 3. Measurement

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Aquin, D.; Beloat, B.; Epps, B.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF) at the Southern California Gas Company, volume III of the six-volume set contains the results of measurement factors analysis, including both estimates of UAF due to fixed-factor assumptions and meter accuracy. Accurate measurement of gas volume is a function of the meter and the factors used to adjust the meter read. If the meter registers slow or fast, the actual gas volume passing through the meter will not be measured true. The estimated UAF volume from all measurement elements resulted in an overall net under-measurement of the 1991 gas volume in the SoCalGas system of 8,048,800 thousand cubic feet. Appendices include tabular numerical and graphic information on measurement parameters and other supplemental data.

  19. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energygasoline4 Space2.9PetroleumSalt Cavern Storage

  20. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  1. Selection and preparation of activated carbon for fuel gas storage

    DOE Patents [OSTI]

    Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

    1990-10-02T23:59:59.000Z

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  2. Differences Between Monthly and Weekly Working Gas In Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: Shelley Martin, DOEVehicles and

  3. AGA Eastern Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s u o Q(MillionGas)

  4. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from

  5. AGA Producing Regions Natural Gas Underground Storage Net Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from(Million

  6. AGA Western Consuming Region Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas(Million Cubic

  7. AGA Western Consuming Region Natural Gas Underground Storage Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas(Million

  8. AGA Western Consuming Region Natural Gas in Underground Storage (Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas) (Million Cubic

  9. AGA Western Consuming Region Underground Natural Gas Storage - All

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas)

  10. Total Number of Existing Underground Natural Gas Storage Fields

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil and GasTop

  11. Illinois Natural Gas Underground Storage Capacity (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0Elements) GasTotal

  12. Georgia Liquefied Natural Gas Additions to and Withdrawals from Storage

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.987.193.520092,481

  13. Georgia Natural Gas LNG Storage Additions (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2Year

  14. Georgia Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2YearWithdrawals

  15. Georgia Natural Gas Underground Storage Injections All Operators (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial

  16. Georgia Natural Gas Underground Storage Net Withdrawals All Operators

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial(Million Cubic

  17. Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial(Million

  18. Idaho Liquefied Natural Gas Additions to and Withdrawals from Storage

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week2009 2010 201147

  19. Idaho Natural Gas LNG Storage Additions (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExports toAdditions

  20. Idaho Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExports

  1. Illinois Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal ConsumptionYear Gas

  2. Washington Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, WetCubicYear JanNet

  3. Washington Natural Gas Underground Storage Net Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas,

  4. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01T23:59:59.000Z

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  5. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-01T23:59:59.000Z

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about more »20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO?, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO? is highest for switchgrass and CH? is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  6. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  7. Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994

    SciTech Connect (OSTI)

    Hower, T.L.; Obernyer, S.L.

    1994-01-01T23:59:59.000Z

    A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

  8. Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen.

    SciTech Connect (OSTI)

    Lord, Anna Snider

    2009-09-01T23:59:59.000Z

    In many regions across the nation geologic formations are currently being used to store natural gas underground. Storage options are dictated by the regional geology and the operational need. The U.S. Department of Energy (DOE) has an interest in understanding theses various geologic storage options, the advantages and disadvantages, in the hopes of developing an underground facility for the storage of hydrogen as a low cost storage option, as part of the hydrogen delivery infrastructure. Currently, depleted gas/oil reservoirs, aquifers, and salt caverns are the three main types of underground natural gas storage in use today. The other storage options available currently and in the near future, such as abandoned coal mines, lined hard rock caverns, and refrigerated mined caverns, will become more popular as the demand for natural gas storage grows, especially in regions were depleted reservoirs, aquifers, and salt deposits are not available. The storage of hydrogen within the same type of facilities, currently used for natural gas, may add new operational challenges to the existing cavern storage industry, such as the loss of hydrogen through chemical reactions and the occurrence of hydrogen embrittlement. Currently there are only three locations worldwide, two of which are in the United States, which store hydrogen. All three sites store hydrogen within salt caverns.

  9. 382-1 underground gasoline storage tank soil-gas survey

    SciTech Connect (OSTI)

    Jacques, I.D.

    1993-08-27T23:59:59.000Z

    A soil-gas survey was conducted near the 382 Pump House in the 300 Area of the Hanford Site. The objective of the soil-gas survey was to characterize the extent of petroleum product contamination in the soil beneath the 382-1 underground gasoline storage tank excavation. The tank was discovered to have leaked when it was removed in September 1992. The results of this soil-gas survey indicate petroleum products released from the 382-1 tank are probably contained in a localized region of soil directly beneath the tank excavation site. The soil-gas data combined with earlier tests of groundwater from a nearby downgradient monitoring well suggest the spilled petroleum hydrocarbons have not penetrated the soil profile to the water table.

  10. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. Underground Natural Gas Storage

  11. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect (OSTI)

    A. Garren, J. Kolonlo

    2005-10-31T23:59:59.000Z

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  12. Effects of cavern spacing on the performance and stability of gas-filled storage caverns

    SciTech Connect (OSTI)

    Hoffman, E.L.

    1993-04-01T23:59:59.000Z

    Three-dimensional finite element analyses of gas-filled storage caverns in domal salt were performed to investigate the effects of cavern spacing on surface subsidence, storage loss, and cavern stability. The finite element model used for this study models a seven cavern storage field with one center cavern and six hexagonally spaced surrounding caverns. Cavern spacing is described in terms of the P/D ratio which is the pillar thickness (the width between two caverns) divided by the cavern diameter. With the stratigraphy and cavern size held constant, simulations were performed for P/D ratios of 6.0, 3.0, 2.0, 1.0, and 0.5. Ten year simulations were performed modeling a constant 400 psi gas pressure applied to the cavern lining. The calculations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. For the range of P/D ratios studied, cavern deformation and storage volume were relatively insensitive to P/D ratio, while subsidence volume increased with increasing P/D ratio. A stability criterion which describes stability in terms of a limiting creep strain was used to investigate cavern stability. The stability criterion indicated that through-pillar instability was possible for the cases of P/D = 0.5 and 1.0.

  13. Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

  14. ,"Rhode Island Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,CanadaLNG Storage Net

  15. ,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural Gas Underground Storage

  16. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    3 05-27-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW STAKEHOLDER MEETING 3 PETROLEUM TRANSMISSION, STORAGE AND DISTRIBUTION ISSUES...

  17. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01T23:59:59.000Z

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

  18. Identification of Parameters Influencing the Response of Gas Storage Wells to Hydraulic Fracturing with the Aid of a Neural Network

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    75083-3836, U.S.A. Telex, 163245 SPEUT. Abstract Performing hydraulic fractures on gas storage wells necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data

  19. Underground storage of hydrocarbons in Ontario

    SciTech Connect (OSTI)

    Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

    1995-09-01T23:59:59.000Z

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  20. U.S. Natural Gas Salt - Underground Storage - Base Gas (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawalsPoint of- Underground Storage -

  1. Study of the 1991 unaccounted-for gas volume at the Southern California Gas Company. Final report, January 1991-December 1992. Volume 5. Theft

    SciTech Connect (OSTI)

    Meshkati, S.; Groot, J.; Fiero, G.; Harris, G.; Ozenne, D.

    1993-04-01T23:59:59.000Z

    As part of a study of unaccounted-for gas (UAF) at the Southern California Gas Company (SoCalGas), volume V of the six-volume set examines losses due to theft. Residential and non-residential (commercial and industrial) theft are distinguished. Analysis involves estimating both frequencies of occurrence and the volumes associated with such occurrence. Approaches and techniques of detection and control are discussed. The problem in developing estimates is that theft is difficult to detect. The study finds that theft contributes approximately 644,529 thousand cubic feet to the 1991 UAF. Residential theft is estimated at 324,227 Mcf and non-residential theft at 320,302 Mcf.

  2. Predicting Well Stimulation Results in a Gas Storage Field in the Absence of Reservoir Data, Using Neural Networks

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 31159 Predicting Well Stimulation Results in a Gas Storage Field in the Absence of Reservoir Data, Using Neural Networks Mohaghegh, S., West Virginia University, McVey, D., National Gas and Oil for presentation by an SPE Program Committee following review of date wells with the highest potential

  3. Geological characterization and 3D visualizations of the gas storage reservoir at Hillsboro field, Montgomery County, IL

    SciTech Connect (OSTI)

    Udegbunam, E.O.; Huff, B.G. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-12-31T23:59:59.000Z

    Geological characterizations, modeling and 3-D computer-generated visualizations of the Ordovician St. Peter Sandstone at the Hillsboro Gas Storage field in Montgomery County, Illinois, are discussed. Petrophysical analyses reveal four distinct hydraulic flow units in six cored wells. Furthermore, four lithologies, identified by thin section petrography, are associated with the various hydraulic units. Fieldwide visualizations of 3-D distributions of petrophysically-derived attributes reservoir quality index (RQI) and flow zone indicator (FZI) -- show considerable vertical variability but lateral continuity. This finding explains why it is easier to expand the gas bubble laterally than vertically. Advantages of the 3-D reservoir description of Hillsboro Gas Storage field include (1) improved definition of the spatial porosity distribution which leads to better estimation of reservoir volumetrics; (2) improved definition of reservoir hydraulic flow zones; and (3) development of realistic reservoir model(s) for the simulation and management of the gas storage field.

  4. ,"North Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNetGas,Price

  5. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  6. Iowa Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas) (Million Cubic

  7. Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas) (Million

  8. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas) (MillionMonth

  9. Iowa Natural Gas in Underground Storage - Change in Working Gas from Same

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0Base Gas)

  10. Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas) (Million

  11. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)Same

  12. Missouri Natural Gas in Underground Storage - Change in Working Gas from

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYearBase Gas)SameSame

  13. Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008Year JanBase Gas)

  14. Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear Jan FebDecadeBase Gas)

  15. Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecade Year-0Working Gas)

  16. Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2Feet)VentedBase Gas)

  17. Illinois Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotalVented andBase Gas)

  18. New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas) (Million

  19. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas)

  20. New Mexico Natural Gas in Underground Storage - Change in Working Gas from

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas)Same Month

  1. ,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to EndAdditions (MMcf)"Working Gas (MMcf)" ,"Click

  2. Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services,...

  3. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30T23:59:59.000Z

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  4. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.

  5. Florida company looks to put algae in your gas tank | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdf Flash2010-60.pdf2 DOE Hydrogen and FuelFlorida company looks to

  6. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  7. Gas Storage Potential of Li-decorated ExBox4+

    E-Print Network [OSTI]

    Das, Ranjita

    2014-01-01T23:59:59.000Z

    The newly developed compound ExBox4+ is explored to check whether it is a proficient hydrogen storage material. Both exoherdal and endohedral hydrogen adsorption on ExBox4+ are studied. Endohedral hydrogen molecules interact strongly than exohedral ones. The hydrogen adsorption energy is as good as the recently studied charged fullerenes. The hydrogen storage capacity appears to be ~4.3 wt%. The endohedral CO sorption is also analysed with the help of DFT. The first principle DFT calculation and MD simulation are performed to investigate the effect of lithium doping on the gas adsorbing capacity and adsorption enthalpy as well as adsorption energy of ExBox4+.The metal atom interaction with ExBox4+is found to be pretty strong, and the interaction energy appears to be higher than the metal cohesive energy.The thermodynamic parameters suggest that metal doping method is spontaneous in nature. The analysis of adsorption energy, thermodynamic properties and MD simulation results suggest that Li doped ExBox4+ can b...

  8. Productivity and Efficiency of US Gas Transmission Companies: A European Regulatory Perspective

    E-Print Network [OSTI]

    Jamasb, Tooraj; Pollitt, Michael G.; Triebs, T

    the Atlantic.4 Lastly, we would like to stress that all our conclusions apply to gas transmission only. Both in the US and in Europe different energy networks are regulated in different ways and with varying levels of success. This paper is organized... treats output as the “right-hand side” of our cost model and cost as input. We now discuss our variables one at a time. First, we turn to outputs or cost-drivers. Much of the literature on gas transmission uses production functions where the prime...

  9. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  10. Public health assessment for St. Louis Airport, Hazelwood Interim Storage/Futura Coatings Company, St. Louis, St. Louis County, Missouri, Region 7. Cerclis No. MOD980633176. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1994-01-20T23:59:59.000Z

    The St. Louis Airport/Hazelwood Iterim Storage/Futura Coatings Company, a National Priorities List site, is in St. Louis County, Missouri. From 1946 to 1973, the site was used to store radioactive materials resulting from uranium processing. High levels of uranium, thorium, radium, and radon were detected in soil, groundwater, and air. The site is still being used to store radioactive materials. The Agency for Toxic Substances and Disease Registry considers the St. Louis Airport site to be an indeterminate public health hazard. Although there are emissions of radon and the presence of thorium in on-site air and off-site soils and the emission of radiation resulting from the presence of these materials is not currently considered a health hazard. At present conditions, the concentration of radon off-site is indistinguishable from background levels. However, in the past, these contaminants may have been present at levels of health concern.

  11. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01T23:59:59.000Z

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

  12. Concrete Company Moving to Natural Gas with Clean Cities | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space DataEnergyCompressedOil, and Gas Sectors in

  13. PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste

    SciTech Connect (OSTI)

    Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

    1993-12-31T23:59:59.000Z

    Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

  14. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05T23:59:59.000Z

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  15. Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

    2013-11-01T23:59:59.000Z

    Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 5–40 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 23–28 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 19•49, 19•20, 18•0 and 2•07% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 4•6–5•02%, 14–15 mm, 6•4–6•5 mm, 1125–1175 kg m-3, 750–770 kg m-3, 825–840 kg m-3, 73–74%, 18•32–18•78 MJ kg-1, 0•65–0•74% and 0•13–0•15%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

  16. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01T23:59:59.000Z

    sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments...

  17. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," SeminarTHERMAL FOR COOLING ENERGY STORAGE BUILDINGS OF COMMERCIAL

  18. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

  19. Thermal Energy Storage for Cooling of Commercial Buildings

    E-Print Network [OSTI]

    Akbari, H.

    2010-01-01T23:59:59.000Z

    Building Thermal Energy _Storage in ASEAN Countries,"Company, "Thermal Energy Storage for Cooling," Seminar25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF COMMERCIAL

  20. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    associated with natural gas storage in Sweden, includingassociated with natural gas storage in Sweden. The main

  1. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect (OSTI)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15T23:59:59.000Z

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic behaviors of injected CO{sub 2}, identifying and characterizing potential storage sites, and managing injection performance and reducing costs.

  2. Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing

    E-Print Network [OSTI]

    Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

    for replacement of older gas engines and for new compressor installations. In ozone nonattainment regions, bringing gas compressor stations into compliance with NOx emission regulations is a must. Outside those regions, new electric drives are being considered...

  3. High-pressure Storage Vessels for Hydrogen, Natural Gas andHydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 27 - 29, 2010, in Beijing, China. ihfpvlynch.pdf More Documents & Publications Properties, Behavior and Material Compatibility of Hydrogen, Natural Gas and Blends -...

  4. The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas sector service company

    E-Print Network [OSTI]

    Painter, Kevin

    The Expro Engineering Sponsorship Programme Expro International Group is an upstream oil and gas and process flow from high-value oil and gas wells, from exploration and appraisal through to mature field for the development and delivery of innovative technologies to meet the needs of the oil and gas industry globally

  5. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01T23:59:59.000Z

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  6. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. Underground Natural Gas

  7. ,"Tennessee Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNG Storage

  8. ,"Maine Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG Storage Net

  9. ,"Maryland Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG Storage

  10. ,"Maryland Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG StoragePrice

  11. ,"Massachusetts Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNG Storage Net

  12. ,"New York Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage Net Withdrawals (MMcf)"

  13. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    World's First 290 MW Gas Turbine Air Storage Peaking Plant",hydro e lectric plants and gas turbines, are less effectedelectricity. For a gas turbine the conversion efficiency may

  14. Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

    E-Print Network [OSTI]

    Minnesota, University of

    Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage Vishal Kher Yongdae Kim are witnessing a revival of Storage Service Providers (SSP) in the form of new vendors as well as traditional players. While storage outsourcing is cost-effective, many companies are hesitating to outsource

  15. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from SameGas

  16. ,"Oregon Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed MethaneWellhead PriceLNG Storage Net

  17. ,"Tennessee Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNG Storage Net Withdrawals

  18. ,"Tennessee Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNG StorageVolume

  19. Lower 48 States Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume (Million Cubic Feet)

  20. ,"Colorado Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbed MethaneLNG Storage

  1. ,"Indiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice+ LeaseLNG Storage

  2. ,"Maryland Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNG StoragePrice SoldNet

  3. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNet Withdrawals

  4. ,"New York Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNet WithdrawalsVolume

  5. Large Scale Distribution of Stochastic Control Algorithms for Gas Storage Constantinos Makassikis, Stephane Vialle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by the gas market prices for a future delivery of energy: · the first one is a one-factor model based as people from the industry of energy and finance in order to provide concrete answers on the use power and memory space while achieving both speedup and size-up: it has been successfully implemented

  6. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  7. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3ApplianceApplying the Energy Service Company

  8. ,"South Carolina Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,CanadaLNGDeliveriesPriceLNG

  9. ,"U.S. Total Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks ofReservesNatural

  10. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. Underground Natural

  11. ,"AGA Producing Regions Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural Gas Underground

  12. ,"AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural Gas UndergroundWestern

  13. ,"California Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil

  14. ,"Louisiana Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrudeNet

  15. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13T23:59:59.000Z

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  16. Potential for future development of salt cavern storage in the upper Silurian Syracuse Formation of south-central New York

    SciTech Connect (OSTI)

    Bass, J.P.; Sarwar, G.; Guo, B. [Brooklyn College of the City Univ. of New York, Troy, NY (United States)] [and others

    1995-09-01T23:59:59.000Z

    Although depleted reservoirs remain the dominant structures used for storage fulfilling the demand for base load gas supply during the heating season, the current general surge in storage projects, nationwide, takes advantage of opportunities in Order 636, and makes greater use of salt caverns for gas storage. This reflects the increasing need by gas users, local distribution companies in particular, to quickly cycle a storage facility`s gas supply for services such as peak shaving, emergency supply, and system balancing to meet hourly swings. Occurrence of thick deposits of bedded salt deposits provides New York the capability to develop high deliverability salt cavern storage facilities. Furthermore, New York is uniquely positioned at the gateway to major northeastern markets to provide peak load storage services of natural gas supply. The thickest units of bedded salt in New York occur in the {open_quotes}F{close_quotes} horizon of the Upper Silurian Syracuse Formation. Three bedded salt cavern storage facilities have been recently proposed in New York. Two of these projects is much larger (with 5 Bcfg ultimate capacity), is under construction, and will provide valuable storage service to the Ellisburg-Leidy market center hub in Pennsylvania. Identification of possible sites for future salt cavern storage projects has been achieved chiefly by defining areas of thick beds of salt at sufficient depths close to gas transmission lines, with access to a freshwater supply for leaching, and possessing an acceptable method of brine disposal.

  17. Novel carbons from Illinois coal for natural gas storage. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rostam-Abadi, M.; Sun, J.; Lizzio, A.A. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States)

    1994-12-31T23:59:59.000Z

    The goal of this project is to develop a technology for producing microengineered adsorbent carbons from Illinois coal and to evaluate the potential application of these novel materials for storing natural gas for use in emerging low pressure, natural gas vehicles (NGV). Potentially, about two million tons of adsorbent could be consumed in natural gas vehicles by year 2000. If successful, the results obtained in this project could lead to the use of Illinois coal in a growing and profitable market that could exceed 6 million tons per year. During this reporting period, a pyrolysis-gasification reactor system was designed and assembled. Four carbon samples were produced from a {minus}20+100 mesh size fraction of an Illinois Basin Coal (IBC-106) using a three-step process. The three steps were: coal oxidation in air at 250 C, oxicoal (oxidized coal) devolatilization in nitrogen at 425 C and char gasification in 50% steam-50% nitrogen at 860 C. These initial tests were designed to evaluate the effects of pre-oxidation on the surface properties of carbon products, and to determine optimum reaction time and process conditions to produce an activated carbon with high surface area. Nitrogen-BET surface areas of the carbon products ranged from 700--800 m{sup 2}/g. Work is in progress to further optimize reaction conditions in order to produce carbons with higher surface areas. A few screening tests were made with a pressurized thermogravimetric (PTGA) to evaluate the suitability of this instrument for obtaining methane adsorption isotherms at ambient temperature and pressures ranging from one to 30 atmospheres. The preliminary results indicate that PTGA can be used for both the adsorption kinetic and equilibrium studies.

  18. ,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas,LiquidsPriceNet

  19. ,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plant Liquids,Net Withdrawals

  20. ,"Utah Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plant Liquids,Net

  1. ,"Virginia Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.PlantandCoalbed MethanePriceLNG

  2. ,"Virginia Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.PlantandCoalbedSummary"Net

  3. AGA Eastern Consuming Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n s u oWorking Gas

  4. AGA Producing Region Natural Gas in Underground Storage - Change in Working

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w n sGas from Same

  5. AGA Western Consuming Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas) (Million

  6. AGA Western Consuming Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas) (MillionWorking

  7. ,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to EndAdditions (MMcf)"Working Gas (MMcf)"

  8. ,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to EndAdditions (MMcf)"Working Gas

  9. ,"U.S. Natural Gas Salt Underground Storage Activity-Withdraw (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to EndAdditions (MMcf)"Working GasMonthly","4/2015"

  10. ,"California Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude OilPrice SoldNet

  11. ,"California Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude OilPrice

  12. ,"Connecticut Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbedNetGas,tofromLNG

  13. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude OilLNG

  14. ,"Louisiana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrudeNetVolume

  15. ,"Nebraska Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough+LNG

  16. ,"Nebraska Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas,Price SoldNet

  17. ,"Nebraska Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas,Price SoldNetVolume

  18. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    E-Print Network [OSTI]

    Carerras-Sospedra, Marc

    2012-01-01T23:59:59.000Z

    Modeling LNG Distribution Figure 1: Southern California Gas Company (SoCalGas) and San Diego Gas and Electric Company (SDG&E) Natural Gas Distribution System

  19. MassSAVE (Gas)- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    MassSAVE, through Gas Networks, organizes residential conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These utilities...

  20. A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities

    E-Print Network [OSTI]

    Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.; Krungleviciute, Vaiva; Fairen-Jimenez, David; Sarjeant, Amy A.; Snurr, Randall Q.; Hupp, Joseph T.; Yildirim, Taner; Farha, Omar K.

    2014-08-14T23:59:59.000Z

    , MOFs have attracted much interest for on-board hydrogen or methane storage in vehicles. Both methane and hydrogen are promising candidates as replacements for gasoline (petrol). However, their compact storage in molecular form, especially...

  1. Purchased Gas Adjustment Rules (Tennessee)

    Broader source: Energy.gov [DOE]

    The Purchased Gas Adjustment Rules are implemented by the Tennessee Regulatory Authority (Authority). Purchased Gas Adjustment (PGA) Rules are intended to permit the company/LDC (local gas...

  2. U. S. gas pipelines move to comply with Order 636

    SciTech Connect (OSTI)

    Not Available

    1992-06-15T23:59:59.000Z

    This paper reports that more US interstate gas pipelines have unveiled plans to comply with the Federal Energy Regulatory Commission's Order 636 megarestructuring rule. In the latest developments: Texas Eastern Transmission Corp. (Tetco) filed the first Order 636 compliance proposal with FERC outlining new transportation rates, operational issues, and services the company plans to offer. Tenneco Gas will eliminate a layer of managers and split marketing and transportation functions into four divisions to deal with Order 646. ANR Pipeline Co. made organizational changes expected to help it participate faster and more effectively under Order 636. The company in mid-May made gas sales a stand alone activity, reorganized system sales by region, and consolidated transportation and storage functions. FERC's long awaited megarestructuring rule, issued early in April, aims to assure the open access, interstate pipelines provide equal services for all gas supplies. Companies are to submit transition plans to FERC by Nov. 2.

  3. Sandia National Laboratories: Public Service Company of New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Service Company of New Mexico Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership,...

  4. Heat-pump-centered Integrated Community Energy Systems: systems development, Consolidated Natural Gas Service Company. Final report

    SciTech Connect (OSTI)

    Baker, N.R.; Donakowski, T.D.; Foster, R.B.; Sala, D.L.; Tison, R.R.; Whaley, T.P.; Yudow, B.D.; Swenson, P.F.

    1980-01-01T23:59:59.000Z

    The Heat-Actuated Heat Pump Centered Integrated Community Energy System (HAHP-ICES) utilizes a gas-fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general non-site-specific application assumes a hypothetical community of one 59,000 ft/sup 2/ office building and five 24-unit, low-rise apartment buildings located in a region with a climate similar to Chicago. This community serves as a starting point - the base case - upon which various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results of these analyses provided the selection criteria for the site-specific application of the HAHP-ICES concept to a real-world community. The site-specific community consists of 42 townhouses; five 120-unit, low-rise apartment buildings; five 104-unit high-rise apartment buildings; one 124,000 ft/sup 2/ office building; and a single 135,000 ft/sup 2/ retail building located in Monroeville, Pa. The base-case analyses confirmed that the HAHP-ICES has significant potentials for reducing the primary energy consumption and pollutant emissions associated with space conditioning when compared with a conventional system. Primary energy consumption was reduced by 30%, while emission reductions ranged from 39 to 77%. The results of the site-specific analysis indicate that reductions in energy consumption of between 15 and 22% are possible when a HAHP-ICES is selected as opposed to conventional HVAC equipment.

  5. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  6. Compressed Gas Safety The purpose of this section is to assist the laboratory worker with identification, storage, maintenance,

    E-Print Network [OSTI]

    de Lijser, Peter

    with identification, storage, maintenance, and handling of compressed gases. Compressed gases can be hazardous because on the tank to remind users to leak test before each use. Storage and Handling · All cylinders should, greases, and gasoline. · DO NOT subject any part of a cylinder to a temperature higher than 125o F

  7. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect (OSTI)

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15T23:59:59.000Z

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  8. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot

    2004-06-30T23:59:59.000Z

    Two gas storage fields were studied for this project. Overisel field, operated by Consumer's Energy, is located near the town of Holland, Michigan. Huntsman Storage Unit, operated by Kinder Morgan, is located in Cheyenne County, Nebraska near the town of Sidney. Wells in both fields experienced declining performance over several years of their annual injection/production cycle. In both fields, the presence of hydrocarbons, organic materials or production chemicals was suspected as the cause of progressive formation damage leading to the performance decline. Core specimens and several material samples were collected from these two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  9. gas cylinder storage guidelines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight...

  10. Thermo-fluidal behavior of the air in a cavern for the CAES-G/T[Compressed Air Energy Storage Gas Turbine

    SciTech Connect (OSTI)

    Tada, Shigeru; Yoshida, Hideo; Echigo, Ryozo; Oishi, Yasushi

    1999-07-01T23:59:59.000Z

    In this paper, a numerical analysis was performed to gain the detailed features of the thermo-fluidal behavior of the air inside the cavern for the compressed air storage gas turbine (CAES-G/T). The CAES-G/T, a peak shave power plant is now on the installation in Japan, where energy is stored in off peak period by compressed air in an underground cavern at pressure up to 80 atm abs. In the present work, an analytical model based on the two-dimensional laminar flow on the cross-section of the circular cavern was developed to quantify the effect of the transient process occurring in the cavern and wall during injection, storage and release of compressed air in the experimental circular cavern. the air was introduced until the required pressure inside the cavern is reached, then it was released outside after the storage period. It was found that the stratified temperature distribution was maintained in the cavern during compression and expansion periods. The wall temperature varied together with the variation of the air temperature with time, leading to the heat storage in the wall.

  11. The Power of Energy Storage

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    The Power of Energy Storage How to Increase Deployment in California to Reduce Greenhouse Gas;1Berkeley Law \\ UCLA Law The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions Executive Summary: Expanding Energy Storage in California Sunshine and wind, even

  12. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01T23:59:59.000Z

    60 3. Rio Vista Natural Gas Field: The 193677 4. Calpine Natural Gas Company…………………………………………….82 5.Company [B0120] 4. Calpine Natural Gas, L.P. [C1330] ******

  13. Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions

    E-Print Network [OSTI]

    Valbuena Olivares, Ernesto

    2012-02-14T23:59:59.000Z

    Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method...

  14. Natural gas pipeline technology overview.

    SciTech Connect (OSTI)

    Folga, S. M.; Decision and Information Sciences

    2007-11-01T23:59:59.000Z

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

  15. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  16. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  17. CFES RESEARCH THRUSTS: Energy Storage

    E-Print Network [OSTI]

    Lü, James Jian-Qiang

    CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our with the student to finalize the project plan. To sponsor an Energy Scholar, a company agrees to: · Assign

  18. Gaseous and Liquid Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

  19. Software Quality Modeling Experiences at an Oil Company Constanza Lampasona &

    E-Print Network [OSTI]

    Basili, Victor R.

    Software Quality Modeling Experiences at an Oil Company Constanza Lampasona & Jens Heidrich by Ecopetrol, a Colombian oil and gas company. The general approach taken is illustrated and excerpts from is to become one of the 30 most important companies in the oil and gas domain by 2020. IT plays an important

  20. Natural Gas Storage in Basalt Aquifers of the Columbia Basin, Pacific Northwest USA: A Guide to Site Characterization

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2002-08-08T23:59:59.000Z

    This report provides the technical background and a guide to characterizing a site for storing natural gas in the Columbia River Basalt

  1. Recommended temperature limits for dry storage of spent light water reactor Zircaloy-clad fuel rods in inert gas

    SciTech Connect (OSTI)

    Levy, I.S.; Chin, B.A.; Simonen, E.P.; Beyer, C.E.; Gilbert, E.R.; Johnson, A.B. Jr.

    1987-05-01T23:59:59.000Z

    It is concluded that the recommendation of a single-valued temperature limit of 380/sup 0/C should be replaced by multiple limits to account for variations in fuel design, burnup level, spent fuel age, and storage cask design. A single-valued limit to account for these factors would, in some situations, impose unnecessary conservatisms and, potentially, economic penalties for utilities and storage cask vendors. The technical validity and conservatism of the CSFM model should assure acceptance by the NRC for utility and cask vendor use.

  2. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect (OSTI)

    Not Available

    1982-03-01T23:59:59.000Z

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  3. Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and

    E-Print Network [OSTI]

    risk to life and property, the requirements of NFPA 30 & 321, OAR 473-004-0720 and OSHA Standard 1910 from fire and other safety and health hazards. · Storage of Flammable liquids shall be in NFPA approved at a point of use. · Appropriate fire extinguishers are to be mounted within 75 feet of outside areas

  4. MassSAVE (Gas)- Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  5. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13T23:59:59.000Z

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  6. Pennsylvania's Natural Gas Future

    E-Print Network [OSTI]

    Lee, Dongwon

    of assets. Midstream & Marketing Companies: · UGI Energy Services, Inc. · UGI LNG, Inc. · UGI Storage, Inc ­ LNG and propane air /storage ­ Underground storage ­ Pipelines, gathering and compression Midstream for other fuels (engines, boilers and turbines) · Transportation (LNG and CNG) #12;Example: Hunlock Coal

  7. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect (OSTI)

    Kingston, T.; Scott, S.

    2013-03-01T23:59:59.000Z

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  8. Investment companies

    E-Print Network [OSTI]

    Sauer, Edward F

    1961-01-01T23:59:59.000Z

    stockholder challenged the management fee paid to F. Eberstadt & Co. , Inc. , manager and distributor of Chemical Fund. The court dismissed the case on the grounds that excessive fees had not been proved. This case, however, could hardly be considered a... Tax-Exempt Bond Funds. . . . . . . . Daily Pricing of Mutual Investment Company Shares. 56 57 59 59 60 iv Management Fees. . . . . Tax-Free Exchange Funds . 61 62 V. CONCLUSIONS 63 BIBLIOGRAPHY GLOSSARY OF TERMS Balanced fund...

  9. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18T23:59:59.000Z

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  10. Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    E-Print Network [OSTI]

    Benson, Sally M.; Hepple, Robert; Apps, John; Tsang, Chin-Fu; Lippmann, Marcelo

    2002-01-01T23:59:59.000Z

    in the Yaggy natural gas storage field (a mined salt-cavernnatural gas to leak from a mined salt cavern used for storage.

  11. Enterprise Storage Management System Dan Glasser1

    E-Print Network [OSTI]

    Fayad, Mohamed

    Enterprise Storage Management System Dan Glasser1 , Madeline Hardojo1 , Anand Sundaram1 , Nate.fayad@sjsu.edu Abstract: Enterprise Storage Management System is an interactive and user-friendly program that will enable the Lincoln Telephone Company to efficiently manage their storage system. With this system, the Lincoln

  12. Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Jackson, Jay M. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Hill, Dallas D. [Los Alamos National Laboratory; Worl, Laura A. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

    2012-07-11T23:59:59.000Z

    Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

  13. TREATMENT OF HYDROCARBON, ORGANIC RESIDUE AND PRODUCTION CHEMICAL DAMAGE MECHANISMS THROUGH THE APPLICATION OF CARBON DIOXIDE IN NATURAL GAS STORAGE WELLS

    SciTech Connect (OSTI)

    Lawrence J. Pekot; Ron Himes

    2004-05-31T23:59:59.000Z

    Core specimens and several material samples were collected from two natural gas storage reservoirs. Laboratory studies were performed to characterize the samples that were believed to be representative of a reservoir damage mechanism previously identified as arising from the presence of hydrocarbons, organic residues or production chemicals. A series of laboratory experiments were performed to identify the sample materials, use these materials to damage the flow capacity of the core specimens and then attempt to remove or reduce the induced damage using either carbon dioxide or a mixture of carbon dioxide and other chemicals. Results of the experiments showed that pure carbon dioxide was effective in restoring flow capacity to the core specimens in several different settings. However, in settings involving asphaltines as the damage mechanism, both pure carbon dioxide and mixtures of carbon dioxide and other chemicals provided little effectiveness in damage removal.

  14. Solar Storage Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassource History ViewSolar

  15. The Solar Storage Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreen DataTheMine JumpSolarPalo

  16. Storage Rings

    SciTech Connect (OSTI)

    Fischer, W.

    2011-01-01T23:59:59.000Z

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams. Storage rings have instrumentation to monitor the electrical and mechanical systems, and the beam quality. Computers are used to control the operation. Large storage rings have millions of control points from all systems. The time dependent beam intensity I(t) can often be approximated by an exponential function I(t) = I(0) exp(-t/{tau}) (1) where the decay time {tau} and, correspondingly, the store time ranges from a few turns to 10 days (ISR). {tau} can be dominated by a variety of effects including lattice nonlinearities, beam-beam, space charge, intrabeam and Touschek scattering, interaction with the residual gas or target, or the lifetime of the stored particle. In this case, the beam lifetime measurement itself can be the purpose of a storage ring experiment. The main consideration in the design of a storage ring is the preservation of the beam quality over the store length. The beam size and momentum spread can be reduced through cooling, often leading to an increase in the store time. For long store times vacuum considerations are important since the interaction rate of the stored particles with the residual gas molecules is proportional to the pressure, and an ultra-high vacuum system may be needed. Distributed pumping with warm activated NEG surfaces or cold surfaces in machines with superconducting magnets are ways to provide large pumping speeds and achieve low pressures even under conditions with dynamic gas loads. The largest application of storage rings today are synchrotron light sources, of which about 50 exist world wide. In experiments where the beam collides with an internal target or another beam, a storage ring allows to re-use the accelerated beam many times if the interaction with the target is sufficiently small. In hadron collider and ion storage rings store times of many hours or even days are realized, corresponding to up to 1011 turns and thereby target passages. Ref. [3] is the first proposal for a collider storage ring. A number of storage rings exist where the beam itself or its decay products are the object of s

  17. Optimizing Trading Decisions for Hydro Storage Systems using ...

    E-Print Network [OSTI]

    2012-09-19T23:59:59.000Z

    solar, or run-of-river. The European ... and generating companies are currently investing about 26 billion Euros into new pumped-hydro storage plants with a ...

  18. QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission...

    Office of Environmental Management (EM)

    Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution Meeting Date and...

  19. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

  20. Underground Natural Gas Storage by Storage Type

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecadeFour-Dimensional2009 2010 2011 2012 2013

  1. Underground Natural Gas Storage by Storage Type

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected to risesummerNov-14

  2. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    energy coupled with carbon capture and storage, could yieldcoal to natural gas shift, carbon capture and sequestration,

  3. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  4. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    Gas and Geothermal Resources (2006) Oil ?eld data ?le datedDivision of Oil, Gas and Geothermal Resources (2007),Division of Oil, Gas, and Geothermal Resources, Sacramento

  5. Hydrogen Technology Park DTE Energy -Company Overview

    E-Print Network [OSTI]

    Gas Production Detroit Edison Power Generation Energy Services* Energy Trading Biomass Energy Coal billion · 2.6 million customers · 11,000 MW of generation · 600 BCF natural gas delivery · 11,000 employees #12;3 Diversified Energy and Energy Technology Company * Energy Services: Coal Based Fuels

  6. Spin Out Company Petroc Technologies Ltd

    E-Print Network [OSTI]

    Painter, Kevin

    of laboratory measurements, numerical reservoir simulation and mathematical modelling services. Petroc's history Permeability (kr) Measurement. 6 Sour gas (H2 S) EOR 7 Alkaline Surfactant Polymer (ASP) Flooding. Distinctly covered: · Petrophysics · Reservoir Studies · Carbon Dioxide Injection and Underground Storage · Numerical

  7. Liquefied Natural Gas (Iowa)

    Broader source: Energy.gov [DOE]

    This document adopts the standards promulgated by the National Fire Protection Association as rules for the transportation, storage, handling, and use of liquefied natural gas. The NFPA standards...

  8. Competitor Analysis Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    chemical company providing the household and industrial detergent, personal care, lubricant, oilfield

  9. Sandia National Laboratories: Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for Infrastructure...

  10. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

  11. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  12. Consumer Products Companies Company Website Headquarters

    E-Print Network [OSTI]

    McGaughey, Alan

    . www.coach.com New York, NY Coca-Cola Company www.thecoca-colacompany.com Atlanta, GA Cole & Ashcroft L

  13. Southwest Gas Corporation- Commercial High-Efficiency Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Arizona who purchase energy efficient natural gas equipment. Eligible equipment includes natural gas storage and tankless...

  14. Natural Gas Aquifers Storage Capacity

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20 210

  15. Weekly Natural Gas Storage Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLargeHome|WebsiteWeekly

  16. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  17. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    to the rate of refueling today's gasoline vehicles. Using currently available high-pressure tank storage that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost

  18. Market Research Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    development - Market research for enterprise and education adoption - Plan and execute a company-wide pingMarket Research Company Description: A company focused on developing web-based graphical and future products and then develop the necessary strategies and collateral to stay on the bleeding edge

  19. Nitrogen oxides storage catalysts containing cobalt

    DOE Patents [OSTI]

    Lauterbach, Jochen (Newark, DE); Snively, Christopher M. (Clarks Summit, PA); Vijay, Rohit (Annandale, NJ); Hendershot, Reed (Breinigsville, PA); Feist, Ben (Newark, DE)

    2010-10-12T23:59:59.000Z

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  20. Minimum Gas Service Standards (Ohio)

    Broader source: Energy.gov [DOE]

    Natural gas companies in Ohio are required to follow the Minimum Gas Service Standards, which are set and enforced by the Public Utilities Commission of Ohio. These rules are found in chapter 4901...

  1. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  2. Natural Gas Rules (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules apply to any gas utility operating within the State of North Carolina under the jurisdiction of the North Carolina Utilities Commission and also to interstate natural gas companies...

  3. Evaluation of drying technologies for storage and shipment of recombinant protein drug substance

    E-Print Network [OSTI]

    Vaudant, Jérôme

    2008-01-01T23:59:59.000Z

    With growing markets and increasing pipelines, biotechnology companies face a supply chain challenge to manufacture and distribute products using economically feasible methods that protect protein integrity. Adequate storage ...

  4. Annotated Bibliography: Fisheries Species and Oil/Gas Platforms Offshore California

    E-Print Network [OSTI]

    MBC Applied Environmental Sciences

    1987-01-01T23:59:59.000Z

    which associate with oil and gas platforms offshoredamaging consequence of oil and gas development. The studycollection was done by oil and gas company personnel who

  5. 3 , LNG (Liquefied Natural Gas) -165oC

    E-Print Network [OSTI]

    Hong, Deog Ki

    , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20oC / . LNG > Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage

  6. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24T23:59:59.000Z

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  7. On Bill Financing: SDG&E/SoCalGas

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about On-Bill Financing used by Southern California Gas Company and the different options the program offers.

  8. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  9. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  10. QER- Comment of Southern Company

    Broader source: Energy.gov [DOE]

    Southern Company Services, Inc., as agent for Alabama Power Company, Georgia Power Company, Gulf Power Company, and Mississippi Power Company, (collectively, “Southern Companies”), are pleased to hereby provide their comments to the Department of Energy as it prepares the Quadrennial Energy Review. If there is anything else that we can do in this regard, please feel free to contact us.

  11. Software Engineer Cloud Storage at AMPLIDATA.COM Building the Big Data cloud technology of tomorrow... in Ghent!

    E-Print Network [OSTI]

    of tomorrow... in Ghent! Company: Amplidata N.V. Sector: Big Data & Cloud Storage Products: AmpliStor Exabyte... Amplidata is the sole European company that builds the Big Data cloud storage of tomorrow. Our customers a very extensive salary package. Work together with the top-class engineers in ICT and Storage and live

  12. A classification of carbon footprint methods used by companies

    E-Print Network [OSTI]

    Andrews, Suzanne L. D. (Suzanne Lois Denise)

    2009-01-01T23:59:59.000Z

    The percent increase in greenhouse gas (GHG) concentration in the atmosphere can be harmful to the environment. There is no single preferred method for measuring GHG output. How can a company classify and choose an appropriate ...

  13. The role of the trading arm of a major marketing company

    SciTech Connect (OSTI)

    Coorsh, B.

    1995-12-31T23:59:59.000Z

    This paper discusses trading from a marketing company and within the natural gas industry. The implications for information systems are described.

  14. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  15. The Great Gas Hydrate Escape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies,...

  16. Natural gas monthly, August 1997

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This report presents information on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported.

  17. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  18. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23T23:59:59.000Z

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  19. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    SciTech Connect (OSTI)

    Sherwood, D.J.

    1995-09-08T23:59:59.000Z

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  20. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENERGY POLICY AND SYSTEMS ANALYSIS QUADRENNIAL ENERGY REVIEW STAKEHOLDER...

  1. Capital Reporting Company Quadrennial ...

    Broader source: Energy.gov (indexed) [DOE]

    - DEPO www.CapitalReportingCompany.com 2014 1 UNITED STATE OF AMERICA DEPARTMENT OF ENERGY ---: : IN RE: : : QUADRENNIAL ENERGY REVIEW : : NEW...

  2. Energy Service Companies

    Broader source: Energy.gov [DOE]

    Energy service companies (ESCOs) develop, design, build, and fund projects that save energy, reduce energy costs, decrease operations and maintenance costs at their customers' facilities.

  3. Terrestrial Water Storage

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, Jay

    2013-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.storage ..2013: Global ocean storage of anthropogenic carbon.

  4. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    storage . . . . . . . . . . . . . . . . . . . . . .example system based on log-structured storage 10.1 SystemA storage bottleneck. . . . . . . . . . . . . . . .

  5. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01T23:59:59.000Z

    for CO2 geological storage, Int. J. Greenhouse Gas Control,1008, DOI Bachu, S. CO2 Storage in Geological Media: Role,R.H. Worden. Geological Storage of Carbon Dioxide, in: S.J.

  6. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Broader source: Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  7. Optimal Commodity Trading with a Capacitated Storage Asset

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    reservoir · 4% Salt caverns Wild Goose Storage, Northern California (depleted Wild Goose natural gas field storage facilities as real options on natural gas prices In principle, the idea is simple: Buy low, inject CMU Tepper School 3 Physical Control Commercial Trading ... mainly in the context of natural gas (NG

  8. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  9. Natural gas monthly, December 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This report presents information of interest to organizations associated with the natural gas industry. Data are presented on natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also included.

  10. 3rd Generation SCR System Using Solid Ammonia Storage and Direct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing SCR system provides direct...

  11. Comparative Assessment of Status and Opportunities for CO2 Capture and Storage and Radioactive Waste Disposal in North America

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    2 injection, depleted oil and gas reservoirs for 20 years,depleted hydrocarbon reservoirs known to have trapped oiloil and gas companies are viewing depleted reservoirs and

  12. Marketing Plan Company Description

    E-Print Network [OSTI]

    Dahl, David B.

    productivity without the jitters/crash of normal energy drinks and shots. Short Project Name: Internet groups would generate the most profit? How can we cross-market/up-sell to our email database and 20K the model) Company Description: We are a rapidly growing, subscription-based, finance and technology company

  13. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  14. Oman Oil Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas CompanyOklahoma/WindOkpilakIIOmahaOman

  15. Microsoft PowerPoint - Andy Ronald.Finger Lakes NGL Storage Providence...

    Broader source: Energy.gov (indexed) [DOE]

    pipeline - 80 Bcf natural gas storage capacity (2) * NGL and Crude Oil - Eight natural gas processing plants - 600+ MMcfd processing capacity - 180,000 BPD crude oil rail...

  16. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    over a century of drilling and well construction in the2007), Oil and gas well drilling and servicing etool.over a century of well drilling and production activities in

  17. Berkshire Gas- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Berkshire Gas Company (BCG) provides rebates for its commercial and industrial customers to pursue energy efficient improvements to their facilities. As a part of their energy efficiency program,...

  18. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01T23:59:59.000Z

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  19. Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Modules Stand-by Power Mobility Power Energy Storage Power-to-Gas Germany * 550 TWh annual demand * Renewable generation 24% in 2012 * Significant transmission...

  20. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This document highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Data presented include volume and price, production, consumption, underground storage, and interstate pipeline activities.

  1. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  2. The High Performance Storage System

    SciTech Connect (OSTI)

    Coyne, R.A.; Hulen, H. [IBM Federal Systems Co., Houston, TX (United States); Watson, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01T23:59:59.000Z

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  3. Energy Management Program of an Integrated National Oil Company in the Middle-East

    E-Print Network [OSTI]

    Kumana, J. D.; Aseeri, A. S.

    2007-01-01T23:59:59.000Z

    (GOSPs), 5 wholly-owned oil refineries processing 1600 MBD of crude, 5 gas-processing plants, and 2 condensate fractionation plants. The Company’s total in-Kingdom energy consumption in 2005 was over 50,000 MMBtu/h of fuel gas and liquids, and 1.55 GW...

  4. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  5. Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

  6. Southwest Gas Corporation- Commercial Energy Efficient Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Southwest Gas Corporation (SWG) offers rebates to commercial customers in Nevada who purchase energy efficient natural gas equipment. Eligible equipment includes clothes washers, storage water...

  7. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :' ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' i;:z;zy MEETING REPORT : .I.-.-' Y ::,:I :. &, .I7 ENGINEERING REPORT- : T, ...

  8. Capital Reporting Company Quadrennial ...

    Energy Savers [EERE]

    11-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 10: Infrastructure Constraints Monday, August 11, 2014 New Mexico State...

  9. Capital Reporting Company Quadrennial ...

    Office of Environmental Management (EM)

    07-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 QUADRENNIAL ENERGY REVIEW PUBLIC MEETING 6 MONDAY, JULY 21, 2014 HELD AT: RASHID AUDITORIUM-HILLMAN CENTER...

  10. Capital Reporting Company Quadrenntial ...

    Broader source: Energy.gov (indexed) [DOE]

    Quadrenntial Energy Review 04-21-2014 (866) 448 - DEPO www.CapitalReportingCompany.com 2014 1 NEW ENGLAND REGIONAL INFRASTRUCTURE CONSTRAINTS A Public Meeting on the Quadrennial...

  11. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30T23:59:59.000Z

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  12. Optimal operating strategy for a storage facility

    E-Print Network [OSTI]

    Zhai, Ning

    2008-01-01T23:59:59.000Z

    In the thesis, I derive the optimal operating strategy to maximize the value of a storage facility by exploiting the properties in the underlying natural gas spot price. To achieve the objective, I investigate the optimal ...

  13. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    panels, solar thermal equipment, and storage systems. Consequently, natural gas purchases for heating

  14. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  15. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-01-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit [number sign]1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  16. Status of Tampa Electric Company IGCC Project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1992-10-01T23:59:59.000Z

    Tampa Electric Company will utilize Integrated Gasification Combined Cycle technology for its new Polk Power Station Unit {number_sign}1. The project is partially funded under the Department of Energy Clean Coal Technology Program Round III. This paper describes the technology to be used, process details, demonstration of a new hot gas clean-up system, and the schedule, leading to commercial operation in July 1996.

  17. PG&E (Gas)- Non-Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Pacific Gas and Electric Company (PG&E) offers rebates and other incentives to non-residential natural gas customers to increase energy efficiency. Natural gas equipment eligible for incentives...

  18. Competition in a Network of Markets: The Natural Gas Industry

    E-Print Network [OSTI]

    Walls, W. David

    1992-01-01T23:59:59.000Z

    Growth in Unbundled Natural Gas Transportation Services:Purchasesby Interstate Natural Gas Pipelines Companies,1987.U.S. GPO, 1988. . Natural Gas Monthly. WashingtonD.C. : U.S.

  19. CHEMICAL STORAGE SEGREGATION GUIDELINES In order to store chemicals properly, they must be segregated based on the associated hazard. Never

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    CHEMICAL STORAGE SEGREGATION GUIDELINES In order to store chemicals properly, they must RECOMMENDED STORAGE METHOD CHEMICAL EXAMPLES INCOMPATIBLES SEE SAFETY DATA SHEETS IN ALL CASES Compressed a flammable gas cabinet for storage. Methane, Acetylene, Hydrogen Oxidizing and toxic compressed gases

  20. Prokupek 2008 THE ANALYSIS OF GENES EXPRESSED IN THE SPERM STORAGE

    E-Print Network [OSTI]

    Moriyama, Etsuko

    Prokupek 2008 THE ANALYSIS OF GENES EXPRESSED IN THE SPERM STORAGE ORGANS OF DROSOPHILA and Learning Company. #12;Prokupek 2008 THE ANALYSIS OF GENES EXPRESSED IN THE SPERM STORAGE ORGANS reproductive system. Sperm storage organs are important to the reproductive success of both males and females

  1. Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen

    E-Print Network [OSTI]

    References 45 Appendix 1 Danish companies 48 #12;6/50 Solar heat storages in district heating networksJuly 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5

  2. A Performance Comparison of Open-Source Erasure Coding Libraries for Storage Applications

    E-Print Network [OSTI]

    Plank, Jim

    D. Schuman James S. Plank Technical Report UT-CS-08-625 Department of Electrical Engineering and users. Abstract Erasure coding is a fundemental technique to prevent data loss in storage systems to the fore to prevent data loss in storage systems composed of multiple disks. Storage companies

  3. SoCalGas- Custom Non-Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Southern California Gas Company (SoCalGas) offers non-residential customers incentive programs to encourage energy efficiency. More information about the incentive amounts and equipment...

  4. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

  5. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  6. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  7. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    aquifers for thermal energy storage. Problems outlined abovean Aquifer Used for Hot Water Storage: Digital Simulation ofof Aquifer Systems for Cyclic Storage of Water," of the Fall

  8. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

  9. AQUIFER THERMAL ENERGY STORAGE

    E-Print Network [OSTI]

    Tsang, C.-F.

    2011-01-01T23:59:59.000Z

    using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

  10. Stasis: Flexible Transactional Storage

    E-Print Network [OSTI]

    Sears, Russell C.

    2009-01-01T23:59:59.000Z

    Stasis: Flexible Transactional Storage by Russell C. Sears AR. Larson Fall 2009 Stasis: Flexible Transactional StorageC. Sears Abstract Stasis: Flexible Transactional Storage by

  11. The state of the energy service company today

    SciTech Connect (OSTI)

    Mozzo, M.A. Jr.

    1998-10-01T23:59:59.000Z

    Energy service companies have been around for several years. Every year, experts predict their demise. The traditional energy service company (ESCo), whose work utilizes utility rebates, will probably be long gone as rebates disappear. The new energy service company will arise in this industry. This new company will be one that can provide a vast menu of services to their customers. These services can include, but are not necessarily limited to, the following: (1) corporate energy management services, (2) natural gas transportation services, (3) electrical deregulation services, (4) energy engineering services, (5) economics and forecasting, and (6) project financing. The new energy service company must have the engineering, financial, and managerial resources and skills to provide these services. It must also have the ability to recognize the needs of a changing industry and adapt to these changes in order to survive and ultimately provide a benefit to society.

  12. Valuation of Energy Storage: An Optimal Switching Mike Ludkovski

    E-Print Network [OSTI]

    Ludkovski, Mike

    Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

  13. Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models

    E-Print Network [OSTI]

    Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models J. R. Mc carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 emissions growth. Both the magnitude and rate of technological change toward low- or no-carbon emitting

  14. Company Level Imports Archives

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level Imports Company Level

  15. Certificate of Public Good--Gas and Electric (Vermont)

    Broader source: Energy.gov [DOE]

    This Public Service Board rule limits the construction of electric and natural gas facilities and restricts the amounts that companies can buy from non-Vermont sources. No company, as defined in...

  16. Shell Gas to Liquids in the context of a Future Fuel Strategy...

    Broader source: Energy.gov (indexed) [DOE]

    * Bulky on-board storage * Shell companies assess locally whether to supply (eg. Argentina) LPG * Lower sulphur, PM, NOx and SOx * Overall emissions similar to CNG *...

  17. Hydrogen Storage Technologies Long-term commercialization approach

    E-Print Network [OSTI]

    for hydrogen storage/delivery systems. #12;Propane in generator Gas/diesel in generator BA55 series batteriesHydrogen Storage Technologies Long-term commercialization approach with first products first per unit power helps show the market space for fuel cell power plants. #12;Propane in generator Gas

  18. Leakage risk assessment of the In Salah CO2 storage project: Applying the Certification Framework in a dynamic context.

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2011-01-01T23:59:59.000Z

    oil and gas district 4 from 1991 to 2005: implications for geological storage of carbon dioxide, Environmental Geology. [

  19. Cool Storage Performance

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1985-01-01T23:59:59.000Z

    . This article covers three thermal storage topics. The first section catalogs various thermal storage systems and applications. Included are: load shifting and load leveling, chilled water storage systems, and ice storage systems using Refrigerant 22 or ethylene...

  20. Xcel Energy (Gas)- Residential Conservation Programs

    Broader source: Energy.gov [DOE]

    Xcel Energy offers its Wisconsin residential natural gas customers rebates for high efficiency heating equipment. Currently, rebates are available for tankless and storage water heaters, furnaces,...