National Library of Energy BETA

Sample records for gas storage capacity

  1. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  5. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  6. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  7. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... changed to active. References Methodology Related Links Storage Basics Field Level Annual Capacity Data Map of Storage Facilities Natural Gas Data Tables Short-Term Energy Outlook

  8. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  9. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  10. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  11. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  12. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  13. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  14. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  17. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  19. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  13. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  15. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  17. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  18. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  19. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  20. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Total Storage Capacity 83,592 83,592 2013-2014 Depleted Fields 83,592 83,592 2013-2014 Total Working Gas Capacity 67,915 67,915 2013-2014 Depleted Fields 67,915 67,915 2013-2014 Total Number of Existing Fields 5 5 2013-2014 Depleted Fields 5 5 2013

  1. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  2. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2015 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  3. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2015 Total Number of Existing Fields 5 5 5 5 5 5

  4. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  5. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2015 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2015 Total Number of Existing Fields 1 1 1 1 1 1

  6. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,079,462 1,070,462 1,070,462 1,071,630 1,071,630 1,071,630 2002-2015 Total Working Gas Capacity 682,569 682,569 682,569 685,726 685,726 685,726 2012-2015 Total Number of Existing Fields 44 44 44 44 44 44

  7. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  8. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    31,301 331,301 331,301 331,812 331,812 331,812 2002-2015 Total Working Gas Capacity 200,903 200,903 200,903 201,388 201,388 201,388 2012-2015 Total Number of Existing Fields 12 12 12 12 12 12

  9. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2015 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  10. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2015 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2015 Total Number of Existing Fields 5 5 5 5 5 5

  11. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2015 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2015 Total Number of Existing Fields 26 26 26 26 26 26

  12. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2015 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2015 Total Number of Existing Fields 24 24 24 24 24 24

  13. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    376,435 376,435 374,735 375,135 375,135 375,143 2002-2015 Total Working Gas Capacity 190,955 190,955 189,255 189,455 189,455 191,455 2012-2015 Total Number of Existing Fields 13 13 13 13 13 13

  14. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2015 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2015 Total Number of Existing Fields 7 7 7 7 7 7

  15. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 771,422 771,422 771,422 771,422 2002-2015 Total Working Gas Capacity 429,796 429,796 429,796 429,796 429,796 429,796 2012-2015 Total Number of Existing Fields 49 49 49 49 49 49

  16. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    832,644 832,644 832,644 832,644 832,644 834,965 2002-2015 Total Working Gas Capacity 528,445 528,335 528,335 528,335 528,335 528,335 2012-2015 Total Number of Existing Fields 36 36 36 36 36 36

  17. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,518 124,518 124,509 124,509 124,509 124,509 2002-2015 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2015 Total Number of Existing Fields 3 3 3 3 3 3

  18. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2015 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  19. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    603,012 603,012 603,012 601,808 601,808 601,808 2002-2015 Total Working Gas Capacity 376,996 376,996 376,996 375,496 375,496 375,496 2012-2015 Total Number of Existing Fields 14 14 14 14 14 14

  20. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2015 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2015 Total Number of Existing Fields 10 10 10 10 10 10

  1. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,598 1,004,598 1,003,899 1,004,100 1,004,100 1,004,100 2002-2015 Total Working Gas Capacity 304,312 304,312 303,613 303,613 303,613 303,613 2012-2015 Total Number of Existing Fields 28 28 28 28 28 28

  2. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    10,749 110,749 110,749 110,749 111,581 111,581 2002-2015 Total Working Gas Capacity 32,760 32,760 32,760 32,760 33,592 33,592 2012-2015 Total Number of Existing Fields 21 21 21 21 21 21

  3. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2015 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2015 Total Number of Existing Fields 4 4 4 4 4 4

  4. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2015 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2015 Total Number of Existing Fields 17 17 17 17 17 17

  5. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,723 221,723 221,723 221,722 221,722 221,722 2002-2015 Total Working Gas Capacity 107,600 107,600 107,572 107,571 107,571 107,571 2012-2015 Total Number of Existing Fields 23 23 23 23 23 23

  6. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    742,627 742,627 749,867 749,867 749,867 749,867 2002-2015 Total Working Gas Capacity 452,359 452,359 457,530 457,530 457,530 457,530 2012-2015 Total Number of Existing Fields 19 19 19 19 19 19

  7. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,637 528,637 528,637 528,637 528,637 528,637 2002-2015 Total Working Gas Capacity 259,324 259,324 259,324 259,321 259,321 259,315 2012-2015 Total Number of Existing Fields 30 30 30 30 30 30

  8. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2015 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2015 Total Number of Existing Fields 9 9 9 9 9 9

  9. Minnesota Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    7,000 7,000 7,000 7,000 7,000 7,000 1988-2014 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2014 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2,000 2008-2014...

  10. Missouri Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845 13,845 13,845 13,845 1999-2014 Total Working Gas Capacity 3,040 3,656 6,000 6,000 6,000 6,000...

  11. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NA1393NUS2","NA1392NUS2","NA1391NUS2","NGAEP...

  12. ,"U.S. Underground Natural Gas Storage Capacity"

    U.S. Energy Information Administration (EIA) Indexed Site

    012015 7:00:34 AM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGAEPG0SACW0NUSMMCF","NA1394NUS8"...

  13. Tennessee Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 860 0 0 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1998-2014 Depleted Fields 1 1 1 1 1 1

  14. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    776,964 776,822 776,845 774,309 774,309 774,309 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 776,964 776,822 776,845 774,309 774,309 774,309 1999-2014 Total Working Gas Capacity 431,137 431,086 433,110 434,179 433,214 433,214 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 942 938 938 2012-2014 Depleted Fields 431,137 431,086 433,110 433,236 432,276 432,276 2008-2014 Total Number of Existing Fields 51 51 51 51 51 51 1989-2014 Aquifers 1 1 1 2012-2014 Depleted Fields

  15. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    766,768 783,579 812,394 831,190 842,072 834,124 1988-2014 Salt Caverns 182,725 196,140 224,955 246,310 253,220 254,136 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 584,042 587,439 587,439 584,881 588,852 579,988 1999-2014 Total Working Gas Capacity 504,524 509,961 532,336 533,336 541,161 528,485 2008-2014 Salt Caverns 123,664 130,621 152,102 164,439 168,143 167,546 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 380,859 379,340 380,234 368,897 373,018 360,938 2008-2014 Total Number of

  16. Kentucky Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,368 221,751 221,751 221,751 221,723 221,723 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 9,567 9,567 9,567 9,567 9,567 6,567 1999-2014 Depleted Fields 210,801 212,184 212,184 212,184 212,156 215,156 1999-2014 Total Working Gas Capacity 103,484 107,600 107,600 107,600 107,600 107,600 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 6,629 6,629 6,629 6,629 6,629 4,619 2008-2014 Depleted Fields 96,855 100,971 100,971 100,971 100,971 102,981 2008-2014 Total Number of Existing Fields 23 23 23 23 23

  17. Louisiana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    51,968 670,880 690,295 699,646 733,939 745,029 1988-2014 Salt Caverns 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 528,626 528,626 528,626 402,626 520,900 520,900 1999-2014 Total Working Gas Capacity 369,031 384,864 397,627 412,482 446,713 454,140 2008-2014 Salt Caverns 84,487 100,320 111,849 200,702 154,333 161,260 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 284,544 284,544 285,779 211,780 292,380 292,880 2008-2014 Total Number of

  18. Maryland Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,000 64,000 64,000 64,000 64,000 64,000 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2014 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  19. Mississippi Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    210,128 235,638 240,241 289,416 303,522 331,469 1988-2014 Salt Caverns 62,301 82,411 90,452 139,627 153,733 181,810 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 147,827 153,227 149,789 149,789 149,789 149,659 1999-2014 Total Working Gas Capacity 108,978 127,248 131,091 168,602 180,654 201,250 2008-2014 Salt Caverns 43,758 56,928 62,932 100,443 109,495 130,333 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 65,220 70,320 68,159 68,159 71,159 70,917 2008-2014 Total Number of Existing Fields

  20. Montana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    76,301 376,301 376,301 376,301 376,301 376,301 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 376,301 376,301 376,301 376,301 376,301 376,301 1999-2014 Total Working Gas Capacity 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Total Number of Existing Fields 5 5 5 5 5 5 1989-2014 Depleted Fields 5 5 5 5 5 5

  1. Utah Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500 120,200 120,200 120,200 120,200 1999-2014 Total Working Gas Capacity 52,198 52,189 54,889 54,898 54,898 54,898 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 948 939 939 948 948 948 2008-2014 Depleted Fields 51,250 51,250 53,950 53,950 53,950 53,950 2008-2014 Total Number of Existing Fields 3 3 3 3 3 3 1989-2014 Aquifers 2 2

  2. Wyoming Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120 100,030 118,232 151,280 151,280 1999-2014 Total Working Gas Capacity 42,140 42,134 41,284 48,705 73,705 73,705 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 836 830 830 836 836 836 2008-2014 Depleted Fields 41,304 41,304 40,454 47,869 72,869 72,869 2008-2014 Total Number of Existing Fields 8 8 8 9 9 9 1989-2014 Aquifers 1 1

  3. Nebraska Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,850 34,850 34,850 34,850 34,850 34,850 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 34,850 34,850 34,850 34,850 34,850 34,850 1999-2014 Total Working Gas Capacity 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  4. New Mexico Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    80,000 84,300 84,300 89,100 89,100 89,100 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 80,000 84,300 84,300 89,100 89,100 89,100 1999-2014 Total Working Gas Capacity 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1989-2014 Aquifers 0 0 1999-2014 Depleted Fields 2 2 2 2 2 2

  5. New York Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    245,579 245,579 245,579 245,579 245,779 245,779 1988-2014 Salt Caverns 2,340 2,340 2,340 0 2,340 2,340 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 243,239 243,239 243,239 245,579 243,439 243,439 1999-2014 Total Working Gas Capacity 128,976 128,976 128,976 129,026 129,551 129,551 2008-2014 Salt Caverns 1,450 1,450 1,450 0 1,450 1,450 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 127,526 127,526 127,526 129,026 128,101 128,101 2008-2014 Total Number of Existing Fields 26 26 26 26 26 26

  6. Ohio Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944 1999-2014 Total Working Gas Capacity 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Total Number of Existing Fields 24 24 24 24 24 24 1989-2014 Depleted Fields 24 24 24 24 24 24

  7. Oklahoma Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    371,338 371,338 372,838 370,838 370,535 375,935 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 170 170 170 1999-2014 Depleted Fields 371,338 371,338 372,838 370,668 370,365 375,765 1999-2014 Total Working Gas Capacity 176,868 179,858 183,358 180,858 181,055 188,455 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 31 31 31 2012-2014 Depleted Fields 176,868 179,858 183,358 180,828 181,025 188,425 2008-2014 Total Number of Existing Fields 13 13 13 13 13 13 1989-2014 Aquifers 1 1 1 2012-2014 Depleted

  8. Oregon Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total Working Gas Capacity 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Total Number of Existing Fields 7 7 7 7 7 7 1989-2014 Depleted Fields 7 7 7 7 7 7

  9. California Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    513,005 542,511 570,511 592,411 599,711 599,711 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 12,000 12,000 1999-2014 Depleted Fields 513,005 542,511 570,511 592,411 587,711 587,711 1999-2014 Total Working Gas Capacity 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 10,000 10,000 2009-2014 Depleted Fields 296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Total Number of Existing Fields 13 13 13 14 14 14 1989-2014 Salt Caverns 0 0

  10. Colorado Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    105,768 105,768 105,858 124,253 122,086 130,186 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 105,768 105,768 105,858 124,253 122,086 130,186 1999-2014 Total Working Gas Capacity 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Total Number of Existing Fields 9 9 9 10 10 10 1989-2014 Depleted Fields 9 9 9 10 10 10

  11. Illinois Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    989,454 990,487 997,364 999,931 1,000,281 1,004,547 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 885,848 772,381 777,294 779,862 974,362 978,624 1999-2014 Depleted Fields 103,606 218,106 220,070 220,070 25,920 25,923 1999-2014 Total Working Gas Capacity 303,761 303,500 302,385 302,962 303,312 304,312 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 252,344 216,132 215,017 215,594 291,544 292,544 2008-2014 Depleted Fields 51,418 87,368 87,368 87,368 11,768 11,768 2008-2014 Total Number of Existing

  12. Indiana Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    114,274 111,271 111,313 110,749 110,749 110,749 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 81,328 81,268 81,310 80,746 80,746 80,746 1999-2014 Depleted Fields 32,946 30,003 30,003 30,003 30,003 30,003 1999-2014 Total Working Gas Capacity 32,157 32,982 33,024 33,024 33,024 33,024 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 19,367 19,437 19,479 19,215 19,215 19,215 2008-2014 Depleted Fields 12,791 13,545 13,545 13,809 13,809 13,809 2008-2014 Total Number of Existing Fields 22 22 22 22 22 22

  13. Kansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    82,300 284,821 284,731 284,905 283,974 282,984 1988-2014 Salt Caverns 931 931 931 931 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 281,370 283,891 283,800 283,974 283,974 282,984 1999-2014 Total Working Gas Capacity 119,339 123,190 123,225 123,343 122,970 122,980 2008-2014 Salt Caverns 375 375 375 375 0 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 118,964 122,814 122,850 122,968 122,970 122,980 2008-2014 Total Number of Existing Fields 19 19 19 19 18 17 1989-2014 Salt Caverns 1 1 1 1 0

  14. Arkansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,760 21,760 21,359 21,853 21,853 21,853 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 21,760 21,760 21,359 21,853 21,853 21,853 1999-2014 Total Working Gas Capacity 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1989-2014 Depleted Fields 2 2 2 2 2 2

  15. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  16. Michigan Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,069,405 1,069,898 1,075,472 1,078,979 1,079,424 1,079,462 1988-2014 Salt Caverns 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,065,583 1,066,064 1,071,638 1,075,145 1,075,590 1,075,629 1999-2014 Total Working Gas Capacity 666,636 667,065 672,632 673,200 674,967 675,003 2008-2014 Salt Caverns 2,150 2,159 2,159 2,159 2,159 2,159 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 664,486 664,906 670,473 671,041 672,808 672,844 2008-2014 Total Number of

  17. Virginia Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9,500 9,500 9,500 9,500 9,500 9,500 1998-2014 Salt Caverns 6,200 6,200 6,200 6,200 6,200 6,200 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 3,300 3,300 3,300 3,300 3,300 3,300 1999-2014 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2008-2014 Salt Caverns 4,000 4,000 4,000 4,000 4,000 4,000 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 1,400 1,400 1,400 1,400 1,400 1,400 2009-2014 Total Number of Existing Fields 2 2 2 2 2 2 1998-2014 Salt Caverns 1 1 1 1 1 1

  18. Alabama Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    6,900 32,900 35,400 35,400 35,400 43,600 1995-2014 Salt Caverns 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 11,000 11,000 13,500 13,500 13,500 13,500 1999-2014 Total Working Gas Capacity 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Salt Caverns 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 9,000 9,000 11,200 11,200 11,200 11,200 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1995-2014 Salt

  19. Natural Gas Underground Storage Capacity (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  20. West Virginia Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    531,456 531,480 524,324 524,324 524,337 528,637 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 531,456 531,480 524,324 524,324 524,337 528,637 1999-2014 Total Working Gas...

  1. Iowa Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    284,747 284,811 288,010 288,210 288,210 288,210 1988-2013 Aquifers 284,747 284,811 288,010 288,210 288,210 288,210 1999-2013 Depleted Fields 0 0 1999-2013 Total Working Gas...

  2. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  3. AGA Producing Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116

  4. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,716,587 2,715,888 2,717,255 2,718,087 2,718,087 - = No Data Reported; -- = Not Applicable;

  5. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 - = No Data Reported; -- =

  6. Lower 48 States Total Natural Gas Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Capacity (Million Cubic Feet) Lower 48 States Total Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 8,842,950 8,854,720 8,854,720 8,882,728 8,905,843 8,919,139 8,922,097 8,940,010 8,979,317 8,991,571 8,990,535 8,992,535 2013 8,965,468 8,971,280 8,986,201 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 9,093,741 9,090,861 9,089,358 2014 9,081,309 9,080,229 9,080,862 9,080,910

  7. Underground Natural Gas Working Storage Capacity - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Underground Natural Gas Working Storage Capacity With Data for November 2015 | Release Date: March 16, 2016 | Next Release Date: February 2017 Previous Issues Year: 2016 2015 2014 2013 2012 2011 prior issues Go Natural gas storage capacity nearly unchanged nationally, but regions vary U.S. natural gas working storage capacity (in terms of design capacity and demonstrated maximum working gas volumes) as of November 2015 was essentially flat compared to November 2014, with some

  8. AGA Western Consuming Region Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446

  9. Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update

    Reports and Publications (EIA)

    2007-01-01

    This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

  10. Mountain Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 904,787 904,787 904,787 904,787 904,787 904,787 909,887 912,887 912,887...

  11. Mountain Region Natural Gas Working Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 461,243 461,243 461,243 461,243 461,243 461,243 461,243 464,435 464,435...

  12. Pacific Region Natural Gas Total Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176 676,176...

  13. Pacific Region Natural Gas Working Underground Storage Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831 414,831...

  14. Estimate of Maximum Underground Working Gas Storage Capacity in the United States

    Reports and Publications (EIA)

    2006-01-01

    This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacity seems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. The report presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

  15. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  16. U.S. Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Total Storage

  17. AGA totes up new U. S. gas-pipeline mileage, storage capacity

    SciTech Connect (OSTI)

    Not Available

    1994-07-04

    More than 8,000 miles of new US natural-gas transmission line or pipeline looping have been built, are under construction, or are proposed in 1993--94, the American Gas Association, Arlington, Va., states in its latest annual report on new construction. Additionally, AGA lists 47 proposed natural-gas storage projects in various stages of development to add more than 500 bcf of working-gas storage capacity and, if constructed, would increase total US working-gas storage capacity by nearly 20%. Throughout 1993 and 1994, more than $9 billion of new gas-pipeline construction projects have been in various stages of development. AGA classifies these projects as either built in 1993 or 1994 and operational, or currently under construction, or proposed and pending. In aggregate, the projects total 8,087 miles of new pipeline and pipeline looping, 1,098,940 hp of additional compression, and 15.3 bcfd of additional capacity. A table shows the regional breakout.

  18. U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 396,950 396,092 2010's 364,228 363,521 367,108 453,054 452,044 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Working Gas

  19. U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 230,456 271,785 2010's 312,003 351,017 488,268 455,729 488,698 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Working Gas

  20. ,"Montana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mt2m.xls"

  1. ,"Nebraska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ne2m.xls"

  2. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290nm2m.xls"

  3. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ny2m.xls"

  4. ,"Ohio Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290oh2m.xls"

  5. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ok2m.xls"

  6. ,"Oregon Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290or2m.xls"

  7. ,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290tn2m.xls"

  9. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290tx2m.xls"

  10. ,"Utah Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ut2m.xls"

  11. ,"Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290va2m.xls"

  12. ,"Washington Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290wa2m.xls"

  13. ,"West Virginia Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Wyoming Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290wy2m.xls"

  15. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of

  16. U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Depleted Fields Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 335 2000's 336 351 340 318 320 320 322 326 324 331 2010's 331 329 330 332 333 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  17. U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Number of Elements) Salt Caverns Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Salt Caverns Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 29 2000's 28 28 29 30 30 30 31 31 34 35 2010's 37 38 40 40 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  18. U.S. Working Natural Gas Underground Storage Depleted Fields Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,583,786 3,659,968 2010's 3,733,993 3,769,113 3,720,980 3,839,852 3,844,927 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290al2m.xls"

  20. ,"Alaska Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ar2m.xls"

  2. ,"California Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ca2m.xls"

  3. ,"Colorado Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290co2m.xls"

  4. ,"Illinois Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290il2m.xls"

  5. ,"Indiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290in2m.xls"

  6. ,"Iowa Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ia2m.xls"

  7. ,"Kansas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ks2m.xls"

  8. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ky2m.xls"

  9. ,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290la2m.xls"

  10. ,"Maryland Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290md2m.xls"

  11. ,"Michigan Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mi2m.xls"

  12. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mn2m.xls"

  13. ,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ms2m.xls"

  14. ,"Missouri Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mo2m.xls"

  15. U.S. Natural Gas Underground Storage Acquifers Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Acquifers Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,263,106 2000's 1,263,711 1,195,141 1,234,007 1,237,132 1,238,158 1,350,689 1,356,323 1,347,516 1,351,832 1,340,633 2010's 1,233,017 1,231,897 1,237,269 1,443,769 1,445,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Depleted Fields Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,780,700 2000's 6,788,130 6,768,622 6,747,108 6,733,983 6,776,894 6,667,222 6,711,656 6,801,291 6,805,490 6,917,547 2010's 7,074,773 7,104,948 7,038,245 7,074,916 7,085,773 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  17. U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Salt Caverns Capacity (Million Cubic Feet) U.S. Natural Gas Underground Storage Salt Caverns Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 185,451 2000's 189,043 218,483 225,958 234,601 239,990 250,532 261,988 253,410 341,213 397,560 2010's 456,009 512,279 715,821 654,266 702,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales

    SciTech Connect (OSTI)

    Godec, Michael

    2013-06-30

    Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

  19. EIA - Analysis of Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry....

  20. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity With Data for September 2015 | Release ... Containing storage capacity data for crude oil, petroleum products, and selected biofuels. ...

  1. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  2. The Basics of Underground Natural Gas Storage

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be...

  3. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  4. Working and Net Available Shell Storage Capacity

    Reports and Publications (EIA)

    2015-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  5. compressed-gas storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressed-gas storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph...

  7. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  8. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks (MOFs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High Methane Storage Capacity in Aluminum Metal-Organic Frameworks (MOFs)

  9. Working Gas in Underground Storage Figure

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas in Underground Storage Figure Working Gas in Underground Storage Figure Working Gas in Underground Storage Compared with 5-Year Range Graph....

  10. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  11. Natural Gas Aquifers Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,340,633 1,233,017 1,231,897 1,237,269 1,443,769 1,445,031 1999-2014 Alabama 0 0 1999-2014 Arkansas 0 0 1999-2014 California 0 0 12,000 12,000 1999-2014 Colorado 0 0 1999-2014 Illinois 885,848 772,381 777,294 779,862 974,362 978,624 1999-2014 Indiana 81,328 81,268 81,310 80,746 80,746 80,746 1999-2014 Iowa 284,811 288,010 288,210 288,210 288,210 288,210 1999-2014 Kansas 0 0 1999-2014 Kentucky 9,567 9,567 9,567 9,567 9,567 6,567 1999-2014 Louisiana 0 0 1999-2014 Michigan 0 0 1999-2014 Minnesota

  12. EIA - Natural Gas Storage Data & Analysis

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground...

  13. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update (EIA)

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  14. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  15. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gándara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136, 5271-5274 (2014) DOI: 10.1021/ja501606h Abstract Image Abstract: The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and

  16. Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities

    SciTech Connect (OSTI)

    Gutov, OV; Bury, W; Gomez-Gualdron, DA; Krungleviciute, V; Fairen-Jimenez, D; Mondloch, JE; Sarjeant, AA; Al-Juaid, SS; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK

    2014-08-14

    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2)g(-1); to our knowledge, currently the highest published for Zr-based MOFs. CH4/CO2/H-2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 gg(-1), which corresponds to 43 gL(-1). The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 v(STP)/v and 0.27 gg(-1), respectively.

  17. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  18. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  19. Underground Natural Gas Storage by Storage Type

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Operators Natural Gas in Storage 7,306,429 7,615,688 7,988,797 8,317,848 8,305,034 8,039,759 1973-2015 Base Gas 4,371,340 4,363,455 4,364,233 4,364,778 4,367,380 4,362,559 1973-2015 Working Gas 2,935,089 3,252,232 3,624,564 3,953,070 3,937,654 3,677,200 1973-2015 Net Withdrawals -282,834 -309,104 -371,987 -331,026 12,618 264,608 1973-2015 Injections 378,490 394,079 435,352 401,063 201,400 138,069 1973-2015 Withdrawals 95,656 84,975

  20. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  1. Optimization of Storage vs. Compression Capacity | Department of Energy

    Energy Savers [EERE]

    Optimization of Storage vs. Compression Capacity Optimization of Storage vs. Compression Capacity This presentation by Amgad Elgowainy of Argonne National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_11_elgowainy.pdf More Documents & Publications Hydrogen Delivery Analysis Models Overview of Station Analysis Tools Developed in Support of H2USA Webinar Overview of Station Analysis Tools Developed in Support of

  2. STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS

    SciTech Connect (OSTI)

    JOel D. Dieland; Kirby D. Mellegard

    2001-11-01

    This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

  3. High Capacity Hydrogen Storage Nanocomposite - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity hydrogen storage materials Savannah River National Laboratory Contact SRNL About This Technology Plot of Number of hydrogen atoms per lithium atom vs the Mol ratio of C<sub>60</sub>:Li.&nbsp; An ratio of 1:6

  4. High capacity hydrogen storage nanocomposite materials

    DOE Patents [OSTI]

    Zidan, Ragaiy; Wellons, Matthew S

    2015-02-03

    A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.

  5. Weekly Working Gas in Underground Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    company data. Notes: This table tracks U.S. natural gas inventories held in underground storage facilities. The weekly stocks generally are the volumes of working gas as...

  6. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  7. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  8. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  9. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Map Storage > U.S. Underground Natural Gas Storage Facilities Map About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Underground Natural Gas Storage Facilities, Close of 2007 more recent map U.S. Underground Natural Gas Storage Facilities, 2008 The EIA has determined that the informational map displays here do not raise security concerns, based on the application of the Federal Geographic Data Committee's

  10. High capacity stabilized complex hydrides for hydrogen storage

    DOE Patents [OSTI]

    Zidan, Ragaiy; Mohtadi, Rana F; Fewox, Christopher; Sivasubramanian, Premkumar

    2014-11-11

    Complex hydrides based on Al(BH.sub.4).sub.3 are stabilized by the presence of one or more additional metal elements or organic adducts to provide high capacity hydrogen storage material.

  11. Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report (EIA)

    Weekly Natural Gas Storage Report PERFORMANCE EVALUATION for 2011 through 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2014 U.S. Energy Information Administration | PERFORMANCE EVALUATION for 2011 through 2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  12. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  13. Evaluating metal-organic frameworks for natural gas storage

    SciTech Connect (OSTI)

    Mason, JA; Veenstra, M; Long, JR

    2014-01-01

    Metal-organic frameworks have received significant attention as a new class of adsorbents for natural gas storage; however, inconsistencies in reporting high-pressure adsorption data and a lack of comparative studies have made it challenging to evaluate both new and existing materials. Here, we briefly discuss high-pressure adsorption measurements and review efforts to develop metal-organic frameworks with high methane storage capacities. To illustrate the most important properties for evaluating adsorbents for natural gas storage and for designing a next generation of improved materials, six metal-organic frameworks and an activated carbon, with a range of surface areas, pore structures, and surface chemistries representative of the most promising adsorbents for methane storage, are evaluated in detail. High-pressure methane adsorption isotherms are used to compare gravimetric and volumetric capacities, isosteric heats of adsorption, and usable storage capacities. Additionally, the relative importance of increasing volumetric capacity, rather than gravimetric capacity, for extending the driving range of natural gas vehicles is highlighted. Other important systems-level factors, such as thermal management, mechanical properties, and the effects of impurities, are also considered, and potential materials synthesis contributions to improving performance in a complete adsorbed natural gas system are discussed.

  14. EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three

  15. Underground natural gas storage reservoir management

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.

    1995-06-01

    The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

  16. Injections of Natural Gas into Storage (Annual Supply & Disposition)

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  17. Task 4 - natural gas storage - end user interaction

    SciTech Connect (OSTI)

    1997-02-18

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. Pipelines have been required to {open_quotes}unbundle{close_quotes} their various services so that pipeline users can select only what they need from among the transportation, storage, balancing and the other traditional pipeline services. At the same time, the shift from Modified Fixed Variable (MFV) rate design to Straight Fixed Variable (SFV) rate design has increased the costs of pipeline capacity relative to underground storage and other supply options. Finally, the ability of parties that have contracted for pipeline and storage services to resell their surplus capacities created by Order 636 gives potential gas users more flexibility in assembling combinations of gas delivery services to create reliable gas deliverability. In response to Order 636, the last two years have seen an explosion in proposals for gas storage projects.

  18. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  19. ,"Underground Natural Gas Storage by Storage Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    by Storage Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","All Operators",6,"Monthly"...

  20. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0...

  1. Tennessee Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0...

  2. Texas Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 134,707 134,707...

  3. Washington Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300...

  4. Alaska Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7,622 14,197...

  5. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

  6. Virginia Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0...

  7. Missouri Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,600 21,600...

  8. Maryland Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677...

  9. Indiana Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,572 74,572...

  10. Kentucky Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889...

  11. Washington Natural Gas in Underground Storage (Working Gas) ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882...

  12. Missouri Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081...

  13. Michigan Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 395,529 395,529...

  14. Louisiana Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418...

  15. Minnesota Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,655 4,655...

  16. Colorado Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491...

  17. Pennsylvania Natural Gas in Underground Storage (Working Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

  18. Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 338,916 338,916...

  19. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497...

  20. Wyoming Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205...

  1. Ohio Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467...

  2. Arkansas Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202...

  3. Arkansas Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676...

  4. Oklahoma Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,385 163,458...

  5. Oregon Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,291 3,291 3,291...

  6. Utah Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

  7. Mississippi Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050...

  8. Louisiana Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136...

  9. Alabama Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880...

  10. Nebraska Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226...

  11. Nebraska Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,312 27,312...

  12. Iowa Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 153,933 153,933...

  13. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245...

  14. Oregon Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366...

  15. Maryland Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,303...

  16. Colorado Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

  17. Alaska Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 8,956...

  18. Tennessee Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0...

  19. Mississippi Natural Gas in Underground Storage (Working Gas)...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234...

  20. New York Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 88,911 88,911...

  1. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Nevada Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Nebraska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Wisconsin Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Tennessee Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Indiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Missouri Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Pennsylvania Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Minnesota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Nevada Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"California Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Georgia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Washington Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Oregon Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Tennessee Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Missouri Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Texas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Colorado Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Washington Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Georgia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Virginia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"California Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Virginia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Indiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Minnesota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Oregon Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Nebraska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Massachusetts Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  7. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  8. ,"Washington Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release...

  9. ,"Ohio Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"California Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Maryland Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Nebraska Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"Oregon Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  15. ,"Pennsylvania Natural Gas Underground Storage Withdrawals ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  16. ,"Tennessee Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. ,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"Wyoming Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"Colorado Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  1. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"Missouri Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. ,"Virginia Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  5. ,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. ,"Montana Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. ,"Kansas Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. ,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"Indiana Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"Mississippi Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"Alaska Natural Gas Underground Storage Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Michigan Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. Weekly Natural Gas Storage Report - EIA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    See All Natural Gas Reports Weekly Natural Gas Storage Report for week ending January 29, 2016 | Released: February 4, 2016 at 10:30 a.m. | Next Release: February 11, 2016...

  15. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  16. Converting LPG caverns to natural-gas storage permits fast response to market

    SciTech Connect (OSTI)

    Crossley, N.G.

    1996-02-19

    Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

  17. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect (OSTI)

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

  18. Natural Gas Depleted Fields Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6,917,547 7,074,773 7,104,948 7,038,245 7,074,916 7,085,773 1999-2014 Alaska 83,592 83,592 2013-2014 Alabama 11,000 11,000 13,500 13,500 13,500 13,500 1999-2014 Arkansas 21,760 21,760 21,359 21,853 21,853 21,853 1999-2014 California 513,005 542,511 570,511 592,411 587,711 587,711 1999-2014 Colorado 105,768 105,768 105,858 124,253 122,086 130,186 1999-2014 Illinois 103,606 218,106 220,070 220,070 25,920 25,923 1999-2014 Indiana 32,946 30,003 30,003 30,003 30,003 30,003 1999-2014 Iowa 0 0

  19. Natural Gas Salt Caverns Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    397,560 456,009 512,279 715,821 654,266 702,548 1999-2014 Alabama 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Arkansas 0 0 1999-2014 California 0 0 1999-2014 Colorado 0 0 1999-2014 Illinois 0 0 1999-2014 Indiana 0 0 1999-2014 Kansas 931 931 931 931 0 1999-2014 Kentucky 0 0 1999-2014 Louisiana 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Maryland 0 0 1999-2014 Michigan 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Mississippi 62,301 82,411 90,452 139,627 153,733 181,810

  20. Pennsylvania Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    714,417 714,417 714,417 714,417 714,417 714,217 714,097 2004 712,687 712,292 712,292 709,946 709,946 709,946 709,946 709,826 721,019 748,874 748,874 748,338 2005 748,338...

  1. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly...

  2. Washington Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,300 37,720 37,720 2003 37,720 37,720 37,720 37,720...

  3. Tennessee Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 2002-2015 Total Number of Existing Fields 1 1 1 1 1 1

  4. Underground Natural Gas Storage by Storage Type

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History All Operators Net Withdrawals -17,009 -347,562 -7,279 545,848 -252,958 -538,735 1967-2015 Injections 3,291,395 3,421,813 2,825,427 3,155,661 3,838,826 3,638,954 1935-2015 Withdrawals 3,274,385 3,074,251 2,818,148 3,701,510 3,585,867 3,100,219 1944-2015 Salt Cavern Storage Fields Net Withdrawals -58,295 -92,413 -19,528 28,713 -81,890 -56,095 1994-2015 Injections 510,691 532,893 465,005 492,143 634,045 607,160 1994-2015 Withdrawals 452,396 440,480 445,477

  5. Storage Gas Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Water Heaters, Storage Gas -- v2.0 More Documents & Publications

  6. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage

    Gasoline and Diesel Fuel Update (EIA)

    Configuration Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  7. Natural gas storage - end user interaction. Task 2. Topical report

    SciTech Connect (OSTI)

    1996-01-01

    New opportunities have been created for underground gas storage as a result of recent regulatory developments in the energy industry. The Federal Energy Regulatory Commission (FERC) Order 636 directly changed the economics of gas storage nationwide. This paper discusses the storage of natural gas, storage facilities, and factors affecting the current, and future situation for natural gas storage.

  8. EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas based on data through 20072008 with selected updates Depleted Production Reservoir Underground Natural Gas Storage Well Configuration Depleted Production Reservoir Storage

  9. AGA Eastern Consuming Region Natural Gas Underground Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year...

  10. Eastern Consuming Regions Natural Gas Underground Storage Net...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Eastern Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...

  11. South Central Region Natural Gas Underground Storage Volume ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Central Region Natural Gas Underground Storage Volume (Million Cubic Feet) South Central Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar...

  12. Western Consuming Regions Natural Gas Underground Storage Net...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Western Consuming Regions Natural Gas Underground Storage Net Withdrawals (Million...

  13. AGA Producing Regions Natural Gas Underground Storage Net Withdrawals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGA Producing Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) AGA Producing Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic...

  14. South Central Regions Natural Gas Underground Storage Net Withdrawals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) South Central Regions Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year...

  15. Carborane-Based Metal-Organic Framework with High Methane and Hydrogen Storage Capacities

    SciTech Connect (OSTI)

    Kennedy, RD; Krungleviciute, V; Clingerman, DJ; Mondloch, JE; Peng, Y; Wilmer, CE; Sarjeant, AA; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK; Mirkin, CA

    2013-09-10

    A Cu-carborane-based metal organic framework (MOF), NU-135, which contains a quasi-spherical para-carborane moiety, has been synthesized and characterized. NU-135 exhibits a pore volume of 1.02 cm(3)/g and a gravimetric BET surface area of ca. 2600 m(2)/g, and thus represents the first highly porous carborane-based MOF. As a consequence of the, unique geometry of the carborane unit, NU-135 has a very high volumetric BET surface area of ca. 1900 m(2)/cm(3). CH4, CO2, and H-2 adsorption isotherms were measured over a broad range of pressures and temperatures and are in good agreement with computational predictions. The methane storage capacity of NU-135 at 35 bar and 298 K is ca. 187 v(STP)/v. At 298 K, the pressure required to achieve a methane storage density comparable to that of a compressed natural gas (CNG) tank pressurized to 212 bar, which is a typical storage pressure, is only 65 bar. The methane working capacity (5-65 bar) is 170 v(STP)/v. The volumetric hydrogen storage capacity at 55 bar and 77 K is 49 g/L. These properties are comparable to those of current record holders in the area of methane and hydrogen storage. This initial example lays the groundwork for carborane-based materials with high surface areas.

  16. The Basics of Underground Natural Gas Storage

    U.S. Energy Information Administration (EIA) Indexed Site

    States is in depleted natural gas or oil fields that are close to consumption centers. Conversion of a field from production to storage duty takes advantage of existing wells,...

  17. Weekly Natural Gas Storage Report - EIA

    Weekly Natural Gas Storage Report (EIA)

    August 14, 2015 | Released: August 20, 2015 at 10:30 a.m. | Next Release: August 27, 2015 Working gas in underground storage, Lower 48 states Summary text CSV JSN Historical...

  18. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir

    Gasoline and Diesel Fuel Update (EIA)

    Configuration Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  19. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  20. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect (OSTI)

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  1. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  2. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    Gasoline and Diesel Fuel Update (EIA)

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  3. Weekly Natural Gas Storage Report - EIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See All Natural Gas Reports Weekly Natural Gas Storage Report for week ending March 4, 2016 | Released: March 10, 2016 at 10:30 a.m. | Next Release: March 17, 2016 Working gas in underground storage, Lower 48 states Summary text CSV JSN Historical Comparisons Stocks billion cubic feet (Bcf) Year ago (03/04/15) 5-year average (2011-15) Region 03/04/16 02/26/16 net change implied flow Bcf % change Bcf % change East 464 495 -31 -31 322 44.1 363 27.8 Midwest 587 621 -34 -34 320 83.4 400 46.8

  4. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

    SciTech Connect (OSTI)

    Mosher, Daniel A.; Opalka, Susanne M.; Tang, Xia; Laube, Bruce L.; Brown, Ronald J.; Vanderspurt, Thomas H.; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Anton, Donald L.; Zidan, Ragaiy; Berseth, Polly

    2008-02-18

    The United Technologies Research Center (UTRC), in collaboration with major partners Albemarle Corporation (Albemarle) and the Savannah River National Laboratory (SRNL), conducted research to discover new hydride materials for the storage of hydrogen having on-board reversibility and a target gravimetric capacity of ? 7.5 weight percent (wt %). When integrated into a system with a reasonable efficiency of 60% (mass of hydride / total mass), this target material would produce a system gravimetric capacity of ? 4.5 wt %, consistent with the DOE 2007 target. The approach established for the project combined first principles modeling (FPM - UTRC) with multiple synthesis methods: Solid State Processing (SSP - UTRC), Solution Based Processing (SBP - Albemarle) and Molten State Processing (MSP - SRNL). In the search for novel compounds, each of these methods has advantages and disadvantages; by combining them, the potential for success was increased. During the project, UTRC refined its FPM framework which includes ground state (0 Kelvin) structural determinations, elevated temperature thermodynamic predictions and thermodynamic / phase diagram calculations. This modeling was used both to precede synthesis in a virtual search for new compounds and after initial synthesis to examine reaction details and options for modifications including co-reactant additions. The SSP synthesis method involved high energy ball milling which was simple, efficient for small batches and has proven effective for other storage material compositions. The SBP method produced very homogeneous chemical reactions, some of which cannot be performed via solid state routes, and would be the preferred approach for large scale production. The MSP technique is similar to the SSP method, but involves higher temperature and hydrogen pressure conditions to achieve greater species mobility. During the initial phases of the project, the focus was on higher order alanate complexes in the phase space between alkaline metal hydrides (AmH), Alkaline earth metal hydrides (AeH2), alane (AlH3), transition metal (Tm) hydrides (TmHz, where z=1-3) and molecular hydrogen (H2). The effort started first with variations of known alanates and subsequently extended the search to unknown compounds. In this stage, the FPM techniques were developed and validated on known alanate materials such as NaAlH4 and Na2LiAlH6. The coupled predictive methodologies were used to survey over 200 proposed phases in six quaternary spaces, formed from various combinations of Na, Li Mg and/or Ti with Al and H. A wide range of alanate compounds was examined using SSP having additions of Ti, Cr, Co, Ni and Fe. A number of compositions and reaction paths were identified having H weight fractions up to 5.6 wt %, but none meeting the 7.5 wt%H reversible goal. Similarly, MSP of alanates produced a number of interesting compounds and general conclusions regarding reaction behavior of mixtures during processing, but no alanate based candidates meeting the 7.5 wt% goal. A novel alanate, LiMg(AlH4)3, was synthesized using SBP that demonstrated a 7.0 wt% capacity with a desorption temperature of 150C. The deuteride form was synthesized and characterized by the Institute for Energy (IFE) in Norway to determine its crystalline structure for related FPM studies. However, the reaction exhibited exothermicity and therefore was not reversible under acceptable hydrogen gas pressures for on-board recharging. After the extensive studies of alanates, the material class of emphasis was shifted to borohydrides. Through SBP, several ligand-stabilized Mg(BH4)2 complexes were synthesized. The Mg(BH4)2*2NH3 complex was found to change behavior with slightly different synthesis conditions and/or aging. One of the two mechanisms was an amine-borane (NH3BH3) like dissociation reaction which released up to 16 wt %H and more conservatively 9 wt%H when not including H2 released from the NH3. From FPM, the stability of the Mg(BH4)2*2NH3 compound was found to increase with the inclusion of NH3 groups in the inner-Mg coordination

  5. EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground Natural Gas Storage Reservoir Configuration Aquifer Underground Natural Gas Well

  6. Coiled tubing applications for underground gas storage

    SciTech Connect (OSTI)

    Fowler, H.; Holcombe, D.

    1994-12-31

    Technological advances in coiled tubing (CT), CT handling equipment, and application techniques have provided new opportunities for the effective, economic use of CT for gas storage and retrieval. This paper presents a review of the CT capabilities that can be used for improving the performance of gas storage wells and discusses applications that could be performed with CT in the near future. For more than 25 years, coiled tubing has been use as an effective, economic means of performing remedial well services. In response to the demand for better horizontal drilling equipment, the strength and diameter of CT has been increased, while surface equipment and downhole tools have become more sophisticated. CT is also widely used in well servicing after initial completion, especially since declining oil prices have made it imperative that operators find more cost-effective methods of increasing production and reducing maintenance costs. The gas storage industry can effectively take advantage of the many recent advancements in CT technology.

  7. Natural gas storage - end user interaction. Final report, September 1992--May 1996

    SciTech Connect (OSTI)

    1998-12-31

    The primary purpose of this project is to develop an understanding of the market for natural gas storage that will provide for rigorous evaluation of federal research and development opportunities in storage technologies. The project objectives are: (1) to identify market areas and end use sectors where new natural gas underground storage capacity can be economically employed; (2) to develop a storage evaluation system that will provide the analytical tool to evaluate storage requirements under alternate economic, technology, and market conditions; and (3) to analyze the economic and technical feasibility of alternatives to conventional gas storage. An analytical approach was designed to examine storage need and economics on a total U.S. gas system basis, focusing on technical and market issues. Major findings of each subtask are reported in detail. 79 figs.

  8. The value of underground storage in today`s natural gas industry

    SciTech Connect (OSTI)

    1995-03-01

    The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.

  9. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect (OSTI)

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  10. Rhode Island Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  11. FAQ's for New Weekly Natural Gas Storage Report Regions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs about New Regions for Weekly Natural Gas Storage Report Originally Released: September 29, 2015 Updated: November 5, 2015 What led EIA to change the Weekly Natural Gas Storage Report (WNGSR) reporting from three to five regions? The three storage regions were developed more than 20 years ago when the dynamics of the natural gas market, including producing and consuming regions, were different than they are today. The new storage regions better reflect groupings of storage locations and the

  12. Lower 48 States Natural Gas Underground Storage Volume (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower 48 States Natural Gas Underground Storage Volume (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Additions to natural gas in underground storage to be nearly...

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions to natural gas in underground storage to be nearly 50% higher this summer Although it's still spring, natural gas supply companies and utilities are already preparing for ...

  14. Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 16, 2015 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of Revisions - a description of the policy that will be implemented in the event of an out-of-cycle release

  15. Midwest Region Natural Gas in Underground Storage (Working Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 449,673 237,999 142,513 179,338 317,901 471,765 625,764 788,930 935,822...

  16. Mountain Region Natural Gas in Underground Storage (Working Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 137,378 102,507 83,983 82,058 98,717 121,623 140,461 157,716 174,610 187,375...

  17. Pacific Region Natural Gas in Underground Storage (Base Gas)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 258,736 258,541 258,456 258,619 258,736 258,736 258,736 258,736 258,736...

  18. Mountain Region Natural Gas in Underground Storage (Base Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 421,075 420,615 419,767 420,250 420,606 420,353 422,402 422,811 423,525...

  19. East Region Natural Gas in Underground Storage (Working Gas)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 451,335 271,801 167,715 213,475 349,739 474,624 580,937 689,328 805,733...

  20. Pacific Region Natural Gas in Underground Storage (Working Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 197,953 115,235 104,941 144,268 200,453 249,196 274,725 302,752 318,020...

  1. Underground natural gas storage reservoir management: Phase 2. Final report, June 1, 1995--March 30, 1996

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.

    1996-12-31

    Gas storage operators are facing increased and more complex responsibilities for managing storage operations under Order 636 which requires unbundling of storage from other pipeline services. Low cost methods that improve the accuracy of inventory verification are needed to optimally manage this stored natural gas. Migration of injected gas out of the storage reservoir has not been well documented by industry. The first portion of this study addressed the scope of unaccounted for gas which may have been due to migration. The volume range was estimated from available databases and reported on an aggregate basis. Information on working gas, base gas, operating capacity, injection and withdrawal volumes, current and non-current revenues, gas losses, storage field demographics and reservoir types is contained among the FERC Form 2, EIA Form 191, AGA and FERC Jurisdictional databases. The key elements of this study show that gas migration can result if reservoir limits have not been properly identified, gas migration can occur in formation with extremely low permeability (0.001 md), horizontal wellbores can reduce gas migration losses and over-pressuring (unintentionally) storage reservoirs by reinjecting working gas over a shorter time period may increase gas migration effects.

  2. U.S. Natural Gas Salt - Underground Storage - Base Gas (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Underground Storage - Base Gas (Million Cubic Feet) U.S. Natural Gas Salt - Underground Storage - Base Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

  3. Differences Between Monthly and Weekly Working Gas In Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Differences Between Monthly and Weekly Working Gas In Storage Latest update: March 3, 2016 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from January

  4. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  5. Notice of Changes to the Weekly Natural Gas Storage Report

    Office of Environmental Management (EM)

    Notice of Changes to the Weekly Natural Gas Storage Report Released: August 31, 2015 EIA will change the Weekly Natural Gas Storage Report regions and revision threshold To enhance the transparency and utility of the Weekly Natural Gas Storage Report (WNGSR), the U.S. Energy Information Administration (EIA) will make several important changes later in 2015: The regional breakdown of the data will now include five regions for working gas in the Lower 48 states. The threshold for published

  6. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect (OSTI)

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.

  7. Weekly Natural Gas Storage Report Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Natural Gas Storage Report Schedule Holiday Release Schedule The standard release time and day of the week will be at 10:30 a.m. (Eastern time) on Thursdays with the following exceptions. All times are Eastern. Alternate Release Date Release Day Release Time Holiday 12/31/2014 Wednesday 12:00 p.m. 1/1/2015 (Thursday) is New Year's Day 11/13/2015 Friday 10:30 a.m. 11/11/2015 (Wednesday) is Veteran's Day 11/25/2015 Wednesday 12:00 p.m. 11/26/2015 (Thursday) is Thanksgiving Day 11/23/2016

  8. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity global geologic CO2 storage capacity could be: 35,300 GtCO2 of theoretical capacity; 13,500 GtCO2 of effective capacity; 3,900 GtCO2, of practical capacity; and 290 GtCO2 of matched capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a lack of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  9. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  10. AGA Producing Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097

  11. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  12. California Natural Gas in Underground Storage (Base Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Base Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 1991 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 248,389 248,389 248,389 248,389 1992 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 250,206 1993 250,206 250,206

  13. South Central Region Natural Gas in Underground Storage (Working Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Working Gas) (Million Cubic Feet) South Central Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 668,540 452,778 337,592 426,793 560,429 666,015 755,579 806,418 929,012 1,090,604 1,084,413 1,044,833 2015 831,268 576,019 574,918 749,668 920,727 1,002,252 1,050,004 1,095,812 1,206,329 1,321,297 1,332,421 1,303,737 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  14. Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Base Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 352,686 352,686 352,686 351,920 352,686 352,686 353,407 353,407 353,407 353,407 359,236 358,860 1991 349,459 348,204 334,029 335,229 353,405 349,188 350,902 352,314 353,617 354,010 353,179 355,754 1992 358,198 353,313 347,361 341,498 344,318 347,751 357,498 358,432 359,300 359,504 359,321 362,275 1993 362,222 358,438

  15. West Virginia Natural Gas in Underground Storage (Working Gas) (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593

  16. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to the flow-model derived capacity. Anmore » analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.« less

  17. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; Holloway, Sam; Neele, Filip; Zhou, Quanlin

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric open aquifer and closed aquifer approaches. We present four full-scale aquifer cases, where CO2 storage capacity is evaluated both volumetrically (with open and/or closed approaches) and through flow modeling. These examples show that the open aquifer CO2 storage capacity estimation can strongly exceed the cumulative CO2 injection from the flow model, whereas the closed aquifer estimates are a closer approximation to the flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the closed aquifer approach produces a better estimate of CO2 storage without water extraction, and highlights the need for any CO2 storage estimate to specify whether it is intended to represent CO2 storage capacity with or without water extraction.

  18. Hydrogen Energy Storage (HES) and Power-to-Gas Economic Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Eichman, Joshua

    2015-07-30

    This presentation summarizes opportunities for hydrogen energy storage and power-to-gas and presents the results of a market analysis performed by the National Renewable Energy Laboratory to quantify the value of energy storage. Hydrogen energy storage and power-to-gas systems have the ability to integrate multiple energy sectors including electricity, transportation, and industrial. On account of the flexibility of hydrogen systems, there are a variety of potential system configurations. Each configuration will provide different value to the owner, customers and grid system operator. This presentation provides an economic comparison of hydrogen storage, power-to-gas and conventional storage systems. The total cost is compared to the revenue with participation in a variety of markets to assess the economic competitiveness. It is found that the sale of hydrogen for transportation or industrial use greatly increases competitiveness. Electrolyzers operating as demand response devices (i.e., selling hydrogen and grid services) are economically competitive, while hydrogen storage that inputs electricity and outputs only electricity have an unfavorable business case. Additionally, tighter integration with the grid provides greater revenue (e.g., energy, ancillary service and capacity markets are explored). Lastly, additional hours of storage capacity is not necessarily more competitive in current energy and ancillary service markets and electricity markets will require new mechanisms to appropriately compensate long duration storage devices.

  19. Working and Net Available Shell Storage Capacity as of September...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for PAD District 2 and the U.S. total have been revised to correct a processing error that caused some capacity data to be double counted in the original release of this...

  20. ,"New Hampshire Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"New Jersey Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"South Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"North Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Rhode Island Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"North Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"New Mexico Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"South Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"New Jersey Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title:...

  15. ,"New Mexico Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release...

  16. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  17. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2014,"06301935" ,"Release Date:","09302015" ,"Next Release Date:","10302015" ,"Excel File...

  18. Laboratory Evaluation of Gas-Fired Tankless and Storage Water...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating Citation Details In-Document Search Title: ...

  19. ,"Texas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","ngaepg0salstxmmcfa.xls" ,"Available ...

  20. Rhode Island Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

  1. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015"...

  2. South Carolina Natural Gas Underground Storage Net Withdrawals...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Net Withdrawals All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

  3. ,"Wyoming Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015"...

  4. ,"Midwest Regions Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Regions Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. North Carolina Natural Gas Underground Storage Net Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals All Operators (Million Cubic Feet) North Carolina Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

  6. ,"East Regions Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Regions Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"New York Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  8. ,"Alaska Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015"...

  9. ,"West Virginia Natural Gas Underground Storage Volume (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  10. ,"West Virginia Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015"...

  11. ,"Mountain Regions Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Regions Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  12. ,"U.S. Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  13. ,"Pacific Regions Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Regions Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  14. Differences Between Monthly and Weekly Working Gas In Storage

    Weekly Natural Gas Storage Report (EIA)

    levels. These are estimated from volume data provided by a sample of operators that report on Form EIA-912, "Weekly Underground Natural Gas Storage Report." The EIA first...

  15. Notice of Changes to the Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report (EIA)

    September 29, 2015 EIA announced important changes to the Weekly Natural Gas Storage Report (WNGSR) with the addition of new regional breakouts. The new regional breakout enhances...

  16. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  17. Wireless Battery Management System for Safe High-Capacity Energy Storage

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy Storage Authors: Farmer, J ; Chang, J ; Zumstein, J ; Kotovsky, J ; Dobley, A ; Puglia, F ; Osswald, S ; Wolf, K ; Kaschmitter, J ; Eaves, S ; Bandhauer, T Publication Date: 2013-10-01 OSTI Identifier: 1124816 Report Number(s): LLNL-CONF-644556 DOE Contract Number: W-7405-ENG-48

  18. Wireless Battery Management System for Safe High-Capacity Energy Storage

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy Storage × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  19. Nitrogen expander cycles for large capacity liquefaction of natural gas

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  20. Colorado Natural Gas in Underground Storage - Change in Working...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5...

  1. New York Natural Gas in Underground Storage - Change in Working...

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4...

  2. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815

  3. Value of Underground Storage in Today's Natural Gas Industry, The

    Reports and Publications (EIA)

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  4. Working Together to Address Natural Gas Storage Safety

    Broader source: Energy.gov [DOE]

    As a part of the Administration’s ongoing commitment to support state and industry efforts to ensure the safe storage of natural gas, the Department of Energy (DOE) and the Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA) will formally launch a new Interagency Task Force on Natural Gas Storage Safety.

  5. Covered Product Category: Residential Gas Storage Water Heaters |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on

  6. A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage

    Broader source: Energy.gov [DOE]

    We present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that it explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.

  7. U.S. Natural Gas Non-Salt Underground Storage - Base Gas (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Base Gas (Million Cubic Feet) U.S. Natural Gas Non-Salt Underground Storage - Base Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,310,511...

  8. U.S. Total Natural Gas in Underground Storage (Working Gas) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA...

  9. U.S. Total Natural Gas in Underground Storage (Base Gas) (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Base Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA...

  10. Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 62,011 60,735 61,687 66,432 71,791 79,578 86,584 93,785 97,094 92,657 86,693 1991 79,816 76,289 72,654 77,239 79,610 82,915 88,262 91,449 94,895 94,470 87,950 85,249 1992 84,385 83,106 78,213 76,527 75,300 76,861 80,412 82,020 86,208 96,910 95,391 92,376 1993 87,306 76,381 66,748 66,019 72,407 80,245 87,794

  11. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235

  12. Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110

  13. Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198

  14. Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 331 428 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators Wisconsin Underground Natural Gas

  15. Midwest Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Midwest Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Midwest Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 37.40 45.00 76.80 72.40 37.80 19.80 9.30 5.40 3.90 4.50 12.10 15.50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  16. Mountain Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Mountain Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 -4.70 13.00 35.00 41.50 36.90 27.10 22.30 18.60 16.40 14.60 18.60 22.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. Pacific Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Pacific Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 39.40 137.00 162.70 103.50 62.40 34.80 25.30 14.90 12.90 9.80 8.70 -0.90 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. South Central Producing Region Natural Gas in Underground Storage - Change

    U.S. Energy Information Administration (EIA) Indexed Site

    in Working Gas from Same Month Previous Year (Percent) South Central Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) South Central Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 24.30 27.20 70.30 75.70 64.30 50.50 39.00 35.90 29.90 21.20 22.90 24.80 - = No Data Reported; -- = Not Applicable; NA = Not

  19. East Producing Region Natural Gas in Underground Storage - Change in

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) East Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 18.70 25.80 44.60 46.20 30.10 21.40 13.70 11.10 6.70 2.90 9.90 15.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  20. Pennsylvania Natural Gas in Underground Storage - Change in Working Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    from Same Month Previous Year (Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5

  1. Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  2. Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators Georgia Underground Natural Gas Storage -

  3. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  4. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  5. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  6. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  7. Power-to-Gas for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2NG Blend Value Proposition Direct Injection H2 Fueling Station Industrial H2 Feed Biogas Methanation Captive RE Ancillary Services Store Energy Seasonal Storage Tx Grid ...

  8. ,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 11:00:54 AM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070TX2"...

  9. ,"Kansas Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01292016 2:35:48 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070KS2"...

  10. ,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1350snh2a.xls" ,"Available from Web ...

  11. North Carolina Natural Gas Underground Storage Withdrawals (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Withdrawals (Million Cubic Feet) North Carolina Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. New Jersey Natural Gas Underground Storage Net Withdrawals All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals All Operators (Million Cubic Feet) New Jersey Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  13. South Carolina Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) South Carolina Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  14. New Jersey Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Withdrawals (Million Cubic Feet) New Jersey Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Rhode Island Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Withdrawals (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. Notice of Changes to the Weekly Natural Gas Storage Report

    Weekly Natural Gas Storage Report (EIA)

    At 10:30 a.m. on November 19, 2015, EIA will release the Weekly Natural Gas Storage Report (WNGSR) with new data breakouts for five regions of the Lower 48 states, converting...

  17. Optimal capacity of the battery energy storage system in a power system

    SciTech Connect (OSTI)

    Tsungying Lee; Nanming Chen

    1993-12-01

    Due to the cyclical human life, utility loads appear to be cyclical too. During daytime when most factories are in operation, the electricity demand is very high. On the contrary, when most people are sleeping from midnight to daybreak, the electric load is very low, usually only half of the peak load amount. To meet this large gap between peak load and light load, utilities must idle many generation plants during light load period while operating all generation plants during peak load period no matter how expensive they are. This low utilization factor of generation plants and uneconomical operation have sparked utilities to invest in energy storage devices such as pumped storage plants, compressed air energy storage plants, battery energy storage systems (BES) and superconducting magnetic energy storage systems (SMES) etc. Among these, pumped storage is already commercialized and is the most widely used device. However, it suffers the limit of available sites and will be saturated in the future. Other energy storage devices are still under research to reduce the cost. This paper investigates the optimal capacity of the battery energy storage system in a power system. Taiwan Power Company System is used as the example system to test this algorithm. Results show that the maximum economic benefit of the battery energy storage in a power system can be achieved by this algorithm.

  18. QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Distribution | Department of Energy Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution QER Public Meeting in Pittsburgh, PA: Natural Gas: Transmission, Storage and Distribution Meeting Date and Location July 21, 2014 - 10:00 A.M. EDT Rashid Auditorium Hillman Center Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213 Parking is available for attendees in Carnegie Mellon University's East Campus Garage, accessible using the entrance at the intersection of

  19. U.S. Natural Gas in Underground Storage - Change in Working Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  20. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the regions deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the regions large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  1. Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties

    SciTech Connect (OSTI)

    Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

    2007-02-07

    In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

  2. Tennessee Underground Natural Gas Storage - All Operators

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    340 340 340 340 340 340 1997-2015 Base Gas 340 340 340 340 340 340 1997-2015 Working Gas 1997-2011 Net Withdrawals 1998-2006 Injections 1997-2005 Withdrawals 1997-2006 Change in...

  3. Review of private sector treatment, storage, and disposal capacity for radioactive waste. Revision 1

    SciTech Connect (OSTI)

    Smith, M.; Harris, J.G.; Moore-Mayne, S.; Mayes, R.; Naretto, C.

    1995-04-14

    This report is an update of a report that summarized the current and near-term commercial and disposal of radioactive and mixed waste. This report was capacity for the treatment, storage, dating and written for the Idaho National Engineering Laboratory (INEL) with the objective of updating and expanding the report entitled ``Review of Private Sector Treatment, Storage, and Disposal Capacity for Radioactive Waste``, (INEL-95/0020, January 1995). The capacity to process radioactively-contaminated protective clothing and/or respirators was added to the list of private sector capabilities to be assessed. Of the 20 companies surveyed in the previous report, 14 responded to the request for additional information, five did not respond, and one asked to be deleted from the survey. One additional company was identified as being capable of performing LLMW treatability studies and six were identified as providers of laundering services for radioactively-contaminated protective clothing and/or respirators.

  4. Advanced Liquid Natural Gas Onboard Storage System

    SciTech Connect (OSTI)

    Greg Harper; Charles Powars

    2003-10-31

    Cummins Westport Incorporated (CWI) has designed and developed a liquefied natural gas (LNG) vehicle fuel system that includes a reciprocating pump with the cold end submerged in LNG contained in a vacuum-jacketed tank. This system was tested and analyzed under the U.S. Department of Energy (DOE) Advanced LNG Onboard Storage System (ALOSS) program. The pumped LNG fuel system developed by CWI and tested under the ALOSS program is a high-pressure system designed for application on Class 8 trucks powered by CWI's ISX G engine, which employs high-pressure direct injection (HPDI) technology. A general ALOSS program objective was to demonstrate the feasibility and advantages of a pumped LNG fuel system relative to on-vehicle fuel systems that require the LNG to be ''conditioned'' to saturation pressures that exceeds the engine fuel pressure requirements. These advantages include the capability to store more fuel mass in given-size vehicle and station tanks, and simpler lower-cost LNG refueling stations that do not require conditioning equipment. Pumped LNG vehicle fuel systems are an alternative to conditioned LNG systems for spark-ignition natural gas and port-injection dual-fuel engines (which typically require about 100 psi), and they are required for HPDI engines (which require over 3,000 psi). The ALOSS program demonstrated the feasibility of a pumped LNG vehicle fuel system and the advantages of this design relative to systems that require conditioning the LNG to a saturation pressure exceeding the engine fuel pressure requirement. LNG tanks mounted on test carts and the CWI engineering truck were repeatedly filled with LNG saturated at 20 to 30 psig. More fuel mass was stored in the vehicle tanks as well as the station tank, and no conditioning equipment was required at the fueling station. The ALOSS program also demonstrated the general viability and specific performance of the CWI pumped LNG fuel system design. The system tested as part of this program is designed to be used on Class 8 trucks with CWI ISX G HPDI engines. Extensive test cart and engineering truck tests of the pump demonstrated good durability and the high-pressure performance needed for HPDI application. The LNG tanks manufactured by Taylor-Wharton passed SAE J2343 Recommended Practice drop tests and accelerated road-load vibration tests. NER and hold-time tests produced highly consistent results. Additional tests confirmed the design adequacy of the liquid level sensor, vaporizer, ullage volume, and other fuel system components. While the testing work performed under this program focused on a high-pressure pumped LNG fuel system design, the results also validate the feasibility of a low-pressure pumped fuel system. A low-pressure pumped fuel system could incorporate various design refinements including a simpler and lighter-weight pump, which would decrease costs somewhat relative to a high-pressure system.

  5. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect (OSTI)

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energys Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  6. Tennessee Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2003 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2004 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2005 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2006 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 2007 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200

  7. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 219,914 220,597 220,597 2003 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 220,597 2004 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,211 220,804 220,804 220,804 2005 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 220,804 2006 220,804 220,804 220,804 220,804

  8. Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 580,037 576,841 576,841 2003 576,841 576,841 576,841 576,841 576,841 587,116 563,590 587,116 587,116 587,116 587,116 587,116 2004 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 592,516 591,673 591,673 591,673 2005 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 591,673 2006 591,673 591,673 591,673 591,673

  9. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2003 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2004 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2005 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 2006 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000 62,000

  10. Michigan Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,070,717 1,071,747 1,071,747 2003 1,043,529 1,034,429 1,034,429 1,034,429 1,034,429 1,075,261 1,075,261 1,075,261 1,075,261 1,075,261 1,034,429 1,034,429 2004 1,034,429 1,034,429 1,034,429 1,018,517 1,018,517 1,018,517 1,045,517 1,045,517 1,013,437 1,023,264 1,023,264 1,023,264 2005 1,023,264 1,023,264 1,023,264 1,023,264 1,023,264 1,023,264

  11. Minnesota Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2003 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2004 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2005 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2006 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2007 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000

  12. Mississippi Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 134,012 134,012 134,012 134,012 134,012 134,012 141,912 141,912 141,912 141,912 144,787 144,787 2003 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 2004 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 144,787 143,887 143,887 143,887 2005 143,887 143,887 143,887 143,887 143,887 143,887 143,887 143,887 143,887 143,887 143,887 143,887 2006 143,887 143,887 143,887 143,887

  13. Missouri Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 31,878 31,878 31,878 31,878 31,878 31,878 31,878 31,878 31,878 31,878 31,992 31,992 2003 31,992 31,992 31,992 31,992 31,992 32,098 32,098 32,098 32,098 32,098 32,098 32,098 2004 32,098 32,098 32,098 32,098 32,098 32,098 32,098 32,098 32,098 32,080 32,080 32,080 2005 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 2006 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,080 32,146 32,146 32,146

  14. Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 371,510 374,125 374,125 2003 374,125 374,125 374,125 374,125 374,125 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2004 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2005 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 374,201 2006 374,201 374,201 374,201 374,201

  15. Utah Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2003 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2004 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2005 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 129,480 2006 129,480 129,480 129,480 129,480

  16. Virginia Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 4,967 2,992 2,992 2003 2,992 2,992 2,992 2,992 2,992 5,100 5,100 6,344 6,344 6,344 6,344 6,344 2004 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 6,344 8,024 8,024 8,024 2005 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 2006 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 8,024 9,035 9,035 9,035 2007 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,035 9,692

  17. Wyoming Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 105,869 2003 105,869 105,869 105,869 105,869 105,869 115,069 115,069 115,069 115,069 115,069 115,069 115,069 2004 115,069 115,069 115,069 115,069 115,069 115,069 115,069 115,069 115,069 114,187 114,187 114,187 2005 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 114,187 2006 114,187 114,187 114,187 114,187

  18. Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2003 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2004 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2005 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 2006 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469 39,469

  19. New Mexico Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 2003 96,600 96,600 96,600 96,600 96,600 89,800 89,800 89,800 89,800 89,800 89,800 89,800 2004 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 89,800 83,800 83,800 83,800 2005 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 2006 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,800 83,124 83,124 83,124

  20. Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 573,784 575,959 575,959 2003 575,959 575,959 575,959 575,959 575,959 573,709 573,709 573,709 573,709 573,709 573,709 573,709 2004 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 573,709 572,404 572,404 572,404 2005 572,404 572,404 572,329 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 572,404 2006 572,404 572,404 572,404 572,404

  1. Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 378,137 382,037 382,037 382,037 382,037 382,037 382,037 382,037 382,037 382,037 382,037 382,037 2003 382,037 382,037 382,037 382,037 382,037 389,947 389,947 389,947 389,947 389,947 389,947 389,947 2004 389,947 389,947 389,947 389,947 389,947 389,947 389,947 389,947 389,947 384,838 384,838 384,838 2005 384,838 384,838 384,838 384,838 384,838 384,838 384,838 384,838 384,838 384,838 384,838 384,838 2006 384,838 384,838 384,838 384,838

  2. Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 17,755 21,080 21,080 21,080 21,080 21,080 21,080 21,080 22,042 22,042 22,042 22,042 2003 22,042 22,042 22,042 22,042 22,042 23,676 23,676 23,676 23,676 23,676 23,676 23,676 2004 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,676 23,796 23,796 23,796 2005 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 2006 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,603 24,034 24,034 24,034

  3. Minnesota Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,000 7,000 1990's 7,000 7,000 7,000 7,000 6,000 7,000 7,000 7,000 7,000 7,000 2000's 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 2010's

  4. Mississippi Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108,171 108,207 1990's 108,601 114,621 114,627 114,627 124,138 124,114 134,012 134,012 134,012 134,012 2000's 134,012 134,000 144,787 143,887 146,287 150,947 150,809 166,909 187,251 210,128 2010's 235,638 240,241 289,416 303,522 331,469

  5. Missouri Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,025 29,791 1990's 29,791 29,791 30,564 30,564 30,564 30,564 31,125 31,273 31,273 31,273 2000's 31,878 32,000 32,098 32,080 32,004 32,146 32,505 32,940 32,876 10,889 2010's 11,502

  6. Montana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 373,963 373,960 1990's 373,960 373,960 375,010 375,010 375,010 375,010 375,010 342,785 371,510 371,510 2000's 371,510 372,000 374,201 374,201 374,201 374,201 374,201 374,201 374,201 376,301 2010's

  7. Nebraska Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,438 88,438 1990's 143,311 93,311 93,311 93,311 93,311 39,468 39,468 39,468 39,468 39,468 2000's 39,468 39,000 39,468 39,469 39,469 39,469 39,469 34,850 34,850 34,850 2010's

  8. New Mexico Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94,600 94,600 1990's 94,600 94,600 94,600 94,600 94,600 94,600 96,600 96,600 96,600 96,600 2000's 96,600 97,000 89,800 83,800 83,800 83,124 82,652 78,424 80,000 80,000 2010's 84,300 84,3

  9. Ohio Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 612,547 612,547 1990's 591,494 591,494 591,494 594,644 595,008 620,544 557,452 573,434 575,234 575,384 2000's 573,784 574,000 573,709 572,404 572,404 572,477 572,477 572,477 572,477 580,380 2010's 580,380 580,380 577,944 577,944 577,94

  10. Oklahoma Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 377,189 364,887 1990's 362,616 362,616 359,616 359,616 363,593 364,593 395,087 396,087 394,827 394,827 2000's 378,137 382,000 389,767 384,838 383,638 378,738 380,038 373,738 371,324 371,338 2010's 371,338 372,838 370,838 370,535 375,935

  11. Oregon Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 9,791 1990's 9,791 9,791 11,445 11,445 11,622 11,622 11,622 11,622 11,622 11,622 2000's 16,035 21,000 23,675 23,796 24,480 24,034 26,703 29,415 29,415 29,565 2010's 29,565 29,565 28,750

  12. Pennsylvania Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 805,394 805,393 1990's 640,938 640,938 669,354 664,693 658,578 654,570 680,006 684,842 684,842 684,842 2000's 684,518 717,070 714,216 748,074 749,018 748,792 750,054 759,365 759,153 776,964 2010's 776,822 776,845 774,309 774,309 774,309

  13. Colorado Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,662 82,662 1990's 98,999 98,999 105,790 105,790 105,583 108,837 99,599 99,599 99,599 99,599 2000's 100,226 100,000 101,054 101,055 101,055 98,068 98,068 98,068 95,068 105,768 2010's 105,768 105,858 124,253 122,0

  14. Illinois Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 953,947 952,279 1990's 949,914 949,914 949,721 952,388 958,968 905,260 898,239 965,565 898,565 898,565 2000's 898,565 899,000 945,307 972,388 982,474 981,995 984,768 980,691 977,989 989,454 2010's 990,487 997,364 999,931 1,000,281 1,004,547

  15. Indiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 114,603 112,045 1990's 97,332 102,246 106,176 106,676 108,621 113,121 113,209 113,209 113,209 113,209 2000's 113,210 113,000 111,095 113,597 113,397 114,080 114,294 114,294 114,937 114,274 2010's 111,271 111,313 110,749 110,749 110,749

  16. Iowa Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 311,000 311,000 1990's 229,700 279,700 279,700 279,700 270,200 270,200 270,200 408,200 273,200 273,200 2000's 273,200 273,000 273,200 273,200 273,200 273,200 275,200 278,238 284,747 284,811 2010's 288,0

  17. Kansas Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 334,925 334,925 1990's 301,199 301,199 290,571 289,797 290,148 283,603 285,201 304,065 301,101 301,101 2000's 300,401 300,000 299,473 288,197 289,450 289,747 288,383 288,926 282,221 282,300 2010's 284,821 284,731 284,905 283,97

  18. Kentucky Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 206,572 206,603 1990's 312,061 307,235 210,242 210,242 209,753 215,351 216,351 219,907 219,907 219,907 2000's 219,913 220,000 220,596 220,804 220,844 218,927 218,394 220,359 220,359 220,368 2010's 221,751 221,751 221,751 221,723 221,723

  19. Louisiana Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 559,019 559,019 1990's 550,823 559,823 539,200 542,900 551,580 549,436 554,872 559,012 563,867 564,062 2000's 569,187 580,000 587,115 591,673 593,740 593,740 599,165 588,711 615,858 651,968 2010's 670,880 690,295 699,646 733,939 745,029

  20. Maryland Natural Gas Underground Storage Capacity (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61,978 61,978 1990's 61,978 61,978 62,400 62,400 62,000 62,000 62,000 62,000 62,000 62,000 2000's 62,000 62,000 62,000 62,000 62,000 62,000 64,000 64,000 64,000 64,000 2010's