Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

2

Southern Pine Electric Power Association - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program <...

3

"1. Mohave","Gas","Southern California Edison Co",1580 "2. Clark...  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" "1. Mohave","Gas","Southern California Edison Co",1580 "2. Clark","Gas","Nevada Power Co",1138 "3. Chuck Lenzie Generating Station","Gas","Nevada Power Co",1128 "4....

4

Southern Illinois Power Coop | Open Energy Information  

Open Energy Info (EERE)

Southern Illinois Power Coop Southern Illinois Power Coop Place Illinois Utility Id 17632 Utility Location Yes Ownership C NERC Location SERC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Southern_Illinois_Power_Coop&oldid=411567

5

Southern Public Power District | Open Energy Information  

Open Energy Info (EERE)

Southern Public Power District Southern Public Power District Place Nebraska Utility Id 17642 Utility Location Yes Ownership P NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE - TOTAL ELECTRIC Commercial INTERRUPTIBLE IRRIGATION SERVICE ANYTIME PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE FOUR DAY PLUS SUNDAY Commercial INTERRUPTIBLE IRRIGATION SERVICE MULTIPLE PLUS SUNDAY Commercial

6

Southern Pine Electric Power Association - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Pine Electric Power Association - Residential Energy Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Comfort Advantage Plus Homes with Heat Pumps: $500 Comfort Advantage Homes with Heat Pumps: $300 Additional Heat Pump: $150 Provider Southern Pine Electric Power Association Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards. To qualify for this rebate the home must have:

7

Columbus Southern Power Co | Open Energy Information  

Open Energy Info (EERE)

Power Co Power Co Jump to: navigation, search Name Columbus Southern Power Co Place Ohio Website www.aepohio.com Utility Id 4062 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cogeneration and/or Small Power Production -T.O.D-Polyphase Commercial

8

Natural Gas Electric Power Price  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January ...

9

Southern Power District - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Power District - Residential Energy Efficiency Rebate Southern Power District - Residential Energy Efficiency Rebate Programs Southern Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100- $300 Geothermal Heat Pump: $400 Heat Pump (14 Seer minimum): $50 contractor rebate Attic Insulation: $0.15/sq. ft. HVAC Tune-Up: $30 Provider Southern Power District Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who install 14 Seer or

10

High power gas transport laser  

SciTech Connect

Continuous wave output power from a gas transport laser is substantially increased by disposing a plurality of parallel cylindrically tubular cathodes in the main stream transversely of the direction of gas flow and spaced above a coextensive segmented anode in the opposite wall of the channel. Ballast resistors are connected between the cathodes, respectively, and the power supply to optimize the uniform arcless distribution of current passing between each cathode and the anode. Continuous output power greater than 3 kW is achieved with this electrode configuration.

Fahlen, T.S.; Kirk, R.F.

1978-02-28T23:59:59.000Z

11

Pipeline issues shape southern FSU oil, gas development  

SciTech Connect

To future production from southern republics of the former Soviet Union (FSU), construction and revitalization of pipelines are as important as the supply of capital. Export capacity will limit production and slow development activity in the region until new pipelines are in place. Plenty of pipeline proposals have come forward. The problem is politics, which for every proposal so far complicates routing or financing or both. Russia has made clear its intention to use pipeline route decisions to retain influence in the region. As a source of external pressure, it is not alone. Iran and Turkey also have made strong bids for the southern FSU`s oil and gas transport business. Diplomacy thus will say as much as commerce does about how transportation issues are settled and how quickly the southern republics move toward their potentials to produce oil and gas. The paper discusses possible routes and the problems with them, the most likely proposal, and future oil flows.

NONE

1995-05-22T23:59:59.000Z

12

Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii | Open  

Open Energy Info (EERE)

Agency (SMMPA) Wind Farm Ii Agency (SMMPA) Wind Farm Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Southern Minnesota Municipal Power Agency Developer Southern Minnesota Municipal Power Agency Energy Purchaser Southern Minnesota Municipal Power Agency Location Redwood Falls MN Coordinates 44.5407°, -95.1098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5407,"lon":-95.1098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Columbus Southern Power Co | Open Energy Information  

Open Energy Info (EERE)

Cogeneration andor Small Power Production -single phase Commercial Experimental Critical Peak Pricing Service Residential Experimental Direct Load Control Rider Residential...

14

Southern Company Services Power Systems Development Facility  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF includes an engineering scale demonstration of key components of an Integrated Gasification

Roxann Leonard; Robert C. Lambrecht; Pannalal Vimalchand; Ruth Ann Yongue; Senior Engineer

2007-01-01T23:59:59.000Z

15

Southern Company Services, Power Systems Development Facility  

E-Print Network (OSTI)

Lignite coal presents opportunities as well as challenges as a feedstock for an integrated gasification combined cycle power plant. It is relatively inexpensive, easily accessible for mining, highly reactive and thus readily converted to syngas, and it is abundantaccounting for nine percent of demonstrated U.S. coal reserves (EIA, 2007). On the other hand, lignite is characterized by high moisture and ash contents and low heating value compared to higher rank coals. While these physical

Johnny Dorminey; John Northington; Roxann Leonard; Ruth Ann Yongue

2009-01-01T23:59:59.000Z

16

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

17

Southern Indiana Gas & Elec Co | Open Energy Information  

Open Energy Info (EERE)

Gas & Elec Co Gas & Elec Co (Redirected from Vectren) Jump to: navigation, search Name Southern Indiana Gas & Elec Co Place Indiana Utility Id 17633 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AD - Area Development Commercial

18

Natural gas and electricity optimal power flow  

E-Print Network (OSTI)

Abstract In this paper, the combined natural gas and electric optimal power flow (GEOPF) is presented. It shows fundamental modeling of the natural gas network to be used for the GEOPF, and describes the equality constraints which describe the energy transformation between gas and electric networks at combined nodes (i.e., generators). We also present the formulation of the natural gas loadflow problem, which includes the amount of gas consumed in compressor stations. Case studies are presented to show the sensitivity of the real power generation to wellhead gas prices. Results from the simulation demonstrate that the GEOPF can provide social welfare maximizing solutions considering both gas and electric networks. I.

Seungwon An

2003-01-01T23:59:59.000Z

19

Electric Power Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated ... Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2010 but not in ...

20

EA-363 Noble Americas Gas & Power Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-363 Noble Americas Gas & Power Corporation Order authorizong Noble Americas Gas & Power Corporation to export electric energy to Mexico EA-363 Noble Americas Gas &...

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-364 Noble Americas Gas & Power Corporation | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-364 Noble Americas Gas & Power Corporation Order authorizong Noble Americas Gas & Power Corporation to export electric energy to Canada EA-364 Noble Americas Gas &...

22

Powering the World: Offshore Oil & Gas Production  

E-Print Network (OSTI)

rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-30 yearsPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The global

Patzek, Tadeusz W.

23

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

24

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

25

Texas Natural Gas Deliveries to Electric Power Consumers (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Texas Natural Gas Deliveries to Electric Power...

26

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

27

Extended nuclear plant outages raise Southern California ...  

U.S. Energy Information Administration (EIA)

Although SoCal Citygate spot natural gas prices have increased slightly ... higher wholesale power prices in Southern California more likely are attributable to ...

28

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

29

Gas Market Transition: Buildup of Power Sector Demand: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Just how fast is natural gas demand for power generation growing in response to the many new gas-fired units being built? This simple question has a far from simple answer, due to confusing streams of data, the interplay between new efficient gas combined cycle units and existing capacity, and the surprisingly low overall levels of capacity utilization observed among the new units. This report dissects each component of gas use in the power sector and provides a novel, integrated view of near term trends...

2003-03-17T23:59:59.000Z

30

Natural Gas Politics in the Southern Cone : A comparative study of goal attainment in the gas sector in Argentina, Bolivia and Brazil.  

E-Print Network (OSTI)

??The Southern Cone region consists of the six southernmost countries in South America. Three of these countries, Argentina, Bolivia and Brazil have great natural gas (more)

Aamodt, Solveig

2010-01-01T23:59:59.000Z

31

Southern Indiana Power- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Indiana Rural Electric Coop offers an incentive program for customers to help offset the cost of high efficiency heating and cooling equipment. Rebates are available for energy efficiency...

32

Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Electric Power Price ; Ohio Natural Gas Prices

33

Colorado Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Electric Power Price ; Colorado Natural Gas Prices

34

Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Texas Natural Gas Price Sold to...

35

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

36

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

37

South Dakota Natural Gas Deliveries to Electric Power Consumers...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) South Dakota Natural Gas Deliveries to...

38

South Dakota Natural Gas Price Sold to Electric Power Consumers...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) South Dakota Natural Gas...

39

Texas Natural Gas Price Sold to Electric Power Consumers (Dollars ...  

U.S. Energy Information Administration (EIA)

Release Date: 7/31/2013: Next Release Date: 8/30/2013: Referring Pages: Natural Gas Electric Power Price ; Texas Natural Gas Prices

40

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I | Open Energy  

Open Energy Info (EERE)

Minnesota Municipal Power Agency (SMMPA) Wind Farm I Minnesota Municipal Power Agency (SMMPA) Wind Farm I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Southern Minnesota Municipal Power Agency Developer Southern Minnesota Municipal Power Agency Energy Purchaser Southern Minnesota Municipal Power Agency Location Fairmont MN Coordinates 43.656024°, -94.460506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.656024,"lon":-94.460506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

43

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the standard efficiency natural gas power plant case, highand imports Natural gas plants providing power to Californianatural gas and petroleum products as well as the remote power plant

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

44

Pipelines to Power Lines: Gas Transportation for Electricity Generation  

Science Conference Proceedings (OSTI)

Gas-fired power generation represents a major growth market for the natural gas industry; but the large, high pressure, highly variable loads required for individual power generators can be difficult to serve. This report, cosponsored by the Gas Research Institute and EPRI, is a design stage assessment of the engineering and costs of the pipelines needed to handle these types of loads.

1995-03-10T23:59:59.000Z

45

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

46

Southern Pine Elec Power Assn | Open Energy Information  

Open Energy Info (EERE)

Pine Elec Power Assn Pine Elec Power Assn Place Mississippi Utility Id 17647 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agriculture/Farm Multi-Phase Commercial Commercial General Service (Under 75 kVA) Commercial Commercial Large General Service (75 kVA - 1000 kVA) Commercial Commercial/Small power Commercial Distributed Generation Rider Commercial Industrial General Service (Under 75 kVA) Industrial Industrial Large General Service (75 kVA - 1000 kVA) Primary Voltage

47

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

48

,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

49

,"California Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

50

,"Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

51

Energy Recovery During Expansion of Compressed Gas Using Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery During Expansion of Compressed Gas Using Power Plant Low-Quality Heat Sources Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is...

52

,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet...

53

,"Michigan Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

54

Natural Gas Electric Power Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated ... Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2010 but not in ...

55

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman,...

56

,"Vermont Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

57

,"Colorado Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

58

,"South Dakota Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","...

59

,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

60

Gas Market Transition: Impacts of Power Generation on Gas Pricing Dynamics  

Science Conference Proceedings (OSTI)

The power sector is beginning to influence the natural gas market, affecting both total natural gas demand and aspects of natural gas price behavior. This report offers a single source that quantifies these influences. With the addition of new gas-fired generating capacity, the use of gas generation in the power sector has grown steadily. However, this progression was arrested after 2002 when the brunt of overbuilding was felt, and gas use in the power sector migrated to ever more efficient units. While ...

2005-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LNG delivery system for gas powered vehicles  

Science Conference Proceedings (OSTI)

This patent describes a natural gas delivery system. It comprises a first vehicle mounted tank for storing liquid natural gas and natural gas vapor; a second vehicle mounted tank for storing liquid natural gas and natural gas vapor; a use line connected to the first and second tanks for receiving natural gas from the first and second tanks and delivering natural gas vapor to the use device on the vehicle and means for pressurizing the natural gas in the use line; means for selecting one of the first or second tanks to deliver natural gas to the use line; and means for overriding the selecting means to deliver natural gas vapor to the use line from either of the tanks in response to detecting a pressure rise therein which exceeds a preselected maximum.

Nesser, T.A.; Hedegard, K.W.

1992-07-07T23:59:59.000Z

62

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

63

A prediction investigated: Antrim gas fields in central and southern Michigan  

SciTech Connect

An exploration rationale based on observations in the Appalachian basin has been applied to Michigan. The rationale assumes that not all shale gas is indigenous and that gas production is related to both a greater gas content and a greater fracture density than regional average. Areas [open quotes]charged with gas[close quotes] can be expected where methane has migrated from downdip Antrim or from older sources into stratigraphic traps created by shale facies change. Increased fracturing requires geologically [open quotes]new[close quotes] crustal movement. Small areas of predicted shale gas potential were identified using (1) mapped facies changes, (2) bitumen concentrations, (3) Traverse Lime structure, and (4) glacial hinge lines. Three areas, about 6 by 15 mi, in south central Michigan showed an organic matter (bitumen) equal to or greater than in Otsego County. Each area was crossed by a shale to shale facies change with less permeable shale positioned updip of expected gas movement. All three areas lie along projections of glacial hinge lines, where geologically [open quotes]new[close quotes] flexing ([approximately]13,000 YBP) is postulated to have created [open quotes]fresh[close quotes], localized breakage. The areas were superimposed on an oil and gas map and well records in and around the areas were searched for evidence of gas, water, or lost circulation. Antrim [open quotes]gas[close quotes] occurred in two areas; specifically, seven wells in or near the southern, shallowest area and in four wells in or bordering another. Although the evidence is inconclusive, the gas reported where gas was predicted is presented as support for the exploration methodology advanced.

Matthews, R.D. (R.D. Matthews, Incs., Chicago, IL (United States)); Jones, M.W. (Michigan Petroleum Geologists, Inc., Litchfield, MI (United States))

1994-08-01T23:59:59.000Z

64

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

65

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

66

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

67

GAS COOLED POWER REACTOR COOLANT CHOICE  

SciTech Connect

The current status of helium and carbon dioxide technology is described in the light of the Gas Cooled Reactor Program requiremoents. The problem of containing high-pressure helium at high temperature is discussed, and it is concluded that, by proper attention to the design, construction and maintenance of a plant, a high degree of helium leak-tightness can be achieved at small additional cost when compared with a carbon dioxide system. What is more, the cost of making up helium losses in a practically achievable system is estimated to be small compared with other fixed and operating costs. Graphite-carbon dioxide reaction data are reviewed. It is shown that carbon dioxide at atmospheric pressure and low flow rates should be compatible with a graphite mooderator up to 525 C. No data are available at the high pressures and fiow rates that would be encountered in power reactors. Significantiy higher oxidation rates may result, however, perhaps limiting bulk moderator temperatures to 450 to 500 C. Improved carbon materials, protective coatings and inhibitors, and/or operating practices may be developed that will allow significant future increases in these limiting temperatures. (auth)

Heacock, H.W.; Nightingale, R.E.

1958-06-12T23:59:59.000Z

68

Technology and social process : oscillations in Iron Age copper production and power in Southern Jordan  

E-Print Network (OSTI)

Archaeology of Edom, Southern Jordan - Surveys, ExcavationsLandscape Survey, Southern Jordan (pp. 199-226). Oxford:Landscape Survey, Southern Jordan . Oxford: Oxbow Books;

Ben-Yosef, Erez

2010-01-01T23:59:59.000Z

69

Gas Storage for Power Generation -- Critical New Bridge Between Power Demand and Gas Supply: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Natural gas storage is a "sleeper" issue for the power industry that will demand a great deal of attention very soon as the building boom of gas-fired capacity draws to a close and these plants begin to operate. While an entire industry has emerged in recent years to develop high-deliverability gas storage, the new facilities are likely the tip of an iceberg. Pipelines will be taxed to meet fluctuating requirements of new units, and companies will turn to gas storage for reliability at an affordable cost...

2002-11-11T23:59:59.000Z

70

Madison Gas and Electric - Clean Power Partner Solar Buyback Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Madison Gas and Electric - Clean Power Partner Solar Buyback Madison Gas and Electric - Clean Power Partner Solar Buyback Program Madison Gas and Electric - Clean Power Partner Solar Buyback Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/06/2007 (systems installed prior to this date do not qualify) State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.25/kWh Provider Madison Gas and Electric '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program].''''' Customer-generators enrolled in the Madison Gas and Electric (MGE) green

71

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

72

Utilization requirements. A Southern California gas company project SAGE report: utilization requirements. [Solar Assisted Gas Energy  

SciTech Connect

Utilization requirements are given and comparisons made of two phase III SAGE (solar assisted gas energy) installations in California: (1) a retrofit installation in an existing apartment building in El Toro, and (2) an installation in a new apartment building in Upland. Such testing in the field revealed the requirements to be met if SAGE-type installations are to become commercially practical on a widespread basis in electric and gas energy usage.

Barbieri, R.; Schoen, R.; Hirshberg, A.S.

1978-01-01T23:59:59.000Z

73

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

74

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation (Wall/Ceiling/Floor): $750 Insulation (Duct): $170 Infiltration Control: $200 Duct Sealing: $285 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Required for Infiltration Control, Insulation, Duct Sealing, and Window Rebates

75

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) < Back Eligibility Commercial Fed. Government Local Government Multi-Family Residential Retail Supplier State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Tank Water Heater: $50 Furnace: $250-$400 Boiler: $150 or $400 Programmable Thermostat: $25 Windows/Sash: $20 Custom: Based on Annual Energy Dollar Savings Provider

76

Alliant Energy Interstate Power and Light (Gas) - Business Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Business Energy Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Maximum Rebate Insulation: $5000 (each type) Sealing: $1500 Multi-Family Insulation/Sealing: $5,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Custom: Based on Annual Dollar Energy Savings

77

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Caulking/Weather Stripping: $200 Ceiling/Foundation/Wall Insulation: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Boilers: $150 - $400 Furnaces: $250 - $400 Efficient Fan Motor: $50 Programmable Thermostats: $25 Furnace or Boiler Clean and Tune: $30

78

California Natural Gas Deliveries to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

California Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

79

Ohio Natural Gas Deliveries to Electric Power Consumers (Million ...  

U.S. Energy Information Administration (EIA)

Ohio Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 3,491:

80

Colorado Natural Gas Deliveries to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's ...

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

82

,"Wisconsin Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"9302013 9:16:03 AM" "Back to Contents","Data 1: Wisconsin Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

83

,"Pennsylvania Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:15:55 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

84

,"Pennsylvania Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9302013 9:15:56 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

85

Michigan Natural Gas Deliveries to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's:

86

,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"172014 2:53:13 PM" "Back to Contents","Data 1: Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

87

,"California Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:01 PM" "Back to Contents","Data 1: California Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

88

New York Natural Gas Deliveries to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA)

New York Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

89

,"New Mexico Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:06 PM" "Back to Contents","Data 1: New Mexico Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

90

,"New Mexico Natural Gas Deliveries to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:28:06 PM" "Back to Contents","Data 1: New Mexico Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045NM2"...

91

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

92

Daily natural gas and power price differences in Mid-Atlantic ...  

U.S. Energy Information Administration (EIA)

Natural gas prices are spot gas prices at points labeled above. ... However, spot natural gas and power prices in western Pennsylvania were relatively unchanged.

93

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

94

The oil and gas potential of southern Bolivia: Contributions from a dual source rock system  

Science Conference Proceedings (OSTI)

The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

Hartshorn, K.G. [Chevron Petroleum Company of Colombia, Santafe de Bogota (Colombia)

1996-08-01T23:59:59.000Z

95

PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM  

DOE Green Energy (OSTI)

Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

W.L. Lundberg; G.A. Israelson; R.R. Moritz (Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

2000-02-01T23:59:59.000Z

96

U.S. Natural Gas Electric Power Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 ... U.S. Natural Gas Prices; Natural Gas Electric Power P ...

97

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

98

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

99

Integrating Offshore Wind Power and Multiple Oil and Gas Platforms to the Onshore Power Grid using VSC-HVDC Technology.  

E-Print Network (OSTI)

?? This thesis investigates the possibilities of integrating oil and gas platforms and offshore wind power to the onshore power grid. The main motivation for (more)

Kolstad, Magne Lorentzen

2013-01-01T23:59:59.000Z

100

Price risk management: Electric power vs. natural gas  

Science Conference Proceedings (OSTI)

As deregulation continues, will electricity resemble gas as a commodity, when it comes to futures markets and forward deals? Overall, yes; the signs are there. But differences will remain-in volatility, the prominence of regional factors, and the importance of shortrun engineering fundamentals. This article examines these differences and concludes that engineering and economic analyses will prove more important in the future in assessing risk in the electric power commodity market than in the gas industry.

Rose, J.; Mann, C. [ICF Kaiser International, Inc., Fairfax, VA (United States)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

The present invention relates generally to an integrated fuel cell power plant, and more specifically to a combination of cycles wherein a first fuel cell cycle tops an indirect-fired gas turbine cycle and a second fuel cell cycle bottoms the gas turbine cycle so that the cycles are thermally integrated in a tandem operating arrangement. The United States Government has rights in this invention pursuant to the employer-employee relationship between the United States Department of Energy and the inventors.

Micheli, P.L.; Williams, M.C.; Sudhoff, F.A.

1998-04-01T23:59:59.000Z

102

Alliant Energy Interstate Power and Light (Gas and Electric) - Farm  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric) - Farm Gas and Electric) - Farm Equipment Energy Efficiency Incentives Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives < Back Eligibility Agricultural Savings Category Other Heating & Cooling Cooling Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Heating & Cooling Heating Commercial Lighting Lighting Manufacturing Water Heating Program Info Start Date 1/1/2012 State Iowa Program Type Utility Rebate Program Rebate Amount Energy Audit: Free Clothes Washer: $100 Refrigerator Replacement: $50 Dishwasher Replacement: $20 Freezer: $25 Room Air Conditioner: $25 Water Heater: $50 Electric Heat Pump Water Heaters: $100 Circulating Fans: $25 - $75

104

Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid  

Open Energy Info (EERE)

doing business as AEP Ohio) Smart Grid doing business as AEP Ohio) Smart Grid Demonstration Project Jump to: navigation, search Project Lead Columbus Southern Power Company (doing business as AEP Ohio) Country United States Headquarters Location Columbus, Ohio Recovery Act Funding $75,161,246.00 Total Project Value $150,322,492.00 Coordinates 39.9611755°, -82.9987942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

105

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Nskkl

2003-01-01T23:59:59.000Z

106

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

107

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

108

U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Electric Power Price ; U.S. Natural Gas Prices

109

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

in-state and imports Natural gas plants providing power toand Imports 20% RPS 2010, 33% RPS 2020 California Electricity Generation (TWh/a) Natural Gas

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

110

Natural gas demand at power plants was high in summer 2012 - Today ...  

U.S. Energy Information Administration (EIA)

Natural gas use for power generation rose this summer because of hot-weather-driven electricity demand for air conditioning coupled with low natural gas prices.

111

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

natural gas has become the fuel of choice for new power plantspower plants (Awerbuch 1993, 1994; Kahn & Stoft 1993). Specifically, in the context of natural gas-

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

112

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network (OSTI)

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

113

GE power generation technology challenges for advanced gas turbines  

SciTech Connect

The GE Utility ATS is a large gas turbine, derived from proven GEPG designs and integrated GEAE technology, that utilizes a new turbine cooling system and incorporates advanced materials. This system has the potential to achieve ATS objectives for a utility sized machine. Combined with use of advanced Thermal Barrier Coatings (TBC`s), the new cooling system will allow higher firing temperatures and improved cycle efficiency that represents a significant improvement over currently available machines. Developing advances in gas turbine efficiency and emissions is an ongoing process at GEPG. The third generation, ``F`` class, of utility gas turbines offers net combined cycle efficiencies in the 55% range, with NO{sub x} programs in place to reduce emissions to less than 10 ppM. The gas turbines have firing temperatures of 2350{degree}F, and pressure ratios of 15 to 1. The turbine components are cooled by air extracted from the cycle at various stages of the compressor. The heat recovery cycle is a three pressure steam system, with reheat. Throttle conditions are nominally 1400 psi and 1000{degree}F reheat. As part of GEPG`s ongoing advanced power generation system development program, it is expected that a gas fired advanced turbine system providing 300 MW power output greater than 58% net efficiency and < 10 ppM NO{sub x} will be defined. The new turbine cooling system developed with technology support from the ATS program will achieve system net efficiency levels in excess of 60%.

Cook, C.S.; Nourse, J.G.

1993-11-01T23:59:59.000Z

114

Impingement starting and power boosting of small gas turbines  

SciTech Connect

The technology of high-pressure air or hot-gas impingement from stationary shroud supplementary nozzles onto radial outflow compressors and radial inflow turbines to permit rapid gas turbine starting or power boosting is discussed. Data are presented on the equivalent turbine component performance for convergent/divergent shroud impingement nozzles, which reveal the sensitivity of nozzle velocity coefficient with Mach number and turbine efficiency with impingement nozzle admission arc. Compressor and turbine matching is addressed in the transient turbine start mode with the possibility of operating these components in braking or reverse flow regimes when impingement flow rates exceed design.

Rodgers, C.

1985-10-01T23:59:59.000Z

115

Anti-polluting power plant using compressors and gas turbines  

SciTech Connect

An electric power generating plant includes at least two compressors having matched operating characteristics, alternators and turbines and boilers having combustion chambers connected to the turbines. The compressors, alternators and turbines are operatively interconnected such that during no power demand periods the compressors are driven in a series arrangement by the alternators, functioning as electric motors, to store a supply of pressurized air in an air storage tank, and during normal and peak power demand periods the turbines, supplied by the combustion chambers of the boilers, drive the compressors, functioning in parallel relationship, which feed respective ones of the boilers with enriched air and a gas recycled after expansion by one of the turbines. During the normal and peak power demand periods pressurized air previously stored in the air storage tank by the compressors is fed to the combustion chamber of one of the boilers.

Rigollot, G.A.

1977-09-20T23:59:59.000Z

116

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network (OSTI)

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations in the ambient temperature. On hot days, a machine may experience considerable difficulty in meeting its power demand. One concept that has not received much attention is the cooling down of compressor inlet air. This paper will examine the theoretical and practical implications of concept such as evaporative cooling, intercooling, expansion cooling and compression and absorption refrigeration.

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

117

Framing Scenarios of Electricity Generation and Gas Use: EPRI Report Series on Gas Demands for Power Generation  

Science Conference Proceedings (OSTI)

This report provides a systematic appraisal of trends in electric generation and demands for gas for power generation. Gas-fired generation is the leading driver of forecasted growth in demand for natural gas in the United States, and natural gas is a leading fuel for planned new generating capacity. The report goes behind the numbers and forecasts to quantify key drivers and uncertainties.

1996-08-28T23:59:59.000Z

118

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

119

"1. Union Power Partners LP","Gas","Union Power Partners LP",2020  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "1. Union Power Partners LP","Gas","Union Power Partners LP",2020 "2. Arkansas Nuclear One","Nuclear","Entergy Arkansas Inc",1835 "3. Independence","Coal","Entergy Arkansas Inc",1678 "4. White Bluff","Coal","Entergy Arkansas Inc",1659 "5. Robert E Ritchie","Petroleum","Entergy Arkansas Inc",860 "6. Lake Catherine","Gas","Entergy Arkansas Inc",712 "7. Dell Power Station","Gas","Associated Electric Coop, Inc",679 "8. Plum Point Energy Station","Coal","Dynegy Services Plum Point LLC",670 "9. Hot Spring Power Project","Gas","Hot Spring Power Co LLC",642

120

Upper Campanian and lower Maestrichtian depositional systems and gas production, southern Sacramento basin, California  

SciTech Connect

Upper Campanian and lower Maestrichtian strata of the southern Sacramento basin include four west- and southwest-prograding submarine-fan/slope/delta systems. The Winters, Lathrop, Tracy, and Blewett formations consist of submarine-fan and related slope/basin-plain deposits that were fed by various deltaic complexes of the Starkey Formation. Four major basinwide transgressive shale units (Sacramento Shale, Sawtooth Shale, Ragged Valley Shale, and H and T Shale) help intrasystem correlations. The Winters, Tracy, and Blewett fans are small, radial, coalescing sand-rich systems that contain the following principal facies: (1) sandstone-filled inner fan channel deposits, (2) mudstone-dominated inner fan interchannel deposits, (3) middle-fan amalgamated suprafan-type sandstone-rich channel deposits, and (4) mudstone-dominated outer fan deposits. The Lathrop fans are larger, elongate, mixed-sediment systems that contain basin-plain, outer fan lobe, middle fan-channel, levee, interchannel, and inner fan channel facies. The Sierran-derived fluvio-deltaic Starkey Formation can be divided into six sand-rich deltaic cycles that can be subdivided on the basis of log signaturres and spatial distribution into prodelta, delta-front, lower delta-plain, and upper delta-plain/fluvial facies. More than 50 gas fields produce from these systems. Stratigraphic traps include updip pinchouts of submarine canyon/gullies and inner fan channels into slope shale, especially in the many overlapping and coalescing sand-rich systems. Lateral pinchouts of outer fan lobes and middle-fan suprafan-type bodies are also productive. Structural traps generally characterize production from deltaic deposits because of the more continuous nature of these bodies.

Moore, D.W.; Nilsen, T.H. (Applied Earth Technology, Inc., Redwood City, CA (USA))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

122

Optical Thin Films for Gas Sensing in Advanced Coal Fired Power ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers Carbon Nanotube Coatings Laser Power and Energy Measurements.

123

A Case Study on the Effects of Distribution Line Capacitors on Substation Bus Voltage Regulated with a Load Tap Changing (LTC) Power Transformer: Southern Company Smart Grid Demonstration  

Science Conference Proceedings (OSTI)

This case study describes research to address the adverse effects of distribution capacitors on substation bus voltage with a load-tap-changing (LTC) power transformer. By adding fixed and switched capacitors to the distribution system, Southern Company is able to maintain an efficient distribution grid by providing the reactive power near the end-use devices consuming this power. However, pressure to improve the efficiency of the distribution system has resulted in Southern Company adding a large ...

2013-12-12T23:59:59.000Z

124

BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS  

DOE Green Energy (OSTI)

A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

David Liscinsky

2002-10-20T23:59:59.000Z

125

Small-scale AFBC hot air gas turbine power cycle  

SciTech Connect

The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [USDOE Morgantown Energy Technology Center, WV (United States)

1995-12-31T23:59:59.000Z

126

1 2Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90 % capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the

Sarah Bashadi; Howard Herzog; Dava J. Newman; Sarah Bashadi

2010-01-01T23:59:59.000Z

127

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

DOE Green Energy (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

128

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

129

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Chapter 8: Direct Use of Natural Gas....................................................................... 1 Analysis of the Direct Use of Natural Gas for the Sixth Power Plan electricity to natural gas for residential space and water heating a lower-cost and lower-risk alternative

130

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

131

Constrained model predictive control implementation for a heavy-duty gas turbine power plant  

Science Conference Proceedings (OSTI)

In this paper, model predictive control (MPC) strategy is implemented to a GE9001E gas turbine power plant. A linear model is developed for the gas turbine using conventional mathematical models and ARX identification procedure. Also a process control ... Keywords: ARX, PID, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-06-01T23:59:59.000Z

132

NETL: News Release - Advanced Natural Gas Turbine Hailed as Top Power  

NLE Websites -- All DOE Office Websites (Extended Search)

December 30, 2003 December 30, 2003 Advanced Natural Gas Turbine Hailed as Top Power Project of 2003 Power Engineering Cites Product of Energy Department's Advanced Turbine Systems Program WASHINGTON, DC - A power plant featuring a next-generation gas turbine developed as part of the U.S. Department of Energy's advanced turbine systems program has been selected by Power Engineering magazine as one of three "2003 Projects of the Year." Baglan Bay Power Station Baglan Bay Power Station, South Wales, U.K. Photo courtesy of GE Power Systems The Baglan Bay Power Station near Cardiff, Wales, UK reached a major milestone for the global power industry when GE Power System's H System gas turbine debuted there earlier this year. The most advanced combustion turbine in the world, the H System is the first gas turbine combined-cycle

133

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine  

E-Print Network (OSTI)

Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr. Fletcher Miller SDSU Department of Mechanical Engineering Abstract Solar thermal power for electricity will describe the design of a high temperature solar receiver capable of driving a gas turbine for power

Ponce, V. Miguel

134

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

energy resources such as wind power carry no natural gas fuel priceenergy have long argued that wind power and other renewable technologies can mitigate fuel priceenergy resources such as wind power, which by their nature are immune to natural gas fuel price

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

135

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

136

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power  

E-Print Network (OSTI)

Direct Use of Natural Gas: Economic Fuel Choices from the Regional Power System and Consumer's Perspective Council document 2012-01 Background Is it better to use natural gas directly in water heaters; total-energy efficiency, fuel switching, direct use of gas, and others. The natural gas companies

137

Co-utilization of biomass and natural gas: a new route for power productin from biomass  

E-Print Network (OSTI)

Abstract Co-utilization of biomass and natural gas: a new route for power productin from biomass production is proposed in which biomass energy is used to partially reform natural gas in gas turbines. As a result, part of the natural gas fuel supply can be replaced by biomass while keeping the biomass

Glineur, François

138

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant  

SciTech Connect

The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

1992-01-01T23:59:59.000Z

139

Hedging Future Gas Price Risk with Wind Power  

E-Print Network (OSTI)

Prices: By displacing gas-fired generation, incremental wind generation reduces demand for natural gas Department Increased Renewables Penetration Displaces Natural Gas Demand Projected Gas Displacement in 2020 Energy Technologies Division · Energy Analysis Department Natural Gas Prices Are High and Volatile 0 2 4

140

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

--Combined-cycle unit, electricity market, natural gas infrastructure, pipeline contingency, pumped-storage hydro, renew gas utilities typically rely on the natural gas storage to augment supplies flowing through) in the natural gas system, deliver natural gas from city gate stations, underground storage facilities, and other

Fu, Yong

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Low Power Laser Hybrid Gas Metal Arc Welding on A36 Steel  

Science Conference Proceedings (OSTI)

Presentation Title, Low Power Laser Hybrid Gas Metal Arc Welding on A36 Steel. Author(s), Caleb Roepke, Stephen Liu, Shawn Kelly, Rich Martukanitz. On-Site...

142

Gas turbine control and load sharing of a shipboard power system.  

E-Print Network (OSTI)

??The objective of this research is to design a controller for a gas turbine of an ElectricShipboard Power System (ESPS) and to develop a load (more)

Fernandes, Anisha M. C., 1980-

2006-01-01T23:59:59.000Z

143

Spot crude prices near 12-month high; natural gas and power ...  

U.S. Energy Information Administration (EIA)

Key wholesale energy price benchmarks for crude oil, natural gas, and electric power reflect contrasting trends over the past year. International events have ...

144

Co-Removal of Mercury from Coal-Fired Power Plant Flue Gas with...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion conditions, and air pollution control devices upstream of a power plant FGD system have an impact on the types and concentration of flue gas mercury at the...

145

Natural gas use in the electric power sector is growing - Today in ...  

U.S. Energy Information Administration (EIA)

Uranium fuel, nuclear reactors, ... the Nation's fleet of natural gas combined-cycle power plants is contributing significantly more to baseload electricity needs.

146

Deep Sea Hybrid Power Systems for Deep Sea Oil & Gas Recovery ...  

... thereby eliminating the need for pipeline construction and transport altogether. Such tankers could rely on natural-gas powered fuel cells, ...

147

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network (OSTI)

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

148

Gas-cooled reactor for space power systems  

Science Conference Proceedings (OSTI)

Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors.

Walter, C.E.; Pearson, J.S.

1987-05-01T23:59:59.000Z

149

The Response of the Southern Hemisphere Atmospheric Circulation to an Enhanced Greenhouse Gas Forcing  

Science Conference Proceedings (OSTI)

The response of the atmospheric circulation to an enhanced radiative greenhouse gas forcing is investigated. It has been proposed that the response of the climate system to an enhanced forcing projects directly onto the preexisting natural modes ...

Jenny Brandefelt; Erland Klln

2004-11-01T23:59:59.000Z

150

Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions  

E-Print Network (OSTI)

To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

Cuellar, Amanda Dulcinea

2012-01-01T23:59:59.000Z

151

QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS PRICES  

E-Print Network (OSTI)

1 LBNL-50484 QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS VOLATILE NATURAL GAS PRICES Mark Bolinger, Ryan Wiser, and William Golove Ernest Orlando Lawrence Berkeley natural gas price volatility during the winter of 2000/2001 ­ have mostly been qualitative in nature

152

Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives  

Science Conference Proceedings (OSTI)

Aero-engine technology has played a major part in the development of both the industrial gas turbine and, more recently, the combined cycle gas turbine (CCGT) plant. A distinction may be drawn between the direct use of developed aero-engine hardware in power generation (and in marine applications), and the more indirect influence of aero-engine technology, particularly in design of heavy-duty gas turbines. Both the direct use of aero-engine hardware, in gas turbines for power generation, and the indirect influence of aero-engine technology, in the design of more conventional heavy-duty plants (including combined cycle gas turbines, CCGTs), are reviewed.

Horlock, J.H. [Whittle Lab., Cambridge (United Kingdom)

1997-01-01T23:59:59.000Z

153

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas and Electric) - Low Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program Alliant Energy Interstate Power and Light (Gas and Electric) - Low Interest Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Fed. Government Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate $25,000 Program Info State Iowa Program Type Utility Loan Program Rebate Amount $1,500 - $25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells

154

Advanced Acid Gas Separation Technology for Clean Power and Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Advanced Acid Gas Separation Technology for Clean Power and Syngas Applications Air Products and Chemicals, Inc. Project Number: FE0013363 Project Description In this project, Air Products will operate a two-bed mobile system at the National Carbon Capture Center (NCCC) facility. A slipstream of authentic, high-hydrogen syngas based on low-rank coal will be evaluated as the feedstock. Testing will be conducted for approximately eight weeks, thereby providing far longer adsorbent exposure data than demonstrated to date. By utilizing real-world, high- hydrogen syngas, information necessary to understand the utility of the system for methanol production will be made available. In addition, Air Products will also operate a multi-bed PSA process development unit (PDU), located at its Trexlertown, PA headquarters, to evaluate the impact of incorporating pressure equalization steps in the process cycle. This testing will be conducted utilizing a sulfur-free, synthetic syngas, and will improve the reliability of the prediction of the system's operating performance at commercial scale.

155

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

156

Rise in gas-fired power generation tracks gains in turbine efficiency  

SciTech Connect

Natural gas-fueled gas turbines--in both simple and combined-cycle configurations--will account for most power generation capacity additions through 2000. It is widely agreed that gas turbines will remain the dominant form of technology for power generation for the next decade or two, making them the power generation technology of choice for today and the future. The pre-eminent stature of gas turbines can be attributed to their low capital costs, high efficiency, low emissions, short permitting and construction lead times, and proven reliability. The versatility of gas turbines also makes them unique among power generation technologies, as they can economically serve a wide spectrum of applications and sizes--from distributed generation to industrial cogeneration and central station generation. Three primary factors contribute to the growing interest in gas turbine-based power generation and the role gas turbines will play in the future power generation market: An optimistic outlook for the supply and price of natural gas; technology advances that have produced substantial improvements in efficiency and emissions; and emissions regulations that may favor the use of gas turbines over traditional fossil-fueled steam turbines. These three factors are discussed.

Bautista, P. [Gas Research Inst., Chicago, IL (United States)

1996-08-12T23:59:59.000Z

157

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network (OSTI)

6/5/2013 1 Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Natural Gas CO2 Emissions A Bridge to a Low Carbon Future, or the Future? 815 1,190 lbs/MWh Gas CCCT has ~35% of coal emissions on a per-MWh basis Gas CT has ~50% of coal emissions on a per-MWh basis 119 119

158

Medium-Term Risk Management for a Gas-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

159

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

160

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

162

A STEAM POWER INSTALLATION FOR NUCLEAR POWER PLANT WITH GAS-COOLED REACTORS  

SciTech Connect

A steam power plant is designed for use with gas-cooled power reactors. In this plant, the turbine is divided into two sections, one high pressure and the other low pressure, the low-pressure turbine being the condensing turbine. The feed water from the condensing turbine is divided into two streams, one of which is brought to a higher pressure than the other. The high-pressure feed water is evaporated and superheated in the heat exchanger and then supplied to the high-pressure turbine, while the low-pressure feed water is evaporated and mixed with the exhaust steam of the highpressure turbine before superhenting and then passing to the low-pressure condensing turbine. Circulation of the reactor coolant is effected by a blower driven by a series turbine with no regulating devices and arranged in the steam plant circuit upstream of the low-pressure turbine; such a turbine works with constant efficiency over its whole load range. (D.L.C.)

1961-03-01T23:59:59.000Z

163

Gas turbine power plant with supersonic shock compression ramps  

SciTech Connect

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

164

Large heavy-duty gas turbines for base-load power generation and heat cogeneration  

SciTech Connect

The predominant role of large gas turbines has shifted from peaking-load duty to midrange and base-load electric power generation, especially within combined-cycle plants. Such applications require heavy-duty industrial gas turbines to ensure the same high reliability and availability for continuous service as the associated steam turbines. It is also important that the gas turbines be designed for low maintenance to minimize the necessary outage times and costs for component repair and replacement. The basic design principles and applications of Model V94 gas turbines are discussed with special reference to highly reliable and economic bulk power generation.

Joyce, J.S.

1985-01-01T23:59:59.000Z

165

Today in Energy - Natural gas use for power generation ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... (through November), relative to the same time period in 2012. ... given the large cost advantage of natural gas.

166

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residences, farms or ag-related businesses are eligible if Alliant Energy supplies the electricity or natural gas on a retail rate basis for the applicable technology. Interest...

167

Northeast grows increasingly reliant on natural gas for power ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; ... Privacy/Security Copyright & Reuse Accessibility ...

168

Warm weather, low natural gas prices hold down wholesale power ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Northeastern and Midwestern wholesale power prices typically are linked closely to ... raising the spot market prices for ...

169

Combined gas turbine and steam turbine power station  

SciTech Connect

In order to operate a gas turbine and steam turbine plant with a high temperature at the inlet to the gas turbine plant, the parts located in the hot-gas stream of the gas turbine being steam-cooled, and the cooling steam, thereby raised to a higher temperature, being fed to the steam turbine for further expansion, it is proposed that the waste heat from the gas turbine be led through a two-pressure waste heat boiler, and that the steam, generated in this boiler, be slightly superheated in a cooling-steam superheater, and fed to the hollow inlet vanes and to the rotor blades, which are likewise hollow, the steam, strongly superheated during this cooling process, then being admixed to the steam coming from the intermediate superheater, and being fed to the low-pressure section of the steam turbine.

Mukherjee, D.

1984-01-10T23:59:59.000Z

170

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

171

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

172

Southern California Edison Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern California Edison Company Southern California Edison Company Section 216(h) of the Federal Power Act,("FPA") added by the Energy Policy Act of 2005 ("EPAct 2005"),...

173

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network (OSTI)

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered in as many projects as are Absorption. units. Where once the only studies being analyzed were absorption vs. electric chiller operation costs. Now, the choice is: Why, Where, and How to choose between gas fired Absorption and GED chillers. WHY Absorption or Engine ? . Absorption uses the most environmentally friendly refrigerant - water. . Absorption chillers are chiller/heaters Absorption chillers are manufactured by the four US major manufacturers Absorption chillers have few moving parts . Engine chillers provide "free" hot water Engine chillers retrofit with DX systems . Engine chillers use less gas per ton WHERE Do Absorption And Engine Chillers Belong? . Absorption: Office buildings, restaurants, industries, churches, universities . Engine: Hospitals, universities, hotels, apartments, industries HOW To Choose Between Absorption And Engine Chillers? Energy cost Operation and maintenance costs Equipment cost Environmental concerns Thermal requirements . Space requirements Staff experience

Phillips, J. N.

1996-01-01T23:59:59.000Z

174

,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"8302013 10:41:24 AM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

175

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

176

Acoustic and thermal packaging of small gas turbines for portable power  

E-Print Network (OSTI)

To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

Tanaka, Shinji, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

177

Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources  

Science Conference Proceedings (OSTI)

A new three objective optimization technique is developed and applied to find the operating conditions for fission reactor heated Closed Cycle Gas Turbine (CCGT) space power systems at which maximum efficiency, minimum radiator area, and minimum total ...

Albert J. Juhasz / Jerzy Sawicki

2005-01-01T23:59:59.000Z

178

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

Chen, G.; Beale, W.T.

1990-04-03T23:59:59.000Z

179

Variable gas spring for matching power output from FPSE to load of refrigerant compressor  

DOE Patents (OSTI)

The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

1990-01-01T23:59:59.000Z

180

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plants cooling water

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

182

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

McElroy, James F. (Hamilton, MA); Chludzinski, Paul J. (Swampscott, MA); Dantowitz, Philip (Peabody, MA)

1987-01-01T23:59:59.000Z

183

Fuel cell power supply with oxidant and fuel gas switching  

DOE Patents (OSTI)

This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

1987-04-14T23:59:59.000Z

184

Future power market shares of coal, natural gas generators depend ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle capacity represented only 7% of total capacity in the region in 2011, but is projected to rise to 11% in 2040 in the Reference Case.

185

Natural gas exploration associated with fracture systems in Alleghenian thrust faults in the Greenbrier Formation, southern West Virginia.  

E-Print Network (OSTI)

??A hydrocarbon play of southern West Virginia targets the intersection of thrust faults with specific Mississippian reservoirs. Typical study area wells yield initial production rates (more)

Edmonds, Craig A.

2004-01-01T23:59:59.000Z

186

,"Nebraska Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

187

,"Hawaii Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

188

,"West Virginia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

189

,"Nevada Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

190

,"Kansas Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

191

,"Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

192

,"Alaska Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

193

,"Mississippi Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

194

,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

195

,"Virginia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

196

,"Arkansas Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

197

,"Connecticut Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

198

,"Minnesota Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

199

,"New Jersey Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

200

,"Florida Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Montana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

202

,"Tennessee Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

203

,"North Dakota Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

204

,"Massachusetts Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

205

,"Illinois Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

206

,"Oklahoma Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

207

,"Louisiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

208

,"Alabama Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

209

,"Maryland Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

210

,"Oregon Natural Gas Price Sold to Electric Power Consumers ...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

211

,"Georgia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

212

,"North Carolina Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

213

,"Arizona Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

214

,"Kentucky Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

215

,"Delaware Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

216

,"Wyoming Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

217

,"New York Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

218

,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

219

,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

220

,"Missouri Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Washington Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

222

,"Indiana Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

223

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

This technical progress report summarizes the objectives and progress on the following tasks associated with the project: Commercialization; Power plant development; Manufacturing facilities development; Testing facility development; Stack research; and Advanced research and technology development. The project will demonstrate a 250 kW molten carbonate fuel cell power plant based on the IMHEX stack design concept.

NONE

1998-01-01T23:59:59.000Z

224

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

from Stationary Gas Turbines. STAFF RECOMMENDATION Energy Commission staff reviewed the petition regarding Nitrogen Oxides from Stationary Gas Turbines. STAFF RECOMMENDATION Energy Commission staff CALIFORNIA ENERGY COMMISSION 1516 NINTH STREET SACRAMENTO. CA 95814-5512 STATE OF CALIFORNIA ENERGY

225

Analysis and Optimization of the Power Cycle Based on the Cold Energy of Liquefied Natural Gas  

Science Conference Proceedings (OSTI)

Liquid natural gas (LNG) delivered by sea-ships contains considerable cryogenic energy which can be used for power generation before its evaporation and introduction into the system of pipe line. Electric power generation utilizing LNG cold energy is ... Keywords: liquefied natural gast, cold energy recovery, pinch analysis, exergy, optimization

Lu Yuanwei; Yang Hongchang; Ma Chongfang

2011-01-01T23:59:59.000Z

226

Simulated coal gas MCFC power plant systems verification. Technical progress report  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-04-01T23:59:59.000Z

227

CMI\\Emissions\\CC policy and gas 10/12/05 1Climate change policy and its effect on market power in the gas market  

E-Print Network (OSTI)

The European Emissions Trading Scheme (ETS) limits CO2 emissions from covered sectors, especially electricity until December 2007, after which a new set of Allowances will be issued. The paper demonstrates that the impact of controlling the quantity rather than the price of carbon is to reduce the elasticity of demand for gas, amplifying the market power of gas suppliers, and also amplifying the impact of gas price increases on the price of electricity. A rough estimate using just British data suggests that this could increase gas market power by 50%. Key words Climate change, emissions trading, market power, gas, quotas vs taxes JEL classification

David Newbery; David Newbery

2005-01-01T23:59:59.000Z

228

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

229

Status of Westinghouse hot gas filters for coal and biomass power systems  

SciTech Connect

Several advanced, coal and biomass-based combustion turbine power generation technologies using fuels (IGCC, PFBC, Topping-PFBC, HIPPS) are currently under development and demonstration. A key developing technology in these power generation systems is the hot gas filter. These power generation technologies must utilize highly reliable and efficient hot gas filter systems if their full thermal efficiency and cost potential is to be realized. This paper reviews the recent test and design progress made by Westinghouse in the development and demonstration of hot gas ceramic barrier filters toward the goal of reliability. The objective of this work is to develop and qualify, through analysis and testing, practical hot gas ceramic barrier filter systems that meet the performance and operational requirements for these applications.

Newby, R.A.; Lippert, T.E.; Alvin, M.A.; Burck, G.J.; Sanjana, Z.N. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1999-07-01T23:59:59.000Z

230

Alliant Energy Interstate Power and Light (Gas and Electric)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1,500 - 25,000 Provider Customer Service Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential,...

231

Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power  

E-Print Network (OSTI)

studies of CSP systems were reviewed and screened. Ten studies on parabolic trough and power tower passed in this analysis. Results based on the six estimates for parabolic dish technologies are reported in our journal

232

Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?  

E-Print Network (OSTI)

High fossil fuel prices have rekindled interest in nuclear power. This paper identifies specific nuclear characteristics making it unattractive to merchant generators in liberalised electricity markets, and argues that non-fossil fuel technologies...

Roques, Fabien A; Nuttall, William J; Newbery, David; de Neufville, Richard

2006-03-14T23:59:59.000Z

233

Madison Gas & Electric - Clean Power Partner Solar Buyback Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

do not qualify) Wisconsin Program Type Performance-Based Incentive Rebate Amount 0.25kWh '''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be...

234

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

235

Producer gas power plants can cut the oil bills of the developing countries  

SciTech Connect

As a power-generation fuel substitute in developing countries, producer gas from coal, biomass, or waste could reduce oil-import bills while assuring a steady fuel supply. An international working group formed at the Royal Swedish Academy of Sciences is assisting developing countries in setting up simple producer-gas plants consisting of a downdraft gasifier, cyclone, filter, and cooler. Sweden gained expertise in this technology during World War II and now manufactures much of the equipment needed for producer-gas facilities. Depending on oil price, a dual-fuel power plant (15% diesel oil, 85% producer gas) could compete economically with a diesel-only plant, assuming extra labor requirements of 20 min/hr of operation for the gas-fired facility.

Not Available

1982-02-01T23:59:59.000Z

236

Indirect-fired gas turbine dual fuel cell power cycle  

DOE Patents (OSTI)

A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

Micheli, Paul L. (Sacramento, CA); Williams, Mark C. (Morgantown, WV); Sudhoff, Frederick A. (Morgantown, WV)

1996-01-01T23:59:59.000Z

237

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

238

Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites  

Science Conference Proceedings (OSTI)

An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

2010-02-19T23:59:59.000Z

239

Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors  

Science Conference Proceedings (OSTI)

Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased pressures in the natural gas market. The most significant illustration of these forces was the early 2007 suspension of development plans by a large power company, well before the Supreme Court's ruling on CO{sub 2} as a tailpipe pollutant and President Bush's call for global goals on CO{sub 2} emissions.

Platt, Jeremy B. [AAPG EMD Energy Economics and Technology (United States)], E-mail: jplatt@epri.com

2007-09-15T23:59:59.000Z

240

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION  

E-Print Network (OSTI)

Stresa, Italy, 26-28 April 2006 A SILICON-BASED MICRO GAS TURBINE ENGINE FOR POWER GENERATION X. C in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Closed Dual Fluid Gas Turbine Power Plant Without Emission Of Co  

E-Print Network (OSTI)

. This paper describes a construction and characteristics of a coal-gas-burning high eciency power plant which emits no carbon dioxide (CO 2 ) into the atmosphere. In the plant, CO 2 gas and superheated steam are used as the main and sub working uid, respectively, of a closed dual uid gas turbine power generation system. It is assumed that a coal gas whose principal compositions are CO, H2 , CO2 and CH4 is burnt in a combustor using oxygen, and that CO 2 gas and superheated steam are used as the main and sub working uid of a turbine, respectively. Consequently, the constituent gases of the combustion gas become CO2 and H2O. Thus, CO2 gas included in the exhaust gas can be easily separated at the condenser outlet from the condensate (H2O). Most of recovered CO 2 is recycled as the main working uid of the turbine. In the plant, high-temperature turbine exhaust gas is utilized in a waste heat boiler to produce superheated steam which is injected into the combustor in order to improve...

Into The Atmosphere; P. S. Pak; K. Nakamura; Y. Suzuki

1989-01-01T23:59:59.000Z

242

Life extension of gas turbines used for power generation  

SciTech Connect

Gas turbines have traditionally been used by electric utilities to supplement generating capacity during peak demand periods. As they age, the utility is faced with the decision of either replacing the units to maintain a reliable source of generating capacity, or extending the life of the units through the use of improved maintenance and monitoring techniques. This paper discusses some of the considerations for extended life operation of gas turbines. To perform this study, actual operating and failure data for 50 Pratt Whitney FT-4 gas turbines were collected from a cooperating utility and analyzed to identify predominant failure causes and components most frequently failed. Failure rates for individual engine modules were calculated as a function of engine age to identify time-dependent trends and their effect on engine reliability. Mean time between failures and engine availability were also determined and are presented. Based on the results of the analysis, potential improvements to operation and maintenance methods were identified and are discussed. 5 refs., 7 figs.

Lofaro, R.; Villaran, M.

1990-01-01T23:59:59.000Z

243

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

244

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

245

Gas use for power generation leads increase in natural gas use in ...  

U.S. Energy Information Administration (EIA)

... Louisiana led the nation in per-capita natural gas consumption overall due to a combination of its modest population of 4.5 million and the size of its ...

246

Advanced combustion technologies for gas turbine power plants  

DOE Green Energy (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

247

Simulated coal gas MCFC power plant system verification. Final report  

DOE Green Energy (OSTI)

The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

NONE

1998-07-30T23:59:59.000Z

248

NETL: News Release - Mine Test Seeks Capture of Powerful Greenhouse Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Mine Test Seeks Capture of Powerful Greenhouse Gas Mine Test Seeks Capture of Powerful Greenhouse Gas Potential for Major Reduction of Coal Mine Methane Emissions WASHINGTON, DC - The Department of Energy (DOE) has joined in sponsoring the first U.S. test of a system that may make a major contribution to reducing greenhouse gas emissions. Using a new application of existing technology, engineers will attempt to capture methane in underground coal mine air, and if successful could limit emission of a greenhouse gas with more than 20 times the warming potential of CO2. Methane in underground coal mine air constitutes approximately five percent of all U.S. methane emissions and is the equivalent of about 32 million tons of CO2 per year. The test will evaluate the long-term technical and economic feasibility of reducing methane emissions from underground coal mining.

249

Advanced gas turbines: The choice for low-cost, environmentally superior electric power generation  

SciTech Connect

In July 1993, the US Department of Energy (DOE) initiated an ambitious 8-year program to advance state-of-the-art gas turbine technology for land-based electric power generation. The program, known as the Advanced Turbine System (ATS) Program, is a joint government/industry program with the objective to demonstrate advanced industrial and utility gas turbine systems by the year 2000. The goals of the ATS Program are to develop gas turbine systems capable of providing low-cost electric power, while maintaining environmental superiority over competing power generation options. A progress report on the ATS Program pertaining to program status at DOE will be presented and reviewed in this paper. The technical challenges, advanced critical technology requirements, and systems designs meeting the goals of the program will be described and discussed.

Zeh, C.M.

1996-08-01T23:59:59.000Z

250

Gas Supply: Outlook for Critical New Sources to Meet Growing Gas Requirements: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The outlook for natural gas supplies is pivotal to long-term changes in the U.S. generation mix and to immediate costs of electricity. The price shock of 2000-01 was followed by another in 2002-03, and prices remain anomalously high. A sea change in expectations for natural gas is taking place, driven primarily by persistent difficulties expanding supplies in the face of accelerating depletion. This report assesses the lackluster recent gas supply response and the outlook for two major emerging sources, ...

2004-01-27T23:59:59.000Z

251

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

252

Hybrid power towers: A solar boost for natural gas in the Southwest  

SciTech Connect

A new concept to combine central receiver technology with highly efficient natural gas turbines has sparked interest among key utilities in the southwestern United States. The result is a fully dispatchable hybrid power tower that`s expected to use 30% less natural gas than its conventional counterpart. Developed by researcher at the US DOE`s National Renewable Energy Laboratory (NREL), the hybrid power tower is the focus of a developing partnership with the Sacramento Municipal Utility District (SMUD) in California. Although some solar advocates criticize the use of nonrenewable natural gas, the hybrid concept mitigates many of the current barriers to commercializing solar thermal technology. NREL`s innovative concept uses a small central receiver plant to preheat combustion air for natural gas turbines. Solar thermal energy displaces the use of nonrenewable fossil fuel throughout much of the day. When solar heat is no longer available, the natural gas turbines ensure continuous operation to meet a utility`s need for baseload, intermediate, or peaking power, as desired. The combined-cycle power tower has many attractive features, but the bottom line is it can be commercialized in today`s utility market.

Brown, L.R. [National Renewable Energy Lab., Golden, CO (United States)

1995-08-01T23:59:59.000Z

253

Bibliography and Literature Database, Ecology of the Southern California Bight  

E-Print Network (OSTI)

faults Estimated oil and gas reserves Pacific Outeroceanography Estimated oil and gas reserves Pacific outerEstimated oil and gas reserves southern California Outer

Allen, L

1989-01-01T23:59:59.000Z

254

Geothermal Power Production from Brine Co-Produced from Oil and Gas Wells  

Science Conference Proceedings (OSTI)

Millions of barrels of water (brine) per day are co-produced from oil and gas wells. Currently, the oil and gas industry views this as a waste stream that costs millions of dollars per year to manage, through either treatment or disposal/reinjection. A significant percentage of the co-produced brine, however, flows at sufficient rate and temperature to generate power using a binary power plant, and this is viewed by some as a potential value stream. The value lies in that the co-produced water is "free" ...

2012-04-30T23:59:59.000Z

255

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

DOE Green Energy (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

256

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

257

Performance Characteristics of an Electrochemically Powered Turboprop: A Comparison with State of the Art Gas Turbines  

E-Print Network (OSTI)

As we search for alternative fuels and energy efficient vehicles it is important to consider the role of electrochemical fuel cells in aircraft propulsion systems. This paper focuses on this issue with regards to small turboprop aircraft. An electrochemical propulsion system would employ liquid hydrogen in an air breathing fuel cell that would generate electricity to run electric motors which in tum power the props. The major question this paper addresses is: under what conditions will a hydrogen/fuel cell power system be superior to a state of the art hydrogen/gas turbine power system? The systems are compared on a fuel consumption basis, a cost basis, and a reliability/ maintainability basis. The analysis show that both specific power and efficiency play an important role in determining which configuration uses less fuel. In general, the fuel cell system is heavier but more efficient than the gas turbine. It appears that the fuel cell system will begin to compete with the gas turbine as the power densities surpass 1 kw/kg and the efficiencies approaches .45. From a cost perspective gas turbines presently cost $500/ Kw and fuel cells are far more expensive. However, the raw materials in a fuel cell are inexpensive and could conceivably be cheaper, thus making the fuel cells increasingly attractive. From a reliability perspective, the fuel cell system appears to have a significant advantage due to the lack of moving parts and the high reliability of electric motors.

Johnson, M. C.; Swan, D. H.

1993-03-01T23:59:59.000Z

258

The effect of prechambers on flame propagation in a natural-gas powered engine  

DOE Green Energy (OSTI)

Large-bore two-stroke natural-gas-fueled engines commonly are located along natural gas pipelines, siphoning off a small portion of gas from the pipeline for use as a fuel, in order to pump the remaining gas along the pipeline. The KIVA-3 computational fluid dynamics program was used to simulate the compression stroke, combustion, and power stroke in a natural-gas-fueled engine by solving the full Navier-Stokes equations. These calculations include cases with and without prechambers. Prechamber stoichiometry and spark locations were independently varied with the goal of understanding how various prechamber parameters influence the ignition of the fuel-air charge in the main chamber. The goal is to allow the use of very lean main-chamber charges to minimize nitrogen oxide (NO{sub x}) production. These calculations were performed in both two and three dimensions.

Tonse, S.R.; Cloutman, L.D.

1995-08-01T23:59:59.000Z

259

State-of-the-art gas turbine and steam turbine power plant  

SciTech Connect

A state-of-the-art power plant in which the heat from solid or low quality fuels is utilized to heat indirectly a motive stream composition of a mixture of steam and gases to drive a gas turbine. The thermal energy from the burning of the solid or low quality fuels is also utilized to generate steam which powers a steam turbine. Excess steam may be generated to be utilized as process steam.

Willyoung, D. M.; Anand, A. K.

1985-03-12T23:59:59.000Z

260

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Southern California Post-SONGS Relies Even More on Natural Gas Southern California Post-SONGS Relies Even More on Natural Gas No energy planners counted on 2,150 megawatts (MW) of power this summer from the shuttered San Onofre Nuclear Generating Station (SONGS), but with the June 7 announcement by owner Southern California Edison that it is permanently retiring the troubled SONGS, planners and electricity consumers will rely even more on natural gas for power generation. Since June 2012, 2,214 MW of new power generating capacity has come on line in Southern California, representing more than 9% of expected available generation this summer. About three-fourths of this capacity is fueled by natural gas. For the state as a whole, natural gas accounts for most of the expected available generation this summer. In its Summer Loads and

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

262

Impact study on the use of biomass-derived fuels in gas turbines for power generation  

DOE Green Energy (OSTI)

This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

Moses, C.A.; Bernstein, H. [Southwest Research Inst., San Antonio, TX (United States)

1994-01-01T23:59:59.000Z

263

Microsoft PowerPoint - Investigation of Gas Solid_Choudhuri_Love  

NLE Websites -- All DOE Office Websites (Extended Search)

INVESTIGATION OF GAS-SOLID FLUIDIZED BED INVESTIGATION OF GAS-SOLID FLUIDIZED BED DYNAMICS WITH NON-SPHERICAL PARTICLES PI - Ahsan Choudhuri, Co-PI - Norman Love Center for Space Exploration and Technology Research Department of Mechanical Engineering University of Texas at El Paso Presented by: Norman Love Project Participants * PI: Ahsan Choudhuri * Co-PI: Norman Love * Doctoral: MD Rashedul Sarker * Masters: ASM Raufur Chowdhury Graduates Mario Ruvalcaba- PhD - (Now at Federal Mogul) MD Rashedul Sarker- MS - (Continuing on at UTEP) MD Mahamudur Rahman- MS - (Now at Drexel Univ) cSETR POWERING INNOVATION THROUGH DIVERSITY * Gasifier:  Types of gasifiers used commercially: Introduction U.S. Department of Energy, Clean Coal & Natural Gas Power Systems,

264

Valuing Gas Power Plants with CO2 Capture and Tradable Quotas  

E-Print Network (OSTI)

We analyze investment in a gas fired power plant in a regime with tradable quotas for CO 2 emissions and with an option to install CO 2 capture technology. Such equipment is very costly and we find that high subsidies are required to entice the investors to install it, even when the captured CO 2 can be sold for enhanced oil recovery. Investment valuation is based on market prices of long term prices of energy forward contracts. The plant's operating flexibility and the investment delay opportunity under gas and electricity price uncertainty is taken into account. Based on prices from the Scandinavian electricity market and the UK natural gas market we find that the power plant investment should be delayed.

Thomas Dobbe; Stein-erik Fleten; Sjur Sigmo; T Power Plant Lifetime [years

2003-01-01T23:59:59.000Z

265

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

266

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris CO2 capture membrane was scaled up with MTRs commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Services Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

267

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

268

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

269

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

270

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents (OSTI)

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

271

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

272

Outlook for Regional Generation Capacity Balances: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

The United States is in the midst of a power plant expansion boom, achieving record additions of natural gas-fired combustion turbines and combined-cycle units over the past two years, with 68,000 MW already added since 1998 and 17,000 MW more slated for completion by the end of 2001. This report provides a region-by-region accounting of how this new capacity -- plus hundreds of megawatts of possible additional natural gas and coal capacity -- may change reserve margins and result in many other impacts a...

2002-01-23T23:59:59.000Z

273

Impact of Natural Gas Market Conditions on Fuel Flexibility Needs for Existing and New Power Generation: Report Series on Natural Ga s and Power Reliability  

Science Conference Proceedings (OSTI)

The ongoing surge in new gas-fired capacity is changing the landscape of how natural gas will be used for power generation, leading to some surprising effects. While the new machines bring greater efficiency, the exit of dual-fuel units leads to a loss in fuel flexibility, greater natural gas price volatility, and less reliability of natural gas-fired generation. This report explores these effects systematically, bringing fresh insight on gas use in the electric sector, its market effects, and the ever-c...

2002-01-31T23:59:59.000Z

274

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

275

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

276

,"South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:08 PM" "Back to Contents","Data 1: South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045SC2" "Date","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" 35611,2731 35976,8703 36341,10453

277

,"South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" "Sourcekey","N3045SC2" "Date","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)" 36906,357

278

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

279

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study from Norway on Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume Quiviger and Howard Herzog (hjherzog@mit.edu; +1-617-253-0688) Massachusetts Institute of Technology (MIT) Room E40-471 1 Amherst Street Cambridge, MA 02139 INTRODUCTION On Thursday March 9, 2000, Norwegian Prime Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about a controversial proposal to build two gas-fired power plants. The government had been rejecting the building of the proposed plants for months. Bondevik and his coalition government wanted to hold off construction until new technology, such as carbon sequestration, allowed building more environmentally friendly plants. They argued that their position was supported by European

280

Pacific Gas and Electric Company Presentation by Steve Metague  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metague Metague Sr. Director, Project Development Pacific Gas & Electric Co. 2012 National Electric Transmission Congestion Study Western Regional Workshop December 13, 2011 - Portland, Oregon California Transmission Planning Group (CTPG) * CTPG is a voluntary organization comprised of all the entities within California responsible for transmission planning: - California Independent System Operator (ISO) - Imperial Irrigation District (IID) - Los Angeles Department of Water and Power (LADWP) - Pacific Gas and Electric (PG&E) - Southern California Edison (SCE) - Southern California Public Power Authority (SCPPA) - San Diego Gas and Electric (SDG&E) - Sacramento Municipal Utility District (SMUD) - Transmission Agency of Northern California (TANC) - Turlock Irrigation District (TID)

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

282

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

283

Membrane Process to Capture CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

284

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

285

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticlesparticles with diameters less than 100 nanometerscan occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industrys attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

286

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

DOE Green Energy (OSTI)

Advocates of renewable energy have long argued that wind power and other renewable technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that wind and other renewables provide. This paper attempts to quantify this benefit by equating it with the cost of achieving price stability through other means, particularly gas-based financial derivatives (futures and swaps). We find that over the past two years, natural gas consumers have had to pay a premium of roughly 0.50 cents/kWh over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost is potentially large enough to tip the scales away from new investments in natural gasfired generation and in favor of investments in wind power and other renewable technologies.

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-05-31T23:59:59.000Z

287

1 QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGE AGAINST VOLATILE NATURAL GAS PRICES  

E-Print Network (OSTI)

Advocates of renewable energy have long argued that wind power and other renewable technologies can mitigate fuel price risk within a resource portfolio. Such arguments made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001 have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that wind and other renewables provide. This paper attempts to quantify this benefit by equating it with the cost of achieving price stability through other means, particularly gas-based financial derivatives (futures and swaps). We find that over the past two years, natural gas consumers have had to pay a premium of roughly 0.50/kWh over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost is potentially large enough to tip the scales away from new investments in natural gasfired generation and in favor of investments in wind power and other renewable technologies.

Mark Bolinger; Ryan Wiser; William Golove; Mark Bolinger; Ryan Wiser; William Golove

2002-01-01T23:59:59.000Z

288

Gas breakdown driven by L band short-pulse high-power microwave  

SciTech Connect

High power microwave (HPM) driven gas breakdown is a major factor in limiting the radiation and transmission of HPM. A method that HPM driven gas breakdown could be obtained by changing the aperture of horn antenna is studied in this paper. Changing the effective aperture of horn antenna can adjust the electric field in near field zone, leading to gas breakdown. With this method, measurements of air and SF{sub 6} breakdowns are carried out on a magnetically insulated transmission-line oscillators, which is capable of generating HPM with pulse duration of 30 ns, and frequency of 1.74 GHz. The typical breakdown waveforms of air and SF{sub 6} are presented. Besides, the breakdown field strengths of the two gases are derived at different pressures. It is found that the effects of air and SF{sub 6} breakdown on the transmission of HPM are different: air breakdown mainly shortens the pulse width of HPM while SF{sub 6} breakdown mainly reduces the peak output power of HPM. The electric field threshold of SF{sub 6} is about 2.4 times larger than that of air. These differences suggest that gas properties have a great effect on the transmission characteristic of HPM in gases.

Yang Yiming; Yuan Chengwei; Qian Baoliang [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

2012-12-15T23:59:59.000Z

289

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

290

"1. Scherer","Coal","Georgia Power Co",3400 "2. Bowen","Coal","Georgia Power Co",3234  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "1. Scherer","Coal","Georgia Power Co",3400 "2. Bowen","Coal","Georgia Power Co",3234 "3. Vogtle","Nuclear","Georgia Power Co",2302 "4. Wansley","Coal","Georgia Power Co",1793 "5. Edwin I Hatch","Nuclear","Georgia Power Co",1759 "6. Harllee Branch","Coal","Georgia Power Co",1607 "7. Yates","Coal","Georgia Power Co",1286 "8. McIntosh Combined Cycle Facility","Gas","Georgia Power Co",1257 "9. Murray Energy Facility","Gas","Duke Energy Generation Services",1250 "10. Wansley Combined Cycle","Gas","Southern Power Co",1143

291

Proceedings of the Department of Energy advanced gas turbine central power systems workshop  

SciTech Connect

The basic objective of the DOE Central Power Systems group is the development of technology for increasing the use of coal in central station electric power generation in an economical and environmentally acceptable manner. The two major research and development areas of this program are the Open Cycle Gas Turbine System and the Closed Cycle Gas Turbine System. Recognizing that the ultimate success of the DOE program is measured by end-user acceptance of the technology developed, the workshop was held to obtain utility industry comments and suggestions on the development of these systems and their potential use by electric power utilities. Representatives of equipment manufacturers, architect and engineering firms, and universities were also invited as participants to provide a comprehensive review of the technology development and implementation process. The 65 participants and observers examined the following topics: technical considerations of the Open Cycle and of the Closed Cycle Gas Turbine program; commercialization of both systems; and regulatory impacts on the development of both systems. Each group evaluated the existing program, indicating R and D objectives that they supported and cited recommendations for modifications and expansion of future R and D work.

D' Angelo, S. (ed.)

1980-04-01T23:59:59.000Z

292

Review of Potential Federal and State Green House Gas Policy Drivers for Combined Heat and Power Systems  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb the reduction of green house gas emissions, all options in the electric power value chain must be considered and evaluated. The more efficient utilization of natural gas fuel via use of distributed combined cooling, heating, and power (CHP) systems in the end-use sector may be one option to mitigating GHG emissions. This research project was undertaken to assess the extent...

2007-12-19T23:59:59.000Z

293

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

DOE Green Energy (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

294

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01T23:59:59.000Z

295

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

Science Conference Proceedings (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: Phase 1 market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. Phase 2 Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

296

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

297

New infrastructure boosts West Virginia, southern Pennsylvania ...  

U.S. Energy Information Administration (EIA)

A notable increase since early 2012 in natural gas production in West Virginia and nearby counties in southern Pennsylvania continued through July 2013.

298

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

299

Shale gas in the southern central area of New York State: Part I. How to find and develop shale gas in New York State  

SciTech Connect

The Appalachian Basin contains vast volumes of shale gas, and a significant potion of this is contained in three shales in south-central New York - the Rhinestreet, the Geneseo and the Marcellus. The economics of shale-gas exploration in New York are not very attractive to the large oil and gas companies, which seek a rapid return on their investments. The situation may be quite different for organizations which are more concerned with security of supply and stability of cost; these may include manufacturing companies, colleges, hospitals, state institutions and industrial or agricultural cooperatives. For these, production of even a modest 50 Mcf/day/well, declining slowly over many years, would be appealing if it could be guaranteed. To date three wells have been artificially fractured in the Marcellus shale of New York, and all three appear to be producers. This is only a small sample, and one of the wells is known to have encountered natural fractures. However, it does raise the possbility that (while nothing in exploration can be truly guaranteed) the chances of extracting at least some gas from the Marcellus - using modern fracturing techniques - are good. The chances are improved if geological techniques can identify zones of a suitable degree of natural fracturing in the shale. These techniques are aided by detailed structure maps of the shale units; such a map has been prepared for the Geneseo shale, as part of this project. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus formation. Shale-gas wells should be drilled with air. The dry open hole should be logged with gamma-ray, density, temperature and noise logs. The shale should be artificially fractured using a nitrogen stimulation technique. Recommendations are given for each of these steps in the text.

Not Available

1981-04-01T23:59:59.000Z

300

Shale gas in the southern central area of New York State: Part II. Experience of locating and drilling four shale-gas wells in New York State  

Science Conference Proceedings (OSTI)

Four shale-gas wells have been located and drilled in the south-central area of New York State as part of this project. The four wells that were drilled are: the Rathbone well, in Steuben County, was located on the north side of a graben, in an old shale-gas field; it penetrated the Rhinestreet, Geneseo and Marcellus shales. Artificial stimulation was performed in the Rhinestreet, without marked success, and in the Marcellus; the latter formation has a calculated open flow of 110 Mcf/day and appears capable of initial production of 100 Mcf/day against a back-pressure of 500 psi. The Dansville well, in Livingston County, tested the Geneseo and Marcellus shales at shallower depth. Artificial stimulation was performed in the Marcellus. The calculated open flow is 95 Mcf/day, and the well appears capable of initial production of 70 Mcf/day against a back-pressure of 300 psi. The Erwin and N. Corning wells, both near Corning in Steuben County, were designed to test the possibility of collecting gas from a fractured conduit layer connecting to other fracture systems in the Rhinestreet shale. The N. Corning well failed; the expected conduit was found to be only slightly fractured. The Erwin well encountered a good initial show of gas at the conduit, but the gas flow was not maintained; even after artificial stimulation the production is only 10 Mcf/day. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus shale formation. Important factors not yet established are the decline rate of Marcellus production and the potential of the Geneseo after stimulation.

Not Available

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas production and behavior in the coolant of the SP-100 Space Nuclear Power System  

Science Conference Proceedings (OSTI)

The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S{sub 4}/P{sub 1} approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy. 104 refs., 78 figs., 28 tabs.

McGhee, J.M.

1989-08-01T23:59:59.000Z

302

Small-scale AFBC-hot air gas turbine power cycle  

SciTech Connect

The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

Ashworth, R.C. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States); Hall, A.W. [Morgantown Energy Technology Center, Morgantown, WV (United States)

1995-02-01T23:59:59.000Z

303

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

304

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network (OSTI)

Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton UniversityThe Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett William Kerrigan B.Eng., Carleton University, 2008 A Thesis

Victoria, University of

305

DOE/EA-1616: Environmental Assessment for Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama (DOE/EA-1616) (9/2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16 16 CARBON RESEARCH CENTER PROJECT AT SOUTHERN COMPANY SERVICES' POWER SYSTEMS DEVELOPMENT FACILITY NEAR WILSONVILLE, ALABAMA FINAL ENVIRONMENTAL ASSESSMENT U.S. DEPARTMENT OF ENERGY Office of Fossil Energy National Energy Technology Laboratory SEPTEMBER 2008 COVER SHEET Responsible Agency: U.S. Department of Energy Title: Carbon Research Center Project, Draft Environmental Assessment (DOE/EA- 1616) Location: Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama Contact: For further information about this Environmental Assessment, contact: Roy Spears, Document Manager National Energy Technology Laboratory

306

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

SciTech Connect

Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); University of technology, faculty of Process and Chemical Engineering, Warsaw (Poland); Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, Janusz [Institute of Atomic Energy, Swierk (Poland)

2003-08-26T23:59:59.000Z

307

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

supply contracts and natural gas storage. Lacking sufficientsupply contracts and natural gas storage facilities. Since,

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

308

Ford Liquefied Petroleum Gas-Powered F-700 May Set Sales Records  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

he introduction in 1992 of an he introduction in 1992 of an American-made truck with a fully factory-installed/war- ranted liquefied petroleum gas (LPG) engine represents another "Ford first" in the alternative fuel arena. Now the company has introduced an LPG- powered F-700, a medium/heavy- duty truck. According to Tom Steckel, Ford's medium-duty marketing man- ager, Ford's latest sales figures already prove the alternative fuel F-700's popularity. With a little more than 10 months of the model year finished, Ford has produced 1600 units and ordered 600 more, for a total of 2200 units. That's triple the number of LPG units produced and ordered at the same time last year. In addition, the possibility of applying federal and state tax credits is being investigated. Cummins B 5.9G Natural Gas

309

A Silicon-Based Micro Gas Turbine Engine for Power Generation  

E-Print Network (OSTI)

This paper reports on our research in developing a micro power generation system based on gas turbine engine and piezoelectric converter. The micro gas turbine engine consists of a micro combustor, a turbine and a centrifugal compressor. Comprehensive simulation has been implemented to optimal the component design. We have successfully demonstrated a silicon-based micro combustor, which consists of seven layers of silicon structures. A hairpin-shaped design is applied to the fuel/air recirculation channel. The micro combustor can sustain a stable combustion with an exit temperature as high as 1600 K. We have also successfully developed a micro turbine device, which is equipped with enhanced micro air-bearings and driven by compressed air. A rotation speed of 15,000 rpm has been demonstrated during lab test. In this paper, we will introduce our research results major in the development of micro combustor and micro turbine test device.

Shan, X -C; Maeda, R; Sun, Y F; Wu, M; Hua, J S

2007-01-01T23:59:59.000Z

310

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

DOE Green Energy (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

311

Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas  

SciTech Connect

This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and

Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

2012-03-31T23:59:59.000Z

312

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

313

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

314

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

315

Shale gas in the southern central area of New York State. Volume III. Experience of drilling five shale-gas wells in New York State  

SciTech Connect

Five shale-gas wells have been located and drilled in the South-Central areas of New York State as part of this program. The program was undertaken by Arlington Exploration Company (AEC) during 1981 and 1982. The wells were drilled on educational properties in an attempt to demonstrate the economic prospect of natural gas for institutional and small commercial consumers to develop their own source of energy. All five wells were completed in the Marcellus section of the Devonian shale. Each of the five wells was connected to an appropriate heat load for the purpose of production testing. The project supports the theory that a well drilled anywhere in South-Central New York and completed in the Marcellus Shale using modern fracturing techniques (i.e. nitrogen foam) is likely to produce some gas. Important factors not yet predictable are the decline rate of Marcellus production and the volume of recoverable reserves. Depths to the Marcellus Shale generally increase from north (i.e. Houghton College) to south (i.e. Portville Central School).

Not Available

1983-03-01T23:59:59.000Z

316

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network (OSTI)

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

317

Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach  

E-Print Network (OSTI)

Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, $\\delta$, and fluid velocity divergence, $\\theta$, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and $\\Lambda$-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard $\\Lambda$CDM predictions for the matter power spectrum (with and without neutrinos) are quantified.

E. L. D. Perico; Alex E. Bernardini

2011-02-19T23:59:59.000Z

318

Program on Technology Innovation: Literature Review of Issues Related to the Atmospheric Impacts of Natural Gas Power Plants  

Science Conference Proceedings (OSTI)

Natural gas is set to become an increasingly larger portion of the power generation fuel mix in the United States in upcoming years. The EIA estimates that 96.65 gigawatts (GW) of new electricity capacity will be added in the United States between 2009 and 2015. With the renewed interest in the use of this fuel in a variety of power plant designs, a review of recent research investigating the environmental impacts of natural gas power plantsin particular those from atmospheric emissionswas warranted. Thi...

2012-05-31T23:59:59.000Z

319

Gas Supply Outlook - Gauging Wellhead Deliverability Now and in the Future: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

While developers are postponing or cutting back plans for new natural gas-fired plants, the next few years will record additions of gas-fired capacity. Over the long term, this growth is expected to continue, causing a 30 percent increase in U.S. natural gas demand by 2015. Are there any limits to the U.S. "dash to gas"? Extraordinarily high gas prices during the winter of 2000-01 offered a warning. The current study investigates the availability of natural gas, asking what is reasonable to expect.

2002-02-12T23:59:59.000Z

320

Outlook for Capacity Retirements Following U.S. Boom in New Supplies: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

While entrepreneurial exuberance for power plant development has evaporated in the face of market saturation, depressed power prices, and tightening credit, the legacy of the power plant building boom is record additions of gas-fired turbines and combined cycle units between 1998 and 2007. These are contributing to a wave of fossil plant retirements, projected for the first time in this report. The combination of recent cancellations and impending retirements reduces the outlook for overbuilding, yet res...

2003-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

supply contracts and natural gas storage. Lacking sufficientsupply contracts and natural gas storage facilities. Since,natural gas utilities, Xcel Energy noted that the cost of seasonal storage

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

322

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger, RyanAGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger, Ryanwake of unprecedented natural gas price volatility during

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

323

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger, RyanAGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger, Ryanof unprecedented natural gas price volatility during the

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

324

Profitability Comparison Between Gas Turbines and Gas Engine in Biomass-Based Power Plants Using Binary Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

This paper employs a binary discrete version of the classical Particle Swarm Optimization to compare the maximum net present value achieved by a gas turbines biomass plant and a gas engine biomass plant. The proposed algorithm determines the optimal ...

P. Reche Lpez; M. Gmez Gonzlez; N. Ruiz Reyes; F. Jurado

2007-06-01T23:59:59.000Z

325

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

326

Spectrographic temperature measurement of a high power breakdown arc in a high pressure gas switch  

Science Conference Proceedings (OSTI)

A procedure for obtaining an approximate temperature value of conducting plasma generated during self-break closure of a RIMFIRE gas switch is described. The plasma is in the form of a breakdown arc which conducts approximately 12 kJ of energy in 1 {mu}s. A spectrographic analysis of the trigger-section of the 6-MV RIMFIRE laser triggered gas switch used in Sandia National Laboratory's ''Z-Machine'' has been made. It is assumed that the breakdown plasma has sufficiently approached local thermodynamic equilibrium allowing a black-body temperature model to be applied. This model allows the plasma temperature and radiated power to be approximated. The gas dielectric used in these tests was pressurized SF{sub 6}. The electrode gap is set at 4.59 cm for each test. The electrode material is stainless steel and insulator material is poly(methyl methacrylate). A spectrum range from 220 to 550 nanometers has been observed and calibrated using two spectral irradiance lamps and three spectrograph gratings. The approximate plasma temperature is reported.

Yeckel, Christopher; Curry, Randy [Department of Computer and Electrical Engineering, Center for Physical and Power Electronics, University of Missouri--Columbia, Columbia, Missouri 65211 (United States)

2011-09-15T23:59:59.000Z

327

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

328

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

hedges include fixed-price natural gas supply contractsfixed-price gas supply contracts and natural gas storage.natural gas storage facilities. Since, in contrast to many financial hedges, physical supply

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

329

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

Gas Pricing by Regulated Natural Gas Utilities, Docket No.A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,A HEDGE AGAINST VOLATILE NATURAL GAS PRICES Mark Bolinger,

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

330

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

331

Wind Characteristics in Southern Wyoming  

Science Conference Proceedings (OSTI)

Measurements of wind from a network of surface anemometers and a 107 m tower have been analyzed for southern Wyoming where a project for large-scale generation of electricity from wind power is underway. Topographically forced channeling of ...

Brooks E. Martner; John D. Marwitz

1982-12-01T23:59:59.000Z

332

Test results of a steam injected gas turbine to increase power and thermal efficiency  

Science Conference Proceedings (OSTI)

The desire to increase both power and thermal efficiency of the gas turbine (Brayton cycle) engine has been pursued for a number of years and has involved many approaches. The use of steam in the cycle to improve performance has been proposed by various investigators. This was most recently proposed by International Power Technology, Inc. (IPT) and has been tested by Detroit Diesel Allison (DDA), Division of General Motors. This approach, identified as the Cheng dual-fluid cycle (Cheng/DFC), includes the generation of steam using heat from the exhaust, and injecting this steam into the engine combustion chamber. Test results on an Allison 501-KB engine have demonstrated that use of this concept will increase the thermal efficiency of the engine by 30% and the output power by 60% with no increase in turbine inlet temperature. These results will be discussed, as will the impact of steam rate, location of steam injection, turbine temperature, and engine operational characteristics on the performance of the Cheng/DFC.

Messerlie, R.L.; Tischler, A.O.

1983-08-01T23:59:59.000Z

333

Valuing a gas-fired power plant: A comparison of ordinary linear models, regime-switching approaches, and models with stochastic volatility  

E-Print Network (OSTI)

and natural gas daily spot prices and suggests that with the aim of valuing a gas-fired power plant, there is limited information about modelling electricity and natural gas spot prices distinctly, i.e., taking-run evolution of energy prices, such as oil, coal, and natural gas, and suggests that although the long

334

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

335

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

336

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

337

Long range forecast of power demands on the Baltimore Gas and Electric Company system. Volume 1  

SciTech Connect

The report presents the results of an econometric forecast of peak and electric power demands for the Baltimore Gas and Electric Company (BGandE) through the year 2003. The report describes the methodology, the results of the econometric estimations and associated summary statistics, the forecast assumptions, and the calculated forecasts of energy usage and peak demand. Separate models were estimated for summer and winter residential electricity usage in both Baltimore city and the non-city portion of the BGandE service area. Equations were also estimated for commercial energy usage, industrial usage, streetlighting, and for losses plus Company use. Non-econometric techniques were used to estimate future energy use by Bethlehem Steel Corporation's Sparrows Point plant in Baltimore County, Conrail, and the Baltimore Mass Transit Administration underground rail system. Models of peak demand for summer and winter were also estimated.

Estomin, S.L.; Kahal, M.I.

1985-09-01T23:59:59.000Z

338

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

339

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

340

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CO{sub 2} Capture Membrane Process for Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

Because the fleet of coal-fired power plants is of such importance to the nation??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ? Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ? Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ? Development and fabrication of membrane hollow fibers and modules from candidate polymers; ? Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ? Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

Lora Toy; Atish Kataria; Raghubir Gupta

2011-09-30T23:59:59.000Z

342

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

343

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Prices headed up the middle of last week despite seasonal or cooler temperatures everywhere but California (See Temperature Map) (See Deviation from Normal Temperatures Map) and the July 4th holiday, regarded as one of the lowest natural gas consumption days. As expected, the resulting 10-cent-per-MMBtu gain at the Henry Hub on Thursday compared with the previous Friday was undone the following day. The futures price for August delivery was able to stay ahead of the previous week by 12.2 cents to settle at $3.218 on Friday. Spot natural gas prices for large packages in southern California increased as much as $2.71 per MMBtu as temperatures soared and gas-fired power plants endeavored to meet air conditioning demand. Prices started to recede as temperatures abated by the end of the week. Strong gas supplies across the country supported another hefty net addition to storage of 105 Bcf.

344

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network (OSTI)

Perspectives . . . . . . . . . . . . Gas-Liquid Interface5.4 A Novel Gas-Liquid Interface Model . . . . 5.4.1Chapter 5 deals with a novel gas/liquid interface. Chapter 6

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

345

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

346

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

QUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGEQUANTIFYING THE VALUE THAT WIND POWER PROVIDES AS A HEDGEenergy have long argued that wind power and other renewable

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

347

Today in Energy - Year-to-date natural gas use for electric power ...  

U.S. Energy Information Administration (EIA)

Natural gas used to generate electricity so far this year is below the high level during the comparable 2012 period, when low natural gas prices led to significant ...

348

Year-to-date natural gas use for electric power generation is down ...  

U.S. Energy Information Administration (EIA)

Natural gas used to generate electricity so far this year is below the high level during the comparable 2012 period, when low natural gas prices led to significant ...

349

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

natural gas- fired generation and in favor of investments in wind powerpower, which has nearly achieved economic parity with natural gas-fired generation

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

350

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

351

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

Science Conference Proceedings (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

352

INFORMATION MEETING ON GAS-COOLED POWER REACTORS, OAK RIDGE NATIONAL LABORATORY, OCTOBER 21-22, 1958  

SciTech Connect

This meeting is one of a series of Civilian Power Reactor Conferences and was held colncident with an AEC invitation to industry to bid on the construction of a gas-cooled facility. Papers are presented on design studles, hazards, components, costs, materials, and design concepts for specific reactors. (W.D.M.)

1959-10-31T23:59:59.000Z

353

Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners  

SciTech Connect

The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

Clark Atlanta University

2002-12-02T23:59:59.000Z

354

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume 1: Field Test Results  

Science Conference Proceedings (OSTI)

This report presents results of an effort to develop a low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1997-11-26T23:59:59.000Z

355

REPORT OF THE OBJECTIVES AND PLANS FOR THE AEC'S CIVILIAN POWER GAS COOLED REACTOR PROGRAM  

SciTech Connect

Progress in the U. S. civilian power gas-cooled reactor program is discussed. Gas reactors having technical features of high conversion ratio, high temperature, high fuel burnup, and capability of construction in large sizes make them very attractive as potential producers of economic power in the very near term. The operation of Peach Bottom-HTGR and EGCR in late 1964 and 1965, respectively, will contribute to the successful exploitation of thermal gas- cooled reactors. Since the graphite fuel concept promises very low fuel cycle costs along with reactor coolant conditions that can exceed current practice, it was concluded that the concept provides a long term potential that promises some very exciting possibilities. (auth)

Pahler, R.E.

1963-06-01T23:59:59.000Z

356

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL provides middle distillates to an unsaturated global market and offers opportunities to generate power for commercial purposes from waste by-product streams, which normally are associated with increased expenses incurred from additional handling cost. The key concept investigated in this work is the possibility of integrating the GTL process with power generation using conventional waste by-product steam streams. Simulation of the integrated process was conducted with the aim of identifying the critical operating conditions for successful integration of the GTL and power generation processes. About 500 MW of electric power can be generated from 70% of the exit steam streams, with around 20 to 25% steam plant thermal efficiency. A detailed economic analysis on the LNG, stand-alone GTL, and Integrated GTL Power-Generation plants indicates that the integrated system is more profitable than the other options considered. Justifying the technology and economics involved in the use of the by-product streams to generate power could increase the net revenue and overall profitability of GTL projects. This technology may be transferable to GTL projects in the world, wherever a market for generated power exists.

Adegoke, Adesola Ayodeji

2006-08-01T23:59:59.000Z

357

Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Home Energy Solutions and Gas) - Home Energy Solutions and Performance Programs Energy Efficiency Fund (Gas) - Home Energy Solutions and Performance Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Other Ventilation Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Varies Provider Customer Service The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company and The United Illuminating Company, Connecticut Natural Gas, Southern Connecticut Gas, and Yankeegas customers. The Home Energy Solutions Program provides weatherization assistance to any

358

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

359

An Investigation of the Application of the Gas Generator-Free Turbine Cycle to a Nuclear Powered Aircraft  

SciTech Connect

This study has investigated the feasibility of installing a gas generator-free turbine type power plant in the R3Y aircraft, using a circulating fuel reactor as a power source. Two variations of the cycle were considered. The split flow cycle bleeds high temperature, high pressure air from the gas generator directly to the free turbine in the wing. The through flow cycle partially expands the high temperature, high pressure air through the compressor turbine of the gas generator then directs the compressor-turbine exhaust air to the free turbine in the wing. Design parameters of pressure ratio, radiator depth, radiation flow density, and hot gas duct size were optimized to give minimum weight per shaft horsepower of the complete power plant. The weight of a split flow power plant capable of supplying 22,000 shaft horsepower was found to be 116,600 pounds. The weight of a similar through flow power plant was found to be 119,900 pounds. The reactor power required in both cases was 70 megawatts. The nominal gross weight of the R3Y airplane is 175,000 pounds. With pay loads of approximately 20,000 pounds, either nuclear conversion will have a gross weight of 200,000 pounds. It was found that either cycle could be installed in the R3Y aircraft; however, the installation of either would require major structural redesign. The split flow cycle with its smaller hot air ducts required the least amount of redesign. A comparison of existing aircraft engines with a preliminary design of the split flow turbo-components indicated that the compressor and possibly the free turbine could be adapted from current engine components.

Alvis, J. H.; Chessman, S. R.

1957-08-01T23:59:59.000Z

360

Microsoft PowerPoint - Till.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TVA Interconnections Electric Energy Inc.* SMEPA Entergy* Southern Company* Duke Energy* Progress Energy Carolinas* American Electric Power* East Kentucky Power...

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

1996-01-01T23:59:59.000Z

362

Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant  

DOE Patents (OSTI)

A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

1996-11-12T23:59:59.000Z

363

Adjusting to Overcapacity: Impacts of New Gas-Fired Units on Power Supply and Fuel Use: Report Series on Natural Gas and Power Relia bility  

Science Conference Proceedings (OSTI)

Capacity additions of gas-fired combined-cycle units reached a peak in 2003 and will drop sharply in 2004. While the extraordinary boom of merchant capacity is now largely over, it has resulted in overbuilding in many regions and will have impacts that are widespread. The overall efficiency of this new capacity has been strong, but trends toward greater capacity utilization have been arrested by the combination of overbuilding and high natural gas prices. Capacity premiums have been driven to low levels,...

2004-03-22T23:59:59.000Z

364

SCHUMACHER HOT GAS FILTER LONG-TERM OPERATING EXPERIENCE in the NUON POWER BUGGENUM IGCC POWER PLANT  

SciTech Connect

Coal is a main source of primary energy for power generation and it will remain indispensable in the future. In order to increase the efficiency and to meet environmental challenges new advanced coal-fired power systems were developed starting in the beginning of the 1990s. One of these efficient and clean technologies is the Integrated Gasification Combined Cycle (IGCC) process.

Scheibner, B.; Wolters, C.

2002-09-18T23:59:59.000Z

365

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

DOE Green Energy (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

366

Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

SciTech Connect

More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2004-01-31T23:59:59.000Z

367

Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

% of total from natural gas production & distribution % of total from ammonia production & distribution Natural gas (in ground) 169.2 97.6% 0.0% 99.9% 0.1% Coal (in ground) 1.8...

368

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

369

Quantifying the value that wind power provides as a hedge against volatile natural gas prices  

E-Print Network (OSTI)

Technology. Stoffel, F.C. (Xcel Energy). 2001. In the Matternatural gas utilities, Xcel Energy noted that the cost of

Bolinger, Mark; Wiser, Ryan; Golove, William

2002-01-01T23:59:59.000Z

370

Daily natural gas and power price differences in Mid-Atlantic ...  

U.S. Energy Information Administration (EIA)

tags: electricity natural gas New Jersey Pennsylvania pipelines prices spot prices states transmission transportation weather. Email Updates. RSS Feeds. Facebook.

371

Just-In-Time Power Gating of GasP Circuits.  

E-Print Network (OSTI)

?? In modern integrated circuits, one way to reduce power consumption is to turn off power to parts of the circuit when those are idle. (more)

Padwal, Prachi Gulab

2013-01-01T23:59:59.000Z

372

An Integrated Framework for Gas Turbine Based Power Plant Operational Modeling and Optimization .  

E-Print Network (OSTI)

??The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the (more)

Zhao, Yongjun

2005-01-01T23:59:59.000Z

373

CIVILIAN POWER REACTOR PROGRAM. PART III. STATUS REPORT ON GAS-COOLED REACTORS AS OF 1959. Book 8  

SciTech Connect

The technology of natural-uranium-fueled graphitemoderated gas-cooled reactor power plants is summarized for its relevance to the technology of enriched-fuel graphite-moderated systems. The technology of D/sub 2/Omoderated gas-cooled reactors is also summarized. Estimated technical performance parameters are given for the enriched-fuel prototype and for a large natural- uraniumfueled plant. Current technical status is discussed in terms of reactor physics, heat transfer and fluid flow, core materials, components, plant design and conctruction, and hazards. Detailed tables of characteristics for various reactors are given. An extensive bibliography is included. (W.D.M.)

1960-01-01T23:59:59.000Z

374

Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains  

SciTech Connect

Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design of the next-generation Explorer-II (X-II) live gas main NDE and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. CMU has fully designed every module in terms of the mechanical, electrical and software elements (architecture only). Substantial effort has gone into pre-prototyping to uncover mechanical, electrical and software issues for critical elements of the design. Design requirements for sensor-providers were also detailed and finalized and provided to them for inclusion in their designs. CMU is expecting to start 2006 with a detailed design effort for both mechanical and electrical components, followed by procurement and fabrication efforts in late winter/spring 2006. The assembly and integration efforts will occupy all of the spring and summer of 2006. Software development will also be a major effort in 2006, and will result in porting and debugging of code on the module- and train-levels in late summer and Fall of 2006. Final pipe mock-up testing is expected in late fall and early winter 2006 with an acceptance demonstration of the robot train (with a sensor-module mock-up) planned to DoE/NGA towards the end of 2006.

Susan Burkett; Hagen Schempf

2006-01-31T23:59:59.000Z

375

Design and Testing of a Landfill Gas Cleanup System for Carbonate Fuel Cell Power Plants: Volume II: Full Scale Landfill Gas Cleanup for Carbonate Fuel Cell Power Plants (Proprietary)  

Science Conference Proceedings (OSTI)

This document is a proprietary version of section 5 of EPRI technical report TR-108043-V1. The volume contains detailed design information and operating conditions for a full-scale, low-cost cleanup system that would enable landfill gas to be used in carbonate fuel cells or other power generation devices. The EPRI-developed system is now available for license to commercial applications.

1998-02-27T23:59:59.000Z

376

Natural Gas and Power in the Marcellus Super-Region: Regional and National Implications  

Science Conference Proceedings (OSTI)

Dramatic increases in shale gas production across the United States have fundamentally changed the outlook for gas markets in the near term, and perhaps for decades. The Marcellus shale has emerged in just a few years as the second largest gas field in the nation. The Marcellus region, which has historically been a large natural gas importer, is now poised to be a significant exporter, and a large producer of natural gas liquids. This report explores the resource base and cost ranges of production, ...

2012-12-31T23:59:59.000Z

377

OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS  

DOE Green Energy (OSTI)

Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-10-01T23:59:59.000Z

378

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

379

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:10 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

380

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

382

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:11 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

383

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

384

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

DOE Green Energy (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

385

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

1995-12-31T23:59:59.000Z

386

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

387

Microsoft PowerPoint - Microwave Off-gas srnlTechBriefp1.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Off-Gas Treatment Microwave Off-Gas Treatment System at a glance  simple design  compact and portable  easy to operate  can be remotely operated  low cost, low maintenance  scalable for large and small volume operations  U.S. patent 6,534,754 The Microwave Off-Gas Treatment System uses microwave energy and high temperatures to treat off- gas emissions to reduce contaminants to acceptable or nondetectable levels. This allows the treated gaseous waste stream to be safety discharged to the atmosphere. New method Scientists at Savannah River National Laboratory (SRNL), working with colleagues from the University of Florida (UF), have invented a unique system to treat off-gas emissions from safe discharge into the atmosphere. The compact and portable Microwave Off-Gas Treatment System is designed to

388

Using FACTS Devices To Mitigate Loop Flows on the Southern Company Grid  

Science Conference Proceedings (OSTI)

Eight power transfers between control areas neighboring the Southern Control Area (SCA) were created to evaluate the application of FACTS devices to (1) mitigate loop flows on the SCA and (2) maintain or improve available transfer capability between neighboring control areas and into the SCA. These eight transfers were selected to include those that have the maximum MW loop flow impact on the SCA ties to Duke, Entergy, TVA, South Carolina Electric & Gas, and Santee-Cooper. These eight transfers were used...

2000-04-24T23:59:59.000Z

389

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

390

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

391

EPRI NMAC Maintainability Review of the International Gas-Turbine Modular Helium Reactor Power Conversion Unit  

Science Conference Proceedings (OSTI)

This report provides information of interest to the designers of modular helium-reactor-driven gas turbines and persons considering the purchase of this type of plant.

2001-02-01T23:59:59.000Z

392

What is the average price of natural gas for electric-power ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

393

Microsoft PowerPoint - 2010-10-20-Gas_Turbine_Review-ju_fld_rjs  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen Development of validated high hydrogen syngas kinetic mechanism at pressures of gas turbine conditions * Development of computationally efficient, reduced kinetic...

394

U.S. natural gas consumption for electric power tops industrial ...  

U.S. Energy Information Administration (EIA)

tags: consumption demand electricity generation industrial natural gas. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

395

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

396

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

397

The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation  

E-Print Network (OSTI)

contribute findings for greenhouse gases under section 202(Connecticut and Federal Greenhouse Gas Regulation KatherineWHAT NEXT? REDUCING GREENHOUSE GASES THROUGH STATE PUBLIC

Trisolini, Katherine A.

2012-01-01T23:59:59.000Z

398

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

399

Mid-summer heat pushes up natural gas use at electric power plants ...  

U.S. Energy Information Administration (EIA)

... revenue and prices, power plants, fuel use, ... four Regional Transmission OrganizationsMidwest Independent System Operator (MISO), the PJM Interconnection ...

400

Power Line Fault Current Coupling to Nearby Natural Gas Pipelines, Volumes 1-3  

Science Conference Proceedings (OSTI)

The Electromagnetic and Conductive Coupling Analysis of Powerlines and Pipelines (ECCAPP) computer program provides an easy-to-use method for analyzing the effects of transmission lines on gas pipelines. The program models conductive and inductive interference, enabling electrical and gas engineers to identify these effects and design mitigation systems when necessary.

1987-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network (OSTI)

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

Li, Mo

402

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration -- Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

DOE Green Energy (OSTI)

Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

Spath, P. L.; Mann, M. K.

2004-01-01T23:59:59.000Z

403

Climate change policy and its effect on market power in the gas market  

E-Print Network (OSTI)

emitted per MWh of electricity produced in a combined cycle gas turbine (CCGT) of 50% efficiency. (The spark spread is the base-load price of electricity for the month ahead less the cost of the gas needed at 50% efficiency to CMI\\Emissions\\CC policy... about 35 /MWh to over 70 /MWh, prompting a spate of complaints to the European Commission, who in response announced a sector inquiry into gas and electricity in June 2005 (European Commission, 2005). A considerable part of the price rise could...

Newbery, David

2006-03-14T23:59:59.000Z

404

Surface and subsurface fault and fracture systems with associated natural gas production in the Lower Mississippian and Upper Devonian, Price Formation, southern West Virginia.  

E-Print Network (OSTI)

??Production from natural gas deposits is often enhanced by fault and fracture systems associated with reservoirs. This study presents analyses of fault and fracture systems (more)

Johnson, S. Reed.

2007-01-01T23:59:59.000Z

405

Ocean thermal energy conversion gas desorption studies. Volume 1. Design of experiments. [Open-cycle power systems  

Science Conference Proceedings (OSTI)

Seawater deaeration is a process affecting almost all proposed Ocean Thermal Energy Conversion (OTEC) open-cycle power systems. If the noncondensable dissolved air is not removed from a power system, it will accumulate in thecondenser, reduce the effectiveness of condensation, and result in deterioration of system performance. A gas desorption study is being conducted at Oak Ridge National Laboratory (ORNL) with the goal of mitigating these effects; this study is designed to investigate the vacuum deaeration process for low-temperature OTEC conditions where conventional steam stripping deaeration may not be applicable. The first in a series describing the ORNL studies, this report (1) considers the design of experiments and discusses theories of gas desorption, (2) reviews previous relevant studies, (3) describes the design of a gas desorption test loop, and (4) presents the test plan for achieving program objectives. Results of the first series of verification tests and the uncertainties encountered are also discussed. A packed column was employed in these verification tests and test data generally behaved as in previous similar studies. Results expressed as the height of transfer unit (HTU) can be correlated with the liquid flow rate by HTU = 4.93L/sup 0/ /sup 25/. End effects were appreciable for the vacuum deaeration system, and a correlation of them to applied vacuum pressure was derived.

Golshani, A.; Chen, F.C.

1980-10-01T23:59:59.000Z

406

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

407

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

408

Effects of Ammonia and Flue Gas Desulfurization (FGD) Wastewater on Power Plant Effluent Toxicity  

Science Conference Proceedings (OSTI)

The Clean Air Act Amendments and subsequently the Clean Air Interstate Rule and other state-level actions have resulted in implementation of a variety of technologies to reduce emissions of nitrogen oxides (NOx), and to further reduce emissions of sulfur oxides (SOx). Selective Catalytic Reduction (SCR) and SNCR (non-catalytic) are two of the primary NOx emission reduction technologies. Often, ammonia is injected into flue gas as the reductant for the chemical reaction that converts NOx to nitrogen gas. ...

2007-12-18T23:59:59.000Z

409

New Technology for America`s Electric Power Industry. Emissions reduction in gas turbines  

DOE Green Energy (OSTI)

Argonne National Laboratory is examining alternatives to straight natural gas firing. Research has shown that the addition of certain catalytic agents, such as in hydrogen co-firing, shows promise. When hydrogen co-firing is used in tandem with steam injection, a decrease in both CO and NO{sub x} emissions has been observed. In-process hydrogen production and premixing with the natural gas fuel are also being explored.

NONE

1995-04-01T23:59:59.000Z

410

Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

411

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power  

DOE Green Energy (OSTI)

Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing how JEDI II calculates economic impacts from wind projects.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-06-01T23:59:59.000Z

412

Tube Failure in Coal and Gas Fired Power Plant - Programmaster.org  

Science Conference Proceedings (OSTI)

On-Site Speaker (Planned), Lindsay S. W. Malloy. Abstract Scope, Tube failures in power plants are one of the main causes of forced outages, potentially costing ...

413

150 kW PEM Stationary Power Plant Operating on Natural Gas -...  

NLE Websites -- All DOE Office Websites (Extended Search)

reformate. Insights gained from these studies will be applied towards designing a power plant, such as described above, that meets the following 2015 DOE targets: Operating...

414

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

415

,"Share of Total U.S. Natural Gas Electric Power Deliveries ...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Power Deliveries " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Share of Total...

416

Microsoft PowerPoint - Investigation of Gas Solid_Choudhuri_Love  

NLE Websites -- All DOE Office Websites (Extended Search)

MD Mahamudur Rahman- MS - (Now at Drexel Univ) cSETR POWERING INNOVATION THROUGH DIVERSITY * Gasifier: Types of gasifiers used commercially: Introduction U.S. Department...

417

pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly ...  

The discovery represents a cost-effective way to utilize materials indigenous to fossil fuel burning power platns to control mineral precipitation is cooling water.

418

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy - Interstate Power and Light (IPL) offers rebates for high efficiency equipment for commercial customers. Rebates are available for windows/sashes, programmable thermostats, water...

419

Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture  

Science Conference Proceedings (OSTI)

The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

Liese, E.; Zitney, S.

2012-01-01T23:59:59.000Z

420

A TECHNICAL, ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF AMINE-BASED CO2 CAPTURE TECHNOLOGY FOR POWER PLANT GREENHOUSE GAS CONTROL  

Science Conference Proceedings (OSTI)

Capture and sequestration of CO{sub 2} from fossil fuel power plants is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Performance and cost models of an amine (MEA)-based CO{sub 2} absorption system for post-combustion flue gas applications have been developed, and integrated with an existing power plant modeling framework that includes multi-pollutant control technologies for other regulated emissions. The integrated model has been applied to study the feasibility and cost of carbon capture and sequestration at both new and existing coal-burning power plants. The cost of carbon avoidance was shown to depend strongly on assumptions about the reference plant design, details of the CO{sub 2} capture system design, interactions with other pollution control systems, and method of CO{sub 2} storage. The CO{sub 2} avoidance cost for retrofit systems was found to be generally higher than for new plants, mainly because of the higher energy penalty resulting from less efficient heat integration, as well as site-specific difficulties typically encountered in retrofit applications. For all cases, a small reduction in CO{sub 2} capture cost was afforded by the SO{sub 2} emission trading credits generated by amine-based capture systems. Efforts are underway to model a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multi-pollutant environmental management.

Edward S. Rubin; Anand B. Rao

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Southern California Edison Company (SCE?) appreciates this...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments RIN 1901-AB18Proposed Rulemaking Comments Comments of Southern California Edison Company Section 216(h) of the Federal Power Act,("FPA") added by the Energy Policy Act...

422

Advanced Gas Turbine Guidelines: Performance Retention for GE 7F Unit in Peaking Operation: Durability Surveillance at Potomac Elect ric Power Company's Station H  

Science Conference Proceedings (OSTI)

Worldwide pressures to reduce power generation costs have encouraged domestic and foreign manufacturers to build high-efficiency gas turbines implementing the latest technological advances. To assure the staying power of these turbines, EPRI launched a multi-year durability surveillance program. This report discusses performance monitoring and analysis of a General Electric 7F unit in peaking operation.

1999-04-26T23:59:59.000Z

423

An Engineering and Economic Evaluation of Post-Combustion CO2 Capture for Natural Gas-Fired Combined-Cycle Power Plants  

Science Conference Proceedings (OSTI)

This report presents an Electric Power Research Institute (EPRI) assessment on the technical feasibility, performance, and associated costs of applying post-combustion carbon dioxide (CO2) capture technology to a natural gasfired combined-cycle (NGCC) power station.

2012-03-23T23:59:59.000Z

424

Development of turbine driven centrifugal compressors for non-condensible gas removal at geothermal power plants. Final report  

SciTech Connect

Initial field tests have been completed for a Non-Condensible Gas (NCG) turbocompressor for geothermal power plants. It provides alternate technology to steam-jet ejectors and liquid-ring vacuum pumps that are currently used for NCG removal. It incorporates a number of innovative design features to enhance reliability, reduce steam consumption and reduce O&M costs. During initial field tests, the turbocompressor has been on-line for more than 4500 hours as a third stage compressor at The Geysers Unit 11 Power Plant. Test data indicates its overall efficiency is about 25% higher than a liquid-ring vacuum pump, and 250% higher than a steam-jet ejector when operating with compressor inlet pressures of 12.2 in-Hga and flow rates over 20,000 lbm/hr.

1997-12-16T23:59:59.000Z

425

http://www.sussex.ac.uk/spru / Constructing Success in the Electric Power Industry: Flexibility and the Gas Turbine  

E-Print Network (OSTI)

This paper explains the success and failure of two technologies that generate electricity from fossil fuels. Both the Combined Cycle Gas Turbine (CCGT) and fluidised bed boiler burn fossil fuels more cleanly than more traditional technologies. Whereas the CCGT has been used for an increasing number of new power plants during the past fifteen years, the latter has struggled to attract attention outside a small-scale niche. The paper draws on economic and social constructivist approaches to technical change. It shows how a combination of economic, institutional and political factors can be used to explain success and failure. It also demonstrates the importance of technological flexibility for the long term development of the CCGT and its acceptance as the power industrys current technology of choice.

Dr Jim Watson; Mantell Building

2001-01-01T23:59:59.000Z

426

High frequency transformerless electronics ballast using double inductor-capacitor resonant power conversion for gas discharge lamps  

SciTech Connect

A novel high frequency LCLC double resonant electronic ballast has been developed for gas discharge lamp applications. The ballast consists of a half-bridge inverter which switches at zero voltage crossing and an LCLC resonant circuit which converts a low ac voltage to a high ac voltage. The LCLC resonant circuit has two LC stages. The first LC stage produces a high voltage before the lamp is ignited. The second LC stage limits lamp current with the circuit inductance after the lamp is ignited. In another embodiment a filament power supply is provided for soft start up and for dimming the lamp. The filament power supply is a secondary of the second resonant inductor. 27 figs.

Lai, J.S.

1995-06-20T23:59:59.000Z

427

Power Industry Development Paths and Natural Gas Market Risks: Cycles of Markets, Drilling, and Demand  

Science Conference Proceedings (OSTI)

The current natural gas market is depressed by a combination of unusual factorsa great excess of supply and weak demand. Excess supply comes from the momentum of exploration and production (EP) to the new U.S. gas shale plays, a phenomenon barely 18 months old and a game-changing event in the industry. Weak demand comes from the "Great Recession." The seeds for correcting this imbalance would appear to be a dramatic cutback in drilling, which has collapsed over the past year and which is a principal focu...

2009-09-28T23:59:59.000Z

428

Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)  

SciTech Connect

This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

Heath, G.; O'Donoughue, P.; Whitaker, M.

2012-12-01T23:59:59.000Z

429

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

1990-07-01T23:59:59.000Z

430

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

431

Inlet Air Spray Cooler for Gas Turbine Power Augmentation: Plans, Specifications and Test Results  

Science Conference Proceedings (OSTI)

Field tests on a commercial combustion turbine generator show that novel cooling technology economically augments power output. This report details the results and presents key spray cooler design parameters.

1997-07-28T23:59:59.000Z

432

Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Alliant Energy (Interstate Power and Light - IP&L) offers low-interest financing program for the installation of energy efficient improvements. Businesses, Residences, farms or ag-related...

433

Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Program (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

434

Gas Turbine Condition Monitoring and Predictive Maintenance Capability Analysis Between Aviation and Power Generation Industries  

Science Conference Proceedings (OSTI)

This study compares and contrasts aviation and power generation condition monitoring and fault diagnosis. The report provides an overview of the technology, process, sensor suite and decision-making processes for both industries. The study highlights the level of decision automation and the structure to automatically initiate a maintenance process in aviation as one of the key differences between the two industries. This automation has important potential cost and operational benefits for the power gener...

2007-12-21T23:59:59.000Z

435

Bulk Energy Storage: Assessment of Green House Gas Impacts to the Electric Power Sector  

Science Conference Proceedings (OSTI)

Electric utilities are interested in understanding the role and impacts electric energy storage systems can have on reducing the electric sector's green house gas (GHG) emissions. This research project was undertaken to better understand and quantify GHG impacts of electric storage systems. The project specifically focuses on bulk energy storage systems such as compressed air energy storage (CAES).

2008-12-22T23:59:59.000Z

436

"1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251 "3. Baxter Wilson","Gas","Entergy Mississippi Inc",1176 "4. Jack Watson","Coal","Mississippi Power Co",998 "5. Magnolia Power Plant","Gas","Magnolia Energy LP",863 "6. Batesville Generation Facility","Gas","LSP Energy Ltd Partnership",858 "7. Reliant Energy Choctaw County","Gas","RRI Energy Wholesale Generation LLC",848 "8. TVA Southaven Combined Cycle","Gas","Tennessee Valley Authority",774

437

The DOE/SCS Power Systems Development Facility  

Science Conference Proceedings (OSTI)

The use of coal for power generation has come under increasing environmental scrutiny over the past five years. Advances in coal-based power generation technology will continue to develop towards systems that have high efficiency, environmental superiority and lower or sustainable cost-of-electricity compared to current coal-based technology. Emerging power generation technologies that work toward these goals include integrated gasification combined-cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). One method for improving the efficiency and lowering the capital cost further for advanced power plants utilizing coal is by employing hot gas cleanup. Although hot gas cleanup has the potential for improving the viability of coal-based power generation, the removal of hot particulates from the gas stream has proven to be a challenging task. The demonstration of particulate control devices (PCDS) under realistic conditions for advanced power generation remains the single most important area for development. With the Southern Company`s commitment to be a major supplier of electricity worldwide and our continued use of coal as a primary fuel source, Southern Company Services (SCS) has entered into a cooperative effort with the Department of Energy (DOE) Morgantown Energy Technology Center (METC) to develop a facility where component and system integration tests can be carried out for advanced coal-based power plants. The Power Systems Development Facility (PSDF) is being designed to be a flexible facility that will address the development of the PCDs required for advanced coal-based power generation systems.

Haq, Z.U.; Pinkston, T.E.; Sears, R.E.; Vimalchand, P.

1993-12-31T23:59:59.000Z

438

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

DOE Green Energy (OSTI)

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

439

Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants  

SciTech Connect

This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

2003-12-31T23:59:59.000Z

440

"1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "1. Millstone","Nuclear","Dominion Nuclear Conn Inc",2103 "2. Middletown","Gas","Middletown Power LLC",770 "3. Lake Road Generating Plant","Gas","Lake Road Generating Co LP",745 "4. Bridgeport Harbor","Coal","PSEG Power Connecticut LLC",532 "5. Milford Power Project","Gas","Milford Power Co LLC",507 "6. Montville Station","Petroleum","NRG Montville Operations Inc",496 "7. Bridgeport Energy Project","Gas","Bridgeport Energy LLC",454 "8. New Haven Harbor","Petroleum","PSEG Power Connecticut LLC",448

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of Thermal Zero Liquid Discharge Treatment Technologies for Combined Cycle Gas Turbine Power Plants  

Science Conference Proceedings (OSTI)

A study was conducted to identify and update key details of zero liquid discharge (ZLD) water management systems currently operating at U.S. gas-fired combined cycle generating stations (CC). The study focused on not only the technologies applied, but also on the advantages and shortcomings of the various processes and summarized the lessons learned from the operating systems. Most ZLD's were found to employ one of four different types of water pretreatment process assemblies consisting of the following:...

2011-12-19T23:59:59.000Z

442

Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation  

DOE Green Energy (OSTI)

This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

Sterzinger, G J [Economics, Environment and Regulation, Washington, DC (United States)

1994-05-01T23:59:59.000Z

443

Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant  

SciTech Connect

The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow.

Bardia, A.

1980-02-01T23:59:59.000Z

444

Southern Company Services' study of a Kellogg Rust Westinghouse (KRW)-based gasification-combined-cycle (GCC) power plant  

SciTech Connect

A site-specific evaluation of an integrated-gasification-combined- cycle (IGCC) unit was conducted by Southern Company Services, Inc. (SCS) to determine the effect of such a plant would have on electricity cost, load response, and fuel flexibility on the Southern electric system (SES). The design of the Plant Wansley IGCC plant in this study was configured to utilize three oxygen-blown Kellogg Rust Westinghouse (KRW) gasifiers integrated with two General Electric (GE) MS7001F combustion turbines. The nominal 400-MW IGCC plant was based on a nonphased construction schedule, with an operational start date in the year 2007. Illinois No. 6 bituminous coal was the base coal used in the study. Alabama lignite was also investigated as a potential low-cost feedstock for the IGCC plant, but was found to be higher in cost that the Illinois No. 6 coal when shipped to the Wansley site. The performance and cost results for the nominal 400-MW plant were used in an economic assessment that compared the replacement of a 777-MW pulverized-coal-fired unit with 777-MW of IGCC capacity based on the Southern electric system's expansion plans of installing 777-MW of baseload capacity in the year 2007. The economic analysis indicated that the IGCC plant was competitive compared to a baseload pulverized-coal-fired unit. Capital costs of the IGCC unit were approximately the same as a comparably sized pulverized-coal-fired plant, but the IGCC plant had a lower production cost due to its lower heat rate. 10 refs., 34 figs., 18 tabs.

Gallaspy, D.T.; Johnson, T.W.; Sears, R.E. (Southern Co. Services, Inc., Birmingham, AL (USA))

1990-07-01T23:59:59.000Z

445

Design of experiment and Montecarlo simulation as support for gas turbine power plant availabilty estimation  

Science Conference Proceedings (OSTI)

Maintenance is an important aspect in order to guarantee the efficiency of industrial facilities. For power plants the high availability ratios can be obtained only with preventive maintenance but the result costs increases rapidly. In order to reduce ... Keywords: design of experiment, fuzzy logic, model estimation, montecarlo simulation, reliability

Enrico Briano; Claudia Caballini; Pietro Giribone; Roberto Revetria

2010-05-01T23:59:59.000Z

446

Automatic system for optimization of operation of a gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The system is made with main distributed components: - first level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); - second level: PLCs which collects data from ... Keywords: automation system, cogenerative power plant, control, monitoring, real time

Ion Miciu

2008-07-01T23:59:59.000Z

447

JEDI II: Jobs and Economic Development Impacts from Coal, Natural Gas, and Wind Power (Poster)  

Science Conference Proceedings (OSTI)

Using economic multipliers, JEDI II measures the potential employment (job and earnings) and economic development impacts (output) from new power plants by calculating the dollar flow from construction and annual operations. In its default form, JEDI II conducts state-specific analyses. County or regional analyses require additional multipliers.

Tegen, S.; Goldberg, M.; Milligan, M.

2006-01-01T23:59:59.000Z

448

Southern Company Photovoltaic Evaluation in Atlanta: Analysis of Field Data from Seven 4-kW PV Systems at Georgia Power Headquarters During 20102012  

Science Conference Proceedings (OSTI)

Seven photovoltaic (PV) power systems using different module technologies were installed on the rooftop of Georgia Powers headquarters in Atlanta. This report describes the output performance of these small-scale systems (about 4 kW each) relative to the available solar resource at the site. The main objective of this evaluation has been to assess performance characteristics of commercially available module technologies in a southeastern U.S. climate. To ensure a reliable comparison, all ...

2013-01-28T23:59:59.000Z

449

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

DOE Green Energy (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

450

Advanced Gas Turbine Guidelines: Rotating Blade Temperature Measurement System (BTMS)--Supplement No. 1: Durability Surveillance at Florida Power & Light Company's Martin Plant  

Science Conference Proceedings (OSTI)

The blade scans performed by EPRI's Blade Temperature Measurement System (BTMS) represent an important source of blade metal temperature data. These advanced gas turbine guidelines describe the design, installation, and operation of the BTMS in a utility power plant operating General Electric MS7221FA advanced gas turbines. The guidelines include an analysis of blade temperature scans as well as a summary of lessons learned under baseload operating conditions.

1999-04-26T23:59:59.000Z

451

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

452

Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants  

SciTech Connect

Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment.

Guymon, R.H.; Casto, W.R.; Compere, E.L.

1985-05-01T23:59:59.000Z

453

Versatile 0. 5 TW electron beam facility for power conditioning studies of large rare-gas/halide lasers  

Science Conference Proceedings (OSTI)

Rare-gas/halide lasers which are being developed for Inertial Confinement Fusion will require large area, low impedance electron beam drivers. A wide range of electron beam parameters are being considered for future systems in an effort to optimize the overall system design. A number of power conditioning issues must be investigated in order to obtain a better understanding of the various trade-offs involved in making such optimizations. The RAYITO electron beam accelerator is being designed and built at Sandia National Laboratories and will be used for such investigations. It will be capable of operating in either a 2 or 4 ohm configuration at 1 MV, 50 ns or 0.8 MV, 200 ns. Design details for RAYITO are presented in this paper. Experiments planned for this facility are also discussed.

Ramirez, J. J.

1980-01-01T23:59:59.000Z

454

NETL: News Release - Premier Power Plant Test Facility Achieves Milestone,  

NLE Websites -- All DOE Office Websites (Extended Search)

May 8, 2000 May 8, 2000 Premier Power Plant Test Facility Achieves Milestone,Raises Hopes for New Clean Coal Technology The world's premier test facility for future power plants has achieved a major milestone - and in the process, raised prospects for a new class of coal technology that researchers now believe could lead to cleaner, more efficient and lower cost electric power generation. The Power System Development Facility The Power System Development Facility at Wilsonville, Alabama, is the Nation's state-of-the-art test facility for 21st century power generating technologies. The U.S. Department of Energy and Southern Company today jointly announced the first successful test of a new type of technology for turning coal into gas. The gas could then be used in future turbines or fuel cells to

455

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

456

Testing and Performance of the Siemens V84.3A Gas Turbine in Peaking Service at Hawthorn Station of Kansas City Power & Light Compan y  

Science Conference Proceedings (OSTI)

EPRI's durability surveillance (DS) program, in place since 1991, is producing the first in-service performance and operating data on the newest high-efficiency gas turbines. This detailed investigation of the Siemens V84.3A installed at the Kansas City Power & Light (KCP&L) Hawthorn Station is providing plant personnel and the manufacturer with valuable information for solving initial problems, and will help all power producers specify, operate, and maintain a new generation of high-performance gas turb...

1998-12-31T23:59:59.000Z

457

Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms  

E-Print Network (OSTI)

We present a new method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation travelling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of used linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: non-saturating dependence of refractive index on the dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation in the wavelength region of about ten micrometers (the range of CO_2 laser) or larger.

Gevorg Muradyan; A. Zh. Muradyan

2009-03-15T23:59:59.000Z

458

Selenium Removal by Iron Cementation from a Coal-Fired Power Plant Flue Gas Desulfurization Wastewater in a Continuous Flow System-- a Pilot Study  

Science Conference Proceedings (OSTI)

This technical update describes work funded by the Electric Power Research Institute (EPRI) and performed by MSE Technology Applications, Inc. (MSE) at a coal-fired power plant burning Powder River Basin (PRB) coal (identified in this report as Plant E). This work was based on encouraging results obtained during previous EPRI-funded work on flue gas desulfurization (FGD) wastewater treatability testing by MSE, which focused on selenium removal from a variety of FGD wastewater sources. The results from th...

2009-07-29T23:59:59.000Z

459

Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants  

Science Conference Proceedings (OSTI)

Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

2005-01-31T23:59:59.000Z

460

Greenhouse Gas Concerns and Power Sector Planning (released in AEO2009)  

Reports and Publications (EIA)

Concerns about potential climate change driven by rising atmospheric concentrations of GHGs have grown over the past two decades, both domestically and abroad. In the United States, potential policies to limit or reduce GHG emissions are in various stages of development at the State, regional, and Federal levels. In addition to ongoing uncertainty with respect to future growth in energy demand and the costs of fuel, labor, and new plant construction, U.S. electric power companies must consider the effects of potential policy changes to limit or reduce GHG emissions that would significantly alter their planning and operating decisions. The possibility of such changes may already be affecting planning decisions for new generating capacity.

Information Center

2009-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network (OSTI)

8. Southern California Edison, Renewable Power Purchase andSouthern California Edison (SCE) has one such program forSouthern California Edison provides a feed-in tariff rate

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

462

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

in waters up to 9000 feet deep. Southern Natural Gas Company has scheduled a shut-in test at the Muldon Storage Field in Mississippi for April 5 through April 11. Under the...

463

Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor  

Science Conference Proceedings (OSTI)

The absorption of carbon dioxide from nitrogen-carbon dioxide mixture was investigated in a polytetrafluoroethylene (PTFE) hollow fiber membrane module using potassium glycinate (PG) aqueous solution. A mathematical model was developed to simulate the ... Keywords: Absorption, Flue gas, Membrane contactor, Modeling, Potassium glycinate, Power plant

S. Eslami; S. M. Mousavi; S. Danesh; H. Banazadeh

2011-08-01T23:59:59.000Z

464

Comments of Southern Company Services, Inc. on DOE Request for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments of Southern Company Services, Inc. on DOE Request for Comments of Southern Company Services, Inc. on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of Southern Company Services, Inc. on DOE Request for Information-Implementing the National Broadband Plan by Empowering Customers and the Smart Grid: Data Access, Third Party Use, and Privacy Southern Company Services, Inc., for itself and on behalf of Alabama Power Company, Georgia Power Company, Gulf Power Company, Mississippi Power Company, and its other affiliates (collectively, "Southern"), is pleased to have this opportunity to provide responses to questions contained in the Department of Energy ("DOE") Request for Information

465

System Design of a Natural Gas PEM Fuel Cell Power Plant for Buildings  

DOE Green Energy (OSTI)

The following conclusions are made based on this analysis effort: (1) High-temperature PEM data are not available; (2) Stack development effort for Phase II is required; (3) System results are by definition preliminary, mostly due to the immaturity of the high-temperature stack; other components of the system are relatively well defined; (4) The Grotthuss conduction mechanism yields the preferred system characteristics; the Grotthuss conduction mechanism is also much less technically mature than the vehicle mechanism; (5) Fuel processor technology is available today and can be procured for Phase II (steam or ATR); (6) The immaturity of high-temperature membrane technology requires that a robust system design be developed in Phase II that is capable of operating over a wide temperature and pressure range - (a) Unpressurized or Pressurized PEM (Grotthuss mechanism) at 140 C, Highest temperature most favorable, Lowest water requirement most favorable, Pressurized recommended for base loaded operation, Unpressurized may be preferred for load following; (b) Pressurized PEM (vehicle mechanism) at about 100 C, Pressure required for saturation, Fuel cell technology currently available, stack development required. The system analysis and screening evaluation resulted in the identification of the following components for the most promising system: (1) Steam reforming fuel processor; (2) Grotthuss mechanism fuel cell stack operating at 140 C; (3) Means to deliver system waste heat to a cogeneration unit; (4) Pressurized system utilizing a turbocompressor for a base-load power application. If duty cycling is anticipated, the benefits of compression may be offset due to complexity of control. In this case (and even in the base loaded case), the turbocompressor can be replaced with a blower for low-pressure operation.

Joe Ferrall, Tim Rehg, Vesna Stanic

2000-09-30T23:59:59.000Z

466

Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995  

DOE Green Energy (OSTI)

A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

1995-12-01T23:59:59.000Z

467

When Barriers to Markets Fail: Pipeline Deregulation, Spot Markets, and the Topology of the Natural Gas Market  

E-Print Network (OSTI)

Congress passed the Natural Gas Policy Act in 1978. The Actthe Natural Gas Act." Southern Regu- latory Policyfor natural gas. Introduction Regulatory policies suppressed

De Vany, Arthur; Walls, W. David

1992-01-01T23:59:59.000Z

468

Contributions of External Forcings to Southern Annular Mode Trends  

Science Conference Proceedings (OSTI)

An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas ...

Julie M. Arblaster; Gerald A. Meehl

2006-06-01T23:59:59.000Z

469

New Mexico Central Station Solar Power: Feasibility Study  

Science Conference Proceedings (OSTI)

A feasibility study was performed for a 50 to 500 megawatts central station solar power (CSSP) plant to be developed in New Mexico by mid-2011. The project participants included the Public Service Company of New Mexico (PNM), El Paso Electric (EPE), San Diego Gas Electric (SDGE), Southern California Edison (SCE), Tri-State Generation Transmission Association (TSGT), and Xcel Energy. The scope of the study included performing site and technology assessments, analyzing technology-specific design and perfor...

2008-03-31T23:59:59.000Z

470

New Mexico Central Station Solar Power: Summary Report  

Science Conference Proceedings (OSTI)

A feasibility study was performed for a 50 to 500 megawatts central station solar power (CSSP) plant to be developed in New Mexico by mid-2011. The project participants included the Public Service Company of New Mexico (PNM), El Paso Electric (EPE), San Diego Gas & Electric (SDG&E), Southern California Edison (SCE), Tri-State Generation & Transmission Association (TSGT), and Xcel Energy. The scope of the study included performing site and technology assessments, analyzing technology-specific design and p...

2008-03-31T23:59:59.000Z

471

Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report  

Science Conference Proceedings (OSTI)

A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

NONE

1996-03-01T23:59:59.000Z

472

Southern Federal Power Program combined financial statements, September 30, 1997 and 1996 with independent auditors` report thereon and financial overview and program performance  

SciTech Connect

The report presents the results of the independent certified public accountants` audit of the Southeastern Federal Power Program`s (SEFPP) combined financial statements of assets; Federal investment and liabilities; and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on SEFPP`s internal control structure disclosed no new reportable conditions directed to the Southeastern Power Administration. However, the report did disclose a reportable condition directed to the Army Corps of Engineers (Corps). The reportable condition was regarding the conversion of the Corps` financial management system to a system that was not designed to properly account for the allocation of plant investment to multi-purpose projects. The Corps concurred with recommendations made to correct the deficiency. The auditors` report on SEFPP`s compliance with laws and regulations disclosed no new instances of noncompliance. A noncompliance related to not recovering workers` compensation benefits in power rates reported in prior years remains uncorrected. Based on KPMG`s unqualified opinion and the review of their audit work, the Office of Inspector General believes the financial statements fairly present the financial condition and results of operations of the SEFPP for the period under audit.

NONE

1998-07-01T23:59:59.000Z

473

Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture  

Science Conference Proceedings (OSTI)

Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS) and the Parallel Computing toolbox from Mathworks. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is designed followed by the supervisory control layer. Finally, an optimization layer is designed. In this paper, the proposed two-stage control system design approach is applied to the AGR unit for an IGCC power plant with CO{sub 2} capture. Aspen Plus Dynamics is used to develop the dynamic AGR process model while MATLAB is used to perform the control system design and for implementation of model predictive control (MPC).

Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

474

Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains  

SciTech Connect

Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules and their arrangement, still allow the robot to configure itself to perform any-angle (up to 90 deg) turns in any orientation (incl. vertical), and enable the live launching and recovery of the system using custom fittings and a (to be developed) launch-chamber/-tube. The battery modules are used to power the system, by providing power to the robot's bus. The support modules perform the functions of centration for the rest of the train as well as odometry pickups using incremental encoding schemes. The electronics architecture is based on a distributed (8-bit) microprocessor architecture (at least 1 in ea. module) communicating to a (one of two) 32-bit SBC, which manages all video-processing, posture and motion control as well as CAN and wireless communications. The operator controls the entire system from an off-board (laptop) controller, which is in constant wireless communication with the robot train in the pipe. The sensor modules collect data and forward it to the robot operator computer (via the CAN-wireless communications chain), who then transfers it to a dedicated NDE data-storage and post-processing computer for further (real-time or off-line) analysis. The prototype robot system was built and tested indoors and outdoors, outfitted with a Remote-Field Eddy Current (RFEC) sensor integrated as its main NDE sensor modality. An angled launcher, allowing for live launching and retrieval, was also built to suit custom angled launch-fittings from TDW. The prototype vehicle and launcher systems are shown. The complete system, including the in-pipe robot train, launcher, integrated NDE-sensor and real-time video and control console and NDE-data collection and -processing and real-time display, were demonstrated to all sponsors prior to proceeding into final field-trials--the individual components and setting for said acceptance demonstration are shown. The launcher-tube was also used to verify that the vehicle system is capable of operating in high-pressure environments, and is safely deployable using proper evacuating/purging techniques for operation in the po

Carnegie Mellon University

2008-09-30T23:59:59.000Z

475

Gas Turbine Engines  

Science Conference Proceedings (OSTI)

...times higher than atmospheric pressure.Ref 25The gas turbine was developed generally for main propulsion and power

476

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

4. Useful Thermal Output by Energy Source: Industrial Combined Heat and Power, 2001 - 2011 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Other...

477

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network (OSTI)

efficiency of natural gas fired power generation, which willefficiency of natural gas fired power generation, which will

Wenle, Susanne Alice

2010-01-01T23:59:59.000Z

478

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration … Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

* NREL/TP-510-32575 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 January 2004 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann Prepared under Task No. BB04.4010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393

479

Power Line-Induced AC Potential on Natural Gas Pipelines for Complex Rights-of-Way Configurations, Volume 1: Engineering Analysis  

Science Conference Proceedings (OSTI)

This report addresses complex common corridor coupling problems for overhead electric power transmission lines and buried natural gas pipelines. Volume 1 describes the development of analytic methods for solving such problems and presents field data used in verification efforts. Volume 2 is a handbook for graphic analysis designed for use by field personnel or others without access to a computer. Volume 3 is a user's guide for the PIPELINE computer code.

1983-05-01T23:59:59.000Z

480

Geothermal resources of southern Idaho  

DOE Green Energy (OSTI)

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas southern power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

482

Combined Heat and Power with Your Local Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

483

THE HGCR-1, A DESIGN STUDY OF A NUCLEAR POWER STATION EMPLOYING A HIGH- TEMPERATURE GAS-COOLED REACTOR WITH GRAPHITE-UO$sub 2$ FUEL ELEMENTS  

SciTech Connect

The preliminary design of a 3095-Mw(thermal), helium-cooled, graphite- moderated reactor employing sign conditions, 1500 deg F reactor outlet gas would be circulated to eight steam generators to produce 1050 deg F, 1450-psi steam which would be converted to electrical power in eight 157-Mw(electrical) turbine- generators. The over-all efficiency of this nuclear power station is 36.5%. The significant activities released from the unclad graphite-UO/sub 2/ fuel appear to be less than 0.2% of those produced and would be equivalent to 0.002 curie/ cm/ sup 3/ in the primary helium circuit. The maintenance problems associated with this contamination level are discussed. A cost analysis indicates that the capital cost of this nuclear station per electrical kilowatt would be around 0, and that the production cost of electrical power would be 7.8 mills/kwhr. (auth)

Cottrell, W.B.; Copenhaver, C.M.; Culver, H.N.; Fontana, M.H.; Kelleghan, V.J.; Samuels, G.

1959-07-28T23:59:59.000Z

484

Khanom brings gas energy to Southern Thailand  

SciTech Connect

To meet the growing demand for electricity in the south of the country, the Electricity Generating Authority (EGAT) have installed a 660 MW combined cycle on a site at Khanom, Thailand, 100 km north of Nakhorn Si Thammarat on the east coast of the isthmus, and alongside two 75 MW barge-mounted combined cycles which were installed in the early 1980s. This paper discusses the plant design, plans for expansion, and future demand, along with policy issues. 4 figs., 2 tabs.

1995-03-01T23:59:59.000Z

485

Argonne TDC: Southern California Gas Company  

... has experienced a dramatic reduction in the number of pipeline and recovery-well failures due to corrosion and is realizing a significant savings ...