Sample records for gas solar thermal

  1. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  2. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01T23:59:59.000Z

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  3. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...

  4. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  6. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    "This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

  7. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    Originally restricted to just solar water heaters, the prorgam was expanded by CPUC Decision 13-02-018 in February 2013 to include other solar thermal technologies, including solar process heatin...

  8. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30T23:59:59.000Z

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  9. Solar thermal financing guidebook

    SciTech Connect (OSTI)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01T23:59:59.000Z

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  10. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  11. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    SciTech Connect (OSTI)

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01T23:59:59.000Z

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  12. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  13. City of Dubuque- Solar Thermal Licensing Requirement

    Broader source: Energy.gov [DOE]

    The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The...

  14. CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK

    E-Print Network [OSTI]

    CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program....................................................................................3 2.1.1 Host Customer

  15. Solar mechanics thermal response capabilities.

    SciTech Connect (OSTI)

    Dobranich, Dean D.

    2009-07-01T23:59:59.000Z

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  16. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power, Energy, Facilities, Materials Science, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Solar Newsletter, Systems...

  17. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  18. Passive Solar Building Design and Solar Thermal Space Heating Webinar

    Broader source: Energy.gov [DOE]

    Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

  19. Solar Thermal Incentive Program

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) offers incentives for the installation of solar water heating systems to residential and non-residential customers of the...

  20. Sandia National Laboratories: solar thermal storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable...

  1. Sandia National Laboratories: solar thermal electric technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar thermal electric technologies Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News...

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  3. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Test Facility NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test...

  4. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

  5. Practical Solar Thermal Chilled Water 

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  6. Practical Solar Thermal Chilled Water

    E-Print Network [OSTI]

    Leavell, B.

    2010-01-01T23:59:59.000Z

    the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

  7. Innovative gas energy systems for use with passive solar residences

    SciTech Connect (OSTI)

    Hartman, D.; Kosar, D.

    1983-06-01T23:59:59.000Z

    The GRI asked Booz, Allen, and Hamilton to analyze the integration of passive solar with gas-fired energy systems for heating and cooling homes. Direct gain, trombe wall, thermosiphon and thermal roof storage heating systems were studied. Solar load control, evaporative cooling, earth coupling, and night radiation cooling systems were investigated. The drawbacks of conventional gas backup systems are discussed. Innovative passive/gas combinations are recommended. These include multizone gas furnace, decentralized gas space heater, gas desiccant dehumidifier, and gas dehumidifier for basement drying. The multizone furnace saves $1500, and is recommended for Pilot Version development.

  8. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

  9. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  10. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Test Facility Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News,...

  11. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

  12. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  13. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar...

  14. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1981-09-01T23:59:59.000Z

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  15. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  17. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  18. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    heat exchangers, and solar cells," Sci-Tech News, vol. 65,Solar Energy Materials and Solar Cells, vol. 86, pp. 451-Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,

  19. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  1. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02T23:59:59.000Z

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  2. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  3. Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

  4. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,heat exchangers, and solar cells," Sci-Tech News, vol. 65,in crystalline silicon solar cells," Renewable Energy, vol.

  5. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    output electricity. Solar cells panels that employ opticalsurfaces such as the solar cell back panel and a heat panelbe shaped as a flat panel below a solar cells array with fin

  6. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet Der energy density of the reactor, Jm -3 thermal conductivity, Wm -1 .K -1 G reactive gas

  7. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    ratio of the solar cell output power to the incident lightpower to operate the fan. Natural cooling is preferred for solar

  8. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  9. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air...

  10. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for High-Temperature Falling-Particle Solar-Energy Receiver On August 8, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test...

  11. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    cells by cooling and concentration techniques," inheat. Different techniques of cooling solar cells have been

  12. California Solar Initiative- Solar Thermal Program

    Broader source: Energy.gov [DOE]

    '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to...

  13. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  14. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  16. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    is the ratio of the solar cell output power to the incidentmaximum power output at: The fill factor of a solar cell FFsolar cell temperature by about 15°C, which increases the output power

  17. Cogenerating Photovoltaic and Thermal Solar Collector

    E-Print Network [OSTI]

    Su, Xiao

    · Solar Energy and Alternative Energy can contribute to the energy supply ­ Renewable, doesn't emitCogenerating Photovoltaic and Thermal Solar Collector Jinny Rhee and Jim Mokri COE Faculty Development Grant 9/26, 2008 #12;Motivation · Many Contemporary Applications use power and heat ­ Power

  18. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13T23:59:59.000Z

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  19. Thermal metastabilities in the solar core

    E-Print Network [OSTI]

    Attila Grandpierre; Gabor Agoston

    2002-01-18T23:59:59.000Z

    Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

  20. Thermal Management of Solar Cells

    E-Print Network [OSTI]

    Saadah, Mohammed Ahmed

    2013-01-01T23:59:59.000Z

    D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

  1. Solar-thermal reaction processing

    DOE Patents [OSTI]

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18T23:59:59.000Z

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  2. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

  3. Sandia National Laboratories: solar thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing...

  4. Sandia National Laboratories: solar thermal power plant components

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  5. active solar thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunspot fine structure observed with Swedish Solar Telescope (SST) Sunspot 7 CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK Energy Storage, Conversion and Utilization...

  6. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

  7. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    been considered for solar thermal energy storages. These arePCMs for thermal energy storage in solar driven residentialfluid and thermal energy storage medium in the solar heat

  8. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Organometallic Frames for Solar Energy Storage, Berkeley. [Nanotubes as High-Energy Density Solar Thermal Fuels,” Nano

  9. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

  10. Thermal and non-thermal energies in solar flares

    E-Print Network [OSTI]

    Pascal Saint-Hilaire; Arnold O. Benz

    2005-03-03T23:59:59.000Z

    The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

  11. The solar thermal report. Volume 3, Number 5

    SciTech Connect (OSTI)

    NONE

    1982-09-01T23:59:59.000Z

    This report is published by the Jet Propulsion Laboratory for the DOE Solar Thermal Technology Division to provide an account of work sponsored by the Division and to aid the community of people interested in solar thermal technology in gaining access to technical information. Contents include articles entitled the following: Solar system supplies thermal energy for producing chemicals at USS plant; Solar thermal power module designed for small community market; Roof-mounted trough system supplies process heat for Caterpillar plant; Solar thermal update -- 10 MW(e) pilot plant and 3-MW(t) total energy system; Solar steam processes crude oil; New York investigates solar ponds as a source of thermal energy; On-farm solar -- Finding new uses for the sun; and Topical index of solar thermal report articles.

  12. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01T23:59:59.000Z

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  13. Unique Solar Thermal Laboratory Gets an Upgrade | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This power tower is part of the...

  14. Potential for supplying solar thermal energy to industrial unit operations

    SciTech Connect (OSTI)

    May, E.K.

    1980-04-01T23:59:59.000Z

    Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

  15. Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy

    E-Print Network [OSTI]

    California at Berkeley, University of

    Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

  16. SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind

    E-Print Network [OSTI]

    Richardson, John

    SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

  17. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

    2012-06-19T23:59:59.000Z

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  18. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    Greenhouse gas analysis of solar-thermal electricity gen-CdTe Concentrator PV Solar Thermal Wind Coal CC Gas Turbinefor the assessment of thermal solar systems,” Proceedings of

  19. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    natural gas and using solar thermal energy. There is a solarnatural gas or on solar thermal energy before it will switcha solar thermal system, strictly in terms of energy only.

  20. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  1. Gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  2. Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

    2008-01-01T23:59:59.000Z

    of solar-thermal electricity gen- eration,” Solar Energy,Solar Thermal Wind Coal CC Gas Turbine Nuclear Reference EnergyEnergy pay- back time - a key number for the assessment of thermal solar

  3. New Funding Boosts Carbon Capture, Solar Energy and High Gas...

    Office of Environmental Management (EM)

    Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks New Funding Boosts Carbon Capture, Solar Energy and High Gas Mileage Cars and Trucks June 11, 2009 -...

  4. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  5. A solar concentrating photovoltaic / thermal collector J.S. Coventry

    E-Print Network [OSTI]

    A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy.Coventry@anu.edu.au Abstract Australia is a good location for solar concentrator applications. Current activities in Australia OF THE SOLAR RESOURCE IN AUSTRALIA Australia has relatively high solar insolation, as shown in figure 1

  6. Critical issues in the development of hybrid solar/gas receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.

    1991-01-01T23:59:59.000Z

    A hybrid solar/gas receiver system will allow Stirling engines to operate with combined solar and gas power sources. One of the most attractive options for building a hybrid system is to integrate a gas-fired heat pipe directly into a heat-pipe solar receiver. Before this union can take place, however, a number of technical issues must be resolved. A design must be found that properly distributes the heat-pipe's working fluid over the heated surfaces and prevents fluid from accumulating at undesirable locations in the heat pipe. Experience that has been gained in developing solar receivers and gas-fired heat pipes under recent Department of Energy solar-thermal dish-electric programs is used in this paper to address many of the technical obstacles to building receiver systems. 16 refs.

  7. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Broader source: Energy.gov (indexed) [DOE]

    in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

  8. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect (OSTI)

    None

    2012-01-09T23:59:59.000Z

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  9. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  10. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  11. Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind

    E-Print Network [OSTI]

    California at Berkeley, University of

    upstream of the EarthÃ?s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measureSolar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately

  12. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01T23:59:59.000Z

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  13. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  14. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  15. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

  16. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Thermal Solar Energy Systems for Space Heating of Buildings

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage...

  19. Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

    E-Print Network [OSTI]

    Ábrahám, Erika

    , Germany 2 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Abstract. The exploitation of solar power for energy supply is of in- creasing importance. While technical development mainly takes, wind, and biomass energy. Among such tech- nologies, concentrating solar thermal power (CSP) plants

  20. Solar-Thermal Fluid-Wall Reaction Processing

    DOE Patents [OSTI]

    Weimer, A. W.; Dahl, J. K.; Lewandowski, A. A.; Bingham, C.; Raska Buechler, K. J.; Grothe, W.

    2006-04-25T23:59:59.000Z

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  1. Solar-thermal fluid-wall reaction processing

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Lewandowski, Allan A.; Bingham, Carl; Buechler, Karen J.; Grothe, Willy

    2006-04-25T23:59:59.000Z

    The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.

  2. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

  3. Sandia National Laboratories: solar thermal energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  4. PV/thermal solar power assembly | OSTI, US Dept of Energy, Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVthermal solar power assembly Re-direct Destination: A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar...

  5. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    focus only on the solar collector and catalytic converterfluid, a microfluidic solar collector, and a catalytic heatS. a. , 2004, “Solar Thermal Collectors and Applications,”

  6. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  7. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

  8. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  9. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    Jenerette. 2010. Box 11: Two paths towards solar energy:Photovoltaic vs Solar Thermal. In: Planetary Stewardship.government betting on the wrong solar horse. Natural Gas &

  10. Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power

    E-Print Network [OSTI]

    . A facility with solar fraction less than 1 is a hybrid operating plant that combusts naturLife Cycle Greenhouse Gas Emissions from Concentrating Solar Power Over the last thirty years, more-scale concentrating solar power (CSP) systems. These LCAs have yielded wide-ranging results. Variation could

  11. Solar thermal program summary: Volume 1, Overview, fiscal year 1988

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    The goal of the solar thermal program is to improve overall solar thermal systems performance and provide cost-effective energy options that are strategically secure and environmentally benign. Major research activities include energy collection technology,energy conversion technology, and systems and applications technology for both CR and DR systems. This research is being conducted through research laboratories in close coordination with the solar thermal industry, utilities companies, and universities. The Solar Thermal Technology Program is pursuing the development of critical components and subsystems for improved energy collection and conversion devices. This development follows two basic paths: for CR systems, critical components include stretched membrane heliostats, direct absorption receivers (DARs), and transport subsystems for molten salt heat transfer fluids. These components offer the potential for a significant reduction in system costs; and for DR systems, critical components include stretched membrane dishes, reflux receivers, and Stirling engines. These components will significantly increase system reliability and efficiency, which will reduce costs. The major thrust of the program is to provide electric power. However, there is an increasing interest in the use of concentrated solar energy for applications such as detoxifying hazardous wastes and developing high-value transportable fuels. These potential uses of highly concentrated solar energy still require additional experiments to prove concept feasibility. The program goal of economically competitive energy reduction from solar thermal systems is being cooperatively addressed by industry and government.

  12. PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR

    E-Print Network [OSTI]

    for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612 increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre

  13. Thermal efficiency of single-pass solar air collector

    SciTech Connect (OSTI)

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27T23:59:59.000Z

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  14. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  15. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

  16. Thermally Induced Vibrations of a Solar Wing with Bowed STEM

    E-Print Network [OSTI]

    Hagler, Shawn 1983-

    2010-11-30T23:59:59.000Z

    undergo thermal excitations due to a thermal gradient through the cross-section when entering and exiting solar eclipse. These vibrations can greatly reduce pointing accuracy and lead to mission failure. Boeing obtained a patent in 2006 for the High Power...

  17. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Storage of Solar Thermal Energy,” Solar Energy, 18 (3), pp.Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  18. Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization 

    E-Print Network [OSTI]

    Wang, R.; Zhai, X.

    2006-01-01T23:59:59.000Z

    Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

  19. Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies

    E-Print Network [OSTI]

    Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

  20. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01T23:59:59.000Z

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  1. Long-term goals for solar thermal technology

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01T23:59:59.000Z

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  2. Tehachapi solar thermal system first annual report

    SciTech Connect (OSTI)

    Rosenthal, A. [Southwest Technology Development Inst., Las Cruces, NM (US)

    1993-05-01T23:59:59.000Z

    The staff of the Southwest Technology Development Institute (SWTDI), in conjunction with the staff of Industrial Solar Technology (IST), have analyzed the performance, operation, and maintenance of a large solar process heat system in use at the 5,000 inmate California Correctional Institution (CCI) in Tehachapi, CA. This report summarizes the key design features of the solar plant, its construction and maintenance histories through the end of 1991, and the performance data collected at the plant by a dedicated on-site data acquisition system (DAS).

  3. Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

    2005-01-01T23:59:59.000Z

    by the University of Wisconsin, which is used to select and analyze solar thermal systems. The program provides monthly- average performance for selected system, including: domestic water heating systems, space heating systems, pool heating systems and others... savings from photovoltaic systems using the PV F-CHART program, and a second procedure that uses the F-CHART program to calculate the thermal savings. The solar systems are simulated as specified for the user, no optimization or modification...

  4. Photon management in thermal and solar photovoltaics

    E-Print Network [OSTI]

    Hu, Lu

    2008-01-01T23:59:59.000Z

    Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

  5. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15T23:59:59.000Z

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  6. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect (OSTI)

    None

    2011-02-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  7. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    panels, solar thermal equipment, and storage systems. Consequently, natural gas purchases for heating

  8. Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

  9. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  10. Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)

    Broader source: Energy.gov [DOE]

    Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

  11. Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  12. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  13. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Customer-generators enrolled in the Madison Gas & Electric (MGE) green power purchase program (Green Power Tomorrow) are eligible to receive a special rate for the power produced from solar p...

  14. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01T23:59:59.000Z

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  15. Design and global optimization of high-efficiency solar thermal systems with tungsten cermets

    E-Print Network [OSTI]

    Chester, David A.

    Solar thermal, thermoelectric, and thermophotovoltaic (TPV) systems have high maximum theoretical efficiencies; experimental systems fall short because of losses by selective solar absorbers and TPV selective emitters. To ...

  16. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics

    E-Print Network [OSTI]

    Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics Over the last thirty years, hundreds and utility-scale solar photovoltaic (PV) systems. These LCAs have yielded wide-ranging results. Variation of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. ~40 g CO2

  17. SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Particle Suspensions for Solar Energy Collection A.Sensible Heat Storage for a Solar Thermal Power Plant T.and A. Pfeiffhofer • . Solar Heated Gas Turbine Process

  18. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  19. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  20. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1985-06-18T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  1. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F. (Ames, IA)

    1986-04-08T23:59:59.000Z

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  2. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro JumpProjectsSolar

  3. Solar thermal aerosol flow reaction process

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29T23:59:59.000Z

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  4. THERMAL DEGRADATION OF A BLACK CHROME SOLAR SELECTIVE ABSORBER COATING: SHORT TERM

    E-Print Network [OSTI]

    Lampert, Carl M.

    2011-01-01T23:59:59.000Z

    black show appreciable degradation ically or mechanically upGA, May ety THERMAL DEGRADATION A BLACK CHROME SOLARis ion, Ext. 781 THERMAL DEGRADATION OF A BLACK CHROME SOLAR

  5. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01T23:59:59.000Z

    performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

  6. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

  7. Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage

    E-Print Network [OSTI]

    Mammoli, Andrea

    2014-01-01T23:59:59.000Z

    solar-thermal- assisted hvac system. Energy and Buildings, [of a Solar-Assisted HVAC System with Thermal Storage A.of a solar-assisted HVAC system with thermal storage. Energy

  8. Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2

    E-Print Network [OSTI]

    area decrease with the size of the system. solar thermal systems connected to a district heating network are therefore more cost-effective than systems for single family houses. solar thermal systems) Photovoltaic Solar Thermal Wind Power #12;

  9. Transition Region Emission and Energy Input to Thermal Plasma During the Impulsive Phase of Solar Flares

    E-Print Network [OSTI]

    J. C. Raymond; G. Holman; A. Ciaravella; A. Panasyuk; Y. -K. Ko; J. Kohl

    2007-01-12T23:59:59.000Z

    The energy released in a solar flare is partitioned between thermal and non-thermal particle energy and lost to thermal conduction and radiation over a broad range of wavelengths. It is difficult to determine the conductive losses and the energy radiated at transition region temperatures during the impulsive phases of flares. We use UVCS measurements of O VI photons produced by 5 flares and subsequently scattered by O VI ions in the corona to determine the 5.0 thermal energy and the conductive losses deduced from RHESSI and GOES X-ray data using areas from RHESSI images to estimate the loop volumes, cross-sectional areas and scale lengths. The transition region luminosities during the impulsive phase exceed the X-ray luminosities for the first few minutes, but they are smaller than the rates of increase of thermal energy unless the filling factor of the X-ray emitting gas is ~ 0.01. The estimated conductive losses from the hot gas are too large to be balanced by radiative losses or heating of evaporated plasma, and we conclude that the area of the flare magnetic flux tubes is much smaller than the effective area measured by RHESSI during this phase of the flares. For the 2002 July 23 flare, the energy deposited by non-thermal particles exceeds the X-ray and UV energy losses and the rate of increase of the thermal energy.

  10. Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module

    E-Print Network [OSTI]

    Zengeni, Hazel C

    2014-01-01T23:59:59.000Z

    This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

  11. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Frontier Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal...

  12. Method of coverning the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.-H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  13. Method of governing the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  14. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01T23:59:59.000Z

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  15. Renewable Energies III Photovoltaics, Solar & Geo-Thermal

    E-Print Network [OSTI]

    Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 2011 will provide students with a solid foundation in renewable energies (especially photovoltaics of renewable energies. Accommodation is arranged in fully-equipped cosy holiday flats with fellow students

  16. Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization

    E-Print Network [OSTI]

    Wang, R.; Zhai, X.

    2006-01-01T23:59:59.000Z

    collectors on the south tilted roofs, south walls, balconies or awnings. Experiences on solar thermal utilization are mainly introduced in this paper, which include solar hot water systems with different design methods in residential buildings and solar-powered...

  17. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01T23:59:59.000Z

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  18. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01T23:59:59.000Z

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  19. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    E-Print Network [OSTI]

    Mayer, Alexandre

    Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

  20. Performance contracting for parabolic trough solar thermal systems

    SciTech Connect (OSTI)

    Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

    1997-12-31T23:59:59.000Z

    Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

  1. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect (OSTI)

    Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

    2014-05-12T23:59:59.000Z

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

  2. Midtemperature solar systems test facility predictions for thermal performance of the Acurex solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-01-01T23:59:59.000Z

    Thermal performance predictions are presented for the Acurex solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  3. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20T23:59:59.000Z

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  4. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect (OSTI)

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01T23:59:59.000Z

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  5. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  6. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Solar Kinetics T-700 solar collector with FEK 244 reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01T23:59:59.000Z

    Thermal performance predictions are presented for the Solar Kinetics T-700 solar collector, with FEK 244 reflector surface, for three output temperatures at five cities in the United States.

  7. Title COMBINATION OF THERMAL SOLAR COLLECTORS, HEAT PUMP AND THERMAL ENERGY STORAGE FOR DWELLINGS IN BELGIUM.

    E-Print Network [OSTI]

    Contact Raf; De Herdt; Roel De Coninck; Filip Van Den Schoor; Lieve Helsen

    The amount of available solar energy in Belgium is more than sufficient to meet local heat demand for space heating and domestic hot water in a dwelling. However, the timing of both the availability of solar energy and the need for thermal energy, match only to a limited extent. Therefore, compact storage of the surplus of thermal energy is a critical issue. Depending on the temperature at which this energy is available, directly from the sun or indirectly through the storage, different combinations with a heat pump can be considered. By combining solar energy with a heat pump one may benefit on both sides since the fraction of solar energy increases as well as the performance of the heat pump. The aim of this thesis is to select the best out of three configurations that combine thermal solar collectors, heat pump and thermal energy storage for heating purposes in dwellings in Belgium, based on model simulations. Energetic, exergetic and economic criteria are used to evaluate the different configurations, while thermal comfort and domestic hot water tap profiles should be met. One (or more) performance index (indices) is (are) defined enabling an objective comparison between different systems. Today several systems are already commercially available on the international market [4]. Since these systems consist of different components, the system design is a crucial issue. Therefore, special attention should be paid to the sizing of the individual components, the interaction of the components within the global system, and the strategy for operational control. To study the interaction with the building, three types of buildings (already defined in a previous project) are considered.

  8. Design and global optimization of high-efficiency solar thermal systems

    E-Print Network [OSTI]

    Soljaèiæ, Marin

    Design and global optimization of high-efficiency solar thermal systems with tungsten cermets David, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPV by selective solar absorbers and TPV selective emitters. To improve these critical components, we study a class

  9. Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind

    E-Print Network [OSTI]

    Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

  10. Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove

    E-Print Network [OSTI]

    Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove Solar Thermal Group technical pathways for biomass gasification and shows their advantages and disadvantages especially in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification

  11. Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Design of a High Temperature Small Particle Solar Receiver for Powering a Gas Turbine Engine Dr will describe the design of a high temperature solar receiver capable of driving a gas turbine for power conclusions regarding the best way to operate a solar powered gas turbine have been obtained

  12. Solar/gas systems impact analysis study. Final report, September 1982-July 1984

    SciTech Connect (OSTI)

    Hahn, E.F.; Preble, B.; Neill, C.P.; Loose, J.C.; Poe, T.E.

    1984-07-01T23:59:59.000Z

    The impacts of solar/gas technologies on gas consumers and on gas utilities was measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers and distribution companies. The authors analysis shows that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined in a qualitative fashion. The authors then developed a decision framework for analyzing the type and level of utility involvement in solar/gas technologies.

  13. Forced turbulence in thermally bistable gas: A parameter study

    E-Print Network [OSTI]

    Seifried, D; Niemeyer, J C

    2010-01-01T23:59:59.000Z

    Context: The thermal instability is one of the dynamical agents for turbulence in the diffuse interstellar medium, where both, turbulence and thermal instability interact in a highly non-linear manner. Aims: We study basic properties of turbulence in thermally bistable gas for variable simulation parameters. The resulting cold gas fractions can be applied as parameterisation in simulations on galactic scales. Methods: Turbulent flow is induced on large scales by means of compressive stochastic forcing in a periodic box. The compressible Euler equations with constant UV heating and a parameterised cooling function are solved on uniform grids. We investigate several values of the mean density of the gas and different magnitudes of the forcing. For comparison with other numerical studies, solenoidal forcing is applied as well. Results: After a transient phase, we observe that a state of statistically stationary turbulence is approached. Compressive forcing generally produces a two-phase medium, with a decreasing...

  14. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Economic and Environmental Value of Solar Thermal Systems inEconomic and Environmental Value of Solar Thermal Systems insolar thermal and heat storage systems can improve the economic, as well as environmental

  15. Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure

    E-Print Network [OSTI]

    Loukitcheva, Maria; Carlsson, Mats; White, Stephen

    2015-01-01T23:59:59.000Z

    Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

  16. Solar coal gasification reactor with pyrolysis gas recycle

    DOE Patents [OSTI]

    Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  17. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation 

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    2010-01-01T23:59:59.000Z

    This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

  18. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect (OSTI)

    None

    1984-03-01T23:59:59.000Z

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  19. Thermal conductivity of beryllium-gas packed bed

    SciTech Connect (OSTI)

    Xu, M.; Abdou, M.A.; Raffray, A.R. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    Unsintered packed bed has been suggested as a material form for solid breeder and multiplier in the ITER and fusion power reactor blankets. Study of the effective bed thermal conductivity can provide tools for analysis of the blanket performance under different operating conditions, and of how to actively control the thermal behavior of the blanket. Issues of particular interest are the ability to predict and to control the thermal conductivity. The 2-D model developed at UCLA is used to study the effect of particle diameter, solid-to-gas conductivity ratio, bed porosity, contact area, and surface roughness characteristics on bed thermal conductivity. The study shows that all parameters except bed porosity play important roles in determining the bed thermal controllability.

  20. Solar-thermal-energy collection/storage-pond system

    DOE Patents [OSTI]

    Blahnik, D.E.

    1982-03-25T23:59:59.000Z

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  1. OLADE-Solar Thermal World Portal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth AmericaNorthwest RuralNujiraSolar Thermal World Portal

  2. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    on Sustainable thermal Energy Storage Technologies, Part I:of various energy storage technologies. Here only batterieseffective solar energy storage technologies makes the sun,

  4. Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems

    E-Print Network [OSTI]

    Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal the confidence in solar thermal energy. The so called Input/Output-Procedure is controlling the solar heat systems. The simulation model was validated with measured data and a lot of failures in 11 solar thermal

  5. Leidenforst gas ratchets driven by thermal creep Alois Wrger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Leidenforst gas ratchets driven by thermal creep Alois Würger Laboratoire Ondes et Matière d is at the origin of the recently discovered Leidenfrost ratchet, where liquid droplets float on a vapor layer along, the asymmetric temperature profile at each ratchet summit rectifies the vapor flow in the boundary layer

  6. Global Energetics of Solar Flares: II. Thermal Energies

    E-Print Network [OSTI]

    Aschwanden, M J; Ryan, D; Caspi, A; McTiernan, J M; Warren, H P

    2015-01-01T23:59:59.000Z

    We present the second part of a project on the global energetics of solar flares and CMEs that includes about 400 M- and X-class flares observed with AIA/SDO during the first 3.5 years of its mission. In this Paper II we compute the differential emission measure (DEM) distribution functions and associated multi-thermal energies, using a spatially-synthesized Gaussian DEM forward-fitting method. The multi-thermal DEM function yields a significantly higher (by an average factor of $\\approx 14$), but more comprehensive (multi-)thermal energy than an isothermal energy estimate from the same AIA data. We find a statistical energy ratio of $E_{th}/E_{diss} \\approx 2\\%-40\\%$ between the multi-thermal energy $E_{th}$ and the magnetically dissipated energy $E_{diss}$, which is an order of magnitude higher than the estimates of Emslie et al.~2012. For the analyzed set of M and X-class flares we find the following physical parameter ranges: $L=10^{8.2}-10^{9.7}$ cm for the length scale of the flare areas, $T_p=10^{5.7}-...

  7. Midtemperature solar systems test faclity predictions for thermal performance based on test data: Solar Kinetics T-700 solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Solar Kinetics solar line-focusing parabolic trough collector for five cities in the US are presented. (WHK)

  8. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    SciTech Connect (OSTI)

    Ryan, Daniel F.; Gallagher, Peter T. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-10-15T23:59:59.000Z

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  9. Enhanced thermal and gas flow performance in a three-way catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way...

  10. Computational investigation of thermal gas separation for CO2 capture.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Bryan, Charles R.; Brady, Patrick Vane; Torczynski, John Robert; Brooks, Carlton, F.

    2009-09-01T23:59:59.000Z

    This report summarizes the work completed under the Laboratory Directed Research and Development (LDRD) project 09-1351, 'Computational Investigation of Thermal Gas Separation for CO{sub 2} Capture'. Thermal gas separation for a binary mixture of carbon dioxide and nitrogen is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Molecular models for nitrogen and carbon dioxide are developed, implemented, compared to theoretical results, and compared to several experimental thermophysical properties. The molecular models include three translational modes, two fully excited rotational modes, and vibrational modes, whose degree of excitation depends on the temperature. Nitrogen has one vibrational mode, and carbon dioxide has four vibrational modes (two of which are degenerate). These models are used to perform a parameter study for mixtures of carbon dioxide and nitrogen confined between parallel walls over realistic ranges of gas temperatures and nominal concentrations of carbon dioxide. The degree of thermal separation predicted by DSMC is slightly higher than experimental values and is sensitive to the details of the molecular models.

  11. Gas flow driven by thermal creep in dusty plasma

    SciTech Connect (OSTI)

    Flanagan, T. M.; Goree, J. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2009-10-15T23:59:59.000Z

    Thermal creep flow (TCF) is a flow of gas driven by a temperature gradient along a solid boundary. Here, TCF is demonstrated experimentally in a dusty plasma. Stripes on a glass box are heated by laser beam absorption, leading to both TCF and a thermophoretic force. The design of the experiment allows isolating the effect of TCF. A stirring motion of the dust particle suspension is observed. By eliminating all other explanations for this motion, we conclude that TCF at the boundary couples by drag to the bulk gas, causing the bulk gas to flow, thereby stirring the suspension of dust particles. This result provides an experimental verification, for the field of fluid mechanics, that TCF in the slip-flow regime causes steady-state gas flow in a confined volume.

  12. The Thermal Control of the New Solar Telescope at Big Bear Observatory

    E-Print Network [OSTI]

    The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

  13. MODEL FOR DETERMINING THE EFFECTIVE THERMAL CONDUCTIVITY OF PARTICLE BEDS WITH HIGH SOLID-TO-GAS THERMAL

    E-Print Network [OSTI]

    Abdou, Mohamed

    -TO-GAS THERMAL CONDUCTIVITY RATIO A.R. Raffray, Z. Gorbis, A. Badawi, M.S. Tillack, A.Y. Ying, and M. A. Abdou

  14. STDAC: Solar Thermal Design Assistance Center annual report fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    The Solar Thermal Design Assistance Center (STDAC) at Sandia is a resource provided by the DOE Solar Thermal Program. The STDAC`s major objective is to accelerate the use of solar thermal systems by providing direct technical assistance to users in industry, government, and foreign countries; cooperating with industry to test, evaluate, and develop renewable energy systems and components; and educating public and private professionals, administrators, and decision makers. This FY94 report highlights the activities and accomplishments of the STDAC. In 1994, the STDAC continued to provide significant direct technical assistance to domestic and international organizations in industry, government, and education, Applying solar thermal technology to solve energy problems is a vital element of direct technical assistance. The STDAC provides information on the status of new, existing, and developing solar technologies; helps users screen applications; predicts the performance of components and systems; and incorporates the experience of Sandia`s solar energy personnel and facilities to provide expert guidance. The STDAC directly enhances the US solar industry`s ability to successfully bring improved systems to the marketplace. By collaborating with Sandia`s Photovoltaic Design Assistance Center and the National Renewable Energy Laboratory the STDAC is able to offer each customer complete service in applying solar thermal technology. At the National Solar Thermal Test Facility the STDAC tests and evaluates new and innovative solar thermal technologies. Evaluations are conducted in dose cooperation with manufacturers, and the results are used to improve the product and/or quantify its performance characteristics. Manufacturers, in turn, benefit from the improved design, economic performance, and operation of their solar thermal technology. The STDAC provides cost sharing and in-kind service to manufacturers in the development and improvement of solar technology.

  15. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

    1996-12-31T23:59:59.000Z

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  17. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Thermal Efficiency of Generation, Discharging, Gross Electric Generation,e 1% of the gross electric generation. Thermal losses fromNet Electric Power Generation, Discharging, MWe Net Thermal

  18. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  19. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    structure. Figure 3.1: Solar tracking system. Figure 3.2:for the Figure 3.1: Solar tracking system: 1. Receiver and3.1.2. Tracking Frame The solar tracking frame used in this

  20. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trough Systems CLFR Power Towers Acciona Abengoa Sener Solar Millennium SkyFuel Siemens Ausra SPGMann SkyFuel Abengoa Brightsource Energy SolarReserve eSolar Dish Engine...

  1. A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantof the plant is minimal. CONCLUSIONS A new type of solar

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  5. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01T23:59:59.000Z

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  6. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    with Brayton-cycle gas turbine topping . • , • . . • , , • -Effect of Brayton Cycle. Gas Turbine Topping on the Grossof either Brayton-cycle gas turbines or Rankine-cycle steam

  7. Review Article Solar-Thermal Powered Desalination: Its Significant

    E-Print Network [OSTI]

    Reif, John H.

    @kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

  8. Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes

    E-Print Network [OSTI]

    Tomkins, Andrew

    Under Review for Publication in ASME J. Solar Energy Engineering SOL-12-1058 Life Estimation of Pressurized-Air Solar-Thermal Receiver Tubes David K. Fork 1 e-mail: fork@google.com John Fitch e-mail: fitch.ziaei@gmail.com Robert I. Jetter e-mail: bjetter@sbcglobal.net The operational conditions of the solar thermal receiver

  9. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect (OSTI)

    Menicucci, D.F.

    1994-03-01T23:59:59.000Z

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  10. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect (OSTI)

    Bergeron, K D; Champion, R L; Hunke, R W [eds.

    1980-04-01T23:59:59.000Z

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  11. Acoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica Diagenesis

    E-Print Network [OSTI]

    Guerin, Gilles

    Rights Reserved #12;ABSTRACT Acoustic and Thermal Characterization of Oil Migration, Gas HydratesAcoustic and Thermal Characterization of Oil Migration, Gas Hydrates Formation and Silica is applied to two reservoirs in the Gulf of Mexico. In the last chapter, we present the thermal regime

  12. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  13. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  14. Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting

    E-Print Network [OSTI]

    Noone, Corey J. (Corey James)

    2011-01-01T23:59:59.000Z

    In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. ...

  15. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect (OSTI)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01T23:59:59.000Z

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  16. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19T23:59:59.000Z

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

  17. Modeling the solar thermal receiver for the CSPonD Project

    E-Print Network [OSTI]

    Rees, Jennifer A. (Jennifer Anne)

    2011-01-01T23:59:59.000Z

    The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

  18. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications 

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19T23:59:59.000Z

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

  19. Optimal operation and design of solar-thermal energy storage systems

    E-Print Network [OSTI]

    Lizarraga-García, Enrique

    2012-01-01T23:59:59.000Z

    The present thesis focuses on the optimal operation and design of solar-thermal energy storage systems. First, optimization of time-variable operation to maximize revenue through selling and purchasing electricity to/from ...

  20. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  1. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  2. 25 kWe solar thermal stirling hydraulic engine system: Final conceptual design report

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This report documents the conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to the 11-meter Test Bed Concentrator at Sandia National Laboratories. A manufacturing cost assessment for 10,000 units per year was made by Pioneer Engineering and Manufacturing. The design meets all program objectives including a 60,000-hr design life, dynamic balancing, fully automated control, >33.3% overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs of $300/kW. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high-pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk. The engine design is based on a highly refined Stirling hydraulic engine developed over 20 years as a fully implantable artificial heart power source. 4 refs., 19 figs., 3 tabs.

  3. Modelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove

    E-Print Network [OSTI]

    value energy conversions such as heat engine cycles or chemical process to be carried outModelling the convective flow in solar thermal receivers K.C. Yeh; G. Hughes & K. Lovegrove, Canberra AUSTRALIA E-mail: u3370739@anu.edu.au The natural convective flow inside a concentrating solar

  4. Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure

    E-Print Network [OSTI]

    Quality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch different solar systems. The simulation model was validated with measured data. The deviation between meas * Tel. +49 (0)5151-999503, Fax: +49 (0)5151-999500, Email: paerisch@isfh.de Abstract Input/Output

  5. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOE Patents [OSTI]

    Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

    1997-01-01T23:59:59.000Z

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  6. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOE Patents [OSTI]

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02T23:59:59.000Z

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  7. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    SciTech Connect (OSTI)

    Kuver, Walt

    2009-11-10T23:59:59.000Z

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  8. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

  9. Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section

    E-Print Network [OSTI]

    Li, X.; Wang, T.; Day, B.

    2006-01-01T23:59:59.000Z

    Thermal and Economic Analyses of Energy Saving by Enclosing Gas Turbine Combustor Section Xianchang Li, Ting Wang Benjamin Day ? Research Engineer Professor Engineer Energy Conversion and Conservation Center...) thermography inspection indicated a high-temperature area (500~560°F) at the combustor section of the GE Frame 5 gas turbine of Dynegy Gas Processing Plant at Venice, Louisiana. To improve the thermal efficiency and reduce energy cost, thermal...

  10. Midtemperature Solar Systems Test Facility predictions for thermal performance of the Suntec solar collector with heat-formed glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01T23:59:59.000Z

    Thermal performance predictions are presented for the Suntec solar collector, with heat-formed glass reflector surface, for three output temperatures at five cities in the United States.

  11. Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings

    E-Print Network [OSTI]

    Sim, Kyu-Ho

    2009-05-15T23:59:59.000Z

    Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings were performed. First, compliant flexure pivot tilting pad gas bearings with pad radial compliance (CFTPBs) were introduced and designed for high-speed oil...

  12. Thermal control system and method for a passive solar storage wall

    DOE Patents [OSTI]

    Ortega, Joseph K. E. (Westminister, CO)

    1984-01-01T23:59:59.000Z

    The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

  13. Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation

    E-Print Network [OSTI]

    Cho, S.; Haberl, J.

    to achieve further energy consumption reductions. To accomplish this, the F- Chart program was used for the solar thermal system analysis and the PV F-Chart program for the solar photovoltaic (PV) system analysis. Authors show how DOE-2.1e simulation... Time series plots of space heating and service hot water loads from SYSTEMS and PLANT simulation runs Due to the fact that the solar thermal systems analysis program, F-Chart, takes into account the system efficiencies in its loads calculation...

  14. Standard Practice for Evaluating Thermal Insulation Materials for Use in Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1994-01-01T23:59:59.000Z

    1.1 This practice sets forth a testing methodology for evaluating the properties of thermal insulation materials to be used in solar collectors with concentration ratios of less than 10. Tests are given herein to evaluate the pH, surface burning characteristics, moisture adsorption, water absorption, thermal resistance, linear shrinkage (or expansion), hot surface performance, and accelerated aging. This practice provides a test for surface burning characteristics but does not provide a methodology for determining combustibility performance of thermal insulation materials. 1.2 The tests shall apply to blanket, rigid board, loose-fill, and foam thermal insulation materials used in solar collectors. Other thermal insulation materials shall be tested in accordance with the provisions set forth herein and should not be excluded from consideration. 1.3 The assumption is made that elevated temperature, moisture, and applied stresses are the primary factors contributing to the degradation of thermal insulation mat...

  15. A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules

    E-Print Network [OSTI]

    Connolly Jr, Harold C.

    A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

  16. Midtemperature solar systems test facility predictions for thermal performance based on test data: Sun-Heet nontracking solar collector

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhanced oil recovery applications. The thermal performance predictions for the Sun-Heet nontracking, line-focusing parabolic trough collector at five cities in the US are presented. (WHK)

  17. Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos

    E-Print Network [OSTI]

    M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

    1998-11-24T23:59:59.000Z

    The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

  18. advanced solar thermal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ... El Khaja,...

  19. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    watts of thermal energy from the sun via the water coolingkilowatt-hours of energy from the sun per square mile perthe heat. The thermal energy from the sun is typically used

  20. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01T23:59:59.000Z

    steam turbine or sterling engine connected to an electricalsolar thermal systems, a sterling engine or steam turbine is

  1. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  2. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  3. Solar thermal collector system modeling and testing for novel solar cooker

    E-Print Network [OSTI]

    Foley, Brian, S.B. (Brian M.). Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the ability to cook after daylight hours. The Wilson solar cooker is ...

  4. A two dimensional thermal network model for a photovoltaic solar wall

    SciTech Connect (OSTI)

    Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

    2009-11-15T23:59:59.000Z

    A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

  5. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    Symposium on Solar Thermal Power and Energy Systems,solar to thermal conversion is accomplished by a dispersion of ultra~fine partlcles suspended in a gas to absorb radlant energy

  6. Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems

    E-Print Network [OSTI]

    Thoms, Matthew W

    2012-01-01T23:59:59.000Z

    In concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced ...

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  8. Modeling of solar thermal selective surfaces and thermoelectric generators

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2010-01-01T23:59:59.000Z

    A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

  9. Solar-thermal hybridization of Advanced Zero Emissions Power Plants

    E-Print Network [OSTI]

    El Khaja, Ragheb Mohamad Fawaz

    2012-01-01T23:59:59.000Z

    Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

  10. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dish Test Facility On September 26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation....

  11. Camera-based reflectivity measurement for solar thermal applications

    E-Print Network [OSTI]

    . A survey of good practices for reflectivity measurement in CSP applications was completed by Solar of reflectivity includes both specular and diffuse reflectivity as well a directional and spectral measurement

  12. Green Energy Ohio- GEO Solar Thermal Rebate Program

    Broader source: Energy.gov [DOE]

    With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are...

  13. Active microuidic mixer and gas bubble lter driven by thermal bubble micropump$

    E-Print Network [OSTI]

    Lin, Liwei

    to be proportional to the one-third power of the input pulse frequency. Furthermore, a gas bubble ®lter is integratedActive micro¯uidic mixer and gas bubble ®lter driven by thermal bubble micropump$ Jr-Hung Tsaia Abstract A micro¯uidic mixer with a gas bubble ®lter activated by a thermal bubble actuated nozzle

  14. Financing alternatives and incentives for solar-thermal central-receiver systems

    SciTech Connect (OSTI)

    Bos, P.B.

    1982-07-01T23:59:59.000Z

    As a result of various recently enacted incentive and regulatory legislation combined with the new administration policy and budgetary guidelines, the commercialization of solar thermal central receiver systems will involve financing alternatives other than conventional utility financing. This study was conducted to identify these potential financing alternatives and the associated requirements and impacts on the Department of Energy program. Based upon this analysis, it is concluded that the current alternative financing window is extremely short (through 1985), and that an extension or at the least a gradual phasing out, of the solar tax credits is necessary for the successful transfer of the central receiver technology to the private sector. Furthermore, throughout this time period, continued government support of the R and D activities is necessary to provide the necessary confidence in this technology for the private (financial) sector to underwrite this technology transfer. Consequently, even though the central receiver technology shows high promise for replacing a significant fraction of the oil/gas-fired utility industry peaking and intermediate generation, the current readiness status of this technology still requires further direct and indirect government support for a successful technology transfer. The direct government research and development support will provide the basis for a technological readiness and confidence, whereas the indirect tax incentive support serves to underwrite the extraordinary risks associated with the technology transfer. These support requirements need only be limited to and decreasing during this technology transfer phase, since as the systems approach successful full-scale commercialization, the extraordinary risks will be gradually eliminated. At the time of commercialization the system's value should be on a par with the installed system's cost.

  15. Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma

    E-Print Network [OSTI]

    Mahendra K. Verma

    1995-09-05T23:59:59.000Z

    In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

  16. Energy Partitions and Evolution in a Purely Thermal Solar Flare

    E-Print Network [OSTI]

    Fleishman, Gregory D; Gary, Dale E

    2015-01-01T23:59:59.000Z

    This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

  17. Automated DecisionAnalytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision­Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno­ sis of e#ciency problems for large gas turbines the ultimate goal of applying the system in the day­to­day maintenance of gas­ turbine power plants. A Overview

  18. Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines

    E-Print Network [OSTI]

    Horvitz, Eric

    Automated Decision-Analytic Diagnosis of Thermal Performance in Gas Turbines To be presented Abstract We have developed an expert system for diagno- sis of efficiency problems for large gas turbines the ultimate goal of applying the system in the day-to-day maintenance of gas- turbine power plants. A Overview

  19. Gas Atomization of Amorphous Aluminum: Part I. Thermal Behavior Calculations

    E-Print Network [OSTI]

    Zheng, Baolong; Lin, Yaojun; Zhou, Yizhang; Lavernia, Enrique J.

    2009-01-01T23:59:59.000Z

    which are summarized below: 1. Gas composition is moree?ective than gas pressure on in?uencing cooling rate for app. 210–11. 37. J.E.A. John: Gas Dynamics, Allyn and Bacon,

  20. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    expectancy of a thermal solar energy development? A commontowards solar energy: Photovoltaic vs Solar Thermal. In:

  1. SOLCOST - Version 3. 0. Solar energy design program for non-thermal specialists

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The SOLCOST solar energy design program is a public domain computerized design tool intended for use by non-thermal specialists to size solar systems with a methodology based on life cycle cost. An overview of SOLCOST capabilities and options is presented. A detailed guide to the SOLCOST input parameters is included. Sample problems showing typical imput decks and resulting SOLCOST output sheets are given. Details of different parts of the analysis are appended. (MHR)

  2. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal Solar Thermal Industrial

  3. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    E-Print Network [OSTI]

    Masahiro N. Machida

    2008-10-15T23:59:59.000Z

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplanet's mass. A large fraction of the total angular momentum contributes to the formation of the circumplanetary disk. The disk forms only in a compact region in very close proximity to the protoplanet. Adapting the results to the solar system, the proto-Jupiter and Saturn have compact disks in the region of r < 21 r_J (r < 0.028 r_HJ) and r < 66 r_S (r < 0.061 r_HS), respectively, where r_J (r_HJ) and r_S (r_HS) are the Jovian and Saturnian (Hill) radius, respectively. The surface density has a peak in these regions due to the balance between centrifugal force and gravity of the protoplanet. The size of these disks corresponds well to the outermost orbit of regular satellites around Jupiter and Saturn. Regular satellites may form in such compact disks around proto-gas giant planets.

  4. Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report

    SciTech Connect (OSTI)

    None

    1982-05-01T23:59:59.000Z

    Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

  5. Thermal Structure and Radius Evolution of Irradiated Gas Giant Planets

    E-Print Network [OSTI]

    Phil Arras; Lars Bildsten

    2006-01-15T23:59:59.000Z

    We consider the thermal structure and radii of strongly irradiated gas giant planets over a range in mass and irradiating flux. The cooling rate of the planet is sensitive to the surface boundary condition, which depends on the detailed manner in which starlight is absorbed and energy redistributed by fluid motion. We parametrize these effects by imposing an isothermal boundary condition $T \\equiv T_{\\rm deep}$ below the photosphere, and then constrain $T_{\\rm deep}$ from the observed masses and radii. We compute the dependence of luminosity and core temperature on mass, $T_{\\rm deep}$ and core entropy, finding that simple scalings apply over most of the relevant parameter space. These scalings yield analytic cooling models which exhibit power-law behavior in the observable age range $0.1-10 {\\rm Gyr}$, and are confirmed by time-dependent cooling calculations. We compare our model to the radii of observed transiting planets, and derive constraints on $T_{\\rm deep}$. Only HD 209458 has a sufficiently accurate radius measurement that $T_{\\rm deep}$ is tightly constrained; the lower error bar on the radii for other planets is consistent with no irradiation. More accurate radius and age measurements will allow for a determination of the correlation of $T_{\\rm deep}$ with the equilibrium temperature, informing us about both the greenhouse effect and day-night asymmetries.

  6. High Temperature Thermal Array for Next Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  7. Solar cooking : the development of a thermal battery

    E-Print Network [OSTI]

    Cutting, Alexander Chatfield

    2007-01-01T23:59:59.000Z

    There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

  8. Thermal Solar Energy Systems for Space Heating of Buildings 

    E-Print Network [OSTI]

    Gomri, R.; Boulkamh, M.

    2010-01-01T23:59:59.000Z

    In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source...

  9. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  10. Solar Thermal Policy in the U.S.: A Review of Best Practices

    E-Print Network [OSTI]

    Delaware, University of

    Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy Applications for Delaware Yearly (READY) Center for Energy and Environmental Policy University of Delaware December 2013 Center for Energy and Environmental Policy #12;The Center for Energy and Environmental Policy

  11. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA

  12. Empirical Validation of the Thermal Model of a Passive Solar Cell test

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Empirical Validation of the Thermal Model of a Passive Solar Cell test Thierry Alex MARA, two samples of experimental data are required. The first one is used to calibrate our model the second; Calibration; Sensitivity analysis; Spectral analysis; Time- frequency analysis. 1.Introduction

  13. Assessment of industry views on international business prospects for solar thermal technology

    SciTech Connect (OSTI)

    Easterling, J.C.

    1984-09-01T23:59:59.000Z

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  14. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  15. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    SciTech Connect (OSTI)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.; Talbert, S.G.

    1980-07-31T23:59:59.000Z

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation and on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.

  16. Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

    1987-03-01T23:59:59.000Z

    This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

  17. Design of a Thermally-Actuated Gas Lift Safety Valve

    E-Print Network [OSTI]

    Gilbertson, Eric W.

    Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valve assemblies (GLV). One failure mode occurs when the GLV check valve fails and product passes into the well annulus, potentially reaching ...

  18. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  19. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30T23:59:59.000Z

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  20. Texas Gas Service- Residential Solar Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Only active systems with panels (or collectors) that are certified OG-100 by the Solar Rating Certification Corporation (SRCC) qualify for this rebate. Work must be completed by a licensed contra...

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    c,e Low-Intermediate Gas turbine exhaust, boiler exhaust,cycles for micro-gas turbines," Applied Thermal Engineering,Tiba, "Optimization of gas-turbine combined cycles for solar

  2. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power | Department

  3. Project Profile: Scattering Solar Thermal Concentrators | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power

  4. Midtemperature solar systems test facility predictions for thermal performance based on test data. Toltec two-axis tracking solar collector with 3M acrylic polyester film reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-06-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Toltec solar collector, with acrylic film reflector surface, for three output temperatures at five cities in the United States.

  5. Midtemperature solar systems test facility predictions for thermal performance based on test data. Polisolar Model POL solar collector with glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Polisolar Model POL solar collector, with glass reflector surfaces, for three output temperatures at five cities in the United States.

  6. High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry

    E-Print Network [OSTI]

    Soatto, Stefano

    High Accuracy Numerical Methods for Thermally Perfect Gas Flows with Chemistry Ronald P. Fedkiw with calculations of a 1-D reacting shock tube and a 2-D combustor. 2 #12; 1 Introduction Chemically reacting, high or the incineration of waste in a dump combustor. The combination of energetic chemical reactions and compressible gas

  7. Midtemperature solar systems test facility predictions for thermal performance based on test data: AAI solar collector with pressure-formed glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-03-01T23:59:59.000Z

    Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)

  8. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | DepartmentEnergyThermal EnergyGeneration |

  9. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  10. Thermal performance simulation of a solar cavity receiver under windy conditions

    SciTech Connect (OSTI)

    Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S. [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2011-01-15T23:59:59.000Z

    Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

  11. Functional requirements for component films in a solar thin-film photovoltaic/thermal panel

    SciTech Connect (OSTI)

    Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2010-03-15T23:59:59.000Z

    The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

  12. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: ShelleyDirector's CornerAssociate

  13. Directors - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact: ShelleyDirector's

  14. Facilities - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photo shows one

  15. Contact - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite Map Homehome / Contact To

  16. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching (Export, PA); Newby, Richard A. (Pittsburgh, PA); Bannister, Ronald L. (Winter Springs, FL)

    1999-01-01T23:59:59.000Z

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  17. A novel compact design of calibration equipment for gas and thermal sensors

    SciTech Connect (OSTI)

    Feng, P. X.; Zhang, H. X.; Peng, X. Y.; Sajjad, M.; Chu, J. [Institute for Functional Nanomaterials and Department of Physics, University of Puerto Rico, P.O. Box 70377, San Juan, 00936-8377 (Puerto Rico)

    2011-04-15T23:59:59.000Z

    A novel design of calibration equipment has been developed for static and dynamic calibrations of gas and thermal sensors. This system is cheap, compact, and easily adjustable, which is also combined with a plasma surface modification source for tailoring the surface of sensors to ensure the sensitivity and selectivity. The main advantage of this equipment is that the operating temperature, bias voltage, types of plasma source (for surface modification), types of feeding gases, and gas flow rate (for calibrations), etc., can be independently controlled. This novel system provides a highly reliable, reproducible, and economical method of calibrations for various gas and thermal sensors.

  18. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27T23:59:59.000Z

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  19. Comparison of experimental and simulated thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins (United States)); Schaefer, P.J.; Beckman, W.A.; Klein, S.A. (Univ. of Wisconsin, Madison (United States))

    1993-05-01T23:59:59.000Z

    Short-term experimental tests of drain-back solar water heaters are compared to ratings obtained using TRNSYS to determine if computer simulations can effectively replace laboratory thermal ratings of solar domestic hot water heating systems. The effectiveness of TRNSYS in predicting changes in rating due to limited changes in collector area, collector flow rate, recirculation flow rate, storage tank volume, and storage tank design is validated to within [plus minus]10 percent. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards.

  20. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01T23:59:59.000Z

    et al. , April 1975. 4. Solar Thermal Conversion Missionof.Several Central Reveiver Solar Thermal Power Plant Designterm solar energy are: Included solar thermal conversion to

  1. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    demonstrated how well a molten salt thermal storage systembased CSP plant. Cold molten salt is pumped from a largetemperature and send to a hot molten salt tank. Salt is then

  2. Solar-induced thermal activity and stratification in pond water

    E-Print Network [OSTI]

    Brownridge, James D

    2015-01-01T23:59:59.000Z

    Ponds are universally used to store water for a large number of uses. With the increasing demand for more fresh water, ponds, lakes and reservoirs are likely to be constructed on a larger scale. We must understand the effects of environmental changes on fresh water if we are to most efficiently utilize this resource. This study undertakes to increase our understanding of the rate of thermal response of ponds and other bodies of water to every-day environmental changes. The central research agenda is to investigate how the temperature of pond water from top to bottom responds to the day/night cycle, changes in air temperature just above the surface, cloud conditions, and other sudden environmental changes. Data collection for this study spanned October 2007 to June 2011 and had a continuous time resolution of 50 seconds.

  3. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G. [The University of Alabama] [The University of Alabama

    2013-10-23T23:59:59.000Z

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  4. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01T23:59:59.000Z

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  5. Interaction of a solar space heating system with the thermal behavior of a building

    SciTech Connect (OSTI)

    Vilmer, C.; Warren, M.L.; Auslander, D.

    1980-12-01T23:59:59.000Z

    The thermal behavior of a building in response to heat input from an active solar space heating system is analyzed to determine the effect of the variable storage tank temperature on the cycling rate, on-time, and off-time of a heating cycle and on the comfort characteristics of room air temperature swing and of offset of the average air temperature from the setpoint (droop). A simple model of a residential building, a fan coil heat-delivery system, and a bimetal thermostat are used to describe the system. A computer simulation of the system behavior has been developed and verified by comparisons with predictions from previous studies. The system model and simulation are then applied to determine the building response to a typical hydronic solar heating system for different solar storage temperatures, outdoor temperatures, and fan coil sizes. The simulations were run only for those cases where there was sufficient energy from storage to meet the building load requirements.

  6. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04T23:59:59.000Z

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  7. Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint

    SciTech Connect (OSTI)

    Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

    2011-08-01T23:59:59.000Z

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

  8. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    of Energy under Arlon Hunt, "A New Solar Thermal Receiversolar thermal receiver that utilizes a dispersion of very small particles sus£e2ded in a gas to absorb the radiant energy

  9. The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation

    E-Print Network [OSTI]

    Suardin, Jaffee Arizon

    2009-05-15T23:59:59.000Z

    Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One...

  10. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fergus, Jeffrey W.

    2014-04-12T23:59:59.000Z

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatingsmore »are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.« less

  11. Zirconia and Pyrochlore Oxides for Thermal Barrier Coatings in Gas Turbine Engines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fergus, Jeffrey W. [Auburn University, Auburn, AL (United States). Materials Research and Education Center

    2014-04-12T23:59:59.000Z

    One of the important applications of yttria stabilized zirconia is as a thermal barrier coating for gas turbine engines. While yttria stabilized zirconia performs well in this function, the need for increased operating temperatures to achieve higher energy conversion efficiencies, requires the development of improved materials. To meet this challenge, some rare-earth zirconates that form the cubic fluorite derived pyrochlore structure are being developed for use in thermal barrier coatings due to their low thermal conductivity, excellent chemical stability and other suitable properties. In this paper, the thermal conductivities of current and prospective oxides for use in thermal barrier coatings are reviewed. The factors affecting the variations and differences in the thermal conductivities and the degradation behaviors of these materials are discussed.

  12. Systems analysis of thermal storage

    SciTech Connect (OSTI)

    Copeland, R.J.

    1981-08-01T23:59:59.000Z

    During FY 1981, analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. A study to evaluate thermal storage concepts for a liquid metal receiver was initiated. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts are being studied, including ground-mounted thermal storage for parabolic dishes with Stirling engines.

  13. Survey of EPA facilities for solar thermal energy applications. Final report 1 Nov 77-30 Jun 78

    SciTech Connect (OSTI)

    Nelson, E.V.; Overly, P.T.; Bell, D.M.

    1980-10-01T23:59:59.000Z

    A study was done to assess the feasibility of applying solar thermal energy systems to EPA facilities. A survey was conducted to determine those EPA facilities where solar energy could best be used. These systems were optimized for each specific application and the system/facility combinations were ranked on the basis of greatest cost effectiveness.

  14. The Thermal Environment of the Fiber Glass Dome for the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    A. P. Verdoni; C. Denker; J. R. Varsik; S. Shumko; J. Nenow; R. Coulter

    2007-08-04T23:59:59.000Z

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5 degree Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  15. Impact of component selection and operation on thermal ratings of drain-back solar water heaters

    SciTech Connect (OSTI)

    Davidson, J.H.; Carlson, W.T.; Duff, W.S. (Colorado State Univ., Fort Collins, CO (United States). Solar Energy Applications Lab.)

    1992-11-01T23:59:59.000Z

    In this paper a half-factorial, two-level experimental design is used to determine the effects of changes in collector area, storage tank volume, collector flow rate, recirculation flow rate, and storage tank design on thermal rating of a solar drain-back water heating system. Experimental ratings are determined in accordance with the Solar Rating and Certification Corporation guidelines. Storage tank design is varied by using a stratification manifold in place of the standard drop tube. Variations in other component sizes and operating factors are based on current industry standards. Statistical analyses indicate that a change in collector area accounts for nearly 90 percent of the variation in heat output. Doubling collector area from 2.78 m[sup 2] to 5.56 m[sup 2] increases delivered solar energy by 31 percent. Use of a stratification manifold increases the delivery of solar energy by six percent. Doubling collector flow rate from 0.057 to 0.114 1/s increases solar output by aproximately three percent; however, the increase in pumping energy outweighs the benefits of increasing collector flow rate. The effects of recirculation flow rate and tank volume are obscured by experimental error.

  16. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    SciTech Connect (OSTI)

    ANDREWS,J.W.

    1981-06-01T23:59:59.000Z

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  17. Painting a Picture of Gas Hydrate Distribution with Thermal Images

    SciTech Connect (OSTI)

    Weinberger, Jill L.; Brown, Kevin M.; Long, Philip E.

    2005-02-25T23:59:59.000Z

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, the entire gas hydrate stability zone was sampled in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space of 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs.

  18. Gas-chromatographic identification of volatile products from thermal processing of Bitumen

    SciTech Connect (OSTI)

    Zenkevich, I.G.; Ventura, K. [Advanced Chemical Engineering Institute, Pardubice (Czechoslovakia)

    1992-03-10T23:59:59.000Z

    The variety of bitumen industrial brands is evident in the significant variation of composition and ratio of volatile thermal processing products, which makes their detailed characterization difficult. For that reason, in the authors` opinion a simple and easily reproducible method for gas chromatographic analysis and identification of these substances should be of greater interest than gathering more such results. In this report the authors discuss the selection of an optimal combination of group and individual gas chromatographic methods for identification of volatile thermal processing products in the presence of air, using the example of AP bitumen, the main brand used in Czechoslavakia for production of asphalt. 15 refs., 1 tab.

  19. Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

    SciTech Connect (OSTI)

    Grant Hawkes; James Sterbentz; John Maki; Binh Pham

    2012-06-01T23:59:59.000Z

    A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact – graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

  20. Thermal and radiolytic gas generation from Tank 241-S-102 waste

    SciTech Connect (OSTI)

    King, C.M.; Pederson, L.R.; Bryan, S.A.

    1997-07-01T23:59:59.000Z

    This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

  1. Solar buildings. Overview: The Solar Buildings Program

    SciTech Connect (OSTI)

    Not Available

    1998-04-01T23:59:59.000Z

    Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

  2. Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and their Isotopes

    E-Print Network [OSTI]

    Thomas R. Ayres; Claude Plymate; Christoph U. Keller

    2006-06-07T23:59:59.000Z

    A solar photospheric "thermal profiling" analysis is presented, exploiting the infrared rovibrational bands of carbon monoxide (CO) as observed with the McMath-Pierce Fourier transform spectrometer (FTS) at Kitt Peak, and from above the Earth's atmosphere by the Shuttle-borne ATMOS experiment. Visible continuum intensities and center-limb behavior constrained the temperature profile of the deep photosphere, while CO center-limb behavior defined the thermal structure at higher altitudes. The oxygen abundance was self consistently determined from weak CO absorptions. Our analysis was meant to complement recent studies based on 3-D convection models which, among other things, have revised the historical solar oxygen (and carbon) abundance downward by a factor of nearly two; although in fact our conclusions do not support such a revision. Based on various considerations, an oxygen abundance of 700+/-100 ppm (parts per million relative to hydrogen) is recommended; the large uncertainty reflects the model sensitivity of CO. New solar isotopic ratios also are reported for 13C, 17O, and 18O.

  3. Thermal analysis of the horizontal shipping container for normal conditions of transport with solar insolation

    SciTech Connect (OSTI)

    Stumpfl, E.; Feldman, M.R.; Anderson, J.C.

    1993-04-02T23:59:59.000Z

    A thermal analysis of the horizontal shipping container (HSC) was performed to determine the temperatures at the outer surface of the inner container during normal conditions of transport with incident solar radiation. There are two methods by which this analysis can be performed: (1) it can be run as a steady-state problem where it is assumed that the incident solar radiation is applied to the package 24 hours per day, or (2) it can be run as a cyclic transient problem where the incident solar radiation is applied for 12 hours per day and the other 12 hours there is assumed to be no incident solar radiation. The steady-state method was initially attempted, but the temperatures determined from this analysis were judged to be significantly higher than one would find in the cyclic case. Thus, it was deemed necessary to perform a transient analysis to determine a more realistic temperature distribution within the HSC during normal conditions of transport. The heat transfer code HEATING 7.1 was used to perform these calculations. HEATING 7.1 is a heat conduction code capable of handling radiation, convection (forced and natural), and heat flux boundary conditions. Heat generation within a material is also possible with HEATING 7.1 but was not used in any of the models presented here. The models used here are one-dimensional in the radial direction.

  4. Outdoor testing of advanced optical materials for solar thermal electric applications

    SciTech Connect (OSTI)

    Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

    1992-05-01T23:59:59.000Z

    The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

  5. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01T23:59:59.000Z

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  6. Exhaust gas fuel reforming of Diesel fuel by non-thermal arc discharge for NOx trap regeneration

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Exhaust gas fuel reforming of Diesel fuel by non- thermal arc discharge for NOx trap regeneration to the reforming of Diesel fuel with Diesel engine exhaust gas using a non-thermal plasma torch for NOx trap Diesel fuel reforming with hal-00617141,version1-17May2013 Author manuscript, published in "Energy

  7. CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap

    E-Print Network [OSTI]

    M. Arik; S. Aune; K. Barth; A. Belov; S. Borghi; H. Brauninger; G. Cantatore; J. M. Carmona; S. A. Cetin; J. I. Collar; E. Da Riva; T. Dafni; M. Davenport; C. Eleftheriadis; N. Elias; G. Fanourakis; E. Ferrer-Ribas; P. Friedrich; J. Galan; J. A. Garcia; A. Gardikiotis; J. G. Garza; E. N. Gazis; T. Geralis; E. Georgiopoulou; I. Giomataris; S. Gninenko; H. Gomez; M. Gomez Marzoa; E. Gruber; T. Guthorl; R. Hartmann; S. Hauf; F. Haug; M. D. Hasinoff; D. H. H. Hoffmann; F. J. Iguaz; I. G. Irastorza; J. Jacoby; K. Jakovcic; M. Karuza; K. Konigsmann; R. Kotthaus; M. Krcmar; M. Kuster; B. Lakic; P. M. Lang; J. M. Laurent; A. Liolios; A. Ljubicic; V. Lozza; G. Luzon; S. Neff; T. Niinikoski; A. Nordt; T. Papaevangelou; M. J. Pivovaroff; G. Raffelt; H. Riege; A. Rodriguez; M. Rosu; J. Ruz; I. Savvidis; I. Shilon; P. S. Silva; S. K. Solanki; L. Stewart; A. Tomas; M. Tsagri; K. van Bibber; T. Vafeiadis; J. Villar; J. K. Vogel; S. C. Yildiz; K. Zioutas

    2014-09-15T23:59:59.000Z

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  8. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01T23:59:59.000Z

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  9. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23T23:59:59.000Z

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  10. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power

    E-Print Network [OSTI]

    ;9 Production Cost Modeling Objective: Balance generation and load, every hour, at least cost · Natural-gas Solar Power Solar Energy Solar Field Steam Turbine Generator #12;13 Concentrating Solar Power with Thermal Energy StorageSolar Energy Solar Field Storage Tank Steam Turbine Generator #12;14 Another

  11. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15T23:59:59.000Z

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  12. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01T23:59:59.000Z

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  13. The potential impact of ZT=4 thermoelectric materials on solar thermal energy conversion technologies.

    SciTech Connect (OSTI)

    Xie, M.; Gruen, D. M.; Materials Science Division; Michigan Technological Univ.

    2010-03-02T23:59:59.000Z

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  14. Regeneration analysis under different exhaust gas thermal conditions

    SciTech Connect (OSTI)

    Bella, G.; Rocco, Y. (Dept. di Ingegneria Meccanica, II Univ. di Roma Tor Vergata, Rome (IT))

    1990-07-01T23:59:59.000Z

    A refinement of the honeycomb trap model developed by the authors of this paper for analyzing the temperature history of the trap channels during the regeneration period is presented. The first results obtained, shown in previous papers, encouraged the authors to improve the model in order to account for the heat transfer not only along the channel length, but also in the radial direction. In order to achieve this objective, a control volume approach was used to simulate the soot regeneration in all contiguous channels along the axial and radial directions of the monolith, and to determine the wall temperature and soot oxidation as a function of time. Different thermodynamic conditions of the exhaust gas at the trap inlet were considered in order to examine the effects of cold regeneration. For the same soot amount accumulated in the trap, the soot burnup time and temperature history depend on the inlet temperature.

  15. Opto-thermal analysis of a lightweighted mirror for solar telescope

    E-Print Network [OSTI]

    Banyal, Ravinder K; Chatterjee, S

    2013-01-01T23:59:59.000Z

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

  16. Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama

    2008-06-24T23:59:59.000Z

    We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

  17. Measurements of gas sorption from seawater and the influence of gas release on open-cycle ocean thermal energy conversion (OC-OTEC) system performance

    SciTech Connect (OSTI)

    Penney, T.R.; Althof, J.A.

    1985-06-01T23:59:59.000Z

    The technical community has questioned the validity and cost-effectiveness of open-cycle ocean thermal energy conversion (OC-OTEC) systems because of the unknown effect of noncondensable gas on heat exchanger performance and the power needed to run vacuum equipment to remove this gas. To date, studies of seawater gas desorption have not been prototypical for system level analysis. This study gives preliminary gas desorption data on a vertical spout, direct contact evaporator and multiple condenser geometries. Results indicate that dissolved gas can be substantially removed before the seawater enters the heat exchange process, reducing the uncertainty and effect of inert gas on heat exchanger performance.

  18. Mechanism of Thermal Reversal of the (Fulvalene)tetracarbonyldiruthenium Photoisomerization: Toward Molecular Solar-Thermal Energy Storage

    SciTech Connect (OSTI)

    Kanai, Y; Srinivasan, V; Meier, S K; Vollhardt, K P; Grossman, J C

    2010-02-18T23:59:59.000Z

    In the currently intensifying quest to harness solar energy for the powering of our planet, most efforts are centered around photoinduced generic charge separation, such as in photovoltaics, water splitting, other small molecule activation, and biologically inspired photosynthetic systems. In contrast, direct collection of heat from sunlight has received much less diversified attention, its bulk devoted to the development of concentrating solar thermal power plants, in which mirrors are used to focus the sun beam on an appropriate heat transfer material. An attractive alternative strategy would be to trap solar energy in the form of chemical bonds, ideally through the photoconversion of a suitable molecule to a higher energy isomer, which, in turn, would release the stored energy by thermal reversal. Such a system would encompass the essential elements of a rechargeable heat battery, with its inherent advantages of storage, transportability, and use on demand. The underlying concept has been explored extensively with organic molecules (such as the norbornadiene-quadricyclane cycle), often in the context of developing photoswitches. On the other hand, organometallic complexes have remained relatively obscure in this capacity, despite a number of advantages, including expanded structural tunability and generally favorable electronic absorption regimes. A highly promising organometallic system is the previously reported, robust photo-thermal fulvalene (Fv) diruthenium couple 1 {l_reversible} 2 (Scheme 1). However, although reversible and moderately efficient, lack of a full, detailed atom-scale understanding of its key conversion and storage mechanisms have limited our ability to improve on its performance or identify optimal variants, such as substituents on the Fv, ligands other than CO, and alternative metals. Here we present a theoretical investigation, in conjunction with corroborating experiments, of the mechanism for the heat releasing step of 2 {yields} 1 and its Fe (4) and Os (6) relatives. The results of the combined study has enabled a rigorous interpretation of earlier and new experimental measurements and paint a surprising picture. First-principles calculations were employed based on spin unrestricted density functional theory (DFT) with a non-empirical gradient corrected exchange-correlation functional. Ultrasoft pseudopotentials were used to describe the valence-core interactions of electrons, including scalar relativistic effects of the core. Wavefunctions and charge densities were expanded in plane waves with kinetic energies up to 25 and 200 Rydberg, respectively. Reaction pathways were delineated with the string method, as implemented within the Car-Parrinello approach. This method allows for the efficient determination of the minimum energy path (MEP) of atomistic transitions and thus also saddle points (transition states, TSs), which are the energy maxima along the MEP. All geometries were optimized until all forces on the atoms were less than 0.02 eV/{angstrom}. The calculated structures of 1 and 2 were in good agreement with their experimental counterparts.

  19. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G. [USDOE, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01T23:59:59.000Z

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  20. Chaotic mean wind in turbulent thermal convection and long-term correlations in solar activity

    E-Print Network [OSTI]

    A. Bershadskii

    2009-12-25T23:59:59.000Z

    It is shown that correlation function of the mean wind velocity in a turbulent thermal convection (Rayleigh number $Ra \\sim 10^{11}$) exhibits exponential decay with a very long correlation time, while corresponding largest Lyapunov exponent is certainly positive. These results together with the reconstructed phase portrait indicate presence of a chaotic component in the examined mean wind. Telegraph approximation is also used to study relative contribution of the chaotic and stochastic components to the mean wind fluctuations and an equilibrium between these components has been studied. Since solar activity is based on the thermal convection processes, it is reasoned that the observed solar activity long-term correlations can be an imprint of the mean wind chaotic properties. In particular, correlation function of the daily sunspots number exhibits exponential decay with a very long correlation time and corresponding largest Lyapunov exponent is certainly positive, also relative contribution of the chaotic and stochastic components follows the same pattern as for the convection mean wind.

  1. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  2. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Solar Water Heater power systems that rely on batteries. Solar Water HeaterSolar water heater is becoming more popular because they are

  3. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”Power Plants,” Journal of Solar Energy Engineering, 124 (2),

  4. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Organometallic Frames for Solar Energy Storage, Berkeley. [Nocera D. G. , 2010, “Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,”

  5. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Organometallic Frames for Solar Energy Storage, Berkeley. [and Photovoltaic Solar Energy Converters,” American ChemicalNocera D. G. , 2010, “Solar Energy Supply and Storage for

  6. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  7. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  8. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  9. Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature

    SciTech Connect (OSTI)

    Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

    2007-10-15T23:59:59.000Z

    The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

  10. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

  11. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27T23:59:59.000Z

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  12. Standard Test Method for Determining Thermal Performance of Tracking Concentrating Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01T23:59:59.000Z

    1.1 This test method covers the determination of thermal performance of tracking concentrating solar collectors that heat fluids for use in thermal systems. 1.2 This test method applies to one- or two-axis tracking reflecting concentrating collectors in which the fluid enters the collector through a single inlet and leaves the collector through a single outlet, and to those collectors where a single inlet and outlet can be effectively provided, such as into parallel inlets and outlets of multiple collector modules. 1.3 This test method is intended for those collectors whose design is such that the effects of diffuse irradiance on performance is negligible and whose performance can be characterized in terms of direct irradiance. Note 1—For purposes of clarification, this method shall apply to collectors with a geometric concentration ratio of seven or greater. 1.4 The collector may be tested either as a thermal collection subsystem where the effects of tracking errors have been essentially removed from t...

  13. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    SciTech Connect (OSTI)

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01T23:59:59.000Z

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  14. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    photovoltaics and solar thermal collectors; • electricalexchangers, solar thermal collectors, absorption chillers,

  15. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  16. Solar Compartment Design Methods, Performance Analysis and Thermal Data for Solar Composting Latrines: A Full Scale Experimental Study

    E-Print Network [OSTI]

    Rendall, Joseph D.

    2012-12-31T23:59:59.000Z

    . Pathogen resistance to disinfection or inactivation in latrines is multifaceted. The full-scale solar composting compartment studies at the University of Kansas have advanced the knowledge about feces composting in solar compartments based on climate...

  17. MESO-SCALE MODELING OF THE INFLUENCE OF INTERGRANULAR GAS BUBBLES ON EFFECTIVE THERMAL CONDUCTIVITY

    SciTech Connect (OSTI)

    Paul C. Millett; Michael Tonks

    2011-06-01T23:59:59.000Z

    Using a mesoscale modeling approach, we have investigated how intergranular fission gas bubbles, as observed in high-burnup nuclear fuel, modify the effective thermal conductivity in a polycrystalline material. The calculations reveal that intergranular porosity has a significantly higher resistance to heat transfer compared to randomly-distributed porosity. A model is developed to describe this conductivity reduction that considers an effective grain boundary Kapitza resistance as a function of the fractional coverage of grain boundaries by bubbles.

  18. CALIFORNIA SOLAR DATA MANUAL

    E-Print Network [OSTI]

    Berdahl, P.

    2010-01-01T23:59:59.000Z

    and William A. Beckman, Solar Energy Thermal Processes (JohnWiley, Inc" New York. Solar Energy Thermal Processes. John1977): SOLCOST, Solar Energy Design Program for Non-Thermal

  19. Testing and evaluation of large-area heliostats for solar thermal applications

    SciTech Connect (OSTI)

    Strachan, J.W.; Houser, R.M.

    1993-02-01T23:59:59.000Z

    Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

  20. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect (OSTI)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15T23:59:59.000Z

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  1. Dust production from sub-solar to super-solar metallicity in Thermally Pulsing Asymptotic Giant Branch Stars

    E-Print Network [OSTI]

    Ambra, Nanni; Paola, Marigo; Léo, Girardi; Atefeh, Javadi; Jacco, van Loon

    2014-01-01T23:59:59.000Z

    We discuss the dust chemistry and growth in the circumstellar envelopes (CSEs) of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) star models computed with the COLIBRI code, at varying initial mass and metallicity (Z=0.001, 0.008, 0.02, 0.04, 0.06). A relevant result of our analysis deals with the silicate production in M-stars. We show that, in order to reproduce the observed trend between terminal velocities and mass-loss rates in Galactic M-giants, one has to significantly reduce the efficiency of chemisputtering by H2 molecules, usually considered as the most effective dust destruction mechanism. This indication is also in agreement with the most recent laboratory results, which show that silicates may condense already at T=1400 K, instead than at Tcond=1000 K, as obtained by models that include chemisputtering. From the analysis of the total dust ejecta, we find that the total dust-to-gas ejecta of intermediate-mass stars are much less dependent on metallicity than usually assumed. In a broader contex...

  2. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  3. Monitoring and simulation of the thermal performance of solar heated outdoor swimming pools

    SciTech Connect (OSTI)

    Hahne, E.; Kuebler, R. (Universitaet Stuttgart (Germany))

    1994-07-01T23:59:59.000Z

    Based on detailed measurements of two outdoor swimming pools (at Leonberg and Moehringen) a computer model has been developed and validated for the simulation of the thermal behaviour of such pools. The subroutine is compatible to TRNSYS 13.1. Correlations for the heat losses due to evaporation, convection, and radiation were taken from literature and tested in the model. It was not possible to select one optimal correlation for the description of the evaporative heat losses of both swimming pools due to the different exposure to wind. Using the most suitable correlation for the evaporative heat losses of each pool allowed for the simulation of the pool temperature with less than 0.5 K standard deviation between measured and simulated temperature. the major problem was the measurement of the relevant wind speed to be used in the correlations describing the evaporative heat losses under real outdoor conditions. A method is described detailing how to calibrate the model using the heating energy requirement and the measured pool temperature during actual operation periods. The analysis of the measured data of two different outdoor swimming pools under the same climatic conditions showed differences of a factor 2 and more in the heat demand per unit pool area. This was mainly caused by the difference in local wind speed which differed by more than a factor 4. The two pools investigated were heated by solar energy with a fraction of 28% and 14%, respectively, and the seasonal efficiency of the solar systems was 37.7% and 33.4%. Simulations show that a reduction of the water temperature from 24[degrees]C to 22[degrees]C during periods with low outdoor temperatures and few visitors, reduces the fuel consumption to less than half and increases the solar fraction from 28% to 50% in one pool.

  4. 3.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/56 9. Solar cooling

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .iea.org/publications/freepublications/publication/Solar_Heating_Cooling_Road map_2012_WEB.pdf 3.12.2014 Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500.iea.org/publications/freepublications/publication/Solar_Heating_Cooling_Road map_2012_WEB.pdf #12;3.12.2014Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500.12.2014Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 8/56 http://www.brighton-webs

  5. Oxidation-resistant, solution-processed plasmonic Ni nanochain-SiO{sub x} (x?solar thermal absorbers

    SciTech Connect (OSTI)

    Yu, Xiaobai; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States); Zhang, Qinglin [Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506 (United States); Li, Juchuan [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-21T23:59:59.000Z

    Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiO{sub x} (x?solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600?°C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al{sub 2}O{sub 3} selective solar thermal absorbers, which readily oxidize at 450?°C. The SiO{sub x} (x?solar absorptance of ?90% and a low emittance ?18% measured at 300?°C. These results open the door towards atmospheric stable, high temperature, high-performance solar selective absorber coatings processed by low-cost solution-chemical methods for future generations of CSP systems.

  6. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    on Sustainable thermal Energy Storage Technologies, Part I:2009, “Review on Thermal Energy Storage with Phase Change2002, “Survey of Thermal Energy Storage for Parabolic Trough

  7. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

  8. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Review on Sustainable thermal Energy Storage Technologies,D. , 2009, “Review on Thermal Energy Storage with PhaseW. , 2002, “Survey of Thermal Energy Storage for Parabolic

  9. A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2011-01-01T23:59:59.000Z

    of advanced concept solar power plants. For conditions ofthe operation of a solar power plant is very small. Plantplant has the additional advantage of not requiring cooling water, an important feature since arid areas are the best solar

  10. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion chen.pdf More Documents & Publications Solar Thermoelectric...

  11. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Solar Energy Conversion Applications By Dusan Coso B.S. (UniversitySolar Energy Conversion Applications by Dusan Coso Doctor of Philosophy in Engineering – Mechanical Engineering University

  12. IDENTIFICATION OF AN {sup 84}Sr-DEPLETED CARRIER IN PRIMITIVE METEORITES AND IMPLICATIONS FOR THERMAL PROCESSING IN THE SOLAR PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Paton, Chad; Schiller, Martin; Bizzarro, Martin, E-mail: chadpaton@gmail.com, E-mail: schiller@snm.ku.dk, E-mail: bizzarro@snm.ku.dk [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark)

    2013-02-01T23:59:59.000Z

    The existence of correlated nucleosynthetic heterogeneities in solar system reservoirs is now well demonstrated for numerous nuclides. However, it has proven difficult to discriminate between the two disparate processes that can explain such correlated variability: incomplete mixing of presolar material or secondary processing of a well-mixed disk. Using stepwise acid-leaching of the Ivuna CI-chondrite, we show that unlike other nuclides such as {sup 54}Cr and {sup 50}Ti, Sr-isotope variability is the result of a carrier depleted in {sup 84}Sr. The carrier is most likely presolar SiC, which is known to have both high Sr-concentrations relative to solar abundances and extremely depleted {sup 84}Sr compositions. Thus, variability in {sup 84}Sr in meteorites and their components can be attributed to varying contributions from presolar SiC. The observed {sup 84}Sr excesses in calcium-aluminum refractory inclusions (CAIs) suggest their formation from an SiC-free gaseous reservoir, whereas the {sup 84}Sr depletions present in differentiated meteorites require their formation from material with an increased concentration of SiC relative to CI chondrites. The presence of a positive correlation between {sup 84}Sr and {sup 54}Cr, despite being hosted in carriers of negative and positive anomalies, respectively, is not compatible with incomplete mixing of presolar material but instead suggests that the solar system's nucleosynthetic heterogeneity reflects selective thermal processing of dust. Based on vaporization experiments of SiC under nebular conditions, the lack of SiC material in the CAI-forming gas inferred from our data requires that the duration of thermal processing of dust resulting in the vaporization of CAI precursors was extremely short-lived, possibly lasting only hours to days.

  13. Thermal Effects of Circumplanetary Disk Formation around Proto-Gas Giant Planets

    E-Print Network [OSTI]

    Machida, Masahiro N

    2008-01-01T23:59:59.000Z

    The formation of a circumplanetary disk and accretion of angular momentum onto a protoplanetary system are investigated using 3D hydrodynamical simulations. The local region around a protoplanet in a protoplanetary disk is considered with sufficient spatial resolution: the region from outside the Hill sphere to the Jovian radius is covered by the nested-grid method. To investigate the thermal effects of the circumplanetary disk, various equations of state are adopted. Large thermal energy around the protoplanet slightly changes the structure of the circumplanetary disk. Compared with a model adopting an isothermal equation of state, in a model with an adiabatic equation of state, the protoplanet's gas envelope extends farther, and a slightly thick disk appears near the protoplanet. However, different equations of state do not affect the acquisition process of angular momentum for the protoplanetary system. Thus, the specific angular momentum acquired by the system is fitted as a function only of the protoplan...

  14. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOE Patents [OSTI]

    Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael R. (Knoxville, TN)

    2002-11-05T23:59:59.000Z

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  15. Application of subgroup decomposition in diffusion theory to gas cooled thermal reactor problem

    SciTech Connect (OSTI)

    Yasseri, S.; Rahnema, F. [Nuclear and Radiological Engineering and Medical Physics Program, George W. Woodruff School, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2013-07-01T23:59:59.000Z

    In this paper, the accuracy and computational efficiency of the subgroup decomposition (SGD) method in diffusion theory is assessed in a ID benchmark problem characteristic of gas cooled thermal systems. This method can be viewed as a significant improvement in accuracy of standard coarse-group calculations used for VHTR whole core analysis in which core environmental effect and energy angle coupling are pronounced. It is shown that a 2-group SGD calculation reproduces fine-group (47) results with 1.5 to 6 times faster computational speed depending on the stabilizing schemes while it is as efficient as single standard 6-group diffusion calculation. (authors)

  16. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01T23:59:59.000Z

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the application of this technology for removing elemental mercury from flue gas streams generated by utility boilers. On an absolute basis, the quantity of reagent required to accomplish the oxidation was small. For example, complete oxidation of mercury was accomplished using a 1% volume fraction of oxygen in a nitrogen stream. Overall, the tests with mercury validated the most useful aspect of the CR&E technology: Providing a method for elemental mercury removal from a gas phase by employing a specific plasma reagent to either increase reaction kinetics or promote reactions that would not have occurred under normal circumstances.

  17. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect (OSTI)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01T23:59:59.000Z

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  18. Contact fatigue behavior and gas cell thermal wave NDE of sintered reaction bonded silicon nitride

    SciTech Connect (OSTI)

    Barla, J.R.; Edler, J.P.; Lin, H. [Eaton Corp. R & D, Southfield, MI (United States)] [and others

    1996-12-31T23:59:59.000Z

    Silicon nitride is being evaluated for potential applications as structural components subjected to contact fatigue loading. A new testing and evaluation methodology for evaluation of Hertzian contact fatigue damage in ceramic materials has been developed and is described. Contact fatigue damage is induced in three test specimens simultaneously. The material investigated is Eaton Corporation`s low cost E - Process Silicon Nitride. Tests were conducted at several Hertzian stress levels to evaluate contact fatigue damage behavior. Gas cell thermal wave NDE was employed to study the induced subsurface damage. Damage behavior was also investigated using optical microscopy. Two specimens were evaluated in detail; one that was tested for 17,400 cycles, P{sub max} = 2700 N and one that was tested for 1 x 10{sup 6} cycles, P{sub max} = 1800 N. The 2700 N specimen has a partial cone crack and contains a small concentration of vertical and shallow horizontal cracks. No evidence of a cone crack was detected on the 1800 N specimen. However, a larger concentration of horizontal microcracks at and just below the surface is present in this specimen, with particle debris in and around the surface contact area. Correlation of the optical microscopy observations with gas cell thermal wave NDE of the subsurface damage in these two specimens is discussed.

  19. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data. Alpha Solarco Model 104 solar collector with 0. 125-inch Schott low-iron glass reflector surface

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-04-01T23:59:59.000Z

    Thermal performance predictions based on test data are presented for the Alpha Solarco Model 104 solar collector, with 0.125-inch Schott low-iron glass reflector surface, for three output temperatures at five cities in the United States.

  20. An outdoor exposure testing program for optical materials used in solar thermal electric technologies

    SciTech Connect (OSTI)

    Wendelin, T.; Jorgensen, G.

    1994-01-01T23:59:59.000Z

    Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

  1. Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare

    E-Print Network [OSTI]

    T. Minoshima; T. Yokoyama; N. Mitani

    2007-10-02T23:59:59.000Z

    We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy ($\\gsim 100$ keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy ($\\lsim 100$ keV) HXRs. We interpret these observations in terms of an electron transport model called {\\TPP}. We numerically solved the spatially-homogeneous {\\FP} equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.

  2. Thermal influence on charge carrier transport in solar cells based on GaAs PN junctions

    SciTech Connect (OSTI)

    Osses-Márquez, Juan; Calderón-Muñoz, Williams R., E-mail: wicalder@ing.uchile.cl [Department of Mechanical Engineering, University of Chile, Beauchef 850, Santiago (Chile)

    2014-10-21T23:59:59.000Z

    The electron and hole one-dimensional transport in a solar cell based on a Gallium Arsenide (GaAs) PN junction and its dependency with electron and lattice temperatures are studied here. Electrons and heat transport are treated on an equal footing, and a cell operating at high temperatures using concentrators is considered. The equations of a two-temperature hydrodynamic model are written in terms of asymptotic expansions for the dependent variables with the electron Reynolds number as a perturbation parameter. The dependency of the electron and hole densities through the junction with the temperature is analyzed solving the steady-state model at low Reynolds numbers. Lattice temperature distribution throughout the device is obtained considering the change of kinetic energy of electrons due to interactions with the lattice and heat absorbed from sunlight. In terms of performance, higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the design of heat exchange devices and thermal management strategies in photovoltaic technologies.

  3. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

  4. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    SciTech Connect (OSTI)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-09-01T23:59:59.000Z

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that vary as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.

  5. Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems

    E-Print Network [OSTI]

    Greenhut, Andrew David

    2010-01-01T23:59:59.000Z

    Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

  6. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect (OSTI)

    Long, R.C.

    1996-12-31T23:59:59.000Z

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  7. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

  8. Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation and rapid thermal annealing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    695 Polyx multicrystalline silicon solar cells processed by PF+5 unanalysed ion implantation of terrestrial solar cells as compared to classical furnace or pulsed laser annealing. Unfortunately, drawbacks for the fabrication of solar cells. It offers the possibility of achieving strong reduction of cell cost in spite

  9. Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

  10. Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Toward a Low-CarMunicipal Financing for Energy Efficiency and Solar Power By Merrian C. Fuller, such as improving energy efficiency and add- ing solar photovoltaics (PV) and solar thermal systems to buildings, and the aver- age cost of natural gas has risen more than 10 percent a year for residential customers

  11. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01T23:59:59.000Z

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  12. Lubricating system for thermal medium delivery parts in a gas turbine

    DOE Patents [OSTI]

    Mashey, Thomas Charles (Coxsackie, NY)

    2002-01-01T23:59:59.000Z

    Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.

  13. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    organized by the Solar Thermal Test Facilities UsersMexico, Organized by the Solar Thermal Test Facilities Usersdevelop a new type of solar thermal receiver that utilizes a

  14. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    and not only by PV / solar thermal systems. To satisfy theheat exchangers, solar thermal collectors, absorptionphotovoltaics and solar thermal collectors; • electrical

  15. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01T23:59:59.000Z

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  16. Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller

    E-Print Network [OSTI]

    Poiry, Heather Marie

    2011-01-01T23:59:59.000Z

    2004) “Advances in solar thermal electricity technology”.1: Comparison of the pros and cons for various solar thermalof Three Concentrating Solar Thermal Units Designed with

  17. Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting

    E-Print Network [OSTI]

    Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

    2014-01-01T23:59:59.000Z

    In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

  18. Sandia National Laboratories: SolarReserve Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  19. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power National Solar Thermal Testing Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June...

  20. Sandia National Laboratories: multiscale concentrated solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

  1. Sandia National Laboratories: Solar Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top ... Thermal Pulses for Boeing Test Article On September 6, 2012, in Concentrating Solar Power, EC, Energy, National Solar Thermal Test Facility, News, Partnership,...

  2. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  3. Midtemperature Solar Systems Test Facility Program for predicting thermal performance of line-focusing, concentrating solar collectors

    SciTech Connect (OSTI)

    Harrison, T.D.

    1980-11-01T23:59:59.000Z

    The program at Sandia National Laboratories, Albuquerque, for predicting the performance of line-focusing solar collectors in industrial process heat applications is described. The qualifications of the laboratories selected to do the testing and the procedure for selecting commercial collectors for testing are given. The testing program is outlined. The computer program for performance predictions is described. An error estimate for the predictions and a sample of outputs from the program are included.

  4. Thermal annealing study on P3HT: PCBM based bulk heterojunction organic solar cells using impedance spectroscopy

    SciTech Connect (OSTI)

    Gollu, Sankara Rao, E-mail: sankar.gollu@gmail.com [Plastic Electronics and Energy Lab (PEEL), Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Sharma, Ramakant, E-mail: diptig@iitb.ac.in; G, Srinivas, E-mail: diptig@iitb.ac.in; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Lab (PEEL) Department of Metallurgical Engineering and Material Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-15T23:59:59.000Z

    Recently, Thermal annealing is an important process for bulk heterojunction organic solar cells (BHJ OSCs) to improve the device efficiency and performance of the organic solar cells. Here in, we have examined the changes in the efficiency and morphology of P3HT: PCBM film according to the thermal annealing temperature to find the changes during the annealing process by measuring the optical absorption, atomic force microscope and X-ray diffraction. We also investigated the effect of different annealing process conditions (without, pre- and post-annealing) on the device performance of the inverted bulk heterojunction organic solar cells consist the structure of ITO/ ZnO / P3HT: PCBM / MoO{sub 3}/ Al by measuring AC impedance characteristics. Particularly, the power conversion efficiency (PCE), crystalline nature of the polymer, light absorption and the surface smoothness of P3HT: PCBM films are significantly improved after the annealing process. These results indicated the improvement in terms of PCE, interface smoothness between the P3HT: PCBM and MoO{sub 3} layers of the post annealed device originated from the decrease of series resistance between P3HT: PCBM layer and Al electrodes, which could be due to decrease in the effective life time of charge carriers.

  5. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  6. Polycrystalline Silicon Solar Cells Fabricated by Pulsed Rapid Thermal Annealing of Amorphous Silicon 

    E-Print Network [OSTI]

    Lee, I-Syuan

    2014-05-07T23:59:59.000Z

    optimized. The novel nickel-induced crystallization with low thermal budget was demonstrated. Polycrystalline silicon thin films were formed from the amorphous silicon thin films by the pulsed rapid thermal annealing process enhanced with a thin nickel...

  7. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  8. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  9. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  10. Dynamic simulation of the thermal and electrical behavior of a thermionic converter coupled to a solar concentrator

    SciTech Connect (OSTI)

    Perez, G. [CUAP-UAP, Puebla (Mexico). Centro de Investigaciones en Dispositivos Semiconductores; Estrada, C.A.; Cervantes, J.G. [UNAM, Temixco, Morelos (Mexico). Solar Energy Research Lab.

    1995-12-31T23:59:59.000Z

    A mathematical simulation for the dynamic thermal and electrical behavior of a thermionic converter coupled to a solar concentrator, is presented. The thermionic device is a Cesium-filled thermionic diode operating in the ignited mode. The emitter of the device is made of polycrystalline Rhenium and the collector of the device of Molybdenum. The solar concentrator is a parabolic dish. The designed emitter and collector temperatures are 1,850 K and 928 K, respectively. However, due to changes in ambient conditions, the collector efficiency varies and so does the system efficiency. This fact makes it necessary to evaluate the design of the system not just for one hour with constant conditions but also for a whole operating day. The paper presents plots for the emitter and collector thermionic device temperatures and power and voltage for a constant resistance load as a function of time.

  11. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    SciTech Connect (OSTI)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.] [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.] [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01T23:59:59.000Z

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  12. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-Print Network [OSTI]

    Wu, Mingshen

    implemented in several desalination systems through the use of coal or gas-fired boilers. To date, however

  13. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01T23:59:59.000Z

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  14. Survey and evaluation of available thermal insulation materials for use on solar heating and cooling systems

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    This is the final report of a survey and evaluation of insulation materials for use with components of solar heating and cooling systems. The survey was performed by mailing questionnaires to manufacturers of insulation materials and by conducting an extensive literature search to obtain data on relevant properties of various types of insulation materials. The study evaluated insulation materials for active and passive solar heating and cooling systems and for multifunction applications. Primary and secondary considerations for selecting insulation materials for various components of solar heating and cooling systems are presented.

  15. On the transition from photoluminescence to thermal emission and its implication on solar energy conversion

    E-Print Network [OSTI]

    Manor, Assaf; Rotschild, Carmel

    2014-01-01T23:59:59.000Z

    Photoluminescence (PL) is a fundamental light-matter interaction, which conventionally involves the absorption of energetic photon, thermalization and the emission of a red-shifted photon. Conversely, in optical-refrigeration the absorption of low energy photon is followed by endothermic-PL of energetic photon. Both aspects were mainly studied where thermal population is far weaker than photonic excitation, obscuring the generalization of PL and thermal emissions. Here we experimentally study endothermic-PL at high temperatures. In accordance with theory, we show how PL photon rate is conserved with temperature increase, while each photon is blue shifted. Further rise in temperature leads to an abrupt transition to thermal emission where the photon rate increases sharply. We also show how endothermic-PL generates orders of magnitude more energetic photons than thermal emission at similar temperatures. Relying on these observations, we propose and theoretically study thermally enhanced PL (TEPL) for highly eff...

  16. Design and validation of an air window for a molten salt solar thermal receiver

    E-Print Network [OSTI]

    Paxson, Adam Taylor

    2009-01-01T23:59:59.000Z

    This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

  17. INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING

    E-Print Network [OSTI]

    Vilmer, Christian

    2013-01-01T23:59:59.000Z

    P(t) UAB time constant. Heat input power from a fan coil orof a building in response to heat input from an active solarS.R. of a building under heat input conditions for active

  18. Signal generation mechanisms, intracavity-gas thermal-diffusivity temperature dependence, and absolute infrared emissivity measurements

    E-Print Network [OSTI]

    Mandelis, Andreas

    , Canada Received 22 September 1997; accepted for publication 8 October 1997 The operating thermal power dominance of thermal-wave radiation power transfer in the phase channel of the thermal-wave signal at large produces an ac electrical signal proportional to the energy of the standing thermal-wave pattern

  19. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect (OSTI)

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K. [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

    2010-11-15T23:59:59.000Z

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  20. Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with {sup 3}He Buffer Gas

    SciTech Connect (OSTI)

    Arik, M.; Cetin, S. A.; Ezer, C.; Yildiz, S. C. [Dogus University, Istanbul (Turkey); Aune, S.; Ferrer-Ribas, E.; Giomataris, I.; Papaevangelou, T. [IRFU, Centre d'Etudes Nucleaires de Saclay (CEA-Saclay), Gif-sur-Yvette (France); Barth, K.; Borghi, S.; Davenport, M.; Elias, N.; Haug, F.; Laurent, J. M.; Niinikoski, T.; Silva, P. S.; Stewart, L. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Belov, A.; Gninenko, S. [Institute for Nuclear Research (INR), Russian Academy of Sciences, Moscow (Russian Federation); Braeuninger, H. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)

    2011-12-23T23:59:59.000Z

    The CERN Axion Solar Telescope (CAST) has extended its search for solar axions by using {sup 3}He as a buffer gas. At T=1.8 K this allows for larger pressure settings and hence sensitivity to higher axion masses than our previous measurements with {sup 4}He. With about 1 h of data taking at each of 252 different pressure settings we have scanned the axion mass range 0.39 eV < or approx. m{sub a} < or approx. 0.64 eV. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g{sub a}{gamma} < or approx. 2.3x10{sup -10} GeV{sup -1} at 95% C.L., the exact value depending on the pressure setting. Kim-Shifman-Vainshtein-Zakharov axions are excluded at the upper end of our mass range, the first time ever for any solar axion search. In the future we will extend our search to m{sub a} < or approx. 1.15 eV, comfortably overlapping with cosmological hot dark matter bounds.

  1. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  2. Modeling of thermal energy storage in groundwater aquifers

    E-Print Network [OSTI]

    Reed, David Bryan

    1979-01-01T23:59:59.000Z

    , nuclear fission, fusion, geo- thermal energy, and solar energy as potential alternate energy sources to replace natural gas and oil. Of these, soIar energy is one of the most promisino alternate energy sources for space heating and cooling. Solar...MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979...

  3. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    photovoltaics and solar thermal collectors; electricalfor application of solar thermal and recovered heat to end-absorption chiller solar thermal photovoltaics Results

  4. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    photovoltaics and solar thermal collectors; electricalelectricity) solar thermal collector (kW) PV (kW) electricelectricity) solar thermal collector (kW) PV (kW) electric

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    National Labs, "Solar Thermal Energy Research," in Sandiareclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  6. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  7. Thermal stress analysis of eccentric tube receiver using concentrated solar radiation

    SciTech Connect (OSTI)

    Wang, Fuqiang; Shuai, Yong; Yuan, Yuan; Yang, Guo; Tan, Heping [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-10-15T23:59:59.000Z

    In the parabolic trough concentrator with tube receiver system, the heat transfer fluid flowing through the tube receiver can induce high thermal stress and deflection. In this study, the eccentric tube receiver is introduced with the aim to reduce the thermal stresses of tube receiver. The ray-thermal-structural sequential coupled numerical analyses are adopted to obtain the concentrated heat flux distributions, temperature distributions and thermal stress fields of both the eccentric and concentric tube receivers. During the sequential coupled numerical analyses, the concentrated heat flux distribution on the bottom half periphery of tube receiver is obtained by Monte-Carlo ray tracing method, and the fitting function method is introduced for the calculated heat flux distribution transformation from the Monte-Carlo ray tracing model to the CFD analysis model. The temperature distributions and thermal stress fields are obtained by the CFD and FEA analyses, respectively. The effects of eccentricity and oriented angle variation on the thermal stresses of eccentric tube receiver are also investigated. It is recommended to adopt the eccentric tube receiver with optimum eccentricity and 90 oriented angle as tube receiver for the parabolic trough concentrator system to reduce the thermal stresses. (author)

  8. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect (OSTI)

    Loferski, J.J. (ed.)

    1983-12-01T23:59:59.000Z

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  9. Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor

    E-Print Network [OSTI]

    , Boulder, CO 80309-0424, USA b National Renewable Energy Laboratory, Golden, CO 80401-3393, USA Abstract throughout the world. Some studies predict that global energy consumption will at least triple in the next 30 The environmental consequences of providing energy will continue to increase as the demand for energy increases

  10. Coupling of the Photosphere to the Solar Corona: A laboratory and observational study of Alfvén wave interaction with a neutral gas

    SciTech Connect (OSTI)

    watts, Christopher

    2010-01-31T23:59:59.000Z

    The grant funded a three year project to investigate the role of Alfvén waves as a possible mechanism heating plasmas, with relevance to solar coronal heating. Evidence suggests that there is strong coupling between the solar photosphere, corona and solar wind through Alfvén wave interaction with the neutral gas particles. A laboratory experimental and solar observational plan was designed to investigate in detail this interaction. Although many of the original research goals were met, difficulties in detecting the Alfvén wave signature meant that much of the research was stymied. This report summaries the work during the grant period, the challenges encountered and overcome, and the future research directions.

  11. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect (OSTI)

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 De Maisonneuve West, EV6.139, Montreal, Quebec (Canada)

    2010-11-15T23:59:59.000Z

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  12. Hybrid Photovoltaic/Thermal Systems with a Solar-Assisted Heat Pump

    SciTech Connect (OSTI)

    Kush, E. A.

    1980-01-01T23:59:59.000Z

    An outline of possibilities for effective use of PV/T collectors with a Solar Assisted Heat Pump is given. A quantitative analysis of the performance and cost of the various configurations as a function of regional climates, using up-to-date results from solar heat pump and PV/T collector studies, will be required for more definitive assessment; and it is recommended that these be undertaken in the PV/T Program. Particular attention should be paid to development of high performance PV/T collectors, matching of heat pump electrical system to PV array and power conditioning characteristics, and optimization of storage options for cost effectiveness and utility impact.

  13. Use of thermal desorption/gas chromatography as a performance-based screening method for petroleum hydrocarbons

    SciTech Connect (OSTI)

    Slavin, P.J. [GRAM, Inc., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Crandall, K. [Brown and Root Environmental, Albuquerque, NM (United States); Dawson, L.; Kottenstette, R. [Sandia National Labs., Albuquerque, NM (United States); Wade, M. [INTERA, Inc., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    Thermal desorption/gas chromatography (TD/GC) was used to screen soil samples on site for total petroleum hydrocarbon (TPH) content during a RCRA Facility Investigation (RFI). It proved to be a rapid, cost- effective tool for detecting non-aromatic mineral oil in soil. The on- site TD/GC results correlated well with those generated at an off- site laboratory for samples analyzed in accordance with EPA Method 418.1.

  14. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER 

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01T23:59:59.000Z

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  15. Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER

    E-Print Network [OSTI]

    Naveed, A.T.; Lee, E. J.; Kang, E. C.

    2006-01-01T23:59:59.000Z

    The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were...

  16. Rooftop Solar Potential Distributed Solar Power in NW

    E-Print Network [OSTI]

    1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 Renewables;3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal

  17. Polycrystalline Silicon Solar Cells Fabricated by Pulsed Rapid Thermal Annealing of Amorphous Silicon

    E-Print Network [OSTI]

    Lee, I-Syuan

    2014-05-07T23:59:59.000Z

    The PECVD intrinsic, n^(+), and p^(+) a-Si:H thin film deposition processes have been studied by the optical emission spectroscope to monitor the plasma phase chemistry. Process parameters, such as the plasma power, pressure, and gas flow rate...

  18. ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE

    E-Print Network [OSTI]

    Davidson, M.

    2010-01-01T23:59:59.000Z

    New York, 1966. 8. Solar Sea Thermal Energy, Ninety-ThirdJ. A. , and Beckman, W. A. , Solar Energy Thermal Processes,solar thermal conversion to electricity, photo-voltaic conversion, wind energy,

  19. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect (OSTI)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01T23:59:59.000Z

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  20. Solar access of residential rooftops in four California cities

    E-Print Network [OSTI]

    Levinson, Ronnen

    2010-01-01T23:59:59.000Z

    and/or thermal collection by rooftop solar-energy equipment.and/or thermal collection by rooftop solar-energy equipment.solar access of rooftop solar-energy systems, including photovoltaic panels and thermal

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    of a solar-thermal-assisted HVAC system, Energy andsolar thermal absorption cooling system with a cold store, Solar energy,solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design, Solar energy,

  2. DEVELOPMENT OF A NEW HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon J.

    2012-01-01T23:59:59.000Z

    International Symposium on Solar Thermal Power and Energyto develop large scale solar thermal power plants capable ofthe current state of solar thermal conversion is mostly

  3. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP

  4. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

    2013-01-23T23:59:59.000Z

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  5. California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose: The purpose of this metering installation guide is to provide participating eligible contractors

    E-Print Network [OSTI]

    1 California Solar Initiative (CSI) Thermal Program Metering Installation Guide Purpose and monitoring purposes: Customer Performance Monitoring (CPM), Opt-in Measurement and Evaluation (M&E) and 70 with interpreting the following schematics. 1. Customer Performance Monitoring (CPM) For CPM, metering either

  6. Improved power efficiency for very-high-temperature solar-thermal-cavity receivers

    DOE Patents [OSTI]

    McDougal, A.R.; Hale, R.R.

    1982-04-14T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

  7. JEA- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    The JEA Solar Incentive Program provides rebates to JEA's residential customers who install new and retrofit solar hot water heaters on their homes. The rebate is worth $800 for new solar thermal...

  8. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25T23:59:59.000Z

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  9. Thermal and Radiolytic Gas Generation Tests on Material from Tanks 241-U-103, 241-AW-101, 241-S-106, and 241-S-102: Status Report

    SciTech Connect (OSTI)

    King, C.M.; Bryan, S.A.

    1999-06-17T23:59:59.000Z

    This report summarizes progress in evaluating thermal and radiolytic flammable gas generation in actual Hanford single-shell tank wastes. The work described was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support DE&S Hanford (DESH) and Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies performed by Numatec Hanford Corporation (formerly Westinghouse Hanford Company). This report describes the results of laboratory tests of gas generation from actual convective layer wastes from Tank 241-U-103 under thermal and radiolytic conditions. Accurate measurements of gas generation rates from highly radioactive tank wastes are needed to assess the potential for producing and storing flammable gases within the tanks. The gas generation capacity of the waste in Tank 241-U-103 is a high priority for the Flammable Gas Safety Program due to its potential for accumulating gases above the flammability limit (Johnson et al, 1997). The objective of this work was to establish the composition of gaseous degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The gas generation tests on Tank 241-U-103 samples focused first on the effect of temperature on the composition and rate of gas generation Generation rates of nitrogen, nitrous oxide, methane, and hydrogen increased with temperature, and the composition of the product gas mixture varied with temperature.

  10. Performance and cost benefits associated with nonimaging secondary concentrators used in point-focus dish solar thermal applications

    SciTech Connect (OSTI)

    O'Gallagher, J.; Winston, R.

    1987-09-01T23:59:59.000Z

    Using nonimaging secondary concentrators in point-focus applications may permit the development of more cost-effective concentrator systems by either improving performance or reducing costs. Secondaries may also increase design flexibility. The major objective of this study was to develop as complete an understanding as possible of the quantitative performance and cost effects associated with deploying nonimaging secondary concentrators at the focal zone of point-focus solar thermal concentrators. A performance model was developed that uses a Monte Carlo ray-trace procedure to determine the focal plane distribution of a paraboloidal primary as a function of optical parameters. It then calculates the corresponding optimized concentration and thermal efficiency as a function of temperature with and without the secondary. To examine the potential cost benefits associated with secondaries, a preliminary model for the rational optimization of performance versus cost trade-offs was developed. This model suggests a possible 10% to 20% reduction in the cost of delivered energy when secondaries are used. This is a lower limit, and the benefits may even be greater if using a secondary permits the development of inexpensive primary technologies for which the performance would not otherwise be viable. 20 refs., 15 figs., 3 tabs.

  11. Gas seal for an in situ oil shale retort and method of forming thermal barrier

    DOE Patents [OSTI]

    Burton, III, Robert S. (Mesa, CO)

    1982-01-01T23:59:59.000Z

    A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

  12. Solar-Thermal Fluid-Wall Reaction Processing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYouof Energy ProjectsHeatersSolar

  13. Solar powered dehumidifier apparatus

    DOE Patents [OSTI]

    Jebens, Robert W. (Skillman, NJ)

    1980-12-30T23:59:59.000Z

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  14. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  15. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  16. Using RPS Policies to Grow the Solar Market in the United States

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    nine also allow solar- thermal electric to qualify, threestrong competition from solar-thermal electric facilities in

  17. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  18. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  19. Monte Carlo calculation of the collision density of superthermal produced H atoms in thermal H2 gas

    E-Print Network [OSTI]

    Panarese, A

    2011-01-01T23:59:59.000Z

    We propose a simple and reliable method to study the collision density of H atoms following their production by chemical mechanisms. The problem is relevant to PDR's, shocks, photospheres, atmospheric entry problems. We show that the thermalization of H atoms can be conveniently studied by a simple method and set the basis for further investigations. Besides our aims are also to review the theoretical basis, the limitation of simpler approaches and address the analogue problems in neutronics. The method adopted is Monte Carlo method including the thermal distri- bution of background molecules. The transport cross section is determined by the inversion of transport data. Plots of the collisions density of H atoms in H2 gas are calculated and discussed also in the context of simple theories. The application of the results to astrophysical problems is outlined.

  20. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect (OSTI)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29T23:59:59.000Z

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  2. Thermal Loading of a Direct Drive Target in Rarefied Gas B. R. Christensen1

    E-Print Network [OSTI]

    Tillack, Mark

    of the radiation and ion energy from the fusion event, and then slowly release it to the chamber wall and ion energy from the fusion event, and then slowly release it to the chamber wall. Unfortunately is to fill the reaction chamber with a gas, such as Xe, at low density. The gas will absorb much

  3. Design and experimental testing of the performance of an outdoor LiBr/H{sub 2}O solar thermal absorption cooling system with a cold store

    SciTech Connect (OSTI)

    Agyenim, Francis; Knight, Ian; Rhodes, Michael [The Welsh School of Architecture, Bute Building, King Edward VII Avenue, Cardiff University, Cardiff, CF10 3NB Wales (United Kingdom)

    2010-05-15T23:59:59.000Z

    A domestic-scale prototype experimental solar cooling system has been developed based on a LiBr/H{sub 2}O absorption system and tested during the 2007 summer and autumn months in Cardiff University, UK. The system consisted of a 12 m{sup 2} vacuum tube solar collector, a 4.5 kW LiBr/H{sub 2}O absorption chiller, a 1000 l cold storage tank and a 6 kW fan coil. The system performance, as well as the performances of the individual components in the system, were evaluated based on the physical measurements of the daily solar radiation, ambient temperature, inlet and outlet fluid temperatures, mass flow rates and electrical consumption by component. The average coefficient of thermal performance (COP) of the system was 0.58, based on the thermal cooling power output per unit of available thermal solar energy from the 12 m{sup 2} Thermomax DF100 vacuum tube collector on a hot sunny day with average peak insolation of 800 W/m{sup 2} (between 11 and 13.30 h) and ambient temperature of 24 C. The system produced an electrical COP of 3.6. Experimental results prove the feasibility of the new concept of cold store at this scale, with chilled water temperatures as low as 7.4 C, demonstrating its potential use in cooling domestic scale buildings. (author)

  4. Standard Practice for Generating All-Day Thermal Performance Data for Solar Collectors

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01T23:59:59.000Z

    1.1 This practice covers a means of generating all-day thermal performance data for flat-plate collectors, concentrating collectors, and tracking collectors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in the parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Project Profile: Low-Cost Solar Thermal Collector | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | DepartmentEnergyThermalDepartmentSunTrough

  6. Characterization of solar thermal concepts for electricity generation: Volume 2, Appendices

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1987-03-01T23:59:59.000Z

    Volume 1 of this report documented the analyses and evaluation of the concepts. This volume contains appendices which provided additional information on the approach used in the analysis, and further detail of the study results. Appendix A describes tradeoffs involved in the orientation of trough collector fields. The methodology used in the calculation of levelized energy costs is described in Appendix B. Additional detail on the annual energy output for each of the technologies is provided in Appendix C. Appendix D provides a discussion on the method and assumptions used in developing optical performance models for central receiver systems, and gives a detailed description of the results obtained. Plant cost data is shown in Appendix E, and a method for first-order sensitivity analyses using the data is described. The calculational approach used to estimate the manufacturing cost of distributed solar components is described in Appendix F.

  7. Intergrated function nonimaging concentrating collector tubes for solar thermal energy. Final technical report

    SciTech Connect (OSTI)

    Winston, R

    1982-09-01T23:59:59.000Z

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 m/sup 2/ panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200/sup 0/C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100/sup 0/C to 300/sup 0/C range including industrial process heat, air conditioning and Rankine engine operation.

  8. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    SciTech Connect (OSTI)

    Ladewig, T.D.

    1981-03-01T23:59:59.000Z

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  9. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchangers, solar thermal collectors, absorptionunits in operation or heat from solar thermal systems may bein the case of PV or solar thermal equipment, by available

  10. Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program (Arizona)

    Broader source: Energy.gov [DOE]

    '''''Note: Effective July 15, 2013, Southwest Gas is no longer accepting applications for the current program year. Systems installed during the current program year will not be eligible for a...

  11. Gas-cooled fast breeder reactor fuel element thermal-hydraulic investigations : final report

    E-Print Network [OSTI]

    Eaton, Thomas Eldon

    1975-01-01T23:59:59.000Z

    Experimental and analytical work was performed to determine the influence of rod surface roughening on the thermal-hydraulic behavior of rod array type, nuclear fuel elements. Experimental data was obtained using a ...

  12. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15T23:59:59.000Z

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required

  13. A preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude in the north of Buenos Aires provence

    E-Print Network [OSTI]

    Cionco, R; Rodriguez, R

    2012-01-01T23:59:59.000Z

    Using irradiance and temperature measurements obtained at the Facultad Regional San Nicol\\'as of UTN, we performed a preliminary study of the linear relationship between monthly averaged daily solar radiation and daily thermal amplitude. The results show a very satisfactory adjustment (R = 0.848, RMS = 0.066, RMS% = 9.690 %), even taking into account the limited number of months (36). Thus, we have a formula of predictive nature, capable of estimating mean monthly solar radiation for various applications. We expect to have new data sets to expand and improve the statistical significance of these results.

  14. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  15. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal...

  16. Empirical validation of the thermal model of a passive solar cell test

    E-Print Network [OSTI]

    Mara, T A; Boyer, H; Mamode, M

    2012-01-01T23:59:59.000Z

    The paper deals with an empirical validation of a building thermal model. We put the emphasis on sensitivity analysis and on research of inputs/residual correlation to improve our model. In this article, we apply a sensitivity analysis technique in the frequency domain to point out the more important parameters of the model. Then, we compare measured and predicted data of indoor dry-air temperature. When the model is not accurate enough, recourse to time-frequency analysis is of great help to identify the inputs responsible for the major part of error. In our approach, two samples of experimental data are required. The first one is used to calibrate our model the second one to really validate the optimized model

  17. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31T23:59:59.000Z

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  18. Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis

    SciTech Connect (OSTI)

    Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

    2012-10-24T23:59:59.000Z

    There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar�driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

  19. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

    2010-08-20T23:59:59.000Z

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  20. Solar Axion search with Micromegas detectors in the CAST Experiment with $^{3}$He as buffer gas

    E-Print Network [OSTI]

    García, Juan Antonio

    2015-01-01T23:59:59.000Z

    Axions are well motivated particles proposed in an extension of the SM as a solution to the strong CP problem. Also, there is the category of Axion-Like Particles (ALPs) which appear in extensions of the SM and share the same phenomenology of the axion. Axions and ALPs are candidates to solve the Dark Matter problem. CAST, the CERN Axion Solar Telescope is looking for solar axions since 2003. CAST exploit the helioscope technique using a decommissioned LHC dipole magnet in which solar axions could be reconverted into photons. Three of the four detectors operating at CAST are of the Micromegas type. The analysis of the data of the three Micromegas detectors during the 2011 data taking campaign at CAST is presented in this thesis, obtaining a limit on the coupling constant of g$_{a \\gamma}$ < 3.90 $\\times$ 10$^{-10}$ GeV$^{-1}$ at a 95$\\%$ of confidence level, for axion masses from 1 to 1.17 eV. CAST Micromegas detectors exploit different strategies developed for the reduction of the background level. Moreov...

  1. Solar Axion search with Micromegas detectors in the CAST Experiment with $^{3}$He as buffer gas

    E-Print Network [OSTI]

    Garcia Pascual, Juan Antonio

    Axions are well motivated particles proposed in an extension of the Standard Model (SM) as a solution to the CP problem in strong interactions. On the other hand, there is the category of axion-like particles (ALPs) which appear in diverse extensions of the SM and share the same phenomenology of the axion. Axions and ALPs are hypothetical neutral particles that interact weakly with matter, being candidates to solve the Dark Matter problem. CAST, the CERN Axion Solar Telescope is looking for solar axions since 2003. CAST exploit the helioscope technique using a decommissioned LHC dipole magnet in which solar axions could be reconverted into photons. The magnet is mounted on a movable platform that allows tracking the Sun $\\sim$1.5 hours during sunset and during sunrise. The axion signal would be an excess of X-rays in the detectors located at the magnet bore ends and thus low background detectors are mandatory. Three of the four detectors operating at CAST are of the Micromegas type. The analysis of the data o...

  2. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

  3. Sandia National Laboratories: Solar Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

  4. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  5. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    SciTech Connect (OSTI)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)] [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China)] [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)] [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15T23:59:59.000Z

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  6. Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report

    SciTech Connect (OSTI)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

    1980-08-01T23:59:59.000Z

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

  7. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect (OSTI)

    R. Panneer Selvam, Micah Hale and Matt strasser

    2013-03-31T23:59:59.000Z

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 �ºC to 600 �ºC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

  8. THERMAL PROPERTIES OF A SOLAR CORONAL CAVITY OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    SciTech Connect (OSTI)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Gibson, Sarah E. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Kucera, Therese A. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hudson, Hugh S. [Space Sciences Laboratories, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kano, Ryouhei, E-mail: kreeves@cfa.harvard.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-02-20T23:59:59.000Z

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during 2008 July that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity 'cores' with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK, and 2.0 MK (for July 19, July 21, and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  9. Theoretical study of gas heated in a porous material subjected to a concentrated solar radiation (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . An experimental reactor was constructed for the verification of the model; it was designed to be used with 6.5 k velocity in the axial direction ; Vo = fluid velocity in the empty column, Vo = 03B6v. (*) Presented), physics (drying, distillation), thermo- dynamics (thermo-helio-electric power plants), etc. The gas being

  10. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  11. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    A.W. , “Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? ” Proceedings of

  12. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01T23:59:59.000Z

    Medium Temperature Non-Tracking Solar Thermal Concentrators.an outdoor LiBr/H2O solar thermal absorption cooling systemperformance of a solar-thermal-assisted HVAC system, Energy

  13. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    process powered by solar thermal energy for hydrogencontinuous operation. Solar thermal energy is used to drive2.5) and Eq. (2.6). Solar thermal energy is used to drive

  14. ADVANCED THERMAL BARRIER COATINGS FOR OPERATION IN HIGH HYDROGEN CONTENT FUELED GAS TURBINES

    SciTech Connect (OSTI)

    Sampath, Sanjay

    2014-12-31T23:59:59.000Z

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness and resulted in improved TBC lifetimes. Processing based approaches of identifying optimal processing regimes deploying advanced in-situ coating property measurements and in-flight diagnostic tools were used to develop process maps for bond coats. Having established a framework for the bond coat processing using the HVOF process, effort were channeled towards fabrication of APS and VPS bond coats with the same material composition. Comparative evaluation of the three deposition processes with regard to their microstrcuture , surface profiles and TBC performance were carried out and provided valuable insights into factors that require concurrent consideration for the development of bond coats for advanced TBC systems. Over the course of this program several advancements were made on the development of durable thermal barrier coatings. Process optimization techniques were utilized to identify processing regimes for both conventional YSZ as well as other TBC compositions such as Gadolinium Zirconate and other Co-doped materials. Measurement of critical properties for these formed the initial stages of the program to identify potential challenges in their implementation as part of a TBC system. High temperature thermal conductivity measurements as well as sintering behavior of both YSZ and GDZ coatings were evaluated as part of initial efforts to undersand the influence of processing on coating properties. By effectively linking fundamental coating properties of fracture toughness and elastic modulus to the cyclic performance of 6 DE-FE0004771, Final Report, April 2015: Stony Brook University coatings, a durability strategy for APS YSZ coatings was developed. In order to meet the goals of fabricating a multimaterial TBC system further research was carried out on the development of a gradient thermal conductivity model and the evaluation of sintering behavior of multimaterial coatings. Layer optimization for desired properties in the multimaterial TBC was achieved by an iterative feedback approach utilizing process maps and in-situ and ex-situ coating property senso

  15. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    to be more suited to solar thermal energy sources. Airunit of solar thermal and solar electric energy from a DCS-concentrating solar systems is indeed thermal energy. There

  16. Solar Hot Water Contractor Licensing

    Broader source: Energy.gov [DOE]

    In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North...

  17. Coupled optical/thermal/fluid analysis and design requirements for operation and testing of a supercritical CO2 solar receiver.

    SciTech Connect (OSTI)

    Khivsara, Sagar [Indian Institute of Science, Bangalor (India)

    2015-01-01T23:59:59.000Z

    Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (~50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. To satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression, it is required to heat s-CO2 by a temperature of ~200 K as it passes through the solar receiver. Our objective was to develop an optical-thermal-fluid model to design and evaluate a tubular receiver that will receive a heat input ~1 MWth from a heliostat field. We also undertook the documentation of design requirements for the development, testing and safe operation of a direct s-CO2 solar receiver. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of s-CO2 receivers.

  18. A pressure gauge based on gas density measurement from analysis of the thermal noise of an atomic force microscope cantilever

    SciTech Connect (OSTI)

    Seo, Dongjin; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2012-05-15T23:59:59.000Z

    We describe a gas-density gauge based on the analysis of the thermally-driven fluctuations of an atomic force microscope (AFM) cantilever. The fluctuations are modeled as a ring-down of a simple harmonic oscillator, which allows fitting of the resonance frequency and damping of the cantilever, which in turn yields the gas density. The pressure is obtained from the density using the known equation of state. In the range 10-220 kPa, the pressure readings from the cantilever gauge deviate by an average of only about 5% from pressure readings on a commercial gauge. The theoretical description we use to determine the pressure from the cantilever motion is based upon the continuum hypothesis, which sets a minimum pressure for our analysis. It is anticipated that the cantilever gauge could be extended to measure lower pressures given a molecular theoretical description. Alternatively, the gauge could be calibrated for use in the non-continuum range. Our measurement technique is similar to previous AFM cantilever measurements, but the analysis produces improved accuracy.

  19. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01T23:59:59.000Z

    Looking back—sizing the 2008 solar market. ” pp. 88–93.Iberdrola launches its first solar thermal power plant. ”Analysis of a future solar market, management summary. Bonn,

  20. Thermal N = 4 SYM theory as a 2D Coulomb gas

    E-Print Network [OSTI]

    Sean A. Hartnoll; S. Prem Kumar

    2006-10-10T23:59:59.000Z

    We consider N = 4 supersymmetric Yang-Mills theory with SU(N) gauge group at large N and at finite temperature on a spatial S^3. We show that, at finite weak 't Hooft coupling, the theory is naturally described as a two dimensional Coulomb gas of complex eigenvalues of the Polyakov-Maldacena loop, valued on the cylinder. In the low temperature confined phase the eigenvalues condense onto a strip encircling the cylinder, while the high temperature deconfined phase is characterised by an ellipsoidal droplet of eigenvalues.