Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Final Report - Gas Generation Testing of Uranium Metal in Simulated K Basin Sludge and in Grouted Sludge Waste Forms  

DOE Green Energy (OSTI)

The Waste Isolation Pilot Plant (WIPP) is being considered for the disposal of K Basin sludge as RH-TRU. Because the hydrogen gas concentration in the 55-gallon RH-TRU sealed drums to be transported to WIPP is limited by flammability safety, the number of containers and shipments likely will be driven by the rate of hydrogen generated by the uranium metal-water reaction (U + 2 H{sub 2}O {yields} UO{sub 2} + 2 H{sub 2}) in combination with the hydrogen generated from water and organic radiolysis. Gas generation testing was conducted with uranium metal particles of known surface area, in simulated K West (KW) Basin canister sludge and immobilized in candidate grout solidification matrices. This study evaluated potential for Portland cement and magnesium phosphate grouts to inhibit the reaction of water with uranium metal in the sludge and thereby permit higher sludge loading to the disposed waste form. The best of the grouted waste forms decreased the uranium metal-water reaction by a factor of four.

Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Sinkov, Sergei I.; Bryan, Samuel A.; Gano, Sue; Thornton, Brenda M.

2004-08-19T23:59:59.000Z

2

Gas Generation Testing of Uranium Metal in Simulated K Basins Sludge and Grouted Sludge Waste Forms  

DOE Green Energy (OSTI)

The evolving plan for most of the KE and KW Basin sludges is disposition to WIPP as remote handled (RH) TRU. Because the hydrogen gas concentration in the sealed transportation cask destined for WIPP is limited by flammability safety, the number of containers and shipments to WIPP likely will be driven by the rate of hydrogen generated by the contained uranium metals reaction with water. Therefore, gas generation testing with uranium metal particles of known surface area and immobilized in candidate (grout) solidification matrices was used to identify the effectiveness of various candidate solidification matrices to inhibit the rate of the uranium metal-water reaction.

Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Sinkov, Sergei I.; Bryan, Samuel A.

2004-05-21T23:59:59.000Z

3

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

DOE Green Energy (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

4

Deep Sludge Gas Release Event Analytical Evaluation  

SciTech Connect

The purpose of the Deep Sludge Gas Release Event Analytical Evaluation (DSGRE-AE) is to evaluate the postulated hypothesis that a hydrogen GRE may occur in Hanford tanks containing waste sludges at levels greater than previously experienced. There is a need to understand gas retention and release hazards in sludge beds which are 200 -300 inches deep. These sludge beds are deeper than historical Hanford sludge waste beds, and are created when waste is retrieved from older single-shell tanks (SST) and transferred to newer double-shell tanks (DST).Retrieval of waste from SSTs reduces the risk to the environment from leakage or potential leakage of waste into the ground from these tanks. However, the possibility of an energetic event (flammable gas accident) in the retrieval receiver DST is worse than slow leakage. Lines of inquiry, therefore, are (1) can sludge waste be stored safely in deep beds; (2) can gas release events (GRE) be prevented by periodically degassing the sludge (e.g., mixer pump); or (3) does the retrieval strategy need to be altered to limit sludge bed height by retrieving into additional DSTs? The scope of this effort is to provide expert advice on whether or not to move forward with the generation of deep beds of sludge through retrieval of C-Farm tanks. Evaluation of possible mitigation methods (e.g., using mixer pumps to release gas, retrieving into an additional DST) are being evaluated by a second team and are not discussed in this report. While available data and engineering judgment indicate that increased gas retention (retained gas fraction) in DST sludge at depths resulting from the completion of SST 241-C Tank Farm retrievals is not expected and, even if gas releases were to occur, they would be small and local, a positive USQ was declared (Occurrence Report EM-RP--WRPS-TANKFARM-2012-0014, "Potential Exists for a Large Spontaneous Gas Release Event in Deep Settled Waste Sludge"). The purpose of this technical report is to (1) present and discuss current understandings of gas retention and release mechanisms for deep sludge in U.S. Department of Energy (DOE) complex waste storage tanks; and (2) to identify viable methods/criteria for demonstrating safety relative to deep sludge gas release events (DSGRE) in the near term to support the Hanford C-Farm retrieval mission. A secondary purpose is to identify viable methods/criteria for demonstrating safety relative to DSGREs in the longer term to support the mission to retrieve waste from the Hanford Tank Farms and deliver it to the Waste Treatment and Immobilization Plant (WTP). The potential DSGRE issue resulted in the declaration of a positive Unreviewed Safety Question (USQ). C-Farm retrievals are currently proceeding under a Justification for Continued Operation (JCO) that only allows tanks 241-AN-101 and 241-AN-106 sludge levels of 192 inches and 195 inches, respectively. C-Farm retrievals need deeper sludge levels (approximately 310 inches in 241-AN-101 and approximately 250 inches in 241-AN-106). This effort is to provide analytical data and justification to continue retrievals in a safe and efficient manner.

Sams, Terry L.

2013-08-15T23:59:59.000Z

5

The determination of PCBs in Rocky Flats Type IV waste sludge by gas chromatography/electron capture detection. Part 2  

SciTech Connect

Before disposal, radioactive sludge (Type IV) from Rocky Flats Plant (RFP) must be evaluated for polychlorinated biphenyl (PCB) content. The Type IV sludge consists of organic solvents, degreasers, cutting oils, and transuranic (TRU) waste mixed with calcium silicate (MicroCel E{reg_sign} and Oil Dri{reg_sign} to form a grease or paste-like material. For laboratory testing, a nonradioactive simulated Type 17V RFP sludge was prepared at Argonne National Laboratory-East (ANL-E). This sludge has a composition similar to that expected from field samples. In an earlier effort, a simplified method was developed for extraction, cleanup of extract, and determination of PCBs in samples of simulated sludge spiked with Aroclors 1254 and 1260. The simplified method has now been used to determine the presence and quantities of other Aroclors in the simulated sludge, namely, Aroclors 10 1 6, 1221, 1232, 1242, and 1248. The accuracy and precision of the data for these Aroclors were found to be similar to the data for sludges spiked with Aroclors 1254 and 1260. Since actual sludges may vary in composition, the method was also verified by analyzing another source of Type IV simulated sludge, prepared by Argonne National Laboratory-West (ANL-W).

Parish, K.J.; Applegate, D.V.; Postlethwait, P.D.; Boparai, A.S.; Reedy, G.T.

1994-12-01T23:59:59.000Z

6

Correlation models for waste tank sludges and slurries  

SciTech Connect

This report presents the results of work conducted to support the TEMPEST computer modeling under the Flammable Gas Program (FGP) and to further the comprehension of the physical processes occurring in the Hanford waste tanks. The end products of this task are correlation models (sets of algorithms) that can be added to the TEMPEST computer code to improve the reliability of its simulation of the physical processes that occur in Hanford tanks. The correlation models can be used to augment, not only the TEMPEST code, but other computer codes that can simulate sludge motion and flammable gas retention. This report presents the correlation models, also termed submodels, that have been developed to date. The submodel-development process is an ongoing effort designed to increase our understanding of sludge behavior and improve our ability to realistically simulate the sludge fluid characteristics that have an impact on safety analysis. The effort has employed both literature searches and data correlation to provide an encyclopedia of tank waste properties in forms that are relatively easy to use in modeling waste behavior. These properties submodels will be used in other tasks to simulate waste behavior in the tanks. Density, viscosity, yield strength, surface tension, heat capacity, thermal conductivity, salt solubility, and ammonia and water vapor pressures were compiled for solutions and suspensions of sodium nitrate and other salts (where data were available), and the data were correlated by linear regression. In addition, data for simulated Hanford waste tank supernatant were correlated to provide density, solubility, surface tension, and vapor pressure submodels for multi-component solutions containing sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate.

Mahoney, L.A.; Trent, D.S.

1995-07-01T23:59:59.000Z

7

Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)  

Science Conference Proceedings (OSTI)

This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

Arbon, R.E.

2001-01-31T23:59:59.000Z

8

Pretreatment of neutralized cladding removal waste sludge: Status Report  

SciTech Connect

This report describes the status of process development for pretreating Hanford neutralized cladding removal waste (NCRW) sludge, of which [approximately] 3.3 [times] 10[sup 6] L is stored in Tanks 103-AW and 105-AW at the Hanford Site. The initial baseline process chosen for pretreating NCRW sludge is to dissolve the sludge in nitric acid and extract the -transuranic (MU) elements from the dissolved sludge solution with octyl(phenyl)-N,N-diisobutylcarbamoyl methyl phosphine oxide (CNWO). This process converts the NCRW sludge into a relatively large volume of low-level waste (LLW) to be disposed of as grout, leaving only a small volume of high-level waste (HLW) requiring vitrification in the Hanford Waste Vitrification Plant (HWVP).

Lumetta, G J; Swanson, J L

1993-03-01T23:59:59.000Z

9

Gas Generation from K East Basin Sludges - Series II Testing  

Science Conference Proceedings (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2001-03-14T23:59:59.000Z

10

Bubble retention in synthetic sludge: Testing of alternative gas retention apparatus  

SciTech Connect

Several of the underground storage tanks currently used to store waste at Hanford have been placed on the Flammable Gas Watch List, because the waste is either known or suspected to generate, store, and episodically release flammable gases. The objective of this experimental study is to develop a method to measure gas bubble retention in simulated tank waste and in diluted simulant. The method and apparatus should (1) allow for reasonably rapid experiments, (2) minimize sample disturbance, and (3) provide realistic bubble nucleation and growth. The scope of this experimental study is to build an apparatus for measuring gas retention in simulated waste and to design the apparatus to be compatible with future testing on actual waste. The approach employed for creating bubbles in sludge involves dissolving a soluble gas into the supernatant liquid at an elevated pressure, recirculating the liquid containing the dissolved gas through the sludge, then reducing the pressure to allow bubbles to nucleate and grow. Results have been obtained for ammonia as the soluble gas and SY1-SIM-91A, a chemically representative simulated tank waste. In addition, proof-of-principle experiments were conducted with both ammonia and CO{sub 2} as soluble gases and sludge composed of 90-micron glass beads. Results are described.

Rassat, S.D.; Gauglitz, P.A.

1995-07-01T23:59:59.000Z

11

High Level Waste System Impacts from Acid Dissolution of Sludge  

DOE Green Energy (OSTI)

This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

KETUSKY, EDWARD

2006-04-20T23:59:59.000Z

12

Stabilization of Flue Gas Desulfurization Sludge for Application in Marine Environments.  

E-Print Network (OSTI)

??Flue Gas Desulfurization sludge (FGD, CaSO4·2H2O, CaSO3·1/2H2O) is a waste by-product produced when sorbent slurry is passed through wet scrubbers. FGD contains higher concentrations of… (more)

Kour, Tej

2004-01-01T23:59:59.000Z

13

Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)  

Science Conference Proceedings (OSTI)

This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

Arbon, Rodney Edward

2001-01-01T23:59:59.000Z

14

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2004-04-26T23:59:59.000Z

15

REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION  

SciTech Connect

The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese during a single contact in the simulant demonstration. (The iron dissolution may be high due to corrosion of carbon steel coupons.) (3) The oxalic acid dissolved {approx} 80% of the uranium, {approx} 70% of the iron, {approx} 50% of the manganese, and {approx} 90% of the aluminum in the actual waste demonstration for a single contact. (4) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 15% of the iron, {approx} 40% of the manganese, and {approx} 80% of the aluminum in Tank 5F during the first contact cycle. Except for the iron, these results agree well with the demonstrations. The data suggest that a much larger fraction of the iron in the sludge dissolved, but it re-precipitated with the oxalate added to Tank 5F. (5) The demonstrations produced large volumes (i.e., 2-14 gallons of gas/gallon of oxalic acid) of gas (primarily carbon dioxide) by the reaction of oxalic acid with sludge and carbon steel. (6) The reaction of oxalic acid with carbon steel produced hydrogen in the simulant and actual waste demonstrations. The volume produced varied from 0.00002-0.00100 ft{sup 3} hydrogen/ft{sup 2} carbon steel. The hydrogen production proved higher in unmixed tanks than in mixed tanks.

Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

2009-03-01T23:59:59.000Z

16

HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY  

Science Conference Proceedings (OSTI)

The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

Fox, K; Tommy Edwards, T; David Peeler, D; David Best, D; Irene Reamer, I; Phyllis Workman, P

2006-10-02T23:59:59.000Z

17

CRAD, Management - Office of River Protection K Basin Sludge Waste System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Sludge Waste Office of River Protection K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Management at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge

18

Estimated Maximum Gas Retention from Uniformly Dispersed Bubbles in K Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

This letter report addresses the KE Basin sludge that will be retrieved and stored in large-diameter containers (LDCs.) A fraction of the hydrogen gas bubbles generated from the corrosion of uranium metal and oxides may be retained within the sludge matrix. Those entrapped bubbles will expand the sludge bed volume and, therefore, will affect how much sludge can be loaded into a container. The entrapped gas bubbles will also impact the overall thermal conductivity and heat capacity of the sludge bed. The evaluation summarized here was performed to estimate the maximum gas holdup (volume fraction gas) that could occur sludge stored in large-diameter containers, assuming uniform gas generation (i.e., uniform distribution of metallic uranium particles). This report represents an evaluation of the retention of uniformly distributed bubbles and an estimate of the maximum gas fraction that might be retained in K Basin LDCs based on existing literature data on bubble retention and Basin sludge characterization data. Existing data show that the maximum gas fraction varies, depending on physical properties and the configuration of the material or waste.

Gauglitz, Phillip A.; Terrones, Guillermo

2002-05-15T23:59:59.000Z

19

Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)  

SciTech Connect

Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

Lambert, D.P.

2000-03-22T23:59:59.000Z

20

Solidifications/stabilization treatability study of a mixed waste sludge  

Science Conference Proceedings (OSTI)

The Department of Energy Oak Ridge Operations Office signed a Federal Facility Compliance Agreement with the US Environmental Protection Agency Region IV regarding mixed wastes from the Oak Ridge Reservation (ORR) subject to the land disposal restriction provisions of the Resource Conservation and Recovery Act (RCRA). This agreement required treatability studies of solidification/stabilization (S/S) on mixed wastes from the ORR. This paper reports the results of the cementitious S/S studies conducted on a waste water treatment sludge generated from biodenitrification and heavy metals precipitation. For the cementitious waste forms, the additives tested were Portland cement, ground granulated blast furnace slag, Class F fly ash, and perlite. The properties measured on the treated waste were density, free-standing liquid, unconfined compressive strength, and TCLP performance. Spiking up to 10,000, 10,000, and 4,400 mg/kg of nickel, lead, and cadmium, respectively, was conducted to test waste composition variability and the stabilization limitations of the binding agents. The results indicated that nickel, lead and cadmium were stabilized fairly well in the high pH hydroxide-carbonate- ``bug bones`` sludge, but also clearly confirmed the established stabilization potential of cementitious S/S for these RCRA metals.

Spence, R.D. [Oak Ridge National Lab., TN (United States); Stine, E.F. [International Technologies Corp., Knoxville, TN (United States). Technology Development Lab.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CRAD, Training - Office of River Protection K Basin Sludge Waste System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Sludge Waste Office of River Protection K Basin Sludge Waste System CRAD, Training - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge

22

CRAD, Engineering - Office of River Protection K Basin Sludge Waste System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Office of River Protection K Basin Sludge Waste Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Engineering program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge

23

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network (OSTI)

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

24

Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan. • Characterizing the homogenized sample groups. • Performing parametric leaching testing on each group for compounds of interest. • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-03-02T23:59:59.000Z

25

Waste drum gas generation sampling program at Rocky Flats during FY 1988  

DOE Green Energy (OSTI)

Rocky Flats Plant Transuranic Waste Drums were sampled for gas composition. Combustibles, plastics, Raschig rings, solidified organic sludge, and solidified inorganic sludge transuranic waste forms were sampled. Plastic bag material and waste samples were also taken from some solidified sludge waste drums. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values (gas generation) were calculated for the waste drums. Analytical results indicate that very low concentrations of potentially flammable or corrosive gas mixtures will be found in vented drums. G(H{sub 2}) was usually below 1.6, while G(Total) was below 4.0. Hydrogen permeability tests on different types of plastic waste bags used at Rocky Flats were also conducted. Polyvinylchloride was slightly more permeable to hydrogen than polyethylene for new or creased material. Permeability of aged material to hydrogen was slightly higher than for new material. Solidified organic and inorganic sludges were sampled for volatile organics. The analytical results from two drums of solidified organic sludges showed concentrations were above detection limits for four of the 36 volatile organics analyzed. The analytical results for four of the five solidified inorganic sludges show that concentrations were below detection limits for all volatile organics analyzed. 3 refs., 5 figs., 2 tabs.

Roggenthen, D.K.; McFeeters, T.L.; Nieweg, R.G.

1991-02-11T23:59:59.000Z

26

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

27

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)—are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

28

Pretreatment of neutralized cladding removal waste sludge: Results of the second design basis experiment  

SciTech Connect

For several years, the Pacific Northwest Laboratory (PNL) has been investigating methods to pretreat Hanford neutralized cladding removal waste (NCRW) sludge. In the past, Zircaloy-clad metallic U fuel was chemically decladded using the Zirflex process; NCRW sludge was formed when the decladding solution was neutralized for storage in carbon-steel tanks. This sludge, which is currently stored in Tanks 103-AW and 105-AW on the Hanford Site, primarily consists of insoluble Zr hydroxides and/or oxides and NaF. Significant quantities of Al, La, U, as well as other insoluble minor constituents are present in the sludge, along with sodium and potassium nitrates, nitrites, and hydroxides in the interstitial liquid. The sludge contains about 2,000 nCi of transuranic (TRU) material per gram of dry sludge, and mixed fission products. Therefore, the sludge must be handled as high-level waste (HLW). The NCRW sludge must be pretreated before treatment (e.g., vitrification) and disposal, so that the overall cost of disposal can be minimized. The NCRW pretreatment flowsheet was designed to achieve the following objectives: (a) to separate Am and Pu from the major sludge constituents (Na, Zr). (b) to separate Am and Pu from U. (c) to concentrate Am and Pu in a small volume for immobilization in borosilicate glass, based on Hanford Waste Vitrification Plant (HWVP). The flowsheet involves: (1) sludge washing, (2) sludge dissolution, (3) extraction of U with tributyl phosphate (TBP), and (4) extraction of TRUs with octyl(phenyl)-N,N-diisobutlycarbamoylmethyl-phosphine oxide (CMPO). As presented in the flowsheet, the NCRW sludge is first washed with 0.I M NaOH to remove interstitial liquid and soluble salts from the sludge including sodium and potassium fluorides, carbonates, hydroxides, nitrates, and nitrites. The washed sludge is then subjected to two dissolution steps to achieve near complete dissolution of Zr.

Lumetta, G.J.

1994-05-01T23:59:59.000Z

29

Pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of FY 1991 studies  

SciTech Connect

Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the US Department of Energy`s Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO{sub 3} at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

Lumetta, G.J.; Swanson, J.L.

1993-04-01T23:59:59.000Z

30

Pretreatment of neutralized cladding removal waste (NCRW) sludge - results of FY 1991 studies  

SciTech Connect

Neutralized cladding removal waste (NCRW) sludge is a unique waste material that is stored in two underground double-shell tanks at the U.S. Department of Energy's Hanford Site. The NCRW sludge was formed by neutralization of the solution resulting from the chemical decladding of Zircaloy-clad metallic uranium fuel by the Zirflex process. The sludge consists of zirconium and sodium hydroxides and fluorides, with small amounts of potassium, nitrite, and other nonradioactive materials. The sludge also contains uranium, transuranic (TRU) elements, and mixed fission products typical of the nonvolatiles present in irradiated fuel. The NCRW sludge is considered a TRU waste, which must be vitrified for ultimate disposal in a geologic repository. The TRU portion of the waste may be separated from the larger amount of bulk waste material so only the TRU portion would require vitrification and geologic disposal. Separation would significantly reduce waste disposal costs. Work is underway to develop the transuranic extraction (TRUEX) process. This solvent extraction process has been demonstrated to separate a large percentage of the TRU elements from the bulk components of NCRW sludge. Earlier studies identified potential problems in the TRUEX processing of NCRW sludge: potential corrosion of imbedded piping in the facility initially planned for the process, instability of dissolved NCRW solutions towards precipitation, formation of interfacial crud during the TRUEX solvent extraction step, and the amount of phosphorus in the TRU product stream. These four problems were studied in FY 1991 and the results indicate that: a solution of 2 M HNO[sub 3] at a F/(Zr + Al) ratio of about 2 adequately dissolves washed NCRW sludge; such solutions should not be corrosive towards stainless steel materials; dissolved NCRW sludge solutions obtained by dissolution of washed sludge at low F/(Zr + Al) ratios (about 2) are much more stable with respect to precipitation.

Lumetta, G.J.; Swanson, J.L.

1993-04-01T23:59:59.000Z

31

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently are particular in their assistance of either aerobic or anaerobic digestion. Direct samples of activated sludgeImpact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul

Mountziaris, T. J.

32

Characteristics of Dewatered Sewage Sludge and Green Waste Co-composting  

Science Conference Proceedings (OSTI)

The purpose of this work is to study the characteristics of the co-composting of sewage sludge and green waste (weight ratio 8:1). The indexes such as temperature, total nitrogen and total organic carbon contents, germination index, were analyzed to ... Keywords: sewage sludge, Composting, Maturity index

Hua Zhang; Delong Lv; Leilei Wei

2011-08-01T23:59:59.000Z

33

Sewage waste enriches city parks: forced aeration allows sludge cake to be used as compost  

Science Conference Proceedings (OSTI)

A study of managing sewage wastes in the City of Windsor shows that composting of sludges is practical in most urbanized areas in Canada. Composting is a method to treat waste (or recycling of waste) and at this point is not a signficant moneymaker. By composting sewage sludge cake, the odors are alleviated and a stable humus-like organic material is produced. The exothermic proces generates temperatures within the pile that effectively destroy many of the human pathogens. While composting is more labor intensive than some of the other systems of sludge cake disposal, it is not capital intensive. The composting of sewage sludge is a conserver of energy when compared to other methods of disposal. The end product can be utilized as a soil conditioner safety.

Romano, L.S.; Faust, J.

1980-02-01T23:59:59.000Z

34

SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE  

SciTech Connect

The Environmental Protection Agency (EPA) is currently evaluating alternative treatment standards for radioactively contaminated high mercury (Hg) subcategory wastes, which do not require the removal of mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needed additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 46 wt% (30 wt% dry) sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide the EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

Adams, J. W.; Bowerman, B. S.; Kalb, P. D.

2002-02-25T23:59:59.000Z

35

SULFUR POLYMER STABILIZATION/SOLIDIFICATION (SPSS) TREATABILITY OF SIMULATED MIXED-WASTE MERCURY CONTAMINATED SLUDGE.  

SciTech Connect

The Environmental Protection Agency (EPA) is currently seeking to validate technologies that can directly treat radioactively contaminated high mercury (Hg) subcategory wastes without removing the mercury from the waste. The Sulfur Polymer Stabilization/Solidification (SPSS) process developed at Brookhaven National Laboratory is one of several candidate technologies capable of successfully treating various Hg waste streams. To supplement previously supplied data on treatment of soils, EPA needs additional data concerning stabilization of high Hg subcategory waste sludges. To this end, a 5000 ppm sludge surrogate, containing approximately 50 wt% water, was successfully treated by pilot-scale SPSS processing. In two process runs, 85 and 95 wt% of water was recovered from the sludge during processing. At waste loadings of 30 wt% dry sludge, the treated waste form had no detectable mercury (<10 ppb) in TCLP leachates. Data gathered from the demonstration of treatment of this sludge will provide EPA with information to support revisions to current treatment requirements for high Hg subcategory wastes.

ADAMA, J.W.; BOWERMAN, B.S.; KALB, P.D.

2002-10-01T23:59:59.000Z

36

Multi-step process for concentrating magnetic particles in waste sludges  

DOE Patents (OSTI)

This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

Watson, J.L.

1990-07-10T23:59:59.000Z

37

Chemical and physical property of rice straw waste and hospital sewage sludge in turned windrow aeration system  

Science Conference Proceedings (OSTI)

Most sewage sludge from hospital wastewater treatment plants in Northern Thailand are also being to incinerator and agricultural fields. Land application of hospital sewage sludge has serious effects on environmental. The main goal of this investigation ... Keywords: co-composting, hospital sewage sludge, rice straw waste, turned windrow aeration

Khajornsak Sopajaree; Apisit Sancom

2008-02-01T23:59:59.000Z

38

Applicability of the sludge processing technical standard to type IV waste tanks with high fluoride concentration  

SciTech Connect

Type IV waste tanks at the Savannah River Plant which contain ballast water (tanks 17, 18, 19, 20, and 24) have solution compositions that are generally within the database developed for corrosion protection of the sludge processing tanks. Therefore the technical standard covering tank chemistry limits during sludge processing is applicable to the Type TV tanks. However, Tank 20 contains levels of fluoride higher than those treated in the sludge processing database. To confirm the applicability of the sludge processing technical standard, cyclic potentiodynamic polarization scans for pitting susceptibility were run in a simulant of the Tank 20 contents. The nitrite inhibitor level specified by the standards did inhibit pitting corrosion in the simulant. Pitting was inhibited also at the same nitrite level but with 30 percent higher concentrations of chloride, fluoride, and sulfate. Thus the sludge processing technical standard has been shown to provide corrosion protection to type IV tanks containing ballast water.

Zapp, P.E.

1992-03-31T23:59:59.000Z

39

Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption  

SciTech Connect

In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.

Yamada, Y. [Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585 (Japan); Kawase, Y. [Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585 (Japan)]. E-mail: bckawase@mail.eng.toyo.ac.jp

2006-07-01T23:59:59.000Z

40

DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382  

Science Conference Proceedings (OSTI)

The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

2009-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Characterization of Actinides in Simulated Alkaline Tank Waste Sludges and Leachates  

SciTech Connect

Removal of waste-limiting components of sludge (Al, Cr, S, P) in underground tanks at Hanford by treatment with concentrated alkali has proven less efficacious for Al and Cr removal than had been hoped. More aggressive treatments of sludges, for example, contact with oxidants targeting Cr(III), have been tested in a limited number of samples and found to improve leaching efficiency for Cr. Oxidative alkaline leaching can be expected to have at best a secondary influence on the mobilization of Al. Our earlier explorations of Al leaching from sludge simulants indicated acidic and complexometric leaching can improve Al dissolution. Unfortunately, treatments of sludge samples with oxidative alkaline, acidic or complexing leachates produce conditions under which normally insoluble actinide ions (e.g., Am3+, Pu4+, Np4+) can be mobilized to the solution phase. Few experimental or meaningful theoretical studies of actinide chemistry in strongly alkaline, strongly oxidizing solutions have been completed. Unfortunately, extrapolation of the more abundant acid phase thermodynamic data to these radically different conditions provides limited reliable guidance for predicting actinide speciation in highly salted alkaline solutions. In this project, we are investigating the fundamental chemistry of actinides and important sludge components in sludge simulants and supernatants under representative oxidative leaching conditions. We are examining the potential impact of acidic or complexometric leaching with concurrent secondary separations on Al removal from sludges. Finally, a portion of our research is directed at the control of polyvalent anions (SO4=, CrO4=, PO43-) in waste streams destined for vitrification. Our primary objective is to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop. We expect to identify those components of sludges that are likely to be problematic in the application of oxidative, acidic, and complexometric leaching protocols.

Nash, Kenneth L.

2005-06-01T23:59:59.000Z

42

Tank waste consolidation analysis for transfer of ORNL RH-TRU tank sludges to the Melton Valley Storage Tanks  

SciTech Connect

The objective of this work is to evaluate the schedule and technical issues associated with consolidation of Remote Handled Transuranic (RH-TRU) sludges in the Melton Valley Storage Tanks (MVSTs). This work supports the DOE Transuranic Waste (TRU) Program plans for private sector treatment of all ORNL TRU sludges for disposal at the Waste Isolation Pilot Plant (WIPP). Transfer of these sludges must be completed in FY 2000 to meet the required schedule for beginning shipment of treated sludges to the WIPP by 2002. This study was performed to (1) evaluate the sludge transfer schedule, (2) evaluate the ability of existing tank systems to contain and manage the sludges and liquids generated during the transfers, and (3) evaluate the costs and schedules of different solid/liquid separation and solids-monitoring methods used during sludge transfer for management of sluice waters.

Kent, T.E.; DePaoli, S.M.

1997-01-01T23:59:59.000Z

43

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

44

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

DOE Green Energy (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

45

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

SciTech Connect

Through a cooperative agreement with DOE, the Research and Development Department of CONSOL Inc. (CONSOL R and D) is teaming with SynAggs, Inc. and Duquesne Light to design, construct, and operate a 500 lb/h continuous pilot plant to produce road construction aggregate from a mixture of wet flue gas desulfurization (FGD) sludge, fly ash, and other components. The proposed project is divided into six tasks: (1) Project Management; (2) Mix Design Evaluation; (3) Process Design; (4) Construction; (5) Start-Up and Operation; and (6) Reporting. In this quarter, Tasks 1 and 2 were completed. A project management plan (Task 1) was issued to DOE on October 22, 1998 . The mix design evaluation (Task 2) with Duquesne Light Elrama Station FGD sludge and Allegheny Power Hatfields Ferry Station fly ash was completed. Eight semi-continuous bench-scale tests were conducted to examine the effects of mix formulation on aggregate properties. A suitable mix formulation was identified to produce aggregates that meet specifications of the American Association of State High Transport Officials (AASHTO) as Class A aggregate for use in highway construction. The mix formulation was used in designing the flow sheet of the pilot plant. The process design (Task 3) is approximately 80% completed. Equipment was evaluated to comply with design requirements. The design for the curing vessel was completed by an outside engineering firm. All major equipment items for the pilot plant, except the curing vessel, were ordered. Pilot plant construction (Task 4) was begun in October. The Hazardous Substance Plan was issued to DOE. The Allegheny County (PA) Heat Department determined that an air emission permit is not required for operation of the pilot plant.

1998-12-01T23:59:59.000Z

46

Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Cogasification of sewage sludge with wood pellets in updraft gasifier was analysed. Black-Right-Pointing-Pointer The effects of sewage sludge content on the gasification process were examined. Black-Right-Pointing-Pointer Sewage sludge addition up to 30 wt.% reduces moderately the process performance. Black-Right-Pointing-Pointer At high sewage sludge content slagging and clinker formation occurred. Black-Right-Pointing-Pointer Solid residues produced resulted acceptable at landfills for non-hazardous waste. - Abstract: In the present work, the gasification with air of dehydrated sewage sludge (SS) with 20 wt.% moisture mixed with conventional woody biomass was investigated using a pilot fixed-bed updraft gasifier. Attention was focused on the effect of the SS content on the gasification performance and on the environmental impact of the process. The results showed that it is possible to co-gasify SS with wood pellets (WPs) in updraft fixed-bed gasification installations. However, at high content of sewage sludge the gasification process can become instable because of the very high ash content and low ash fusion temperatures of SS. At an equivalent ratio of 0.25, compared with wood pellets gasification, the addition of sewage sludge led to a reduction of gas yield in favor of an increase of condensate production with consequent cold gas efficiency decrease. Low concentrations of dioxins/furans and PAHs were measured in the gas produced by SS gasification, well below the limiting values for the exhaust gaseous emissions. NH{sub 3}, HCl and HF contents were very low because most of these compounds were retained in the wet scrubber systems. On the other hand, high H{sub 2}S levels were measured due to high sulfur content of SS. Heavy metals supplied with the feedstocks were mostly retained in gasification solid residues. The leachability tests performed according to European regulations showed that metals leachability was within the limits for landfilling inert residues. On the other hand, sulfate and chloride releases were found to comply with the limits for non-hazardous residues.

Seggiani, Maurizia, E-mail: m.seggiani@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Puccini, Monica, E-mail: m.puccini@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy); Raggio, Giovanni, E-mail: g.raggio@tiscali.it [Italprogetti Engineering SPA, Lungarno Pacinotti, 59/A, 56020 San Romano (Pisa) (Italy); Vitolo, Sandra, E-mail: s.vitolo@diccism.unipi.it [Department of Chemical Engineering, Industrial Chemistry and Material Science, University of Pisa, Largo Lucio Lazzarino 1, 56126 Pisa (Italy)

2012-10-15T23:59:59.000Z

47

OPERATIONAL CHALLENGES IN MIXING AND TRANSFER OF HIGH YIELD STRESS SLUDGE WASTE  

SciTech Connect

The ability to mobilize and transport non-Newtonian waste is essential to advance the closure of highly radioactive storage tanks. Recent waste removal operations from Tank 12H at the Savannah River Site (SRS) encountered sludge mixtures with a yield stress too high to pump. The waste removal equipment for Tank 12H was designed to mobilize and transport a diluted slurry mixture through an underground 550m long (1800 ft) 0.075m diameter (3 inch) pipeline. The transfer pump was positioned in a well casing submerged in the sludge slurry. The design allowed for mobilized sludge to enter the pump suction while keeping out larger tank debris. Data from a similar tank with known rheological properties were used to size the equipment. However, after installation and startup, field data from Tank 12H confirmed the yield stress of the slurry to exceed 40 Pa, whereas the system is designed for 10 Pa. A revision to the removal strategy was required, which involved metered dilution, blending, and mixing to ensure effective and safe transfer performance. The strategy resulted in the removal of over 255,000 kgs of insoluble solids with four discrete transfer evolutions for a total transfer volume of 2400 m{sup 3} (634,000 gallons) of sludge slurry.

Caldwell, T.; Bhatt, P.

2009-12-07T23:59:59.000Z

48

Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths  

SciTech Connect

Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

Gauglitz, P.A.; Rassat, S.D.; Powell, M.R. [and others

1995-08-01T23:59:59.000Z

49

Evaluation and Recommendation of Waste Form and Packaging for Disposition of the K East Basin North Loadout Pit Sludge  

SciTech Connect

This report discusses the recommendation from the Pacific Northwest National Laboratory (PNNL) to Fluor Hanford regarding the treatment of the Hanford K East Basin North Loadout Pit (KE NLOP) sludge to produce contact handled transuranic waste (CH-TRU) for disposal at the Waste Isolation Pilot Plant (WIPP). The recommendation was supported in part by chemical and radiochemical characterization analyses (provided in this report) performed on a sample of KE NLOP sludge.

Mellinger, George B.; Delegard, Calvin H.; Schmidt, Andrew J.; Sevigny, Gary J.

2004-01-01T23:59:59.000Z

50

STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT  

DOE Green Energy (OSTI)

The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

CROWE RD; APTHORPE R; LEE SJ; PLYS MG

2010-04-29T23:59:59.000Z

51

CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES  

SciTech Connect

In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

Nash, Kenneth L.

2008-11-20T23:59:59.000Z

52

Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion  

Science Conference Proceedings (OSTI)

Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35?°C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four?blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel?Bulkley model

Evangelina S. Morel; José A. Hernández?Hernándes; Juan M. Méndez?Contreras; Denis Cantú?Lozano

2008-01-01T23:59:59.000Z

53

Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste  

SciTech Connect

Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author`s previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B {+-} $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author`s engineering judgment.

DeMuth, S.

1998-09-01T23:59:59.000Z

54

Effects of Sludge Particle Size and Density on Hanford Waste Processing  

SciTech Connect

The U.S. Department of Energy Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on the new approach that relates measured particle size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: 1) the composite PSDs are reproduced, 2) the solid-phase compound mass fractions are reproduced, 3) the expected in situ bulk-solids density is qualitatively reproduced, and 4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not-sonicated before being analyzed and whether agglomerates existed or not in the PSD samples. When critical pipeline velocity calculations are applied to these results, several percent of Hanford tank waste sludge are expected to exceed pipeline velocities of 4 ft/sec. Operation and waste processing at pipeline velocities in the >4 to 6 ft/sec range appear to be compatible with the Hanford sludge in 3-inch pipes. (authors)

Poloski, A.P.; Wells, B.E.; Mahoney, L.A.; Daniel, R.C.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory, Richland, WA (United States)

2008-07-01T23:59:59.000Z

55

Effects of Sludge Particle Size and Density on Hanford Waste Processing  

SciTech Connect

The U.S. Department of Energy Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on a new approach that relates measured particle-size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid-phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: 1) the composite PSDs are reproduced, 2) the solid-phase compound mass fractions are reproduced, 3) the expected in situ bulk-solids density is qualitatively reproduced, and 4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not-sonicated before being analyzed and whether agglomerates existed or not in the PSD samples. When critical pipeline velocity calculations are applied to these results, several percent of Hanford tank waste sludge are expected to exceed pipeline velocities of <3 to 4 ft/sec. Operation and waste processing at pipeline velocities in the >4 to 6 ft/sec range appear to be compatible with the Hanford sludge in 3-inch pipes.

Poloski, Adam P.; Wells, Beric E.; Mahoney, Lenna A.; Daniel, Richard C.; Tingey, Joel M.; Cooley, Scott K.

2008-02-04T23:59:59.000Z

56

Sludge Mass Reduction Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparations Preparations within the Tank Farm D. Bumgardner Liquid Waste Engineering Washington Savannah River Company 12 May 2009 2 Agenda Liquid Waste System Overview Sludge Characteristics Sludge Batch Planning Sludge Batch Preparation Sequence - Aluminum Dissolution - Sludge Washing - Sludge Batch Qualification/Acceptance Questions 3 Liquid Waste Processing at SRS ARP - Actinide Removal Process AFP - Actinide Finishing Process ASP - Actinide Strike Process CSS - Clarified Salt Solution CSSX - Caustic-side Solvent Extraction DDA - Deliquification, Dissolution, and Adjustment DSS - Decontaminated Salt Solution DWPF - Defense Waste Processing Facility ETP - Effluent Treatment Project GWSB - Glass Waste Storage Building HLW - High-Level Waste LLW - Low-Level Waste MCU - Modular CSSX Unit

57

Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective  

SciTech Connect

Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

Powell, M.R.; Onishi, Y.; Shekarriz, R.

1997-09-01T23:59:59.000Z

58

National Waste Processing Conference Proceedings ASME 1994 SEWAGE SLUDGE INCINERATION  

E-Print Network (OSTI)

exhaust gas dispersion (raising the stack temperature and/or increasing the stack height); and Monitoring System Dispersion Factor Environmental Protection Agency Electrostatic Precipitator Multiple to determine allowable concentrations utilize site- specific information such as: · dispersion factor

Columbia University

59

MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges  

Science Conference Proceedings (OSTI)

The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-01-01T23:59:59.000Z

60

In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors  

Science Conference Proceedings (OSTI)

The characterization of unknown mixed wastes is a mandatory step in today`s climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate {sup 137}Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in {sup 137}Cs and {sup 90}Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges.

Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

engineering.de/116/) Co-firing of MSW and sewage sludge indevice for solid waste fuel co-firing Solid waste fuels areand HF produced during firing. ? CO is largely unaffected. ?

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

62

RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K; Tommy Edwards, T; David Peeler, D

2008-06-25T23:59:59.000Z

63

FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect

The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

Fox, K.

2009-01-28T23:59:59.000Z

64

UTILIZING STATISTICS TO DETERMINE HOW MUCH SAMPLING AND ANALYSISIS WARRANTED TO SUPPORT SAVANNAH RIVER SITEHIGH LEVEL WASTE SLUDGE BATCH PREPARATION  

SciTech Connect

Accelerated cleanup initiatives at the SRS include expediting radioactive sludge processing. Sludge is the highest risk component of waste since it contains the highest concentrations of long-lived radionuclides. The sludge is staged into ''batches'' that are then the feed material to the Defense Waste Processing Facility (DWPF) which vitrifies the waste into a safe form for permanent disposal. The preparation of each batch includes sampling and analysis of the slurried material. The results of the characterization are used as the bases for batch blending and processing decisions. Uncertainty is inherent in the information used for planning. There is uncertainty in the quantity of sludge contained in a tank, the waste composition, and the waste physical properties. The goal of this analysis is to develop the basis for the number of physical samples that should be taken from the slurried waste tank and the number of replicates of laboratory measurements that should be performed in order to achieve a specified uncertainty level. Recommendations for sampling and analysis strategies are made based on the results of the analysis.

Hamm, B

2007-05-17T23:59:59.000Z

65

PRODUCTION OF CONSTRUCTION AGGREGATES FROM FLUE GAS DESULFURIZATION SLUDGE  

Science Conference Proceedings (OSTI)

The three main conclusions of this report are: (1) The pilot plant successfully demonstrated the continuous, fully-integrated, long-term process operation, including the mixing, pelletizing, and curing steps for aggregate production. The curing vessel, which was designed for the pilot plant test, was operated in a mass flow mode and performed well during pilot plant operation. (2) The pilot plant test demonstrated process flexibility. The same equipment was used to produce lightweight, medium-weight, and road aggregates. The only change was the mix formulation. Aggregates were produced from a variety of mix designs and from FGD sludge with solids concentrations between 45.0% and 56.7% and moisture contents between 55.0% and 43.3%. (3) The pilot plant provided operating data and experience to design and cost a commercial plant, which was not part of the cooperative agreement.

M.M. Wu; D.C. McCoy; R.O. Scandrol; M.L. Fenger; J.A. Withum; R.M. Statnick

2000-05-01T23:59:59.000Z

66

Problem of sludge formation in benzol division solar oil and ''carbonization'' in coke oven gas compressor systems  

Science Conference Proceedings (OSTI)

A discussion is presented on the problem and possible causes of sludge formation in the return solar oil in benzene recovery units and on the problem of deposits in the pipe systems after coke oven gas compressors. The possible entrainment of fine particles of coal charge in the solar oil was also discussed. Sedimentation of the sludge was recommended with daily removal of the settled sludge. A chemical analysis of the deposits in the piping system of the coke oven gas and the coal charge revealed that the deposits were not caused by entrained coal particles. (JMT)

Rezunenko, Y.I.

1982-01-01T23:59:59.000Z

67

Co-digestion of cattle manure with food waste and sludge to increase biogas production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

2012-10-15T23:59:59.000Z

68

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE  

Science Conference Proceedings (OSTI)

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

2011-03-14T23:59:59.000Z

69

ACTUAL-WASTE TESTING OF ULTRAVIOLET LIGHT TO AUGMENT THE ENHANCED CHEMICAL CLEANING OF SRS SLUDGE  

SciTech Connect

In support of Savannah River Site (SRS) tank closure efforts, the Savannah River National Laboratory (SRNL) conducted Real Waste Testing (RWT) to evaluate Enhanced Chemical Cleaning (ECC), an alternative to the baseline 8 wt% oxalic acid (OA) chemical cleaning technology for tank sludge heel removal. ECC utilizes a more dilute OA solution (2 wt%) and an oxalate destruction technology using ozonolysis with or without the application of ultraviolet (UV) light. SRNL conducted tests of the ECC process using actual SRS waste material from Tanks 5F and 12H. The previous phase of testing involved testing of all phases of the ECC process (sludge dissolution, OA decomposition, product evaporation, and deposition tank storage) but did not involve the use of UV light in OA decomposition. The new phase of testing documented in this report focused on the use of UV light to assist OA decomposition, but involved only the OA decomposition and deposition tank portions of the process. Compared with the previous testing at analogous conditions without UV light, OA decomposition with the use of UV light generally reduced time required to reach the target of <100 mg/L oxalate. This effect was the most pronounced during the initial part of the decomposition batches, when pH was <4. For the later stages of each OA decomposition batch, the increase in OA decomposition rate with use of the UV light appeared to be minimal. Testing of the deposition tank storage of the ECC product resulted in analogous soluble concentrations regardless of the use or non-use of UV light in the ECC reactor.

Martino, C.; King, W.; Ketusky, E.

2012-07-10T23:59:59.000Z

70

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25T23:59:59.000Z

71

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff  

E-Print Network (OSTI)

Greenhouse gas emissions, waste and recycling policy Kaylee Acuff and Daniel T. Kaffine We thank@mines.edu.) 1 #12;Greenhouse gas emissions, waste and recycling policy Abstract This paper examines least-cost policies for waste reduction, incorporating upstream greenhouse gas externalities associated

72

C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

1999-05-01T23:59:59.000Z

73

The durability of stabilized flue gas desulfurization sludge  

Science Conference Proceedings (OSTI)

The effects of freeze-thaw cycling on the strength and durability of samples of compacted, stabilized, wet flue gas desulfurization (FGD) by-products are reported. The results of laboratory tests show a clear relationship between higher water contents and increasing vulnerability to freeze-thaw effects. In the samples tested, water contents at or above 40% were characteristic of all the freeze-thaw specimens exhibiting low strengths. Lime content and curing time were also shown to have a marked influence on the durability of the FGD material. It was shown that samples can maintain good strength under freeze-thaw conditions provided 5% lime was added before compaction and the time from compaction to first freeze was at least 60 days.

Chen, X.; Wolfe, W.E.; Hargraves, M.D.

1995-12-31T23:59:59.000Z

74

Use of the TRUEX process for the pretreatment of neutralized cladding removal waste (NCRW) sludge: Results of a design basis experiment  

SciTech Connect

This report presents the results of an experiment designed to demonstrate the feasibility of a sludge dissolution/solvent extraction process to separate transuranic elements from the bulk components of Hanford neutralized cladding removal waste (NCRW) sludge. Such a separation would allow the bulk of the waste to be disposed of as low-level waste, which is much less costly than geologic disposal as would be required for the waste in its current form. The results indicate that the proposed process is well suited to meet the desired objectives. A composite sample of NCRW sludge taken from Tank 103-AW in 1986 was dissolved in nitric acid at room temperature. Dissolution of bulk components and all radionuclides was {ge}95% complete; thus, {le}5% of the bulk components will require geologic disposal. The TRUEX (TRansUranium EXtraction) solvent extraction process gave very good separation of the transuranic from the bulk components of the waste.

Swanson, J L

1991-07-01T23:59:59.000Z

75

Pretreatment of microbial sludges  

DOE Patents (OSTI)

Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

Rivard, Christopher J. (Lakewood, CO); Nagle, Nicholas J. (Louisville, CO)

1995-01-01T23:59:59.000Z

76

Pretreatment of microbial sludges  

DOE Patents (OSTI)

Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

Rivard, C.J.; Nagle, N.J.

1995-01-10T23:59:59.000Z

77

Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment  

SciTech Connect

This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

Sandoval Lozano, Claudia Johanna [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9A Carrera 27, Aptdo Aereo 678, Bucaramanga (Colombia)], E-mail: ceiam@uis.edu.co; Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9A Carrera 27, Aptdo Aereo 678, Bucaramanga (Colombia)

2009-02-15T23:59:59.000Z

78

Use of flue gas desulphurisation (FGD) waste and rejected fly ash in waste stabilization/solidification systems  

Science Conference Proceedings (OSTI)

Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 {mu}m). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH){sub 2} and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH){sub 2} systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.

Qiao, X.C. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Poon, C.S. [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)]. E-mail: cecspoon@polyu.edu.hk; Cheeseman, C. [Department of Civil and Environmental Engineering, Imperial College, London SW7 2BU (United Kingdom)

2006-07-01T23:59:59.000Z

79

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01T23:59:59.000Z

80

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants  

SciTech Connect

The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.

Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.

2012-02-24T23:59:59.000Z

82

Gas generation results and venting study for transuranic waste drums  

DOE Green Energy (OSTI)

Sixteen waste drums, containing six categories of plutonium-contaminated waste, were monitored for venting and gas generation for six months. The venting devices tested appeared adequate to relieve pressure and prevent hydrogen accumulation. Most of the gas generation, primarily H2 and CO2, was due to radiolytic decomposition of the hydrogenous wastes. Comparison of the gas yields with those obtained previously in laboratory tests showed very reasonable agreement with few exceptions.

Kazanjian, A.R.; Arnold, P.M.; Simmons, W.C.; D'Amico, E.L.

1985-09-23T23:59:59.000Z

83

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

84

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion  

E-Print Network (OSTI)

be accomplished through use of aerobic or anaerobic self digestion, but choice of digestion type in practice to predict aerobic and anaerobic digestion potential. Future Work: · The anaerobic reactors are still running sludge. It performs only slightly better than the unsonicated sludge in anaerobic digestion

Mountziaris, T. J.

85

Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge  

DOE Green Energy (OSTI)

Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen generation by no more than a factor of three while disodium phosphate increased the corrosion and hydrogen generation rates slightly. U(VI) showed some promise in attenuating hydrogen but only initial testing was completed. Uranium metal corrosion rates also were measured. Under many conditions showing high hydrogen gas attenuation, uranium metal continued to corrode at rates approaching those observed without additives. This combination of high hydrogen attenuation with relatively unabated uranium metal corrosion is significant as it provides a means to eliminate uranium metal by its corrosion in water without the accompanying hazards otherwise presented by hydrogen generation.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2010-01-29T23:59:59.000Z

86

TEMPEST code modifications and testing for erosion-resisting sludge simulations  

Science Conference Proceedings (OSTI)

The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results for solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.

Onishi, Y.; Trent, D.S.

1998-01-01T23:59:59.000Z

87

Slurry growth and gas retention in synthetic Hanford waste  

DOE Green Energy (OSTI)

This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N{sub 2}, N{sub 2}O, and H{sub 2}. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

1992-09-01T23:59:59.000Z

88

Slurry growth and gas retention in synthetic Hanford waste  

DOE Green Energy (OSTI)

This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N[sub 2], N[sub 2]O, and H[sub 2]. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles.

Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

1992-09-01T23:59:59.000Z

89

ACTUAL-WASTE TESTS OF ENHANCED CHEMICAL CLEANING FOR RETRIEVAL OF SRS HLW SLUDGE TANK HEELS AND DECOMPOSITION OF OXALIC ACID  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory conducted a series of tests on the Enhanced Chemical Cleaning (ECC) process using actual Savannah River Site waste material from Tanks 5F and 12H. Testing involved sludge dissolution with 2 wt% oxalic acid, the decomposition of the oxalates by ozonolysis (with and without the aid of ultraviolet light), the evaporation of water from the product, and tracking the concentrations of key components throughout the process. During ECC actual waste testing, the process was successful in decomposing oxalate to below the target levels without causing substantial physical or chemical changes in the product sludge.

Martino, C.; King, W.; Ketusky, E.

2012-01-12T23:59:59.000Z

90

Gas generation from Tank 241-SY-103 waste  

DOE Green Energy (OSTI)

This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

1996-04-01T23:59:59.000Z

91

Preliminary Study of Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants  

SciTech Connect

The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy’s River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize initial progress and results on new experiments focused on understanding the conditions that result in low gas retention. The work is ongoing; this report provides a summary of the initial findings. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments will begin with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments.

Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.

2010-10-12T23:59:59.000Z

92

Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease  

SciTech Connect

Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

Wan Caixia; Zhou Quancheng; Fu Guiming [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States)

2011-08-15T23:59:59.000Z

93

Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes  

DOE Green Energy (OSTI)

Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

Dole, L.R.; Friedman, H.A.

1986-01-01T23:59:59.000Z

94

System for recovering methane gas from liquid waste  

SciTech Connect

A system for and method of recovering methane gas from liquid waste which is stored within a pit is disclosed herein. The methane gas is produced by causing the liquid waste to undergo anaerobic fermentation. Therefore, it is necessary to close the pit in an air tight fashion. This is carried out using a cover sheet which is fixedly disposed over the pit in an air tight but readily disengagable fashion. The liquid waste within this air tight pit is preferably agitated intermittently during its storage therein whereby to increase the amount of methane gas produced.

Grabis, D.W.

1983-07-19T23:59:59.000Z

95

TRU Waste Sampling Program: Volume II. Gas generation studies  

DOE Green Energy (OSTI)

Volume II of the TRU Waste Sampling Program report contains the data generated from evaluating the adequacy of venting/filtering devices for maintaining safe hydrogen levels in plutonium contaminated waste drums. Additional studies reported in this volume include gas generation rates, selected waste form monitoring, and evaluation of hydrogen migration from sealed 90-mil rigid polyethylene drum liners containing /sup 238/Pu-contaminated wastes. All wastes used in the studies were newly-generated, and the waste drums were under controlled, experimental conditions. Studies using /sup 239/Pu-contaminated wastes were conducted at the Rocky Flats Plant. Studies using /sup 238/Pu-contaminated wastes were conducted at the Los Alamos National Laboratory.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

96

FRIT DEVELOPMENT FOR HIGH LEVEL WASTE SLUDGE BATCH 5: COMPOSITIONAL TRENDS FOR VARYING ALUMINUM CONCENTRATIONS  

Science Conference Proceedings (OSTI)

The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent Sludge Batch 5 (SB5) as processed at the Defense Waste Processing Facility (DWPF). The data was used to provide recommendations to the Liquid Waste Organization (LWO) regarding blending and washing strategies in preparing SB5 based on acceptability of the glass compositions. These data were also used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of frits. Three composition projections for SB5 were developed using a model-based approach at Savannah River National Laboratory (SRNL). These compositions, referred to as SB5 Cases B, C and D, projected removal of 25, 50 and 75% (respectively) of the aluminum in Tank 51 through the low temperature aluminum dissolution process. The frits for this study (Frits 530 through 537) were selected based on their predicted operating windows (i.e., ranges of waste loadings over which the predicted properties of the glasses were acceptable) and their potential (based on historical trends) to provide acceptable melt rates for SB5. Six additional glasses were designed to evaluate alternatives for uranium in DWPF-type glasses used for variability studies and some scoping studies. Since special measures are necessary when working with uranium-containing glasses in the laboratory, it is desirable as a cost and time saving measure to find an alternative for uranium to support frit optimization efforts. Hafnium and neodymium were investigated as potential surrogates for uranium, and other glasses were made by simply excluding the radioactive components and renormalizing the glass composition. The study glasses were fabricated and characterized at SRNL. Chemical composition analyses suggested only minor difficulties in meeting the targeted compositions for some of the oxides for some of the glasses. Although minor differences were observed, they did not have a significant impact on the conclusions made in this study. Several of the study compositions showed retention of more than 0.5 wt% SO{sub 4}{sup 2-} in glass. Trevorite (a spinel) was the only crystalline phase that was positively identified in a few of the study glasses after the canister centerline cooled (CCC) heat treatment. Spinels are not of concern as they have been shown to have little impact on the durability of high level waste glasses. The crystallization behavior of the surrogate glasses was generally the same as that of their U{sub 3}O{sub 8}-containing counterparts. There are two pairs that were exceptions: SB5-04 (amorphous) and SB5-24 (possible trevorite), along with SB5-07 (amorphous) and SB5-25 (trevorite). In these cases, the surrogate glasses (SB5-24 and SB5-25) appear to be more conservative (more prone to crystallization) than their U{sub 3}O{sub 8}-containing counterparts. Chemical durability was quantified using the Product Consistency Test (PCT). The normalized leachate (NL) values for B, Li, Na and Si for all of the study glasses were well below those of the Environmental Assessment (EA) benchmark glass, regardless of heat treatment or compositional view. This indicates that all of the glasses had very acceptable durability performance. The highest NL [B] for the study glasses was 0.914 g/L (the quenched version of glass SB5-13), normalized using the measured, bias-correct composition. There was little practical impact of the CCC heat treatment on the PCT responses of the study glasses. The measured PCT responses were predictable by the current {Delta}G{sub p} models. In general, the PCT responses for the surrogate glasses or the glasses without U{sub 3}O{sub 8} were quite similar to their U{sub 3}O{sub 8}-containing counterparts. The average percent error in NL [B] normalized by the measured, bias-corrected compositions for the surrogate glasses compared with their radioactive counterparts was 8.8%. The largest difference in NL

Fox, K; Tommy Edwards; David Best; Irene Reamer; Phyllis Workman

2008-08-28T23:59:59.000Z

97

Control of waste gas from a thermal EOR operation  

SciTech Connect

This paper summarizes a waste-gas treatment system designed to control emissions from thermal EOR wells. This case study discusses the need, design, installation, and operation of the system.

Peavy, M.A.; Braun, J.E. (Oryx Energy Co. (US))

1991-06-01T23:59:59.000Z

98

CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE I REPORT AUGUST 1997 - JULY 1998  

Science Conference Proceedings (OSTI)

In exploring methods to recycle boiler ash (BA) and waste water treatment sludge (WWTS), by-products generated from Keyspan's power plants, into commercially viable materials, we synthesized chemically bonded cements (CBC) offering the following three specific characteristics; (1) immobilization of hazardous heavy metals, such as Pb, Ni, and V, (2) rapid hardening and setting properties, and (3) development of high mechanical strength. The CBCs were prepared through an acid-base reaction between these by-products acting as the solid base reactants and the sodium polyphosphate solution as the cement-forming acid reactant, followed by a hydrating reaction. Furthermore, two additives, the calcium aluminate cements (CAC) and the calcium silicate cements (CSC) were incorporated into the CBC systems to improve their properties. Using a CBC formulation consisting of 53.8 wt% WWTS, 23.1 wt% CSC, and 23.1 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}]{sub 2} the Toxicity Characteristics Leaching Procedure (TCLP) tests showed that the concentrations of Pb, Ni, and V metals leached out from the specimens were minimal. This formulation originally contained {approx} 28800 mg/kg of Pb, {approx} 6300 mg/kg of Ni, and {approx} 11130 mg/kg of V; the amounts leaching into the acid extraction fluid were only 0.15 mg/L of Pb, 0.15 mg/L of Ni, and 4.63 mgiL of V. On the other hand, CBC specimens derived from a formulation consisting of 42 wt% BA, 18 wt% CAC and 40 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}] displayed an excellent compressive strength of 10.8 MPa at an early curing age of 2 hours after mixing at room temperature. The reason for its rapid hardening was due to a high exothermic energy evolved by the acid-base reaction. Furthermore, when these specimens were immersed for 28 days in water at 25 C, and exposed for 20 hours to steam at 80 C, a very high compressive strength of 3.32 MPa developed. Two physico-chemical factors played an important role in improving the mechanical strength of the specimens: One was the formation of two well-crystallized phases, hydroxyapatite [Ca{sub 5}(PO{sub 4}){sub 3}(OH)] and sodium vanadium sulfate hydrate [Na{sub 2}V(SO{sub 4}){sub 2},4H{sub 2}O], as the reaction products in the cement bodies; the other factor reflected the dense microstructure developed by the growth of these crystalline reaction products. Accordingly, the CBCs derived from these by-products have a high potential for use as remediating material for hazardous heavy metal-contaminated soils, as rapid-setting repair patching and filling materials for damaged roadways and bridge decks, and also as binders in precast concrete products, such as blocks, slabs, and pipes.

SUGAMA,T.; YAGER,K.A.

2002-08-05T23:59:59.000Z

99

Study of physical properties, gas generation and gas retention in simulated Hanford waste  

DOE Green Energy (OSTI)

The purpose of this study was to establish the chemical and physical processes responsible for the generation and retention of gases within high-level waste from Tank 101-SY on the Hanford Site. This research, conducted using simulated waste on a laboratory scale, supports the development of mitigation/remediation strategies for Tank 101-SY. Simulated waste formulations are based on actual waste compositions. Selected physical properties of the simulated waste are compared to properties of actual Tank 101-SY waste samples. Laboratory studies using aged simulated waste show that significant gas generation occurs thermally at current tank temperatures ({approximately}60{degrees}C). Gas compositions include the same gases produced in actual tank waste, primarily N{sub 2}, N{sub 2}O, and H{sub 2}. Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the simulated waste. Retention of gases in the simulated waste is in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) of the simulated waste. A mechanism is discussed that relates the gas bubble/particle interactions to the partially hydrophobic surface produced on the solids by the organic constituents.

Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

1993-04-01T23:59:59.000Z

100

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Ston

Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

2011-09-20T23:59:59.000Z

102

Mechanisms of gas bubble retention  

Science Conference Proceedings (OSTI)

Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

1994-09-01T23:59:59.000Z

103

Radiogenic gas accumulation in TRU waste storage drums  

DOE Green Energy (OSTI)

A field experiment was conducted over a four-year time span to determine the effect of high-activity transuranic (TRU) waste on the atmosphere within TRU waste storage drums typical of those generated in Savannah River Plant operation. Routine gas composition analyses showed that a significant amount of hydrogen can accumulate in drums that contain high alpha activity, and that flammable gas mixtures could form in such drums in spite of the radiolytic consumption of oxygen. According to this study, gas pressure accumulation does not pose a threat to the integrity of the TRU waste containers that are now being stored at the Savannah River Plant. Therefore, the 20-year storage criterion is still viable. However, the continued avoidance of a perfectly gas-tight drum seal (e.g., epoxy, metal welding) is recommended. The test drums will continue to be monitored.

Ryan, J.P.

1982-01-01T23:59:59.000Z

104

Sludge digester  

SciTech Connect

A ballasted, gas-holding, liquid sludge digester is described comprising: a main liquid sludge tank having a bottom wall and upwardly projecting sidewall; a cover having a top and depending side skirt structure which telescopes with respect to the upwardly projecting sidewall of the main tank; ballast supported near the lower edge of said side skirt; a ballast-engaging, liquid-containing well joined to said sidewall of said main tank such that said cover provides a gas-tight seal when said ballast interacts with liquid in said well so as to be partially emerged or fully submerged in the liquid; liquid fill means interacting with said well to maintain a predetermined liquid level in the well when said ballast is at least partially emerged from the liquid in said well; and overflow means interacting with said well to maintain a predetermined liquid level in the well when said ballast is submerged in the liquid in the well.

Wight, J.L.; Cook, L.W.

1993-08-24T23:59:59.000Z

105

Characterization and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites  

SciTech Connect

This report describes processing and analysis results of boehmite waste type (Group 5) and insoluble high Cr waste type (Group 6). The sample selection, compositing, subdivision, physical and chemical characterization are described. Extensive batch leach testing was conducted to define kinetics and leach factors of selected analytes as functions of NaOH concentration and temperature. Testing supports issue M-12 resolution for the Waste Treatment Plant.

Fiskum, Sandra K.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hubler, Timothy L.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; Lumetta, Gregg J.; MacFarlan, Paul J.; McNamara, Bruce K.; Peterson, Reid A.; Sinkov, Sergey I.; Snow, Lanee A.; Swoboda, Robert G.

2008-07-10T23:59:59.000Z

106

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

107

Radiolytic gas production from concrete containing Savannah River Plant waste  

DOE Green Energy (OSTI)

To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by /sup 60/Co gamma rays and /sup 244/Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at <140 psi. From these results, estimates of pressure in conceptual containers (cylinders 2 feet ID by 10 feet tall, 90% full) of SRP waste concrete were made. During the first 300 years of storage when radiolysis will mainly be from beta-gamma radiation (from /sup 137/Cs and /sup 90/Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be <60 psi. After decay of these fission products, alpha radiolysis from /sup 238/Pu and /sup 239/Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi.

Bibler, N.E.

1978-01-01T23:59:59.000Z

108

Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks  

SciTech Connect

Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

2005-08-02T23:59:59.000Z

109

Filtration and Leach Testing for REDOX Sludge and S-Saltcake Actual Waste Sample Composites  

Science Conference Proceedings (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.( ) The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP-RPP-WTP-467, eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste-testing program was implemented that included: • Homogenizing the archive samples by group as defined in the test plan • Characterizing the homogenized sample groups • Performing parametric leaching testing on each group for compounds of interest • Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on filtration/leaching tests performed on two of the eight waste composite samples and follow-on parametric tests to support aluminum leaching results from those tests.

Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Geeting, John GH; Hallen, Richard T.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Snow, Lanee A.; Swoboda, Robert G.

2009-02-20T23:59:59.000Z

110

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

111

High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

Bolzonella, David, E-mail: david.bolzonella@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Cavinato, Cristina, E-mail: cavinato@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Fatone, Francesco, E-mail: francesco.fatone@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Pavan, Paolo, E-mail: pavan@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Cecchi, Franco, E-mail: franco.cecchi@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy)

2012-06-15T23:59:59.000Z

112

Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991  

DOE Green Energy (OSTI)

Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

1992-08-01T23:59:59.000Z

113

GAS BEHAVIOR IN LARGE DIAMETER CONTAINERS (LCDS) DURING & FOLLOWING LOADING WITH 105K EAST NORTH LOADOUT PIT SLUDGE  

DOE Green Energy (OSTI)

105K East NLOP sludge is an exceptionally benign environment with respect to producing large volumes of hydrogen quickly. In fact, should the uranium metal-water reaction become the dominant reaction for production of hydrogen, only 96 liters of hydrogen gas per m{sup 3} of sludge can be produced before the uranium metal in the sludge is consumed by the reaction. Accordingly, in an LDC containing 2.5 m{sup 3} of sludge, only 240 liters of hydrogen can be produced from the uranium-metal-water reaction. One of the conservatisms applied in this model is that the consumption of uranium metal in the reaction is not considered. The only flammable gas of interest in the calculation is hydrogen because the LDC will be vented through HEPA-type filters making it impossible to exclude aid-oxygen from reaching the interior of the LDC. Accordingly, it is assumed that sufficient oxygen to support combustion is always present in the headspace of the LDC. Two hydrogen limits are examined: (1) The Lower Flammability Limit (LFL) for hydrogen when argon is initially used as the cover gas. Since the LDC will be vented through two 2 inch ports fitted with HEPA-type filters, air will enter the LDC, diluting and eventually replacing the argon cover gas by: (a) Barometric breathing of the LDC during storage prior to processing. (b) Breathing by thermal expansion and contraction of the headspace gases during and following the transportation process. (c) Diffusion of air through the HEPA-type filtered vents during storage and processing. The LFL for hydrogen in an argon-lair mixture is the same as the LFL for hydrogen when air is the only cover gas in the LDC headspace (4%). Regardless of the exact mechanism for diluting and eventually replacing the argon with air, the headspace of a vented LDC will be diluted and will eventually contain only air. When 25% air (5% oxygen) is present, flammability is possible. Accordingly, 4% (the bounding value) will be used as the LFL for hydrogen in all calculations. The limit for hydrogen for the transportation window calculations (5%), (i.e., the normal transportation time shall not exceed 1/2 the time for hydrogen to reach 5% in any void space of the shipping container). Unlike the four case methodology used in SNF-18133, and the three case methodology used in the NLOP Addendum to SNF-18133 Revision 0, this analysis presents only the analysis necessary to establish the Safety Basis for LDCs filled with 105K East North Loadout Pit sludge using the normal (flow-through fill) method and the alternate (batch fill) method for two storage/processing locations: storage and processing at Building 325 or storage and processing at T Plant.

SHELOR, J.L.

2004-09-23T23:59:59.000Z

114

SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE  

DOE Green Energy (OSTI)

Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

2009-10-01T23:59:59.000Z

115

Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions  

DOE Green Energy (OSTI)

The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

2007-03-30T23:59:59.000Z

116

Hydrogen Generation Rate During Melter Feed Preparation of Tank 42 Sludge and CST in the Defense Waste Processing Facility  

DOE Green Energy (OSTI)

This document details the testing performed to determine the maximum hydrogen generation expected with a coupled flowsheet of sludge, CST, and frit.

Lambert, D.P.; Monson, P.R.

2001-05-02T23:59:59.000Z

117

Segregation of Uranium Metal from K Basin Sludge: Results from Vendor Testing  

SciTech Connect

Under contract to Fluor Hanford, Pacific Northwest National Laboratory directed laboratory, bench-scale, and pilot-scale vendor testing to evaluate the use of commercial gravity mineral concentration technology to remove and concentrate uranium metal from Hanford K Basin sludge. Uranium metal in the sludge corrodes by reacting with water to generate heat and hydrogen gas, and may constrain shipment and disposal of the sludge to the Waste Isolation Pilot Plant as remote-handled transuranic waste. Separating uranium metal from the K Basin sludge is expected to be similar to some gold recovery operations. Consequently, the capabilities of commercial gravity mineral concentration technologies were assessed for their applicability to K Basin sludge streams. Overall, the vendor testing demonstrated the technical feasibility of using gravity concentration equipment to separate the K Basin sludge into a high-volume uranium metal-depleted stream and a low-volume uranium metal-rich stream. I n test systems, more than 96% of the uranium metal surrogate was concentrated into 10 to 30% of the sludge mass (7 to 24% of the sludge volume). With more prototypical equipment and stream recycle, higher recoveries may be achieved.

Schmidt, Andrew J.; Elmore, Monte R.; Delegard, Calvin H.

2004-09-21T23:59:59.000Z

118

Effects of oxygen cover gas and NaOH dilution on gas generation in tank 241-SY-101 waste  

DOE Green Energy (OSTI)

Laboratory studies are reported of gas generation in heated waste from tank 241-SY-101. The rates of gas generation and the compositions of product gas were measured. Three types of tests are compared. The tests use: undiluted waste, waste diluted by a 54% addition of 2.5 M NaOH, and undiluted waste with a reactive cover gas of 30% Oxygen in He. The gas generation rate is reduced by dilution, increased by higher temperatures (which determines activation energies), and increased by reactions of Oxygen (these primarily produce H{sub 2}). Gases are generated as reduction products oxidation of organic carbon species by nitrite and oxygen.

Person, J.C.

1996-05-30T23:59:59.000Z

119

Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement  

Science Conference Proceedings (OSTI)

The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

2010-03-23T23:59:59.000Z

120

Flammable gas tank waste level reconciliation for 241-S-111  

SciTech Connect

Fluor Daniel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-S-111. The trapped gas evaluation document states that Tank S-111 exceeds the 25% of the lower flammable-limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank S-111 transfers. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of the unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank S-111 initially received waste from REDOX in 1952, and after April 1974, primarily received processed waste slurry from the 242-S Evaporator/Crystallizer and transferred supernatant waste to Tank S-102. From the FDNW review and comparisons of the Welty Report versus other daily records for Tank S-111, FDNW determined that the majority of the time, the Welty Report is consistent with daily records. Surface level decreases that occurred following saltwell pumping were identified as unaccounted for decreases in the Welty Report, however they were probably a continued settlement caused by saltwell pumping of the interstitial liquids. Because the flammable/trapped gas issue is linked to the unexplained increase in the surface level, FDNW recommends that all occurrence reports, concerning tank waste level increases or decreases from 1970 through 1980, be reevaluated for acceptability of the evaluation as to the root cause of the occurrence.

Brevick, C.H.; Gaddis, L.A.

1997-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample  

SciTech Connect

This report contains the results and comparison of data generated from inductively coupled plasma – atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

2013-03-18T23:59:59.000Z

122

Radiolytic gas generation in plutonium contaminated waste materials  

DOE Green Energy (OSTI)

Many plutonium contaminated waste materials decompose into gaseous products because of exposure to alpha radiation. The gases generated (usually hydrogen) over long-storage periods may create hazardous conditions. To determine the extent of such hazards, knowing the gas generation yields is necessary. These yields were measured by contacting some common Rocky Flats Plant waste materials with plutonium and monitoring the enclosed atmospheres for extensive periods of time. The materials were Plexiglas, polyvinyl chloride, glove-box gloves, machining oil, carbon tetrachloride, chlorothene VG solvent, Kimwipes (dry and wet), polyethylene, Dowex-1 resin, and surgeon's gloves. Both /sup 239/Pu oxide and /sup 238/Pu oxide were used as radiation sources. The gas analyses were made by mass spectrometry and the results obtained were the total gas generation, the hydrogen generation, the oxygen consumption rate, and the gas composition over the entire storage period. Hydrogen was the major gas produced in most of the materials. The total gas yields varied from 0.71 to 16 cm/sup 3/ (standard temperature pressure) per day per curie of plutonium. The oxygen consumption rates varied from 0.0088 to 0.070 millimoles per day per gram of plutonium oxide-239 and from 0.0014 to 0.0051 millimoles per day per milligram /sup 238/Pu.

Kazanjian, A.R.

1976-10-29T23:59:59.000Z

123

Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study  

Science Conference Proceedings (OSTI)

The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

Edwards, T.; Click, D.; Feller, M.

2011-02-28T23:59:59.000Z

124

Estimating retained gas volumes in the Hanford tanks using waste level measurements  

SciTech Connect

The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

1997-09-01T23:59:59.000Z

125

Flammable gas tank waste level reconcilliation for 241-SX-102  

SciTech Connect

Fluoro Dynel Northwest (FDNW) was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 24 1-S-1 1 1 (S-I 1 1, typical). The trapped gas evaluation document (ref 1) states that Tank SX-102 exceeds the 25% of the lower flammable limit (FL) criterion (ref 2), based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the ``Wallet Report`` is the basis for this letter report (ref 3). The Wallet Report is also a part of the trapped gas evaluation document criteria. The Wallet Report contains various tank information, including: physical information, status, levels, and dry wells, see Appendix A. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unacquainted for surface level rise. From 1973 through 1980, the Wallet Report tracked Tank S- 102 transfers and reported a net cumulative change of 19.95 in. This surface level increase is from an unknown source or is unacquainted for. Duke Engineering and Services Hanford (DASH) and Leached Martin Hanford Corporation (LMHC) are interested in determining the validity of the unexplained surface level changes reported in the 0611e Wallet Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unacquainted for surface level changes as shown in the Wallet Report from 1973 through 1980.

Brevick, C.H.; Gaddie, L.A.

1997-06-23T23:59:59.000Z

126

Sludge Mass Reduction Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Farm Mixing and Sampling to Support DWPF Operations Farm Mixing and Sampling to Support DWPF Operations David Larsen, PMP, PSP Hasmukh Shah Liquid Waste Engineering Washington Savannah River Company May 21, 2009 2 LWO-LWP-2009-00021 Overview Background Mixing - Historical - Criteria - Current Strategy Sampling Techniques and Procedure Defense Waste Processing Facility (DWPF) Requirements - Waste Acceptance Criteria - Tank Farm Compliance 3 LWO-LWP-2009-00021 Sludge Batch Preparation and Feed Tank 51 (Batch Tank) Sludge from one or more waste storage tanks *Mixing by Pumps *Wash *Settle *Decant *Sample Qualified Batch Transferred Forward *Mixing by Pumps *Sample Bulk Waste Removal Tank(s) Tank 40 (Blend Tank) *10,000 gal vessel *Mixing by Agitator *Sample *10,000 gal vessel *Mixing by Agitator *Sample *Wetting *Mixing by Pumps

127

Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites  

SciTech Connect

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

2009-02-19T23:59:59.000Z

128

HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT  

DOE Green Energy (OSTI)

A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

RILEY DL; BRIDGES AE; EDWARDS WS

2010-03-30T23:59:59.000Z

129

Thermal and radiolytic gas generation from Tank 241-S-102 waste  

SciTech Connect

This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

King, C.M.; Pederson, L.R.; Bryan, S.A.

1997-07-01T23:59:59.000Z

130

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

Sludge treatment to increase biogas production. Available atal. , no date) Use of biogas from anaerobic sludge digestionsludge are mass reduction, biogas production, and improved

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

131

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY  

DOE Green Energy (OSTI)

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

2010-03-09T23:59:59.000Z

132

Evolved Gas Analysis for High-alumina HLW (High Level Waste) Feed  

Science Conference Proceedings (OSTI)

Using the thermogravimetry coupled with gas chromatography-mass spectrometer, ... Tungstic Acid for Sorption of Uranium from Natural and Waste Waters and ...

133

Combination gas producing and waste-water disposal well  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, Raymond M. (McKeesport, PA)

1984-01-01T23:59:59.000Z

134

Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge  

SciTech Connect

This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C. [Pacific Northwest Lab., Richland, WA (United States); Owczarski, P.C. [Science Applications International Corp., Richland, WA (United States)

1993-09-01T23:59:59.000Z

135

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

136

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

137

Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

2001-02-01T23:59:59.000Z

138

Biogas production from broiler manure, wastewater treatment plant sludge, and greenhouse waste by anaerobic co-digestion  

Science Conference Proceedings (OSTI)

Inappropriate management of organic wastes can cause serious damage to the environment by polluting water and air

2013-01-01T23:59:59.000Z

139

USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15  

DOE Green Energy (OSTI)

This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

KETUSKY, EDWARD

2005-10-31T23:59:59.000Z

140

WASTE CHARACTERIZATION OF POLYMERIC COMPONENTS EXPOSED TO TRITIUM GAS  

Science Conference Proceedings (OSTI)

A recent independent review led to uncertainty about the technical basis for characterizing the residual amount of tritium in polymer components used in the Savannah River Site Tritium Facilities that are sent for waste disposal. A review of a paper published in the open literature firmly establishes the basis of the currently used characterization, 10 Ci/cc. Information provided in that paper about exposure experiments performed at the DOE Mound Laboratory allows the calculation of the currently used characterization. These experiments involved exposure of high density polyethylene (HD-PE) to initially 1 atm tritium gas. In addition, a review of recent research at the Savannah River Site not only further substantiates this characterization, but also establishes its use for ultra-high molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE, a trade name is Teflon{reg_sign}), and Vespel{reg_sign} polyimide. 10 Ci/cc tritium is a representative characterization for any type of polymer components exposed at ambient temperature and at approximately 1 atm. tritium gas.

Clark, E

2008-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

142

ELECTROCHEMICAL CORROSION STUDY FOR TANK 241-AY-102 SLUDGE  

SciTech Connect

The report describes the analyses performed on core samples from the sludge region of the waste in Tank 241-AY-102 to determine the electrochemical corrosion potential.

DUNCAN JB

2002-09-24T23:59:59.000Z

143

Viscous sludge sample collector  

DOE Patents (OSTI)

A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

Beitel, George A. (Richland, WA)

1983-01-01T23:59:59.000Z

144

Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment  

SciTech Connect

Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

Nick Soelberg

2005-09-01T23:59:59.000Z

145

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

146

Evaluation of nitrogen availability in irradiated sewage sludge, sludge compost and manure compost  

Science Conference Proceedings (OSTI)

A field experiment was conducted during 2 yr to determine plant availability of organic N from organic wastes, and effects of gamma irradiation on organic N availability in sewage sludge. The wastes investigated were: digested, dewatered sewage sludge (DSS), irradiated sewage sludge (DISS), irradiated, composted sewage sludge (DICSS), and composted livestock manure (CLM). The annual application rates were: 10, 20, 30, and 40 Mg solids ha{sup {minus}1}. Fertilizer N was added to the control, to which no waste was applied, as well as to the waste applications to ensure approximately equal amounts of available N (110 kg N ha{sup {minus}1}) for all treatments. Lettuce, petunias, and beans were grown in 1990 and two cuts of lettuce were harvested in 1991. Crop yields and plant N concentrations were measured. Assuming that crop N harvested/available N applied would be approximately equal for the control and the waste treatments, the N from organic fraction of the wastes, which is as available as that in fertilizer, was estimated. With petunia in 1990 and the combination of first and second cut of lettuce in 1991, the percentage ranged from 11.2 to 29.7 in nonirradiated sludge, 10.1 to 14.0 in irradiated sludge, 10.5 to 32.1 in sludge compost and 10.0 to 19.7 in manure compost. Most often, the highest values were obtained with the lowest application rates. Yields of petunia and N concentrations in second cut lettuce in 1991 were lower with irradiated sludge than with nonirradiated sludge suggest that the availability of organic N in digested sludge may have been reduced after irradiation. Irradiation of sludge appears to have released NH{sub 4}{sup +}-N. The availability of organic N, however, appears to have been reduced by irradiation by greater amount than the increase in NH{sub 4}{sup +}-N. 41 refs., 2 figs., 6 tabs.

Wen, Guang; Bates, T.E.; Voroney, R.P. [Univ. of Guelph, Ontario (Canada)

1995-05-01T23:59:59.000Z

147

Updated Volumetric Expansion Factors for K Basin Sludge During Storage  

SciTech Connect

Sludge has accumulated in the K East (KE) and K West (KW) Basins at the Hanford Site. This sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and generate and consume gases during containerized storage. From these corrosion reactions, two sludge expansion mechanisms can be expected: 1) expansion of the volume of the sludge solids from the generation of corrosion oxidation products that occupy more space than the starting-state sludge; and 2) expansion of the bulk sludge volume from the retention of hydrogen gas bubbles. This report provides a review and updated projections of the volumetric expansion occurring due to corrosion and gas retention during the containerized storage of K Basin sludge. New design and safety basis volume expansion values are provided for the following sludge streams: KW Floor, KW North Loadout Pit, KW canister, and fuel piece sludge.

Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Delegard, Calvin H. (BATTELLE (PACIFIC NW LAB))

2003-03-14T23:59:59.000Z

148

Framework for managing wastes from oil and gas exploration and production (E&P) sites.  

Science Conference Proceedings (OSTI)

Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2007-09-15T23:59:59.000Z

149

Improved Hydrogen Gas Getters for TRU Waste -- Final Report  

DOE Green Energy (OSTI)

Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in air) for the duration of the tests. However, catalytic reaction of hydrogen with carbon triple or double bonds in the getter materials did not take place. Instead, catalytic recombination was the predominant gettering mechanism in both getter materials as evidenced by (1) consumption of oxygen in the belljars, (2) production of free water in the belljars, and (3) absence of chemical changes in both getter materials as shown by nuclear magnetic resonance spectra.

Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

2005-09-01T23:59:59.000Z

150

Scaled Testing of Hydrogen Gas Getters for Transuranic Waste  

SciTech Connect

Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and volume of a payload of seven 55-gallon drums. The tests were conducted in an atmosphere of air for 60 days at ambient temperature (15 to 27 deg. C) and a scaled hydrogen generation rate of 2.60 E-07 moles hydrogen per second (0.35 cc/min). Hydrogen was successfully 'gettered' by both systems. Hydrogen concentrations remained below 5 vol% (in air) for the duration of the tests. However, catalytic reaction of hydrogen with carbon triple or double bonds in the getter materials did not take place. Instead, catalytic recombination was the predominant mechanism in both getters as evidenced by 1) consumption of oxygen in the bell-jars; 2) production of free water in the bell-jars; and 3) absence of chemical changes in both getters as shown by NMR spectra. (authors)

Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545 (United States); Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States)

2006-07-01T23:59:59.000Z

151

Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site  

DOE Green Energy (OSTI)

The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps` cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks` vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

Hay, M.S.; Lee, E.D.

1995-03-01T23:59:59.000Z

152

Developing and Implementing a Company-Wide Waste Accounting System at Public Service Electric & Gas  

Science Conference Proceedings (OSTI)

Waste accounting systems will enable utilities to track their recycling, reuse, and prevention efforts. This manual describes the implementation of EPRI's waste accounting method in support of Public Service Electric & Gas Company's pollution prevention efforts. This method provided a means for organizing information from many facilities, transmitting regular performance reports to facility personnel and management, and identifying opportunities for improving pollution prevention performance.

1998-05-04T23:59:59.000Z

153

Break Throughs in High-Level Waste Vitrification for the Hanford ...  

Science Conference Proceedings (OSTI)

... Throughs in High-Level Waste Vitrification for the Hanford Waste Vitrification Plant ... Waste at the Defense Waste Processing Facility through Sludge Batch 7b .

154

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

155

Liquidus Temperature Studies for High Level Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

156

Sodalite-Based Forms for Wastes Containing Actinides and Halides  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

157

(FBSR) with Hanford Low Activity Wastes - Programmaster.org  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

158

Advanced Ceramic Waste Forms for the Immobilisation of ...  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

159

Control of Gas Emission during Pyrolysis of Waste Printed Wiring ...  

Science Conference Proceedings (OSTI)

Moreover, the possibility of controlling toxic exhaust gases and recovering ... Chemical Changes and Surface Properties of Carbonated Waste Cement ... Flux for Basic Oxygen Steel Making Using Waste Oxides of Steel Plant ... Heat Treatment of Black Dross for the Production of a Value Added Material - A Preliminary Study.

160

Engineering study - alternatives for SHMS high temperature/moisture gas sample conditioners for the aging waste facility  

SciTech Connect

The Standard Hydrogen Monitoring Systems have been experiencing high temperature/moisture problems with gas samples from the Aging Waste Tanks. These moist hot gas samples have stopped the operation of the SHMS units on tanks AZ-101, AZ-102, and AY-102. This study looks at alternatives for gas sample conditioners for the Aging Waste Facility.

THOMPSON, J.F.

1999-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CRAD, Emergency Management - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Engineering - Office of River Protection K Basin Sludge Waste System

162

Microsoft Word - Sludge Test Area CX Determination Form12172012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sludge Test Facility at the Transuranic (TRU) Waste Processing Center (TWPC) [CX-TWPC-13-0001] Sludge Test Facility at the Transuranic (TRU) Waste Processing Center (TWPC) [CX-TWPC-13-0001] Program or Field Office: Environmental Management - Oak Ridge Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The proposed action is to construct and operate a sludge test facility at the Transuranic (TRU) Waste Processing Center (TWPC) to conduct testing activities for sludge mobilization, mixing, and removal from the Melton Valley Storage Tanks (MVST). The testing is needed to develop appropriate, compliant treatment to a final waste form that will meet the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC). This testing is needed for the mobilization, removal, and treatment of the sludge regardless of

163

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin sludge by radiolytic decay and the reaction of uranium metal with water. To maintain thermal stability, the sludge must be retrieved, staged, transported, and stored in systems designed to provide a rate of heat removal that prevents the temperature in the sludge from increasing beyond acceptable limits. To support the dispositioning of the sludge to T Plant, modeling and testing and analyses are being performed to predict the behavior of sludge when placed into the storage containers. Two physical properties of the sludge that are critical to the modeling and analyses efforts are thermal conductivity and the sludge shear strength (yield stress). This report provides the results of thermal conductivity and shear strength measurements performed on representative sludge samples from the K East Basin.

Poloski, Adam P. (BATTELLE (PACIFIC NW LAB)); Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Swoboda, Robert G. (BATTELLE (PACIFIC NW LAB)); Chenault, Jeffrey W. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2002-05-17T23:59:59.000Z

164

Fiscal year 1994 1/25-scale sludge mobilization testing  

Science Conference Proceedings (OSTI)

There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge.

Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A. [Pacific Northwest Lab., Richland, WA (United States); Morter, N.J. [Associated Western Universities, Inc., Salt Lake City, UT (United States). Northwest Div.

1995-07-01T23:59:59.000Z

165

Solidification Tests for LLW Sludges  

Science Conference Proceedings (OSTI)

Oak Ridge National laboratory has about 350,000 gallons of remote-handled (RH) sludge in ten liquid low-level waste (LLLW) tanks that must be solidified and stabilized for disposal at the Nevada Test Site. Samples of the waste sludge were collected from four tanks, and a total of 36 small-scale grouting tests were performed. The presence of free water during curing was evaluated, and the cured grouts were analyzed using the Toxicity Characteristic Leaching Procedure (TCLP) to determine if any of the hazardous metals in the sludge (Cd, Cr, Hg, Pb, etc.) would leach above the Resource Conservation and Recovery Act (RCRA) limits/ The grouting formulation used for these tests, with ratios of grout-forming additives weight to waste slurry weight ranging from 0.75:1 to 1.2:1, produced wet grout mixtures that were easy to stir and were self leveling. The grout mixtures cured with no free water visible at any time. The cured grout matrix was very effective at retaining the hazardous metals in the sludge, with TCLP leachate concentrations well below the RCRA limits. The addition of ferrous sulfide (FeS) to some of the sludge samples resulted in, at most, a minimal reduction in the amount of mercury that leached from the grout samples, and had no detectable impact on the other heavy metals present in the sludge (Cd, Cr, and Pb). The TCLP extraction was performed on three samples after 1 day and 7 days of curing, compared to the >28 days for the remaining samples. The metal concentrations for the short cure time samples were similar to the remaining samples, and were all well below the RCRA limits.

Taylor, Paul Allen [ORNL

2009-01-01T23:59:59.000Z

166

A computer model of gas generation and transport within TRU waste drums  

DOE Green Energy (OSTI)

A computer model has been developed to predict radiolytic gas generation and transport within Transuranic (TRU) waste drums and surrounding enclosures. Gas generation from the radiolytic decomposition of organic material contaminated with plutonium is modeled and the concentrations of gas throughout the waste drum and enclosures are determined using a diffusional transport model. The model accurately reproduces experimentally measured gas concentrations. With polyethylene waste in unvented drums, the model predicts that the concentration of hydrogen gas can exceed 4 mole percent (lower flammable limit) with only about 5 curies of plutonium. If the drum liner is punctured and an unrestricted 0.75-in. carbon composite filter vent is installed in the drum lid, the plutonium loading can be increased to 240 Ci without generating flammable gas mixtures. Larger diameter filters can be used to increase the curie loading. The model has been used to show that shipments of 1000 Ci of plutonium-238 contaminated waste from Savannah River to the WIPP site are feasible using the TRUPACT shipping container. 10 refs., 17 figs., 6 tabs.

Smith, F.G. III

1988-06-01T23:59:59.000Z

167

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

168

Hydrogen Gas Generation Model for Fuel Based Remote Handled TRU Waste Stored at INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Soli T. Khericha; Rajiv N. Bhatt; Kevin Liekhus

2003-02-01T23:59:59.000Z

169

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

170

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

DOE Green Energy (OSTI)

This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

2002-05-14T23:59:59.000Z

171

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-01-01T23:59:59.000Z

172

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-04-01T23:59:59.000Z

173

A study of tritium in municipal solid waste leachate and gas  

Science Conference Proceedings (OSTI)

It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPA MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)

Mutch Jr, R. D. [HydroQual, Inc., 1200 MacArthur Blvd., Mahwah, NJ 07430 (United States); Manhattan College, Riverdale, NY (United States); Columbia Univ., New York, NY (United States); Mahony, J. D. [HydroQual, Inc., 1200 MacArthur Blvd., Mahwah, NJ 07430 (United States); Manhattan College, Riverdale, NY (United States)

2008-07-15T23:59:59.000Z

174

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

Science Conference Proceedings (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

175

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

Science Conference Proceedings (OSTI)

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

176

Waste tank headspace gas and vapor characterization reference guide  

SciTech Connect

This document is to serve as a reference guide for gas and vapor sample results presented in tank characterization reports. It describes sampling equipment, devices, and protocols, and sample collection and analysis methods common to all vapor samples.

Huckaby, J.L.

1995-06-01T23:59:59.000Z

177

Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge  

Science Conference Proceedings (OSTI)

Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, at temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.

Ischia, Marco, E-mail: marco.ischia@ing.unitn.it [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38100 Trento (Italy); Maschio, Roberto Dal [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, 38100 Trento (Italy); Grigiante, Maurizio [Department of Civil and Environmental Engineering, University of Trento, via Mesiano 77, 38100 Trento (Italy); Baratieri, Marco [Faculty of Science and Technology, Free University of Bolzano, Piazza Universita 5, 39100 Bolzano (Italy)

2011-01-15T23:59:59.000Z

178

Laboratory development of sludge washing and alkaline leaching processes: Test plan for FY 1994  

Science Conference Proceedings (OSTI)

The US Department of Energy plans to vitrify (as borosilicate glass) the large volumes of high-level radioactive wastes at the Hanford site. To reduce costs, pretreatment processes will be used to reduce the volume of borosilicate glass required for disposal. Several options are being considered for the pretreatment processes: (1) sludge washing with water or dilute hydroxide: designed to remove most of the Na from the sludge, thus significantly reducing the volume of waste to be vitrified; (2) sludge washing plus caustic leaching and/or metathesis (alkaline sludge leaching): designed to dissolve large quantities of certain nonradioactive elements, such as Al, Cr and P, thus reducing the volume of waste even more; (3) sludge washing, sludge dissolution, and separation of radionuclides from the dissolved sludge solutions (advanced processing): designed to remove all radionuclides for concentration into a minimum waste volume. This report describes a test plan for work that will be performed in FY 1994 under the Sludge Washing and Caustic Leaching Studies Task (WBS 0402) of the Tank Waste Remediation System (TWRS) Pretreatment Project. The objectives of the work described here are to determine the effects of sludge washing and alkaline leaching on sludge composition and the physical properties of the washed sludge and to evaluate alkaline leaching methods for their impact on the volume of borosilicate glass required to dispose of certain Hanford tank sludges.

Rapko, B.M.; Lumetta, G.J.

1994-07-01T23:59:59.000Z

179

Confirmation Run of the DWPF SRAT Cycle Using the Sludge-Only Flowsheet with Tank 40 Radioactive Sludge and Frit 200 in the Shielded Cells Facility  

SciTech Connect

Several basic data reports have been issued concerning the recent demonstration of the Defense Waste Processing Facility (DWPF) Sludge Receipt and Adjustment Tank (SRAT) Cycle and Slurry Mix Evaporator (SME) Cycle, conducted at the Savannah River Technology Center (SRTC). The SRTC demonstration was completed using the DWPF ''Sludge-Only'' flowsheet with washed Tank 40 sludge slurry (Sludge Batch 2 or Macrobatch 3) in the Shielded Cells facility. The DWPF ''Sludge-Only'' flowsheet calls for processing radioactive sludge slurry using nitric acid, concentrated formic acid, and frit 200.

Fellinger, T.L.

2002-08-29T23:59:59.000Z

180

Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

Field, L.R.; Villarreal, R. [Los Alamos National Lab., NM (United States)

1998-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Disposition Options for Hanford Site K-Basin Spent Nuclear Fuel Sludge  

SciTech Connect

This report provides summary-level information about a group of options that have been identified for the disposition of spent-nuclear-fuel sludge in the K-Basins at the Hanford Site. These options are representative of the range of likely candidates that may be considered for disposition of the sludge. The product of each treatment option would be treated sludge that would meet waste acceptance requirements for disposal as transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

Mellinger, George B.; Delegard, Calvin H.; Gerber, Mark A.; Naft, Barry N.; Schmidt, Andrew J.; Walton, Terry L.

2004-01-18T23:59:59.000Z

182

Gas Releases During Saltcake Dissolution for Retrieval of Single-Shell Tank Waste  

DOE Green Energy (OSTI)

It is possible to retrieve a large fraction of soluble waste from the Hanford single-shell waste tanks (SST) by dissolving it with water. This retrieval method will be demonstrated in U-107 and S-112 in the next few years. If saltcake dissolution proves practical and effective, many of the saltcake SSTs may be retrieved by this method. Many of the SSTs retain a large volume of flammable gas that will be released into the tank headspace as the waste dissolves. This report describes the physical processes that control dissolution and gas release. Calculation results are shown describing the headspace hydrogen concentration transient during dissolution. The observed spontaneous and induced gas releases from SSTs is summarized and the dissolution of the crust layer in SY-101 is discussed as a recent example of full-scale dissolution of saltcake containing a very large volume of retained gas. The report concludes that the dissolution rate is self limiting and gas release rates are relatively low.

Stewart, Charles W

2001-07-31T23:59:59.000Z

183

Gas Releases During Saltcake Dissolution for Retrieval of Single-Shell Tank Waste, Rev. 1  

DOE Green Energy (OSTI)

It is possible to retrieve a large fraction of soluble waste from the Hanford single-shell waste tanks (SSTs) by dissolving it with water. This retrieval method will be demonstrated in Tanks U-107 and S-112 in the next few years. If saltcake dissolution proves practical and effective, many of the saltcake SSTs may be retrieved by this method. Many of the SSTs retain flammable gas that will be released into the tank headspace as the waste dissolves. This report describes the physical processes that control dissolution and gas release. Calculation results are shown and describe how the headspace hydrogen concentration evolves during dissolution. The observed spontaneous and induced gas releases from SSTs are summarized, and the dissolution of the crust layer in SY-101 is discussed as a recent example of full-scale dissolution of saltcake containing a large volume of retained gas. The report concludes that the dissolution rate is self-limiting and that gas release rates are relatively low.

Stewart, Charles W

2001-12-28T23:59:59.000Z

184

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

uniformity. Shredding of mixed waste to about 10 centimetersand untreated mixed municipal waste. GTZ/Holcim (2006) givesCEMBUREAU 2009). Mixed municipal waste must be pre-processed

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

185

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

n.d. “Co-Processing of Waste and Energy Efficiency By CementAnnual North American Waste-to-Energy Conference NAWTEC17,2009. Stantec, 2011. Waste to Energy: a Technical Review of

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

186

Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes  

DOE Green Energy (OSTI)

The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

2002-04-08T23:59:59.000Z

187

Test container design/fabrication/function for the Waste Isolation Pilot Plant gas generation experiment glovebox  

SciTech Connect

The gas generation experiments (GGE) are being conducted at Argonne National Laboratory-West (ANL0W) with contact handled transuranic (CH-TRU) waste in support of the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The purpose of the GGE is to determine the different quantities and types of gases that would be produced and the gas-generation rates that would develop if brine were introduced to CH-TRU waste under post-closure WIPP disposal room conditions. The experiment requires that a prescribed matrix of CH-TRU waste be placed in a 7.5 liter test container. After loaded with the CH-TRU waste, brine and inoculum mixtures (consisting of salt and microbes indigenous to the Carlsbad, New Mexico region) are added to the waste. The test will run for an anticipated time period of three to five years. The test container itself is an ASME rated pressure vessel constructed from Hastelloy C276 to eliminate corrosion that might contaminate the experimental results. The test container is required to maintain a maximum 10% head space with a maximum working pressure of 17.25 MPa (2,500 psia). The test container is designed to provide a gas sample of the head space without the removal of brine. Assembly of the test container lid and process valves is performed inside an inert atmosphere glovebox. Glovebox mockup activities were utilized from the beginning of the design phase to ensure the test container and associated process valves were designed for remote handling. In addition, test container processes (including brine addition, sparging, leak detection, and test container pressurization) are conducted inside the glovebox.

Knight, C.J.; Russell, N.E.; Benjamin, W.W.; Rosenberg, K.E.; Michelbacher, J.A.

1997-09-01T23:59:59.000Z

188

Measuring and Predicting Fission Product Noble Metals in SRS HLW Sludges  

DOE Green Energy (OSTI)

The noble metals Ru, Rh, Pd, and Ag were produced in the Savannah River Site (SRS) reactors as products of the fission of U-235. Consequently they are in the High Level Waste (HLW) sludges that are currently being immobilized into a borosilicate glass in the Defense Waste Processing Facility (DWPF). The noble metals are a concern in the DWPF because they catalyze the decomposition of formic acid used in the process to produce the flammable gas hydrogen. As the concentration of these noble metals in the sludge increases, more hydrogen will be produced when this sludge is processed. In the SRS Tank Farm it takes approximately two years to prepare a sludge batch for processing in the DWPF. This length of time is necessary to mix the appropriate sludges, blend them to form a sludge batch and then wash it to enable processing in the DWPF. This means that the exact composition of a sludge batch is not known for {approx}two years. During this time, studies with simulated nonradioactive sludges must be performed to determine the desired DWPF processing parameters for the new sludge batch. Consequently, prediction of the noble metal concentrations is desirable to prepare appropriate simulated sludges for studies of the DWPF process for that sludge batch. These studies give a measure of the amount of hydrogen that will be produced when that sludge batch is processed. This report describes in detail the measurement of these noble metal concentrations in sludges and a way to predict their concentrations from an estimate of the lanthanum concentration in the sludge. Results for two sludges are presented in this report. These are Sludge Batch 3 (SB3) currently being processed by the DWPF and a sample of unwashed sludge from Tank 11 that will be part of Sludge Batch 4. The concentrations of the noble metals in HLW sludges are measured by using mass spectroscopy to determine concentrations of the isotopes that comprise each noble metal. For example, the noble metal Ru is comprised of isotopes with masses 101, 102, and 104. The element Rh has a single isotope with mass 103. The element Pd is comprised of five isotopes. These are at masses 105-108 and mass 110. As does Rh, Ag has only one isotope. This is at mass 109. However, results in this report show that the Ag concentration in the two samples was due to natural Ag being in the samples. Natural Ag has masses at 107 and 109. The Ag-107 interferes with the measurement of Pd-107. This Ag was used in one of the processes at SRS. The results also show that natural Cd is in the two samples. Cadmium has isotopes at masses 106, 108 and 110, thus it interferes with the analysis of the Pd isotopes at these masses. Cadmium was also used in one of the processes at SRS. However, the concentrations of the Pd isotopes at masses 106, 107, 108 and 110 could be calculated using the fission yields for the Pd isotopes, and the measured concentration of Pd at mass 105 where there is no Ag or Cd interference. Based on the measurements of the concentrations of the isotopes of each noble metal, the total concentration of that noble metal can be determined by summing the concentrations of the individual isotopes. The results in this report show that the relative concentrations of the isotopes of Ru and Rh are in proportion to their yields from the fission of U-235 in the reactors. These results were expected since these elements are very insoluble in caustic and thus are primarily in the sludge tanks rather then the salt tanks of the SRS Tank Farm. The relative concentration of Pd is somewhat lower than that based on the relative fission yields of its five isotopes. This indicates that some of the Pd is in the salt tanks rather than the sludge tanks of the Tank Farm. The concentrations of the noble metals were predicted using the High Level Waste Characterization System (WCS) at SRS. This system keeps record of the inventory of the major compounds and select radionuclides that are in each of the SRS HLW tanks. Using this system, the Closure Business Unit (CBU) can predict the major composition of a sludge ba

Bibler, N

2005-04-05T23:59:59.000Z

189

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network (OSTI)

The development of large ceramic heat exchangers is described and performance data given for units installed on steel industry soaking pits in the U.K. Operational experience since 1973 confirms that ceramic heat exchangers capable of operating with high airside pressures have long lives and low maintenance even when operating with dirty gases at 1350 deg. C and preheating combustion air to 800 deg. C. The design of compact units suitable for factory assembly is also described. Units have been developed for low temperature corrosive gas situations and have been applied to the pottery industry and are being developed for coal fired air heaters for the food industry.

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

190

Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles  

SciTech Connect

Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

Haihua Zhao; Per F. Peterson

2012-10-01T23:59:59.000Z

191

Greenhouse gas emissions from home composting of organic household waste  

Science Conference Proceedings (OSTI)

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

192

Hydrogen production during processing of radioactive sludge containing noble metals  

DOE Green Energy (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-01-01T23:59:59.000Z

193

Hydrogen production during processing of radioactive sludge containing noble metals  

DOE Green Energy (OSTI)

Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 {times}10{sup {minus}7} g H{sub 2}/hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 {times}10{sup {minus}4} g H{sub 2}/hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges.

Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

1992-09-01T23:59:59.000Z

194

Sludge Treatment and Extraction Technology Development: Results of FY 1993 studies  

SciTech Connect

This report describes experimental results from work conducted in FY 1993 under the Sludge Treatment and Extraction Technology Development Task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project at Pacific Northwest Laboratory (PNL). Experiments were conducted in the following six general areas: (1) sludge washing, (2) sludge leaching, (3) sludge dissolution, (4) actinide separation by solvent extraction and extraction chromatography, (5) Sr separation by solvent extraction, and (6) extraction of Cs from acidic solution.

Lumetta, G.J.; Wagner, M.J.; Barrington, R.J.; Rapko, B.M.; Carlson, C.D.

1994-03-01T23:59:59.000Z

195

Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect  

DOE Green Energy (OSTI)

Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

Xu, T.; Senger, R.; Finsterle, S.

2008-10-15T23:59:59.000Z

196

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

2001-03-01T23:59:59.000Z

197

Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.  

Science Conference Proceedings (OSTI)

A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

Puder, M. G.; Veil, J. A.

2006-09-05T23:59:59.000Z

198

GAS-GENERATION EXPERIMENTS FOR LONG-TERM STORAGE OF TRU WASTES AT WIPP  

DOE Green Energy (OSTI)

An experimental investigation was conducted for gas generation in contact-handled transuranic (CH-TRU) wastes subjected for several years to conditions similar to those expected to occur at the Waste Isolation Pilot Plant (WIPP) should the repository eventually become inundated with brine. Various types of actual CH-TRU wastes were placed into 12 corrosion-resistant vessels. The vessels were loosely filled with the wastes, which were submerged in synthetic brine having the same chemical composition as that in the WIPP vicinity. The vessels were also inoculated with microbes found in the Salado Formation at WIPP. The vessels were sealed, purged, and the approximately 750-ml headspace was pressurized with nitrogen gas to approximately 146 atmospheres to create anoxic conditions at the lithostatic pressure expected in the repository were it inundated. The temperature was maintained at the expected 30 C. The test program objective was to measure the quantities and species of gases generate d by metal corrosion, radiolysis, and microbial activity. These data will assist in the specification of the rates at which gases are produced under inundated repository conditions for use in the WIPP Performance Assessment computer models. These experiments were very carefully designed, constructed, instrumented, and performed. Approximately 6-1/2 years of continuous, undisturbed testing were accumulated. Several of the vessels showed significantly elevated levels of generated gases, virtually all of which was hydrogen. One vessel measured over 4.2% hydrogen, by volume. Two other vessels generated well over 1% hydrogen, and another was at nearly 1%. Only small quantities of other gases, principally carbon dioxide, were detected. Gas generation was found to depend strongly on the waste composition. The maximum hydrogen generation occurred in tests containing carbon steel. Average corrosion penetration rates in carbon-steel of up to 2.3 microns per year were deduced. Conversion of carbon to carbon dioxide was calculated to be up to 4.7 {micro}g-mol/yr/g-carbon.

Felicione, F.S.; Carney, K.P.; Dwight, C.C.; Cummings, D.G.; Foulkrod, L.E.

2003-02-27T23:59:59.000Z

199

Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste  

DOE Green Energy (OSTI)

Checklist for Technical Peer Review for PNNL-13782 Rev. 1 as requested to ensure that software used to support the DSA is compliant with software QA requirements. Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105 and AW-101 and transferred to the vitrification plant beginning in about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to a level very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

Wells, Beric E.

2003-02-19T23:59:59.000Z

200

Analysis of Induced Gas Released During Retrieval of Hanford Double-Shell Tank Waste  

DOE Green Energy (OSTI)

Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105 and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernate decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

Wells, Beric E. (BATTELLE (PACIFIC NW LAB)); Cuta, Judith M. (BATTELLE (PACIFIC NW LAB)); Hartley, Stacey A. (BATTELLE (PACIFIC NW LAB)); Mahoney, Lenna A. (BATTELLE (PACIFIC NW LAB)); Meyer, Perry A. (BATTELLE (PACIFIC NW LAB)); Stewart, Charles W. (BATTELLE (PACIFIC NW LAB))

2002-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste  

DOE Green Energy (OSTI)

Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105, and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated.

Wells, Beric E. (BATTELLE (PACIFIC NW LAB)); Cuta, Judith M. (BATTELLE (PACIFIC NW LAB)); Hartley, Stacey A. (BATTELLE (PACIFIC NW LAB)); Mahoney, Lenna A. (BATTELLE (PACIFIC NW LAB)); Meyer, Perry A. (BATTELLE (PACIFIC NW LAB)); Stewart, Charles W. (BATTELLE (PACIFIC NW LAB))

2002-09-25T23:59:59.000Z

202

Predicting Peak Hydrogen Concentrations from Spontaneous Gas Releases in Hanford Waste Tanks  

DOE Green Energy (OSTI)

Buoyant displacement gas release events (BDGRE) are spontaneous gas releases that occur in a few of the Hanford radioactive waste storage tanks when gas accumulation makes the sediment layer buoyant with respect to the liquid. BDGREs are assumed to be likely if the ratio of the predicted sediment gas fraction and neutral buoyancy gas fraction, or buoyancy ratio, exceeds unity. Based on the observation that the buoyancy ratio is also an empirical indicator of BDGRE size, a new methodology is derived that formally correlates the buoyancy ratio and the peak headspace hydrogen concentration resulting from BDGREs. The available data on the six historic BDGRE tanks, AN-103, AN-104, AN-105, AW-101, SY-103, and SY-101, are studied in detail to describe both the waste state and the corresponding distribution of BDGREs. The range of applicability of the buoyancy ratio-based models is assessed based on the modeling assumptions and availability of tank data. Recommendations are given for extending the range of the models applicability.

Stewart, Charles W.; Hartley, Stacey A.; Meyer, Perry A.; Wells, Beric E.

2005-07-15T23:59:59.000Z

203

DNAPL Site Characterization for Waste Management at Manufactured Gas Plant (MGP) Sites  

Science Conference Proceedings (OSTI)

Determining the optimal waste management strategy at manufactured gas plant (MGP) sites requires adequate site characterization to provide data for remediation decisions, a task that is particularly challenging when dense nonaqueous phase liquids (DNAPLs) are present. This report discusses development of an appropriate characterization strategy, including parameters that should be characterized, tools for characterization and the relation between characterization goals, a developing site conceptual model...

2004-12-22T23:59:59.000Z

204

HANFORD K BASINS SLUDGE RETREIVAL & TREATMENT  

SciTech Connect

This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the US and the UK to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, thus removing the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building is described, and the uranium-corrosion and grout encapsulation processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. The grout process to produce the final waste form is backed by BNG America's 20 years experience of grouting radioactive waste at Sellafield and elsewhere. The use of transportable and re-usable equipment is emphasized and its role noted in avoiding new plant build that itself will require cleanup. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup worldwide.

VASQUEZ, D.A.

2005-07-05T23:59:59.000Z

205

Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report  

DOE Green Energy (OSTI)

Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

Stone, Mark Lee

2002-04-01T23:59:59.000Z

206

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

207

Syn-Gas Production from Catalytic Steam Gasification of Municipal Solid Wastes in a Combined Fixed Bed Reactor  

Science Conference Proceedings (OSTI)

The catalytic steam gasi?cation of municipal solid wastes (MSW) for syn-gas production was experimentally investigated in a combined fixed bed reactor using the newly developed tri-metallic catalyst. A series of experiments have been performed to explore ... Keywords: Biomass gasification, municipal solid wastes, catalyst, hydrogen production, energy recovery

Jianfen Li; Jianjun Liu; Shiyan Liao; Xiaorong Zhou; Rong Yan

2010-10-01T23:59:59.000Z

208

Stabilization of Mercury in High pH Tank Sludges  

Science Conference Proceedings (OSTI)

DOE complex contains many tank sludges contaminated with mercury. The high pH of these tank sludges typically fails to stabilize the mercury, resulting in these radioactive wastes also being characteristically hazardous or mixed waste. The traditional treatment for soluble inorganic mercury species is precipitation as insoluble mercuric sulfide. Sulfide treatment and a commercial mercury-stabilizing product were tested on surrogate sludges at various alkaline pH values. Neither the sulfide nor the commercial product stabilized the mercury sufficiently at the high pH of the tank sludges to pass the Toxicity Characteristic Leach Procedure (TCLP) treatment standards of the Resource Conservation and Recovery Act (RCRA). The commercial product also failed to stabilize the mercury in samples of the actual tank sludges.

Spence, R.; Barton, J.

2003-02-24T23:59:59.000Z

209

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

210

Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103  

DOE Green Energy (OSTI)

The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days.

Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

1997-09-01T23:59:59.000Z

211

Forms of Al in Hanford Tank Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Actual Waste Testing Actual Waste Testing Lanée Snow Sandra Fiskum Rick Shimskey Reid Peterson 4/9/09 2 Tested > 75% of sludge waste types Sludge Sources Bi-Phosphate waste Redox Purex Cladding TBP FeCN sludge Redox Cladding Zirc Cladding Purex waste Misc NA 4/9/09 3 Tested > 75% of saltcake waste types Saltcake fractions Bi-phosphate saltcake S A B R NA Tested 8 groups of tank waste types Group ID Type Al Cr PO 4 3- Oxalate Sulfate Fluoride 1 Bi Phosphate sludge 3% 3% 21% 2% 6% 12% 2 Bi Phosphate saltcake (BY, T) 18% 25% 36% 36% 43% 36% 3 PUREX Cladding Waste sludge 12% 1% 3% 1% 1% 3% 4 REDOX Cladding Waste sludge 8% 1% 0% 0% 0% 2% 5 REDOX sludge 26% 8% 1% 3% 1% 2% 6 S - Saltcake (S) 11% 38% 12% 24% 14% 3% 7 TBP Waste sludge 1% 1% 8% 0% 2% 1% 8 FeCN sludge 2% 1% 4% 1% 1% 1% *Percentages reflect % of total inventory of species in the tank farm. *Discussion will focus on those that make up the largest fraction of the Al

212

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 5 QUALIFICATION  

SciTech Connect

Sludge Batch 5 (SB5) is predominantly a combination of H-modified (HM) sludge from Tank 11 that underwent aluminum dissolution in late 2007 to reduce the total mass of sludge solids and aluminum being fed to the Defense Waste Processing Facility (DWPF) and Purex sludge transferred from Tank 7. Following aluminum dissolution, the addition of Tank 7 sludge and excess Pu to Tank 51, Liquid Waste Operations (LWO) provided the Savannah River National Laboratory (SRNL) a 3-L sample of Tank 51 sludge for SB5 qualification. SB5 qualification included washing the sample per LWO plans/projections (including the addition of a Pu/Be stream from H Canyon), DWPF Chemical Process Cell (CPC) simulations, waste glass fabrication (vitrification), and waste glass chemical durability evaluation. This report documents: (1) The washing (addition of water to dilute the sludge supernatant) and concentration (decanting of supernatant) of the Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF CPC simulation using the washed Tank 51 sample. This includes a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid is added to the sludge to destroy nitrite and remove mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit is added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters for the CPC processing were based on work with a non radioactive simulant. (3) Vitrification of a portion of the SME product and Product Consistency Test (PCT) evaluation of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This work is controlled by a Task Technical and Quality Assurance Plan (TTQAP) , and analyses are guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF.

Pareizs, J; Cj Bannochie, C; Damon Click, D; Dan Lambert, D; Michael Stone, M; Bradley Pickenheim, B; Amanda Billings, A; Ned Bibler, N

2008-11-10T23:59:59.000Z

213

Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants  

DOE Green Energy (OSTI)

This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.

2010-09-30T23:59:59.000Z

214

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network (OSTI)

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

215

Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1998-05-01T23:59:59.000Z

216

Land application systems for municipal sludge  

SciTech Connect

The production of treated municipal sludge requiring disposal or recycling has increased substantially in the last 10 years as a result of more stringent waste-water treatment requirements. In 1974, for example, there were 3.2 million dry tons of sludge requiring disposal. By 1982 that number had more than doubled to 6.5 million dry tons/year. Land application of municipal sludge is widely practiced in the United States as a method of handling these increasing tonnages. For wastewater treatment plants with less than 10 mgd capacity, 39 percent of the sludge produced is managed by land application. Currently, for all size treatment plants, about 25 percent of the nation's sludge is land applied. The experience with land application has shown it to be a safe and effective sludge management practice. In particular, research and studies of the practice over the past 10 years have produced new knowledge which allows the benefits of land application to be realized with minimal adverse impact. 11 references.

Crites, R.W.

1985-05-01T23:59:59.000Z

217

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

218

The utilization of flue gas desulfurization waste by-products in construction brick  

E-Print Network (OSTI)

Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate (gypsum). Fuel ashes result from the burning of coal. Gypsum is a byproduct of the air purification system, called Flue Gas Desulfurization (FGD). Abatement of these waste products is a growing concern, not only for the industry, but the environment as well. It is possible to produce a gypsum brick unit that can meet the engineering properties required by the Americans Society of Testing Materials (ASTM) standards by using these by-products. This can be accomplished at a cost less than the least expensive common fired clay brick that is used in construction operations. The gypsum brick can be manufactured using established methods that are currently in operation.

Berryman, Charles Wayne

1992-01-01T23:59:59.000Z

219

Title I preliminary engineering for: A. S. E. F. solid waste to methane gas  

DOE Green Energy (OSTI)

An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec. 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.

None

1976-01-01T23:59:59.000Z

220

Support and control system of the Waste Isolation Pilot Plant gas generation experiment glovebox  

SciTech Connect

A glovebox was designed and fabricated to house test containers loaded with contact handled transuranic (CH-TRU) waste. The test containers were designed to simulate the environmental characteristics of the caverns at the Waste Isolation Pilot Plant (WIPP). The support and control systems used to operate and maintain the Gas Generation Experiment (GGE) include the following: glovebox atmosphere and pressure control, test container support, glovebox operation support, and gas supply and exhaust systems. The glovebox atmosphere and pressure control systems consist of various components used to control both the pressure and quality of the argon atmosphere inside the glovebox. The glovebox pressure is maintained by three separate pressure control systems. The primary pressure control system is designed to maintain the glovebox at a negative pressure with the other two control systems serving as redundant safety backups. The quality of the argon atmosphere is controlled using a purifying bed system that removes oxygen and moisture. Glovebox atmosphere contaminants that are monitored on a continuous or periodic basis include moisture, oxygen, and nitrogen. The gas generation experiment requires the test containers to be filled with brine, leak tested, maintained at a constant temperature, and the gas head space of the test container sampled on a periodic basis. Test container support systems consisting of a brine addition system, leak test system, heating system, and gas sampling system were designed and implemented. A rupture disk system was constructed to provide pressure relief to the test containers. Operational requirements stipulated that test container temperature and pressure be monitored and collected on a continuous basis. A data acquisition system (DAS) was specifically designed to meet these requirements.

Benjamin, W.W.; Knight, C.J.; Michelbacher, J.A.; Rosenberg, K.E.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992  

SciTech Connect

Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.

Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Bean, J.E. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Butcher, B.M. [Sandia National Labs., Albuquerque, NM (United States); Garner, J.W.; Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Schreiber, J.D. [Science Applications International Corp., Albuquerque, NM (United States); Swift, P.N. [Tech Reps, Inc., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

222

SNG or syn-gas from wet solid waste and low grade fuels  

SciTech Connect

The substitute natural gas (SNG) or a synthesis gas (syngas) is prepared by partly oxidizing wastes and low-grade fuels (peat, lignite, many forms of biomass) containing 0.5-30 times as much water as the dry solids with O or air at 240-300/sup 0/C and 70-100 atmospheres. Sulfur in high S coal is oxidized selectively to SO/sub 4//sup -2/, and the heat to bring the combustible to the necessary temperature is supplied by burning part of the combustible itself. The residual solids (now 70-95% of the original fuel) are mechanically separated from all but 0.5-2 lb water. These solids come from the dewatering unit at a high pressure and may be passed, without loss of pressure or temperature to be gasified in conventional processes and gasifiers by partial oxidation.

Othmer, D.F.

1981-02-17T23:59:59.000Z

223

INTEC SBW Solid Sludge Surrogate Recipe and Validation  

SciTech Connect

A nonhazardous INTEC tank farm sludge surrogate that incorporated metathesis reactions to generate solids from solutions of known elements present in the radioactive INTEC tank farm sodium-bearing waste sludges was formulated. Elemental analyses, physical property analyses, and filtration testing were performed on waste surrogate and tank farm waste samples, and the results were compared. For testing physical systems associated with moving the tank farm solids, the surrogate described in this report is the best currently available choice. No other available surrogate exhibits the noted similarities in behavior to the sludges. The chemical morphology, particle size distribution, and settling and flow characteristics of the surrogate were similar to those exhibited by the waste sludges. Nonetheless, there is a difference in chemical makeup of the surrogate and the tank farm waste. If a chemical treatment process were to be evaluated for final treatment and disposition of the waste sludges, the surrogate synthesis process would likely require modification to yield a surrogate with a closer matching chemical composition.

Maio, Vince; Janikowski, Stuart; Johnson, Jim; Maio, Vince; Pao, Jenn-Hai

2004-06-01T23:59:59.000Z

224

Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges  

SciTech Connect

Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

Gilliam, T.M.; Spence, R.D.

1998-11-01T23:59:59.000Z

225

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents (OSTI)

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

226

Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas  

SciTech Connect

Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R. [Los Alamos National Lab., NM (United States); Stewart, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-07-01T23:59:59.000Z

227

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL  

DOE Green Energy (OSTI)

The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.

Khericha, S.; Bhatt, R.; Liekhus, K.

2003-01-14T23:59:59.000Z

228

Sludge application and monitoring program on the Oak Ridge Reservation, 1986--1993  

DOE Green Energy (OSTI)

Municipal sewage sludge has been applied to forests and pastures on the Oak Ridge Reservation since 1983 as a method of both disposal and beneficial reuse. Application was carried out under Tennessee permits issued to the city of Oak Ridge for land disposal of sewage sludge. In conjunction with these applications, information has been collected concerning sludge quantity and characteristics, soil parameters, soil water constituents, groundwater quality, surface runoff water quality, and various chemical constituents in vegetation on application sites. This information provides (1) a record of sludge application on the DOE reservations and (2) documentation of changes in soil parameters following sludge application. The information also provides a basis for evaluating the implications of the land application of municipal sewage sludge for soil and water quality and for evaluating the fate of sludge constituents when sludge is either sprayed or injected on pasture sites or surface applied in forested sites. This report covers in detail sludge applications conducted from 1986 through 1993, with some data from the period between 1983 and 1986. Anaerobically digested liquid sludge (2% to 4% solids) from the city of Oak Ridge had a relatively high nitrogen content (8% dry weight) and average to low concentrations of potentially problematic metals, compared with typical municipal sludges. Few potentially hazardous organic chemicals were detected in the sludge, and when found, these were at very low concentrations. Oak Ridge sludge is somewhat unique in that it contains radionuclides ({sup 137}Cs, {sup 60}Co, {sup 131}I, uranium isotopes, {sup 90}Sr, and occasionally {sup 99}Tc) at concentrations much higher than typical municipal sludges. Land application of sewage sludge can dilute or destroy problematic sludge constituents while improving soil fertility. Correct management has made these sludge applications a model of environmentally responsible waste management.

Gunderson, C.A.; Larsen, I.L.; Boston, H.L.; Bradburn, D.M. [Oak Ridge National Lab., TN (United States); Van Miegroet, H. [Utah State Univ., Logan, UT (United States). Dept. of Forest Resources; Morris, J.L. [Jaycor, Inc., Oak Ridge, TN (United States); Walzer, A.E. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States). Central Environmental Compliance; Adler, T.C. [Bechtel National, Inc., Oak Ridge, TN (United States); Huq, M. [Oak Ridge Associated Universities, TN (United States)

1995-09-01T23:59:59.000Z

229

Ferrocyanide waste simulant characterization  

Science Conference Proceedings (OSTI)

Ferrocyanide waste simulants were prepared and characterized to help assess safety concerns associated with the ferrocyanide sludges stored in underground single-shell waste tanks at the Hanford Site. Simulants were prepared to represent the variety of ferrocyanide sludges stored in the storage tanks. Physical properties, chemical compositions, and thermodynamic properties of the simulants were determined. The simulants, as produced, were shown to not sustain propagating reactions when subjected to a strong ignition source. Additional testing and evaluations are recommended to assess safety concerns associated with postulated ferrocyanide sludge dry-out and exposure to external ignition sources.

Jeppson, D.W.; Wong, J.J.

1993-01-01T23:59:59.000Z

230

Novel Nanoscale Materials Reduce Electricity Needed for Sludge  

E-Print Network (OSTI)

Sludge Digestion Dewatering (Centrifuge/ Belt Filter Press) Solids for Drying/Disposal Return Centrate. Finally, there will be a reduction of greenhouse gas emissions during shipment for disposal. Project

231

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

Science Conference Proceedings (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

232

Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H{sub 2}S present in the bio-H{sub 2} exiting the column. Nevertheless, the concentration of H{sub 2}S was very low, and this co-adsorption did not affect the CO{sub 2} capture capacity of the activated carbon.

Redondas, V. [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Gomez, X., E-mail: xagomb@unileon.es [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Garcia, S.; Pevida, C.; Rubiera, F. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Moran, A. [Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071 (Spain); Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

2012-01-15T23:59:59.000Z

233

Sludge Mass Estimate - Update  

Hanford system plan development Hanford waste characterization Hanford waste qualification laboratory Hanford and SRS waste management programs

234

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network (OSTI)

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Smaï

2008-02-29T23:59:59.000Z

235

A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes  

DOE Green Energy (OSTI)

The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

Kasten, J.L.

1991-01-01T23:59:59.000Z

236

Continuous Sludge Leaching  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous Sludge Leaching Reid Peterson and Renee Russell - Battelle Pacific Northwest Division Terry Sams and Bill Brasel - Parsons 2 What is CSL? * Process diagram * Full scale...

237

Disposal of Lead Sludge - TMS  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Problems with this sludge were investigated and methods were tested with the aim of stabilizing the sludge so that is passes the EPD TCLP test ...

238

SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS  

SciTech Connect

In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

ERPENBECK EG; LESHIKAR GA

2011-01-13T23:59:59.000Z

239

SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste  

SciTech Connect

For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

1994-09-01T23:59:59.000Z

240

Grout and glass performance in support of stabilization/solidification of ORNL tank sludges  

Science Conference Proceedings (OSTI)

Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

Spence, R.D.; Mattus, C.H.; Mattus, A.J.

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2  

DOE Green Energy (OSTI)

Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail Report in the Tank Waste Information Network System, and the waste temperature data in the Surveillance Analysis Computer System (SACS) (dated July 2003). However, the release rate of methane, ammonia, and nitrous oxide is based on the input data (dated October 1999) as stated in Revision 0 of this report. Scenarios for adding waste to existing waste levels (dated July 2003) have been studied to determine the gas generation rates and the effect of smaller dome space on the flammability limits to address the issues of routine water additions and other possible waste transfer operations. In the flammability evaluation with zero ventilation, the sensitivity to waste temperature and to water addition was calculated for double-shell tanks 241-AY-102, 241-AN-102,241-AZ-101,241-AN-107,241-AY-101 and 241-AZ-101. These six have the least margin to flammable conditions among 28 double-shell tanks.

HU, T.A.

2003-09-30T23:59:59.000Z

242

Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste  

DOE Green Energy (OSTI)

This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

Bryan, S.A.; Pederson, L.R.

1995-03-01T23:59:59.000Z

243

International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry  

E-Print Network (OSTI)

dioxins and furans, HCl, chlorine gas, Pb, manganese, andas calorific value and chlorine, ash, and trace element (influence setting time Chlorine, sulfur, and alkali, which

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

244

Application of microwave energy for in-drum solidification of simulated precipitation sludge  

SciTech Connect

The application of microwave energy for in-container solidification of simulated transuranic contaminated precipitation sludges has been tested. Results indicate volume reductions to 83% are achievable by the continuous feeding of pre-dried sludge into a waste container while applying microwave energy. An economic evaluation was completed showing achievable volume and weight reductions to 87% compared with a current immobilization process for wet sludge. 7 refs., 15 figs., 16 tabs.

Petersen, R.D.; Johnson, A.J.; Swanson, S.D.; Thomas, R.L. (ed.)

1987-08-17T23:59:59.000Z

245

Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103  

Science Conference Proceedings (OSTI)

The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many ({approximately}25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval.

Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

1998-09-01T23:59:59.000Z

246

Interim On-Site Storage of Low-Level Waste: Volume 4, Part 3: Waste Container Closures, Seals, and Gas Vents  

Science Conference Proceedings (OSTI)

This volume of the Interim On-Site Storage report series supplements Volume 4, Part 1, which includes an extensive methodology and detailed information on the types and availability of low-level waste (LLW) containers and container coatings for extended storage. Part 2, soon to be published, addresses monitoring and inspection requirements for stored LLW containers. Part 3 continues the series by providing detailed guidance on container closures, seals, and gas vents, including performance goals and key ...

1993-11-11T23:59:59.000Z

247

Recycle/reuse of boiler chemical cleaning wastes in wet limestone flue gas desulfurization (FGD) systems  

Science Conference Proceedings (OSTI)

Boiler chemical cleaning wastes (BCCW) are generated by the periodic waterside cleaning of utility boilers to remove metallic deposits from boiler tube surfaces. Depending on boiler metallurgy, BCCW generally contain high concentrations of iron and copper or both, as well as other heavy metals such as chromium, lead, nickel, and zinc. BCCW treatment and disposal methods include precipitation, coponding in an ash pond, evaporation in the fireside of an operating boiler (for organic solvents), and contracted off-site disposal. Depending on the type of BCCW chemical treatment methods achieve varying degrees of success. BCCW which contain organic chelating agents can be especially difficult to treat to national pollutant discharge elimination system (NPDES) limits (1 mg/L for both iron and copper) with conventional lime precipitation.Research is being done to evaluate different BCCW treatment and disposal methods. One waste management option under consideration is reuse of BCCW in utility wet flue gas desulfurization (FGD) systems. To investigate this option, a series of laboratory tests were performed in which five different types of BCCW were added to the reaction tank of EPRI's bench-scale wet limestone FGD system. This paper presents the results and conclusions from this study.

Stohs, M.; Owens, D.R. (Radian Corp. (US)); Micheletti, W. (Electric Power Research Inst., Palo Alto, CA (USA))

1988-01-01T23:59:59.000Z

248

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

249

The potential of biological sludge amended combustion coal ash residues as artificial plant growth media : a laboratory column study to assess the influence of weathering on elemental release.  

E-Print Network (OSTI)

??Sasol biological sludge, coal fine and gasification ash were the three waste streams involved in this study. The main concern is that on their own… (more)

Sukati, Bonokwakhe Hezekiel

2012-01-01T23:59:59.000Z

250

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

251

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method. Retrieval operations will hydraulically erode and dissolve the saltcake waste, and the resulting brine will then be pumped to a double-shell tank (DST). Waste gases residing in the solid waste matrix will be released into the tank headspace when the matrix is eroded or dissolved. These retained waste gases include the flammable species hydrogen, methane, and ammonia, and there is a concern that these flammable gases could produce a flammable mixture in the tank headspaces during the retrieval operations. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during waste retrieval operations. The SSTs considered here are ten of the twelve 241-S farm tanks (tanks 241-S-107 and 241-S-111 are excluded from consideration here) and tank 241-U-107 (U-107).

Huckaby, James L.; Wells, Beric E.

2003-05-13T23:59:59.000Z

252

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method that uses water jets to dissolve the water-soluble waste and mobilize the water-insoluble waste. Retrieval operations will liberate any waste gases trapped in the wetted solid waste matrix, and these gases will be released into the tank headspaces. Because the trapped gases include the flammable species hydrogen, methane, and ammonia, a concern exists that a flammable mixture could be formed in the tank headspaces. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during modified sluicing waste retrieval operations. Considered here are nine of the 12 tanks from the 241-S tank farm (241-S-107, 241-S-111, and 241-S 112 are not considered) and Tank 241-U-107. This report is intended to support the specification of process controls that ensure flammable conditions do not develop in the tank headspaces. Consequently, the physical scenarios considered, the models developed to estimate retained gas releases and the tank headspace compositions under these scenarios, and the model input data are intended to conservatively assess the potential to reach headspace flammability. The analyses are intended to address worst-case conditions and establish reasonable upper bounds on the achievable flammability of the tank headspaces. Flammable retained gas inventories, for example, are based on the 95th percentile developed by Barker and Hedengren (2003), giving 95% confidence that actual inventories are smaller than those used in the calculations. Gas releases and headspace flammability were evaluated for three general scenarios: a very aggressive dissolution and erosion of saltcake waste by water jets impinging on the waste surface, the drainage of interstitial liquids from saltcake during a shutdown of the retrieval process, and the dissolution of saltcake by unsaturated liquids during a shutdown of the retrieval process. The simple model of waste retrieval using the modified sluicing approach indicated that the flammable gas headspace concentrations can rapidly approach the action level of 25% of the lower flammability limit (LFL) when the tank is passively ventilated. While it is not necessary to use the portable exhauster to maintain the headspace hydrogen concentration below this action level, retrieval rates would probably be limited by the slow removal of flammable gases by passive ventilation. It was determined that using a portable exhauster anywhere in the assumed operating range of 270 to 475 cfm would prevent the headspaces from reaching the 25% of LFL action level even if the water jets are very effective at eroding the saltcake. Specific guidelines are developed to ensure that, in the event of a catastrophic loss of the retrieval pump and portable exhauster, headspace flammability will not reach the LFL. This report is Revision 1 of PNNL-14271. This revision expands the analysis of interstitial liquid drainage-induced gas releases to address a general retrieval scenario (the previous version of this report assumed a center-out retrieval approach and conditions). Tank waste conditions (waste volumes, interstitial liquid levels, temperatures, retained gas void fractions, etc.) have also been updated from the previous version.

Huckaby, James L.; Wells, Beric E.

2004-03-05T23:59:59.000Z

253

REVIEW OF RHEOLOGY MODIFIERS FOR HANFORD WASTE  

Science Conference Proceedings (OSTI)

As part of Savannah River National Laboratory (SRNL)?s strategic development scope for the Department of Energy ? Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed ? a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues: ? The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not appreciably change the pH of the waste. ? Organics are typically reductants and could impact glass REDOX if not accounted for in the reductant addition calculations. ? Stability of the modifiers in a caustic, radioactive environment is not known, but some of the modifiers tested were specifically designed to withstand caustic conditions. ? These acids will add to the total organic carbon content of the wastes. Radiolytic decomposition of the acids could result in organic and hydrogen gas generation. These potential impacts must be addressed in future studies with simulants representative of real waste and finally with tests using actual waste based on the rheology differences seen between SRS simulants and actual waste. The only non-organic modifier evaluated was sodium metasilicate. Further evaluation of this modifier is recommended if a reducing modifier is a concern.

Pareizs, J.

2013-09-30T23:59:59.000Z

254

An approximate-reasoning-based method for screening high-level waste tanks for flammable gas  

DOE Green Energy (OSTI)

The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at Hanford have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. AR models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. The authors performed a pilot study to investigate the utility of AR for flammable gas screening. They found that the effort to implement such a model was acceptable and that computational requirements were reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts.

Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

1998-07-01T23:59:59.000Z

255

NEW TRENDS IN FLUE GAS CLEANING TECHNOLOGIES FOR EUROPEAN AND ASIAN WASTE INCINERATION FACILITIES  

E-Print Network (OSTI)

Organic Compound TCLP EPA Toxicity Characteristic Leaching Procedure TRU Transuranic Waste VOC Volatile

Columbia University

256

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

DOE Green Energy (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

257

Review of Waste Retrieval Sluicing System Operations and Data for Tanks 241-C-106 and 241-AY-102  

Science Conference Proceedings (OSTI)

Sluicing operations were performed to retrieve high-heat sludge from single-shell tank 241-C-106 and transfer it to double-shell tank 241-AY-102 using the Waste Retrieval Sluicing System. This eliminated the high-heat safety issue for C-106 and demonstrated a technology for retrieval of single-shell tank waste. Both AY-102 and C-106 were monitored during the waste transfer operations, providing a clear picture of general trends in each tank. Specific issues addressed were evaluation of the data for evidence of flammable gas accumulation in AY-102 and thermal performance of AY-102 under the increasing heat load.

Cuta, Judith M.; Carothers, Kelly G.; Damschen, Dennis W.; Kuhn, William L.; Lechelt, Jeanne A.; Sathyanarayana, Kurabalakota; Stauffer, Leslie A.

2000-09-26T23:59:59.000Z

258

Waste tank 241-SY-101 dome airspace and ventilation system response to a flammable gas plume burn  

SciTech Connect

A series of flammable gas plume burn and transient pressure analyses have been completed for a nuclear waste tank (241-SY-101) and associated tank farm ventilation system at the U.S. Department of Energy`s Hanford facility. The subject analyses were performed to address issues concerning the effects of transient pressures resulting from igniting a small volume of concentrated flammable gas just released from the surface of the waste as a plume and before the flammable gas concentration could be reduced by mixing with the dome airspace by local convection and turbulent diffusion. Such a condition may exist as part of an in progress episode gas release (EGR) or gas plume event. The analysis goal was to determine the volume of flammable gas that if burned within the dome airspace would result in a differential pressure, after propagating through the ventilation system, greater than the current High Efficiency Particulate Filter (HEPA) limit of 2.49 KPa (10 inches of water or 0. 36 psi). Such a pressure wave could rupture the tank ventilation system inlet and outlet HEPA filters leading to a potential release of contaminants to the environment

Heard, F.J.

1995-11-01T23:59:59.000Z

259

CRAD, Conduct of Operations - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Conduct of Operations program at the Office of River Protection, K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Occupational Safety & Health - Office of River Protection K Basin

260

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM - PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that come in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter off-gas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2009-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Physical mechanisms contributing to the episodic gas release from Hanford tank 241-SY-101  

DOE Green Energy (OSTI)

Volume growth of contents in a waste storage tank at Hanford is accompanied by episodic releases of gas and a rise in the level of tank contents. A theory is presented to describe how the gas is retained in the waste and how it is released. The theory postulates that somewhat cohesive gobs of sludge rise from the lower regions of the tank and buoyancy overcomes the cohesive strength of the slurry; this quantitatively explains several of the measured phenomena and qualitatively explains other observations.

Allemann, R.T.

1992-04-01T23:59:59.000Z

262

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

263

Office of Waste Processing Technical Exchange  

Pipeline Plugging Prevention. D. Rector, PNNL . P07. Preliminary Finding on Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants. P. ...

264

Sludge Mass Reduction Update  

NLE Websites -- All DOE Office Websites (Extended Search)

in the tank Designed to handle obstructions in the tank - Steel Tapes - Thermowells - Sludge mounds 11 Mechanical Cleaning of SRS Tanks 18 and 19 Hose-in-hose System Overview...

265

Composting Manure and Sludge  

E-Print Network (OSTI)

Composted manure and sludge can be a valuable fertilizer, but special equipment is required. Composting can be done with windrow operations, aerated windrow operations or aerated bins. Factors that affect composting rates are included.

Sweeten, John M.

2008-07-08T23:59:59.000Z

266

The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101  

DOE Green Energy (OSTI)

Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000.

BE Wells; PE Meyer; G Chen

2000-05-10T23:59:59.000Z

267

Wetland treatment of oil and gas well waste waters. Final report  

SciTech Connect

Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

Kadlec, R.; Srinivasan, K.

1995-08-01T23:59:59.000Z

268

Mixed Waste Integrated Program -- Problem-oriented technology development  

SciTech Connect

The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed.

Hart, P.W.; Wolf, S.W. [Dept. of Energy, Germantown, MD (United States); Berry, J.B. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

269

MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of chloride, only 6% of the mercury fed is expected to get oxidized, mostly as HgCl, while the remaining mercury would exist either as elemental mercury vapor (90%) or HgO (4%). Noting that the measured chloride level in the SB5 qualification sample was an order of magnitude lower than that used in the SB5 simulant, the degree of chloride shortage will be even greater. As a result, the projected level of HgCl in the actual SB5 melter exhaust will be even lower than 6% of the total mercury fed, while that of elemental mercury is likely to be greater than 90%. The homogeneous oxidation of mercury in the off-gas was deemed to be of primary importance based on the postulation that mercury and other volatile salts form submicron sized aerosols upon condensation and thus remain largely in the gas stream downstream of the quencher where they can deposit in the off-gas lines, Steam-Atomized Scrubbers (SAS), and High-Efficiency Mist Eliminator (HEME). Formation of these submicron semi-volatile salts in the condensate liquid is considered to be unlikely, so the liquid phase reactions were considered to be less important. However, subsequent oxidation of mercury in the liquid phase in the off-gas system was examined in a simplified model of the off-gas condensate. It was found that the condensate chemistry was consistent with further oxidation of elemental mercury to Hg{sub 2}Cl{sub 2} and conversion of HgO to chlorides. The results were consistent with the available experimental data. It should also be noted that the model predictions presented in this report do not include any physically entrained solids, which typically account for much of the off-gas carryover on a mass basis. The high elemental mercury vapor content predicted at the DWPF Quencher inlet means that physically entrained solids could provide the necessary surface onto which elemental mercury vapor could condense, thereby coating the solids as well as the internal surfaces of the off-gas system with mercury. Clearly, there are many process benefits to be gained by removing the steam-stripping step from the CPC c

Zamecnik, J.; Choi, A.

2010-08-18T23:59:59.000Z

270

Water-Steel Canister Interaction and H2 Gas Pressure Buildup in aNuclear Waste Repository  

DOE Green Energy (OSTI)

Corrosion of steel canisters, stored in a repository forspent fuel and high-level waste, leads to hydrogen gas generation in thebackfilled emplacement tunnels, which may significantly affect long-termrepository safety. Previous modeling studies used a constant H2generation rate. However, iron corrosion and H2 generation rates varywith time, depending on factors such as water chemistry, wateravailability, and water contact area. To account for these factors andfeedback mechanisms, we developed a chemistry model related to ironcorrosion, coupled with two-phase (liquid and gas) flow phenomena thatare driven by gas pressure buildup and water consumption. Resultsindicate that if H2 generation rates are dynamically calculated based ona chemistry model, the degree and extent of gas pressure buildup are muchsmaller compared to a simulation in which the coupling between flow andreactive transport mechansism is neglected.

Xu, Tianfu; Senger, Rainer; Finstele, Stefan

2007-01-02T23:59:59.000Z

271

STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

Science Conference Proceedings (OSTI)

This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

MEACHAM JE

2009-10-26T23:59:59.000Z

272

Idaho Waste Retrieval Facility Begins New Role | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval Facility Begins New Role Retrieval Facility Begins New Role Idaho Waste Retrieval Facility Begins New Role December 27, 2012 - 12:00pm Addthis Idaho Waste Retrieval Facility Begins New Role A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. A waste retrieval facility constructed over a former buried radioactive waste disposal cell known as Pit 9 at the Idaho site has been repurposed for treating 6,000 drums of sludge waste left over from the Cold War weapons program. Workers review procedure for the sludge repack project. Workers review procedure for the sludge repack project. Idaho Waste Retrieval Facility Begins New Role

273

STEADY-STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE  

SciTech Connect

Assess the steady-state flammability level at normal and off-normal ventilation conditions. The methodology of flammability analysis for Hanford tank waste is developed. The hydrogen generation rate model was applied to calculate the gas generation rate for 177 tanks. Flammability concentrations and the time to reach 25% and 100% of the lower flammability limit, and the minimum ventilation rate to keep from 100 of the LFL are calculated for 177 tanks at various scenarios.

HU TA

2007-10-26T23:59:59.000Z

274

Oxygen-enriched coincineration of MSW and sewage sludge: Final report  

Science Conference Proceedings (OSTI)

Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

Not Available

1994-01-01T23:59:59.000Z

275

Hydrogen-Rich Gas Production from Steam Gasification of Palm Oil Wastes Using the Supported Nano-NiO/?-Al2O3 Catalyst  

Science Conference Proceedings (OSTI)

The catalytic steam gasification of palm oil wastes for hydrogen-rich gas production was experimentally investigated in a combined fixed bed reactor using the newly developed nano-NiO/?-Al2O3 catalyst. The results indicated that the nano-NiO/?-Al2O3 ... Keywords: Biomass gasification, palm oil waste, catalyst, hydrogen production

Jianfen Li; Yanfang Yin; Jianjun Liu; Rong Yan

2009-10-01T23:59:59.000Z

276

DETERMINATION OF THE FRACTION OF GIBBSITE AND BOEHMITE FORMS OF ALUMINUM IN TANK 51H SLUDGE  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) was tasked with developing a test to determine the fraction of the gibbsite and boehmite forms of aluminum in the sludge solids. Knowledge of the fractions of gibbsite and boehmite in the sludge contained in various waste tanks would facilitate better sludge mass reduction estimates and allow better planning/scheduling for sludge batch preparation. The composite sludge sample prepared for use in the test from several small samples remaining from the original 3-L sample appears to be representative of the original sample based on the characterization data. A Gibbsite/Boehmite Test was developed that uses 8 M NaOH and a temperature of 65 C to dissolve aluminum. The soluble aluminum concentration data collected during the test indicates that, for the three standards containing gibbsite, all of the gibbsite dissolved in approximately 2 hours. Under the test conditions boehmite dissolved at more than an order of magnitude more slowly than gibbsite. An estimate based on the soluble aluminum concentration from the sludge sample at two hours into the test indicates the sludge solids contain a form of aluminum that dissolves at a rate similar to the 100% Boehmite standard. Combined with the XRD data from the original 3-L sample, these results provide substantial evidence that the boehmite form of aluminum predominates in the sludge. A calculation from the results of the Gibbsite/Boehmite test indicates the sludge contains {approx}3% gibbsite and {approx}97% boehmite. The sludge waste in Tank 51H was recently treated under Low Temperature Aluminum Dissolution (LTAD) conditions and a substantial fraction of aluminum (i.e., sludge mass) was removed, avoiding production of over 100 glass canisters in Defense Waste Processing Facility (DWPF). Results of the Gibbsite/Boehmite test indicate that the aluminum in this sludge was in the form of the more difficult to dissolve boehmite form of aluminum. Since boehmite may be the dominant form of aluminum in Savannah River Site (SRS) waste tank sludge, this result suggests that the conditions of the LTAD process can be used to dissolve both the gibbsite and boehmite forms of aluminum in tank sludge and costly tank infrastructure upgrades required for the higher temperature baseline process can be avoided. However, this conclusion should be confirmed by testing additional waste tank samples.

Hay, M; Kofi Adu-Wusu, K; Daniel McCabe, D

2008-08-31T23:59:59.000Z

277

Gas generation and migration studies involving recently generated /sup 238/Pu-contaminated waste for the TRU Waste Sampling Program  

DOE Green Energy (OSTI)

This study is part of the multicontractor TRU Waste Sampling Program. Radiolytically generated gases were vented through a filtering device to determine its effectiveness in maintaining hydrogen concentrations within acceptably safe levels. In the second part of the study measurements were made to determine the ability of these gases, particularly hydrogen, to migrate through a sealed rigid polyethylene drum liner. Void volumes in these drums were found to be generally in excess of 90%. The carbon composite filter was found to satisfactorily vent hydrogen up to moderately high levels of alpha activity in the waste substrate. The sealed 90-mil liner was found to inhibit, but not prevent, the migration of hydrogen and other radiolytically generated gases.

Zerwekh, A.; Warren, J.L.

1986-07-01T23:59:59.000Z

278

Geothermal brines and sludges: a new resource  

DOE Green Energy (OSTI)

Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

1996-10-01T23:59:59.000Z

279

SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE  

SciTech Connect

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest projected noble metals content for SB7b. Characterization was performed on the Tank 51 SB7b samples and SRNL performed DWPF simulations using the Tank 40 SB7b material. This report documents: (1) The preparation and characterization of the Tank 51 SB7b and Tank 40 SB7b samples. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the SB7b Tank 40 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a nonradioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the SRAT receipt, SRAT product, and SME product. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7b related data together in a single permanent record and to discuss the overall aspects of SB7b processing.

Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

2011-11-16T23:59:59.000Z

280

ORIGINAL PAPER Bioremediation of oily sludge-contaminated soil  

E-Print Network (OSTI)

materials in crude-oil storage tanks also causes problems to the environment (Mrayyan and Battikhi 2005 of oily sludge generated in water­oil separation systems at oilfields and accumulation of waste oily as priority environmental pollutants by the US Environmental Protection Agency (USEPA 1986) and are also

Ma, Lena

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IMPACT OF IRRADIATION AND THERMAL AGING ON DWPF SIMULATED SLUDGE PROPERTIES  

Science Conference Proceedings (OSTI)

The research and development programs in support of the Defense Waste Processing Facility (DWPF) and other high-level waste vitrification processes require the use of both nonradioactive waste simulants and actual waste samples. While actual waste samples are the ideal materials to study, acquiring large quantities of actual waste is difficult and expensive. Tests utilizing actual high-level waste require the use of expensive shielded cells facilities to provide sufficient shielding for the researchers. Nonradioactive waste simulants have been used for laboratory testing, pilot-scale testing and full-scale integrated facility testing. These waste simulants were designed to reproduce the chemical and, if possible, the physical properties of the actual high-level waste. This technical report documents a study on the impact of irradiating a Sludge Batch 3 (SB3) simulant and of additional tests on aging a SB3 simulant by additional thermal processing. Prior simulant development studies examined methods of producing sludge and supernate simulants and processes that could be used to alter the physical properties of the simulant to more accurately mimic the properties of actual waste. Development of a precipitated sludge simulant for the River Protection Project (RPP) demonstrated that the application of heat for a period of time could significantly alter the rheology of the sludge simulant. The RPP precipitated simulant used distillation to concentrate the sludge solids and produced a reduction in sludge yield stress of up to 80% compared to the initial sludge properties. Observations at that time suggested that a substantial fraction of the iron hydroxide had converted to the oxide during the distillation. DWPF sludge simulant studies showed a much smaller reduction in yield stress ({approx}10%), demonstrated the impact of shear on particle size, and showed that smaller particle sizes yielded higher yield stress products. The current study documented in this report focuses on the SB3 sludge composition and recipe developed during the previous year as part of the simulant development program. The study examines the impact of a rapid dose of radiation on the physical properties of the SB3 simulant, the effect of temperature and time on the application of heat as a simulant aging mechanism, and the application of crossflow filtration to the production of an all-metals-precipitated SB3 sludge simulant.

Eibling, R; Michael Stone, M

2006-10-16T23:59:59.000Z

282

Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments  

E-Print Network (OSTI)

Plutonium from Simulated Hanford Tank-Waste Sludges. Separ.Containing Tank Waste at Hanford. Separ. Sci. Technol. 2005,T. B. , Sr/TRU Removal from Hanford High Level Waste. Separ.

Chang, H.

2013-01-01T23:59:59.000Z

283

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

284

Method for processing aqueous wastes  

DOE Patents (OSTI)

This invention is comprised of a method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1992-12-31T23:59:59.000Z

285

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1993-12-28T23:59:59.000Z

286

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

287

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

DOE Green Energy (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

288

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE's Environmental Management (EM) organizations to address gas generation concerns. This paper presents a ''program level'' roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, D.E. (INEEL); Hamp, S. (DOE-Albuquerque Operations Office)

2002-01-04T23:59:59.000Z

289

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials - A Status Report  

SciTech Connect

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) Complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen- containing material. Since transportation regulations prohibit shipment of explosives and radioactive materials together, it was decided that hydrogen generation was a problem that warranted the execution of a high-level roadmapping effort. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials, and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organizations to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This paper also presents the status of the roadmap and follow-up activities.

Luke, Dale Elden; Hamp, S.

2002-02-01T23:59:59.000Z

290

An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site  

SciTech Connect

The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

JA Bamberger

2000-08-02T23:59:59.000Z

291

Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse  

Science Conference Proceedings (OSTI)

Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

2000-06-01T23:59:59.000Z

292

Marketing coal ash, slag, and sludge  

Science Conference Proceedings (OSTI)

The increase in coal-fired power plants and tighter environmental problems have put utilities in the position of marketing coal ash, slag, and sludge by turning waste products into a resource. Many utilities are looking beyond road and structural fill uses in their marketing efforts. Slag can be made into sandblasting grit, aggregate, and roofing granules, or used for soil stabilization or the chemical fixation of municipal wastes. Composition and collection variations discourage many utilities from marketing their by-products, while availability can be a problem for customers if the power plant should shut down. Other problems include storage and transportation, competition, and institutional barriers. Documentation of the fly ash, bottom ash, boiler slag, and scrubber waste markets by the Electric Power Research Institute considers these factors and develops a marketing method to help utilities evaluate and promote their product. (DCK)

Lihach, N.; Golden, D.; Komai, R.; Maulbetsch, J.

1982-12-01T23:59:59.000Z

293

Role of Anti Foam Agent in Gas Retention and Release in Waste ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The Hanford Tank Waste Treatment and Immobilization Plant ( WTP), which is being designed and constructed for the U.S. Department of Energy ...

294

Sludge Mass Reduction Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Status EM-21 Technical Exchange Neil Davis May 19, 2009 LWO-SPT-2009-00079 2 LWO-SPT-2009-00079 SRS LWO Mission Receive waste Store waste safely Vitrify waste Process salt...

295

Casein whey as booster for anaerobic co-digestion of primary sludge : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Environmental Engineering.  

E-Print Network (OSTI)

??Spare capacity found in many municipal primary sludge digesters could be used to improve the biogas production through the addition of other organic waste. This… (more)

Güttler, Johanna

2012-01-01T23:59:59.000Z

296

Strength Measurements of Archive K Basin Sludge Using a Soil Penetrometer  

SciTech Connect

Spent fuel radioactive sludge present in the K East and K West spent nuclear fuel storage basins now resides in the KW Basin in six large underwater engineered containers. The sludge will be dispositioned in two phases under the Sludge Treatment Project: (1) hydraulic retrieval into sludge transport and storage containers (STSCs) and transport to interim storage in Central Plateau and (2) retrieval from the STSCs, treatment, and packaging for shipment to the Waste Isolation Pilot Plant. In the years the STSCs are stored, sludge strength is expected to increase through chemical reaction, intergrowth of sludge crystals, and compaction and dewatering by settling. Increased sludge strength can impact the type and operation of the retrieval equipment needed prior to final sludge treatment and packaging. It is important to determine whether water jetting, planned for sludge retrieval from STSCs, will be effective. Shear strength is a property known to correlate with the effectiveness of water jetting. Accordingly, the unconfined compressive strengths (UCS) of archive K Basin sludge samples and sludge blends were measured using a pocket penetrometer modified for hot cell use. Based on known correlations, UCS values can be converted to shear strengths. Twenty-six sludge samples, stored in hot cells for a number of years since last being disturbed, were identified as potential candidates for UCS measurement and valid UCS measurements were made for twelve, each of which was found as moist or water-immersed solids at least 1/2-inch deep. Ten of the twelve samples were relatively weak, having consistencies described as 'very soft' to 'soft'. Two of the twelve samples, KE Pit and KC-4 P250, were strong with 'very stiff' and 'stiff' consistencies described, respectively, as 'can be indented by a thumb nail' or 'can be indented by thumb'. Both of these sludge samples are composites collected from KE Basin floor and Weasel Pit locations. Despite both strong sludges having relatively high iron concentrations, attribution of their high strengths to this factor could not be made with confidence as other measured sludge samples, also from the KE Basin floor and of high iron concentration, were relatively weak. The observed UCS and shear strengths for the two strong sludges were greater than observed in any prior testing of K Basin sludge except for sludge processed at 185 C under hydrothermal conditions.

Delegard, Calvin H.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2011-12-06T23:59:59.000Z

297

Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants  

DOE Green Energy (OSTI)

Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

1996-09-01T23:59:59.000Z

298

Sludge Washing And Demonstration Of The DWPF Flowsheet In The SRNL Shielded Cells For Sludge Batch 8 Qualification  

SciTech Connect

The current Waste Solidification Engineering (WSE) practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks to Tank 51. Tank 51 sludge is washed and transferred to Tank 40, the current Defense Waste Processing Facility (DWPF) feed tank. Prior to transfer of Tank 51 to Tank 40, the Savannah River National Laboratory (SRNL) typically simulates the Tank Farm and DWPF processes using a Tank 51 sample (referred to as the qualification sample). WSE requested the SRNL to perform characterization on a Sludge Batch 8 (SB8) sample and demonstrate the DWPF flowsheet in the SRNL shielded cells for SB8 as the final qualification process required prior to SB8 transfer from Tank 51 to Tank 40. A 3-L sample from Tank 51 (the SB8 qualification sample; Tank Farm sample HTF-51-12-80) was received by SRNL on September 20, 2012. The as-received sample was characterized prior to being washed. The washed material was further characterized and used as the material for the DWPF process simulation including a Sludge Receipt and Adjustment Tank (SRAT) cycle, a Slurry Mix Evaporator (SME) cycle, and glass fabrication and chemical durability measurements.

Pareizs, J. M.; Crawford, C. L.

2013-04-26T23:59:59.000Z

299

Ferrocyanide safety program: An assessment of the possibility of ferrocyanide sludge dryout  

Science Conference Proceedings (OSTI)

Much attention has been focused on the Hanford Site radioactive waste storage tanks as a results of problems that have been envisioned for them. One problem is the potential chemical reaction between ferrocyanide precipitate particles and nitrates in the absence of water. This report addresses the question of whether dryout of a portion of ferrocyanide sludge would render it potentially reactive. Various sludge dryout mechanisms were examined to determine if any of them could occur. The mechanisms are: (1) bulk heating of the entire sludge inventory to its boiling point; (2) loss of liquid to the atmosphere via sludge surface evaporation; (3) local drying by boiling in a hot spot region; (4) sludge drainage through a leak in the tank wall; and (5) local drying by evaporation from a warm segment of surface sludge. From the simple analyses presented in this report and more detailed published analyses, it is evident that global loss of water from bulk heating of the sludge to its boiling point or from surface evaporation and vapor transport to the outside air is not credible. Also, from the analyses presented in this report and experimental and analytical work presented elsewhere, it is evident that formation of a dry local or global region of sludge as a result of tank leakage (draining of interstitial liquid) is not possible. Finally, and most importantly, it is concluded that formation of dry local regions in the ferrocyanide sludge by local hot spots or warm surface regions is not possible. The conclusion that local or global dryout is incredible is consistent with four decades of waste storage history, during which sludge temperature have gradually decreased or remained constant and the sludge moisture content has been retained. 54 refs.

Epstein, M.; Fauske, H.K. [Fauske and Associates, Inc., Burr Ridge, IL (United States); Dickinson, D.R.; Crippen, M.D.; McCormack, J.D.; Cash, R.J.; Meacham, J.E. [Westinghouse Hanford Co., Richland, WA (United States); Simmons, C.S. [Pacific Northwest Lab., Richland, WA (United States)

1994-09-01T23:59:59.000Z

300

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vessel-Spanning Bubble Formation in K-Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

The K Basin sludge to be retrieved and stored in the large diameter containers (LDCs) contains some fraction of uranium metal that generates hydrogen gas, which introduces potential upset conditions. One postulated upset condition is a rising plug of sludge supported by a hydrogen bubble that is driven into the vent filters at the top of the container. In laboratory testing with actual K Basin sludge, vessel-spanning bubbles that lifted plugs of sludge were observed in 3-inch-diameter graduated cylinders. This report presents a series of analytical assessments performed by the Pacific Northwest National Laboratory to address the potential for the generation of a vessel spanning bubble in the LDCs. The assessments included the development and evaluation of static and dynamic bubble formation models over the projected range of K Basin sludge physical properties. Additionally, the theory of circular plates was extrapolated to examine conditions under which a plug of sludge would collapse and release a spanning bubble.

Terrones, Guillermo; Gauglitz, Phillip A.

2002-03-01T23:59:59.000Z

302

Novel selective surface flow (SSF{sup TM}) membranes for the recovery of hydrogren from waste gas streams. Final report  

DOE Green Energy (OSTI)

The waste streams are off-gas streams from various chemical/refinery operations. In Phase I, the architecture of the membrane and the separation device were defined and demonstrated. The system consists of a shell-and-tube separator in which the gas to be separated is fed to the tube side, the product is collected as high pressure effluent and the permeate constitutes the waste/fuel stream. Each tube, which has the membrane coated on the interior, does the separation. A multi- tube separator device containing 1 ft{sup 2} membrane area was built and tested. The engineering data were used for designing a process for hydrogen recovery from a fluid catalytic cracker off-gas stream. First-pass economics showed that overall cost for hydrogen production is reduced by 35% vs on-purpose production of hydrogen by steam- methane reforming. The hydrogen recovery process using the SSF membrane results in at least 15% energy reduction and significant decrease in CO{sub 2} and NO{sub x} emissions.

Anand, M. [USDOE, Washington, DC (United States)

1995-08-01T23:59:59.000Z

303

Characterization of Compaction and Dryout Properties of KE Basin Sludge During Long-Term Storage  

SciTech Connect

The long-term behavior of Hanford Site K Basin sludge with respect to loss of supernatant water and solids compaction is important in designing sludge storage and handling systems. This report describes the results of laboratory tests performed to understand and predict K Basin sludge drying and compaction rates under extended (28-month) {approx}34 C hot cell storage. Tests were conducted with six K Basin sludge materials, a control sample of simulated K Basin sludge, and a control sample containing only K Basin supernatant liquid. All samples were held in graduated cylinders fitted with threaded plastic caps. Quantitative data were gathered on how the mass and volume of K Basin sludge, and its associated supernatant liquid, changed with respect to storage time. The tests showed that the K Basin sludge samples lost water unpredictably, depending on cap seal tightness, with projected dryout times for a 1-cm cover water depth ranging from 5 to 216 months. Though the ambient radiation field ({approx}5 Rad/hour) likely contributed to cap seal degradation, water evaporation rates were found to be independent of the contained material (water vs. sludge; radioactive vs. non-radioactive sludge). Although water was lost at variable rates from sludge samples during storage in the hot cell (and, presumably, in long-term containerized storage), the sludge itself had no intrinsic propensity to enhance or diminish the rate of water evaporation compared with that exhibited by water stored in the same environment. Most of the compaction of the six KE Basin sludges and the simulated sludge occurred in the first week. Subsequent compaction to 28-months time provided little additional increase in settled sludge density. Agitating the settled sludge likewise had little to no effect on the density. However, one tested sludge contained unreacted uranium metal that began to generate corrosion product hydrogen gas after 78 days of settling and strongly altered the apparent sludge density. T he lengthy induction time shows again that uranium metal-bearing sludge may lie quiescent for long periods, even at comparatively warm temperatures, before initiating gas generation. When the testing was completed, the sludge samples were removed from the graduated cylinders. Most sludge re-suspended readily but a canister sludge sample that had previously been allowed to dry out during storage self-cemented into a hard-cake monolith and could not be re-suspended. Settled sludge density and the concentrations of 154Eu, 241Am, and the plutonium isotopes were found to follow the dry basis uranium concentration in the sludge solids. These findings amplify observations made in prior characterization studies that showed that sludge density and radiolytic, fissile material, and TRU (primarily 241Am and 238,239,240Pu) concentrations are proportional to uranium concentration. The sludge pH, found to decrease from {approx}8 to {approx}5 with a dry basis uranium concentration increase from {approx}2.5 to 82 wt% , provides data useful in designing sludge storage and process equipment.

Delegard, Calvin H.; Poloski, Adam P.; Schmidt, Andrew J.; Chenault, Jeffrey W.

2005-02-28T23:59:59.000Z

304

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

305

Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105  

SciTech Connect

The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

1998-09-01T23:59:59.000Z

306

INITIAL CHARACTERIZATIONS AND SRAT SIMULATIONS OF FOUR SLUDGE MATRIX STUDY SIMULANTS  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in the Defense Waste Processing Facility (DWPF). Three compositional ranges were developed for three groups of elements in the waste. The first was high iron/low aluminum versus low iron/high aluminum. The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium. The third was high noble metals (Ag, Pd, Rh, Ru) versus low noble metals. These three options can be combined to form eight distinct sludge compositions. The sludge matrix study called for testing each of these eight simulants near the minimum acid required for nitrite destruction and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid. Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants can be used for both high and low noble metal concentration testing and high and low acid testing. This report summarizes preliminary testing of each of the four simulants at low noble metals and low acid stoichiometry. The remaining matrix study tests are on hold. Chemically processed simulant was needed for U. S. Department of Energy-Office of Environmental Management and DWPF funded melt rate studies. Therefore, a preliminary assessment of the processing characteristics of the four sludge matrix simulants was completed using the low noble metal concentration option to meet this need. Sludge Receipt and Adjustment Tank (SRAT) testing was at low total acid stoichiometry (near the minimum acid end of the stoichiometric acid window). Composition and physical property measurements were made on the SRAT products. Updated values for formate loss and nitrite-to-nitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations. A reasonable determination of the minimum acid requirement for nitrite destruction was found to be slightly less than 105% of the Koopman minimum stoichiometric acid equation prediction for all four simulants at the low noble metal concentrations. The Koopman minimum stoichiometric acid equation is based on supernate carbonate, plus total Mg and Ca, in addition to the usual DWPF inputs such as base equivalents and Mn. This group of four tests extends the range of bulk insoluble solids concentrations over which the new Koopman minimum stoichiometric acid equation has been validated. The low iron-low manganese case appeared to have somewhat more excess acid than the other three combinations. Preliminary results of the initial testing indicate: (1) Hydrogen generation rate was not an issue in these tests. (2) Mercury stripping was less efficient than expected at about 1000 g steam/g mercury stripped. Only about 25% of the initial concentration of 1.5 wt% Hg in the total solids was removed in 13-14 hours of boiling, when 70% needed to be removed to meet the DWPF SRAT product specification of 0.45 wt% in the total solids. (3) Foaminess was not an issue using the nominal antifoam addition strategy in these tests. (4) Ammonia generation was not an issue based on off-gas condensate analyses. (5) One of the SRAT products (an HM-type simulant) was much more viscous than the other three SRAT products even though it had the lowest wt% insoluble solids. More comprehensive results concerning the impact of insoluble solids composition on processing, melt rate, etc. must await completion of the full sludge matrix study experimental scope.

Koopman,D.; Lambert, D.

2009-12-10T23:59:59.000Z

307

Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant  

Science Conference Proceedings (OSTI)

Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

1996-04-01T23:59:59.000Z

308

Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume  

SciTech Connect

Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal ? uraninite ? metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume might decrease because of decreases in the water-volume fraction caused by sludge solid reactions, compaction, or intergrowth and recrystallization of metaschoepite. In that case, fewer STSCs may be needed, but the shear strength would increase, and this could challenge recovery by water jet erosion and require more aggressive retrieval methods. Overall, the tests described herein indicate that the settled solids volume remains the same or decreases with time. The only case for which the sludge solids volumes increase with time is for the expansion factor attendant upon the anoxic corrosion of uranium metal to produce UO2 and subsequent reaction with oxygen to form equimolar UO2.25 and UO3•2H2O.

Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

2011-01-04T23:59:59.000Z

309

Strategy to develop and test a multi-function scarifier end effector with an integral conveyance system for waste tank remediation. Strategy plan  

SciTech Connect

This strategy plan describes a coupled analytical/experimental approach to develop a multi-functional scarifier end effector coupled with a pneumatic conveyance system to retrieve wastes from underground storage tanks. The scarifier uses ultra-high-pressure water jets to rubblize and entrain waste forms such as salt cake, sludge, and viscous liquid that can be transported pneumatically. The three waste types (hard, brittle, salt cake, viscous liquid, and deformable sludge) present increasingly complex challenges for scarification and pneumatic conveyance. Salt cake is anticipated to be the easiest to retrieve because (1) a theoretical model of hydraulic rock fracture can be applied to estimate jet performance to fracture salt cake, and (2) gas-solids transport correlations can be used to predict pneumatic transport. Deformable sludge is anticipated to be the most difficult to retrieve: no theories, correlations, or data exist to predict this performance. However order-of-magnitude gas-solid correlations indicate particulate wastes of prototypic density can be transported to a height of 20 m within allowable pressure limits provided that the volume fraction of the gaseous phase is kept above 95%. Viscous liquid is anticipated to be of intermediate complexity to retrieve. Phenomena that are expected to affect system performance are ranked. Experiments and analyses necessary to evaluate the effects of these phenomena are proposed. Subsequent strategies for experiment test plans, system deployment, and operation and control will need to be developed.

Bamberger, J.A.; Bates, J.M.; Keska, J.K.; Elmore, M.R.; Lombardo, N.J.

1993-08-01T23:59:59.000Z

310

SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION  

SciTech Connect

Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.

Pareizs, J.; Billings, A.; Click, D.

2011-07-08T23:59:59.000Z

311

VAC*TRAX - Thermal desorption for mixed wastes  

SciTech Connect

The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 260{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost. This paper describes the VAC*TRAX thermal desorption process, as well as results from the pilot testing program. Also, the design and application of the full-scale treatment system is presented. Materials tested to date include spiked soil and debris, power plant trash and sludge contaminated with solvents, PCB contaminated soil, solvent-contaminated uranium mill-tailings, and solvent and PCB-contaminated sludge and trash. Over 70 test runs have been performed using the pilot VAC*TRAX system, with more than 80% of the tests using mixed waste as the feed material.

McElwee, M.J.; Palmer, C.R.

1995-12-01T23:59:59.000Z

312

Radcalc: A computer program to calculate the radiolytic production of hydrogen gas from radioactive wastes in packages  

DOE Green Energy (OSTI)

Radcalc for Windows` is a menu-driven Microsoft2 Windows-compatible computer code that calculates the radiolytic production of hydrogen gas in high- and low-level radioactive waste. In addition, the code also determines US Department of Transportation (DOT) transportation classifications, calculates the activities of parent and daughter isotopes for a specified period of time, calculates decay heat, and calculates pressure buildup from the production of hydrogen gas in a given package geometry. Radcalc for Windows was developed by Packaging Engineering, Transportation and Packaging, Westinghouse Hanford Company, Richland, Washington, for the US Department of Energy (DOE). It is available from Packaging Engineering and is issued with a user`s manual and a technical manual. The code has been verified and validated.

Green, J.R.; Schwarz, R.A.; Hillesland, K.E.; Roetman, V.E.; Field, J.G.

1995-11-01T23:59:59.000Z

313

Numerical modeling of gas migration at a proposed repository for low and intermediate level nuclear wastes at Oberbauenstock, Switzerland  

Science Conference Proceedings (OSTI)

Hydrologic impacts of corrosive gas release from a hypothetical L/ILW nuclear waste repository at Oberbauenstock are explored by means of numerical simulation. A schematic two dimensional vertical section through the mountain is modeled with the simulator TOUGH, which describes two-phase flow of water and gas in porous and fractured media. Two reference cases are considered which represent the formations as a porous and as a fractured-porous (dual permeability) medium, respectively. Both cases predict similar and rather modest pressure increases, from ambient 10 bars to near 25 bars at the repository level. These results are to be considered preliminary because important parameters affecting two-phase flow, such as relative permeabilities of a fractured medium, are not well known at present. 24 refs., 15 figs., 5 tabs.

Pruess, K.

1990-03-01T23:59:59.000Z

314

Engineering evaluation of neutralization and precipitation processes applicable to sludge treatment project  

SciTech Connect

Engineering evaluations have been performed to determine likely unit operations and methods required to support the removal, storage, treatment and disposal of solids/sludges present in the K Basins at the Hanford Site. This evaluation was initiated to select a neutralization process for dissolver product solution resulting from nitric acid treatment of about 50 m{sup 3} of Hanford Site K Basins sludge. Neutralization is required to meet Tank Waste Remediation Waste System acceptance criteria for storage of the waste in the double shell tanks after neutralization, the supernate and precipitate will be transferred to the high level waste storage tanks in 200E Area. Non transuranic (TRU) solids residue will be transferred to the Environmental Restoration Disposal Facility (ERDF). This report presents an overview of neutralization and precipitation methods previously used and tested. This report also recommends a neutralization process to be used as part of the K Basins Sludge Treatment Project and identifies additional operations requiring further evaluation.

Klem, M.J.

1998-08-25T23:59:59.000Z

315

ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS  

DOE Green Energy (OSTI)

Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing dimensions of the cylinder and decreases with increasing photon energy.

Husain, A.; Lewis, Brent J.

2003-02-27T23:59:59.000Z

316

Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters  

DOE Green Energy (OSTI)

Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles.

Goles, R.W.; Sevigny, G.J.

1983-09-01T23:59:59.000Z

317

United States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

a Biomass waste includes municipal solid waste from biogenic sources, landfill gas, sludge waste, agricultural byproducts, and other biomass.

318

K Basin sludge polychlorinated biphenyl removal technology assessment  

Science Conference Proceedings (OSTI)

The two Hanford K Basins are water-filled concrete pools that contain over 2,100 metric tons of N Reactor fuel elements stored in aluminum or stainless steel canisters. During the time the fuel has been stored, approximately 50 m3 of heterogeneous solid material have accumulated in the basins. This material, referred to as sludge, is a mixture of fuel corrosion products, metallic bits of spent fuel and zirconium clad iron and metal corrosion products and silica from migrating sands. Some of the sludges also contain PCBs. The congener group of PCBs was identified as Aroclor 1254. The maximum concentration of sludge PCBS was found to be 140 ppm (as settled wet basis). However, the distribution of the PCBs is non-uniform throughout the sludge (i.e., there are regions of high and low concentrations and places where no PCBs are present). Higher concentrations could be present at various locations. Aroclors 1016/1242, 1221, 1248, 1254, and 1260 were identified and quantified in K West (KW) Canister sludge. In some of these samples, the concentration of 1260 was higher than 1254. The sludge requires pre-treatment to meet tank farm waste acceptance criteria, Among the numerous requirements, the sludge should be retreated so that it does not contain regulated levels of Toxic Substances Control Act (TSCA) compounds. Because of their stable chemistry and relative insolubility in water, PCBs are difficult to treat. They also resist degradation from heat and electrical charges. This stability has resulted in environmental persistence which has prompted the development of a variety of new cleanup processes including supercritical processes, advanced oxidation, dehalogenation and others. Hopefully, most of the new processes are discussed herein. Information on new processes are being received and will be evaluated in a future revision.

Ashworth, S.C.

1998-08-25T23:59:59.000Z

319

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

Science Conference Proceedings (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

320

Gas Permeation Testing Results from the Mixed Waste Focus Area Improved Hydrogen Getter Program  

Science Conference Proceedings (OSTI)

The gas permeabilities of more than 20 polymers were measured using pure and mixed gas techniques. The motivation was to determine potential materials that could be used to protect hydrogen getter particles from poisons while permitting sufficient hydrogen rates to enable the getters use in TRUPACT types of containers. A rate of five barrers or larger is needed. Of the materials screened in the pure gas tests, more than 15 qualified. Nine materials qualified in the mixed gas tests, but of the nine only three had high CCl4 rejection rates and four others would greatly reduce the transport of the CCl4.

Mark Stone; Christopher Orme; Eric Peterson; Michael Benson; John Kaszuba; Eugene Mroz; Marc Haga

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SLUDGE BATCH 4 SIMULANT FLOWSHEET STUDIES: PHASE II RESULTS  

DOE Green Energy (OSTI)

The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 3 (SB3) processing to Sludge Batch 4 (SB4) processing in early fiscal year 2007. Tests were conducted using non-radioactive simulants of the expected SB4 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) process. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT&QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. Initial SB4 flowsheet studies were conducted to guide decisions during the sludge batch preparation process. These studies were conducted with the estimated SB4 composition at the time of the study. The composition has changed slightly since these studies were completed due to changes in the sludges blended to prepare SB4 and the estimated SB3 heel mass. The following TTR requirements were addressed in this testing: (1) Hydrogen and nitrous oxide generation rates as a function of acid stoichiometry; (2) Acid quantities and processing times required for mercury removal; (3) Acid quantities and processing times required for nitrite destruction; and (4) Impact of SB4 composition (in particular, oxalate, manganese, nickel, mercury, and aluminum) on DWPF processing (i.e. acid addition strategy, foaming, hydrogen generation, REDOX control, rheology, etc.).

Stone, M; David Best, D

2006-09-12T23:59:59.000Z

322

Monitoring the Fixed FGD Sludge Landfill--Conesville, Ohio  

Science Conference Proceedings (OSTI)

Three years of extensive monitoring of the first full-scale application of the fixed flue gas desulfurization sludge process proved it technically sound. This new disposal method offers utilities leachate control in a landfill that allows diverse use of disposal sites in the future.

1984-10-01T23:59:59.000Z

323

FRIT DEVELOPMENT FOR SLUDGE BATCH 6  

SciTech Connect

The Savannah River National Laboratory (SRNL) evaluated a large number of Sludge Batch 6 (SB6) composition projections to support frit optimization for SB6 vitrification at the Defense Waste Processing Facility (DWPF). The evaluations discussed in this report occurred over a period of about 4 months, and included about 40 composition projections, developed by both Savannah River Remediation (SRR) and SRNL. Paper study assessments were used to evaluate the sludge composition projections with arrays of potential frit compositions using the predictive models in the DWPF Product Composition Control System (PCCS). Both nominal sludge compositions and sludge compositions with anticipated compositional variation were considered. The model predictions were used to identify candidate frit compositions for each SB6 projection and to provide some guidance to SRR on washing and blending strategies for SB6 preparation. This report presents a chronological review of this process and summarizes the findings at each stage. Following initial feedback from this work, the number of washes in Tank 51 was reduced to increase the projected sodium concentration in SB6. Analyses of predicted frit performance before and after a potential decant of Tank 40 showed that the post-decant SB6 composition would be difficult to process with any frit composition and that this scenario should be avoided. Based on the most recent SB6 projections (February 2010 SB6 composition projections developed at SRNL using the measured SB6 qualification sample composition and the revised Tank Farm washing plan), Frit 418 appears to be viable for SB6 processing at a target waste loading of 36%. A Nominal Stage PCCS Measurement Acceptability Region (MAR) assessment gave projected operating windows of 25-41% waste loading, limited by predictions of nepheline crystallization. The projected operating window is reduced to 25-38% waste loading when anticipated compositional variation is considered, again limited by predictions of nepheline crystallization. Blend points between 62 and 40 inches of Sludge Batch 5 (SB5) heel in Tank 40 had no practical impact on the projected performance of Frit 418. This assessment is made from a paper study approach only and assumes that no decant of Tank 40 will occur during SB6 processing. A decant of Tank 40 would reduce the Na2O concentration in Tank 40 to a point where it would be very difficult to target a waste loading of 36% for SB6 with Frit 418. The performance of Frit 418 with SB6 is limited by predictions of nepheline crystallization, which is a durability limiting constraint. Alternatives to Frit 418 are available that can provide equivalent projected operating windows and are limited by process related constraints (i.e., liquidus temperature predictions) rather than durability limiting constraints. A separate memorandum has recently been issued that discusses the use of Frit 418 for SB6 vitrification.1 potential differences in melt rate among these alternative frits will be discussed in a forthcoming technical report.

Fox, K.; Edwards, T.; Zamecnik, J.

2010-05-13T23:59:59.000Z

324

The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan  

Science Conference Proceedings (OSTI)

The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-01-15T23:59:59.000Z

325

Washing and caustic leaching of Hanford tank sludge: Results of FY 1997 studies  

Science Conference Proceedings (OSTI)

The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The tank wastes will be partitioned into high-level and low-level fractions. The HLW will be immobilized in a borosilicate glass matrix; the resulting glass canisters will then be disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implemented to reduce the volume of immobilized high-level waste (IHLW). Caustic leaching (sometimes referred to as enhanced sludge washing or ESW) represents the baseline method for pretreating Hanford tank sludges. Caustic leaching is expected to remove a large fraction of the Al, which is present in large quantities in Hanford tank sludges. A significant portion of the P is also expected to be removed from the sludge by metathesis of water-insoluble metal phosphates to insoluble hydroxides and soluble Na{sub 3}PO{sub 4}. Similar metathesis reactions can occur for insoluble sulfate salts, allowing the removal of sulfate from the HLW stream. This report describes the sludge washing and caustic leaching tests performed at the Pacific Northwest National Laboratory in FY 1996. The sludges used in this study were taken from Hanford tanks AN-104, BY-108, S-101, and S-111.

Lumetta, G.J.; Burgeson, I.E.; Wagner, M.J.; Liu, J.; Chen, Y.L.

1997-08-01T23:59:59.000Z

326

Washing and caustic leaching of Hanford Tank C-106 sludge  

Science Conference Proceedings (OSTI)

This report describes the results of a laboratory-scale washing and caustic leaching test performed on sludge from Hanford Tank C-106. The purpose of this test was to determine the behavior of important sludge components when subjected to washing with dilute or concentrated sodium hydroxide solutions. The results of this laboratory-scale test were used to support the design of a bench-scale washing and leaching process used to prepare several hundred grams of high-level waste solids for vitrification tests to be done by private contractors. The laboratory-scale test was conducted at Pacific Northwest Laboratory in FY 1996 as part of the Hanford privatization effort. The work was funded by the US Department of Energy through the Tank Waste Remediation System (TWRS; EM-30).

Lumetta, G.J.; Wagner, M.J.; Hoopes, F.V.; Steele, R.T.

1996-10-01T23:59:59.000Z

327

Evaluation of high-level nuclear waste tanks having a potential flammable gas hazard  

DOE Green Energy (OSTI)

In 1990 the U.S. Department of Energy declared an unreviewed safety question as a result of the behavior of tank 241-SY-101. This tank exhibited episodic releases of flammable gases that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years a considerable amount of knowledge has been gained about the chemical and physical processes that govern the behavior of tank 241-SY-101 and the other tanks associated with a potential flammable gas hazard. This paper presents an overview of the current understanding of gas generation, retention, and release and covers the results of direct sampling of the tanks to determine the gas composition and the amount of stored gas.

Johnson, G.D.; Barton, W.B.; Hill, R.C.; et al, Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

328

Status and progress in sludge washing: A pivotal pretreatment method  

Science Conference Proceedings (OSTI)

Separation of the bulk soluble chemical salts from the insoluble metal hydroxides and radionuclides is central to the strategy of disposing Hanford tank waste. Sludge washing and caustic leaching have been selected as the primary methods for processing the 230 million L (61,000,000 gal) of Hanford tank waste. These processes are very similar to those selected for processing waste at the West Valley Site in New York and the Savannah River Site in South Carolina. The purpose of sludge washing is to dissolve and remove the soluble salts in the waste. Leaching of the insoluble solids with caustic will be used to dissolve aluminum hydroxide and chromium hydroxide, and convert insoluble bismuth phosphate to soluble phosphate. The waste will be separated into a high-level solids fraction and a liquid fraction that can be disposed of as low-level waste after cesium removal. The washing and leaching operations involve batchwise mixing, settling, and decanting within the existing underground storage tanks.

Barton, W.B.; MacLean, G.T.; Meng, C.D.; Winkler, C.M.

1995-01-01T23:59:59.000Z

329

The radiolytic and radiolytically induced gas generation in Hanford waste tanks  

DOE Green Energy (OSTI)

A task force operating in ANL/CHM has been developing a mechanistic understanding of the radiolytic processes that lead to the generation and retention of gases within tanks of radioactive waste at the Hanford site. This chemistry is one of the important factors that must be considered in devising remediation procedures to eliminate the great potential hazard of these tanks. A quantitative description of much of the chemistry involved in the production of H{sub 2} and, to a lesser extent, in the production of N{sub 2}O has been achieved. Direct radiolytic generation was experimentally quantified and this new information was utilized in computer modeling to provide predictive capabilities so that changes of chemical composition of various waste tanks under different remediation procedures could be assessed. Oxygen in the waste solutions is effectively consumed upon irradiation and thus is of no concern. The mechanism of the radiolytic degradation of the chelators was established. The end products are simple organic molecules, in particularly, formaldehyde and glyoxylate, that are very efficient in the thermal generation of H{sub 2}

Jonah, C.D.; Meisel, D.; Sauer, M.C. Jr.

1994-06-01T23:59:59.000Z

330

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

331

WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS USING POST ALUMINUM DISSOLUTION TANK 51 SLUDGE SLURRY  

Science Conference Proceedings (OSTI)

The remaining contents of Tank 51 from Sludge Batch 4 will be blended with Purex sludge from Tank 7 to constitute Sludge Batch 5 (SB5). The Savannah River Site (SRS) Liquid Waste Organization (LWO) has completed caustic addition to Tank 51 to perform low temperature Al dissolution on the H-Modified (HM) sludge material to reduce the total mass of sludge solids and Al being fed to the Defense Waste Processing Facility (DWPF). The Savannah River National Lab (SRNL) has also completed aluminum dissolution tests using a 3-L sample of Tank 51 sludge slurry through funding by DOE EM-21. This report documents assessment of downstream impacts of the aluminum dissolved sludge, which were investigated so technical issues could be identified before the start of SB5 processing. This assessment included washing the aluminum dissolved sludge to a Tank Farm projected sodium concentration and weight percent insoluble solids content and DWPF Chemical Process Cell (CPC) processing using the washed sludge. Based on the limited testing, the impact of aluminum dissolution on sludge settling is not clear. Settling was not predictable for the 3-L sample. Compared to the post aluminum dissolution sample, settling after the first wash was slower, but settling after the second wash was faster. For example, post aluminum dissolution sludge took six days to settle to 60% of the original sludge slurry height, while Wash 1 took nearly eight days, and Wash 2 only took two days. Aluminum dissolution did impact sludge rheology. A comparison between the as-received, post aluminum dissolution and washed samples indicate that the downstream materials were more viscous and the concentration of insoluble solids less than that of the starting material. This increase in viscosity may impact Tank 51 transfers to Tank 40. The impact of aluminum dissolution on DWPF CPC processing cannot be determined because acid addition for the Sludge Receipt and Adjustment Tank (SRAT) cycle was under-calculated and thus under-added. Although the sludge was rheologically thick throughout the SRAT and Slurry Mix Evaporator (SME) cycles, this may have been due to the under addition of acid. Aluminum dissolution did, however, impact analyses of the SRAT receipt material. Two methods for determining total base yielded significantly different results. The high hydroxide content and the relatively high soluble aluminum content of the washed post aluminum dissolution sludge likely contributed to this difference and the ultimate under addition of acid. It should be noted that the simulant used to provide input for the SRAT cycle was an inadequate representation of the waste in terms of acid demand, likely due to the differences in the form of aluminum and hydroxide in the simulant and actual waste. Based on the results of this task, it is recommended that: (1) Sludge settling and rheology during washing of the forthcoming Sludge Batch 5 qualification sample be monitored closely and communicated to the Tank Farm. (2) SRNL receive a sample of Tank 51 after all chemical additions have been made and prior to the final Sludge Batch 5 decant for rheological assessment. Rheology versus wt% insoluble solids will be performed to determine the maximum amount of decant prior to the Tank 51 to Tank 40 transfer. (3) As a result of the problem with measuring total base and subsequently under-calculating acid for the DWPF CPC processing of the post aluminum dissolution sludge; (4) Studies to develop understanding of how the sludge titrates (i.e., why different titration methods yield different results) should be performed. (5) Simulants that better match the properties of post aluminum dissolution sludge should be developed. (6) Work on developing an acid calculation less dependant on the total base measurement should be continued.

Pareizs, J; Cj Bannochie, C; Damon Click, D; Erich Hansen, E; Dan Lambert, D; Michael Stone, M

2008-04-28T23:59:59.000Z

332

CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183  

SciTech Connect

Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

Thaxton, D; Timothy Baughman, T

2008-01-16T23:59:59.000Z

333

REPORTABLE RADIONUCLIDES IN DWPF SLUDGE BATCH 7A (MACROBATCH 8)  

Science Conference Proceedings (OSTI)

The Waste Acceptance Product Specifications (WAPS) 1.2 require that the waste producer 'shall report the curie inventory of radionuclides that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115.' As part of the strategy to meet WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type all radionuclides that have half-lives longer than 10 years and contribute greater than 0.01 percent of the total curie inventory from the time of production through the 1100 year period from 2015 through 3115. The initial list of radionuclides to be reported is based on the design-basis glass identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report. However, it is required that the list be expanded if other radionuclides with half-lives greater than 10 years are identified that meet the 'greater than 0.01% of the curie inventory' criterion. Specification 1.6 of the WAPS, International Atomic Energy Agency Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, and U-238; and Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete list of reportable radionuclides must also include these sets of U and Pu isotopes - and the U and Pu isotopic mass distributions must be identified. The DWPF receives HLW sludge slurry from Savannah River Site (SRS) Tank 40. For Sludge Batch 7a (SB7a), the waste in Tank 40 contained a blend of the heel from Sludge Batch 6 (SB6) and the Sludge Batch 7 (SB7) material transferred to Tank 40 from Tank 51. This sludge blend is also referred to as Macrobatch 8. Laboratory analyses of a Tank 40 sludge sample were performed to quantify the concentrations of pertinent radionuclides in the SB7a waste. Subsequently, radiological decay and in-growth were calculated over the time period from 2015 to 3115. This provided a basis for characterizing the radionuclide content of SB7a over time and for identifying the 'reportable radionuclides.' Details of the characterization methodology and the analytical results are the focus of this report. This work was performed at the request of the Waste Solidification Engineering Department of Savannah River Remediation, initiated via Technical Task Request (TTR) HLW-DWPF-TTR-2010-0031. A minor revision in the reporting requirements was requested via a subsequent email communication. The work was conducted in accordance with the protocols identified in Task Technical and Quality Assurance Plan SRNL-RP-2010-01218 and Analytical Study Plan SRNL-RP-2010-01219. All of the raw data related to this scope have been recorded in laboratory notebook SRNL-NB-2011-00061. The overall goal of this task was to characterize the radionuclide content of the SB7a waste sufficiently to meet the WAPS and DWPF reporting requirements. The specific objectives were: (1) Quantify the current concentrations of all radionuclides impacting (or potentially-impacting) the total curie content between calendar years 2011 and 3115. Also quantify the current concentrations of other radionuclides specifically requested in the TTR or required by the WAPS. (2) Calculate future concentrations of decayed and in-grown radionuclides impacting the total curie content between calendar years 2015 and 3115; (3) Identify as 'reportable' all radionuclides contributing {ge} 0.01% of the total curie content from 2015 to 3115 and having half-lives {ge} 10 years.

Reboul, S.; Diprete, D.; Click, D.; Bannochie, C.

2011-12-20T23:59:59.000Z

334

SLUDGE BATCH 7B GLASS VARIABILITY STUDY  

SciTech Connect

The Defense Waste Processing Facility (DWPF) is preparing to initiate processing Sludge Batch 7b (SB7b). In support of the upcoming processing, the Savannah River National Laboratory (SRNL) provided a recommendation to utilize Frits 418 with a 6% Na{sub 2}O addition (26 wt% Na{sub 2}O in sludge) and 702 with a 4% Na{sub 2}O addition (24 wt% Na{sub 2}O in sludge) to process SB7b. This recommendation was based on assessments of the compositional projections for SB7b available at the time from the Savannah River Remediation (SRR). To support qualification of SB7b, SRNL executed a variability study to assess the applicability of the current durability models for SB7b. The durability models were assessed over the expected composition range of SB7b, including potential caustic additions, combined with Frits 702 and 418 over a 32-40% waste loading (WL) range. Thirty four glasses were selected based on Frits 418 and 702 coupled with the sludge projections with an additional 4-6% Na{sub 2}O to reflect the potential caustic addition. Six of these glasses, based on average nominal sludge compositions including the appropriate caustic addition, were developed for both Frit 418 and Frit 702 at 32, 36 and 40% WL to provide coverage in the center of the anticipated SB7b glass region. All glasses were fabricated and characterized using chemical composition analysis, X-ray diffraction (XRD) and the Product Consistency Test (PCT). To comply with the DWPF Glass Product Control Program, a total of thirty four glasses were fabricated to assess the applicability of the current DWPF PCCS durability models. Based on the measured PCT response, all of the glasses were acceptable with respect to the Environmental Assessment (EA) benchmark glass regardless of thermal history. The NL[B] values of the SB7b variability study glasses were less than 1.99 g/L as compared to 16.695 g/L for EA. A small number of the D-optimally selected 'outer layer' extreme vertices (EV) glasses were not predictable using the current Product Composition Control System (PCCS) models for durability, but were acceptable compared to the EA glass when tested. These glasses fell outside of the lower 95% confidence band, which demonstrates conservatism in the model. A few of the glasses fell outside of the upper 95% confidence band; however, these particular glasses have normalized release values that were much lower than the values of EA and should be of no practical concern. Per the requirements of the DWPF Glass Product Control Program, the PCCS durability models have been shown to be applicable to the SB7b sludge system with a range of Na{sub 2}O concentrations blended with Frits 418 or 702. PCT results from the glasses fabricated as part of the variability study were shown to be predictable by the current DWPF PCCS models and/or acceptable with respect to the EA benchmark glass regardless of thermal history or compositional view.

Johnson, F.; Edwards, T.

2011-10-25T23:59:59.000Z

335

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

336

Construction and Changes in the Sludge Receipt and Adjustment Tank(Glass Apparatus Development Laboratory)  

SciTech Connect

The Defense Waste Processing Facility (DWPF), at the Savannah River Site is processing and immobilizing the radioactive high level waste sludge slurry at SRS into a durable borosilicate glass for final geological disposal. Each time a new batch of radioactive sludge is to be processed by the DWPF, the process flow sheet is to be tested and demonstrated to ensure an acceptable melter feed and glass can be made. These demonstrations are completed in the Shielded Cells Facility in the Savannah River National Laboratory at SRS.

DOBOS, JAMES

2004-06-02T23:59:59.000Z

337

Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation  

Science Conference Proceedings (OSTI)

To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

338

Approach for tank safety characterization of Hanford site waste  

Science Conference Proceedings (OSTI)

The overall approach and associated technical basis for characterizing Hanford Site waste to help identify and resolve Waste Tank Safety Program safety issues has been summarized. The safety issues include flammable gas, noxious vapors, organic solvents, condensed-phase exothermic reactions (ferrocyanide and organic complexants), criticality, high heat, and safety screening. For the safety issues involving chemical reactions (i.e., flammable gas, organic solvents, ferrocyanide, and organic complexants), the approach to safety characterization is based on the fact that rapid exothermic reactions cannot occur if either fuel, oxidizer, or temperature (initiators) is not sufficient or controlled. The approach to characterization has been influenced by the progress made since mid-1993: (1) completion of safety analyses on ferrocyanide, criticality, organic solvent in tank 241-C-103, and sludge dryout. (2) successful mitigation of tank 241-SY-101; (3) demonstration of waste aging in laboratory experiments and from waste sampling, and (4) increased understanding of the information that can be obtained from headspace sampling. Headspace vapor sampling is being used to confirm that flammable gas does not accumulate in the single-shell tanks, and to determine whether organic solvents are present. The headspaces of tanks that may contain significant quantities of flammable gas will be monitored continuously using standard hydrogen monitors. For the noxious vapors safety issue, characterization will consist of headspace vapor sampling of most of the Hanford Site waste tanks. Sampling specifically for criticality is not required to confirm interim safe storage; however, analyses for fissile material will be conducted as waste samples are obtained for other reasons. High-heat tanks will be identified through temperature monitoring coupled with thermal analyses.

Meacham, J.E.; Babad, H.; Cash, R.J.; Dukelow, G.T.; Eberlein, S.J.; Hamilton, D.W.; Johnson, G.D.; Osborne, J.W.; Payne, M.A.; Sherwood, D.J. [and others

1995-03-01T23:59:59.000Z

339

Organic and Inorganic Hazardous Waste Stabilization Using Coal Combustion By-Product Materials  

Science Conference Proceedings (OSTI)

This report describes a laboratory investigation of four clean-coal by-products to stabilize organic and inorganic constituents of hazardous waste stream materials. The wastes included API separator sludge, metal oxide-hydroxide waste, metal plating sludge, and creosote-contaminated soil. Overall, the investigation showed that the high alkalinity of the by-products may cost-effectively stabilize the acidic components of hazardous waste.

1994-10-08T23:59:59.000Z

340

REVIEW OF RHEOLOGY MODIFIERS FOR HANFORD WASTE  

SciTech Connect

As part of Savannah River National Laboratory (SRNL)?s strategic development scope for the Department of Energy ? Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste feed acceptance and product qualification scope, the SRNL has been requested to recommend candidate rheology modifiers to be evaluated to adjust slurry properties in the Hanford Tank Farm. SRNL has performed extensive testing of rheology modifiers for use with Defense Waste Processing Facility (DWPF) simulated melter feed ? a high undissolved solids (UDS) mixture of simulated Savannah River Site (SRS) Tank Farm sludge, nitric and formic acids, and glass frit. A much smaller set of evaluations with Hanford simulated waste have also been completed. This report summarizes past work and recommends modifiers for further evaluation with Hanford simulated wastes followed by verification with actual waste samples. Based on the review of available data, a few compounds/systems appear to hold the most promise. For all types of evaluated simulated wastes (caustic Handford tank waste and DWPF processing samples with pH ranging from slightly acidic to slightly caustic), polyacrylic acid had positive impacts on rheology. Citric acid also showed improvement in yield stress on a wide variety of samples. It is recommended that both polyacrylic acid and citric acid be further evaluated as rheology modifiers for Hanford waste. These materials are weak organic acids with the following potential issues:  The acidic nature of the modifiers may impact waste pH, if added in very large doses. If pH is significantly reduced by the modifier addition, dissolution of UDS and increased corrosion of tanks, piping, pumps, and other process equipment could occur. Smaller shifts in pH could reduce aluminum solubility, which would be expected to increase the yield stress of the sludge. Therefore, it is expected that use of an acidic modifier would be limited to concentrations that do not appreciably change the pH of the waste.  Organics are typically reductants and could impact glass REDOX if not accounted for in the reductant addition calculations.  Stability of the modifiers in a caustic, radioactive environment is not known, but some of the modifiers tested were specifically designed to withstand caustic conditions.  These acids will add to the total organic carbon content of the wastes. Radiolytic decomposition of the acids could result in organic and hydrogen gas generation. These potential impacts must be addressed in future studies with simulants representative of real waste and finally with tests using actual waste based on the rheology differences seen between SRS simulants and actual waste. The only non-organic modifier evaluated was sodium metasilicate. Further evaluation of this modifier is recommended if a reducing modifier is a concern.

Pareizs, J.

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas sludge waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

Science Conference Proceedings (OSTI)

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

342

Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case  

SciTech Connect

An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

2007-07-01T23:59:59.000Z

343

GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY  

Science Conference Proceedings (OSTI)

Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet. Preliminary results of the initial testing indicate: (1) Hydrogen generation rate was very low throughout all SRAT cycles. (2) The mercury concentration of the SRAT product was below the 0.8 wt% limit in all runs. (3) Nitrite in the SRAT product was aluminum sludges (LoFe, HM type sludges) were much more viscous than the Hi Fe sludges. At 100% acid stoichiometry, the SRAT products from the high aluminum sludges were very viscous but at 150% acid stoichiometry, the SRAT products from the high aluminum sludges were very thin. This makes the glycolic acid/formic acid flowsheet an improvement for processing more viscous sludges. (6) The pH of the SRAT products was from 2.7-3.1 for the 150% acid stoichiometry runs and 5.1-6.1 for the 100% acid stoichiometry runs, significantly lower than is typical of the baseline nitric acid/formic acid flowsheet.

Lambert, D.; Koopman, D.

2011-06-30T23:59:59.000Z

344

GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY  

DOE Green Energy (OSTI)

Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet. Preliminary results of the initial testing indicate: (1) Hydrogen generation rate was very low throughout all SRAT cycles. (2) The mercury concentration of the SRAT product was below the 0.8 wt% limit in all runs. (3) Nitrite in the SRAT product was <100 mg/kg for all runs. (4) Foaminess was not an issue using the nominal antifoam addition strategy in these tests. (5) The high aluminum sludges (LoFe, HM type sludges) were much more viscous than the Hi Fe sludges. At 100% acid stoichiometry, the SRAT products from the high aluminum sludges were very viscous but at 150% acid stoichiometry, the SRAT products from the high aluminum sludges were very thin. This makes the glycolic acid/formic acid flowsheet an improvement for processing more viscous sludges. (6) The pH of the SRAT products was from 2.7-3.1 for the 150% acid stoichiometry runs and 5.1-6.1 for the 100% acid stoichiometry runs, significantly lower than is typical of the baseline nitric acid/formic acid flowsheet.

Lambert, D.; Koopman, D.

2011-06-30T23:59:59.000Z

345

Reliability analysis of common hazardous waste treatment processes  

Science Conference Proceedings (OSTI)

Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

1993-05-01T23:59:59.000Z

346

Microsoft PowerPoint - 3-07_Williams_Mobilization of High Yield Sludges.pptm  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage, Mobilization, And Retrieval Of Storage, Mobilization, And Retrieval Of Very High Yield Strength Sludges EM Waste Processing Technical Exchange Atlanta November 16-18 2010 Martin Williams Vice President Advanced Process Systems NuVision Engineering 184B Rolling Hill Rd Mooresville NC 28117 USA Print Close 2 Storage, Mobilization, and Retrieval of Very High Yield Strength Sludges Sellafield Site in the UK Magnox Storage Pond *Constructed in 1940's *Major D&D project Print Close 3 Storage, Mobilization, and Retrieval of Very High Yield Strength Sludges Magnox Sludge *Up to 1200m3 arising from the corrosion of magnesium alloy clad Magnox reactor fuel in storage primarily magnesium and uranium corrosion products *small percentage of un-corroded Magnox metal *fission and activation products and their corrosion products

347

Pretreatment of high solid microbial sludges  

DOE Patents (OSTI)

A process and apparatus for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion.

Rivard, Christopher J. (Lakewood, CO); Nagle, Nicholas J. (Broomfield, CO)

1998-01-01T23:59:59.000Z

348

Pretreatment of high solid microbial sludges  

DOE Patents (OSTI)

A process and apparatus are disclosed for pretreating microbial sludges in order to enhance secondary anaerobic digestion. The pretreatment process involves disrupting the cellular integrity of municipal sewage sludge through a combination of thermal, explosive decompression and shear forces. The sludge is pressurized and pumped to a pretreatment reactor where it is mixed with steam to heat and soften the sludge. The pressure of the sludge is suddenly reduced and explosive decompression forces are imparted which partially disrupt the cellular integrity of the sludge. Shear forces are then applied to the sludge to further disrupt the cellular integrity of the sludge. Disrupting cellular integrity releases both soluble and insoluble organic constituents and thereby renders municipal sewage sludge more amenable to secondary anaerobic digestion. 1 fig.

Rivard, C.J.; Nagle, N.J.

1998-07-28T23:59:59.000Z

349

Inventory of Nonutility Electric Power Plants in the United States ...  

U.S. Energy Information Administration (EIA)

6 Includes agricultural byproducts, fish oil, liquid acetonitrile waste, landfill gas, municipal solid waste, solid waste, sludge waste, straw, tires, waste alco-

350

Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102  

SciTech Connect

The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual {open_quotes}fluffing factor{close_quotes} for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around {+-} 10%.

Stewart, C.W.; Erian, F.F.; Meyer, P.A. [and others

1997-07-01T23:59:59.000Z

351

Biological Sludge Reduction and Analysis  

Science Conference Proceedings (OSTI)

This document describes research sponsored by EPRI and Advanced Biological Services (ABS). A series of experiments focused on the reduction and analysis of biological sludge in pulp mill wastewater. The first experiment involved optimization of the milling process through the alteration of the grinding gap and the number of times sludge was passed through the colloid mill in order to affect fractionation, dispersion, and lysis. For the second experiment, tests were conducted to evaluate the effect of ble...

2001-11-07T23:59:59.000Z

352

DEVELOPMENT AND FIELD IMPLEMENTATION OF AN IMPROVED METHOD FOR HEADSPACE GAS SAMPLING OF TRANSURANIC WASTE DRUMS  

Science Conference Proceedings (OSTI)

A fast, safe, and cost-effective method for obtaining headspace gas samples has been developed and implemented at Los Alamos National Laboratory (LANL). A sample port is installed directly into a drum lid using a pneumatic driver, allowing sampling with a side-port needle. Testing has shown that the sample port can be installed with no release of radioactive material. Use of this system at LANL has significantly reduced the time required for sampling, and eliminates the need for many safety precautions previously used. The system has significantly improved productivity and lowered radiation exposure and cost.

Polley, M.; Ankrom, J.; Wickland, T.; Warren, J.

2003-02-27T23:59:59.000Z

353

Process chemistry for the pretreatment of Hanford tank wastes  

SciTech Connect

Current guidelines for disposing radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for the vitrification of high-level waste in borosilicate glass and disposal of the glass canisters in a deep geologic repository. Low-level waste is to be cast in grout and disposed of on site in shallow burial vaults. Because of the high cost of vitrification and geologic disposal, methods are currently being developed to minimize the volume of high-level waste requiring disposal. Two approaches are being considered for pretreating radioactive tank sludges: (1) leaching of selected components from the sludge and (2) acid dissolution of the sludge followed by separation of key radionuclides. The leaching approach offers the advantage of simplicity, but the acid dissolution/radionuclide extraction approach has the potential to produce the least number of glass canisters. Four critical components (Cr, P, S, and Al) were leached from an actual Hanford tank waste-Plutonium Finishing Plant sludge. The Al, P, and S were removed from the sludge by digestion of the sludge with 0.1 M NaOH at 100{degrees}C. The Cr was leached by treating the sludge with alkaline KMnO{sub 4} at 100{degrees}C. Removing these four components from the sludge will dramatically lower the number of glass canisters required to dispose of this waste. The transuranic extraction (TRUEX) solvent extraction process has been demonstrated at a bench scale using an actual Hanford tank waste. The process, which involves extraction of the transuranic elements with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), separated 99.9% of the transuranic elements from the bulk components of the waste. Several problems associated with the TRUEX processing of this waste have been addressed and solved.

Lumetta, G.J.; Swanson, J.L. [Pacific Northwest Lab., Richland, WA (United States); Barker, S.A. [Westinghouse Hanford Co., Richland, WA (United States)

1992-08-01T23:59:59.000Z

354

Physical Behavior of Uranium Metal Bearing Hanford K East Basin Sludge Materials  

DOE Green Energy (OSTI)

Uranium-metal-bearing sludge from the Hanford's K-East (KE) Basin is to be retrieved, loaded into large-diameter containers, and moved to interim storage in a dry cell at T Plant on the Hanford site. Physical behavior of this sludge during loading and subsequent storage in large-diameter containers is of interest to design and safety because oxidation of its uranium generates power and hydrogen gas, with resulting implications for flammability of the container and cell headspaces, potential retention of gas in the settled sludge and subsequent expansion of the sludge material in the large-diameter container, and the potential for local temperature escalation. Key aspects of experimental work and model development necessary to support a robust technical basis for design and safety analyses are reported here: (1) Experimental data supporting the distribution of uranium metal in the large-diameter container, (2) Experimental data defining sludge thermal conductivity and shear strength (or yield stress), and (3) Experimental data and models demonstrating sludge plug movement, breakup, and limited atomization caused by internal gas generation.

DUNCAN, D.R.

2003-05-16T23:59:59.000Z

355

Sludge mobilization with submerged nozzles in horizontal cylindrical tanks  

SciTech Connect

The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.

Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

1995-10-01T23:59:59.000Z

356

Environmental residuals and capital costs of energy recovery from municipal sludge and feedlot manure  

DOE Green Energy (OSTI)

The capital and environmental cost of energy recovery from municipal sludge and feedlot manure is analyzed. Literature on waste processing and energy conversion and interviews with manufacturers were used for baseline data for construction of theoretical models using three energy conversion processes: anaerobic digestion, incineration, and pyrolysis. Process characteristics, environmental impact data, and capital costs are presented in detail for each conversion system. The energy recovery systems described would probably be sited near large sources of sludge and manure, i.e., metropolitan sewage treatment plants and large feedlots in cattle-raising states. Although the systems would provide benefits in terms of waste disposal as well as energy production, they would also involve additional pollution of air and water. Analysis of potential siting patterns and pollution conflicts is needed before energy recovery systems using municipal sludge can be considered as feasible energy sources.

Ballou, S W; Dale, L; Johnson, R; Chambers, W; Mittelhauser, H

1980-09-01T23:59:59.000Z

357

Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel  

SciTech Connect

CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste a