Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.  

E-Print Network [OSTI]

in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

Henderson, Gideon

2

Numerical Modeling of Fractured Shale-Gas and Tight-Gas Reservoirs Using Unstructured Grids  

E-Print Network [OSTI]

Various models featuring horizontal wells with multiple induced fractures have been proposed to characterize flow behavior over time in tight gas and shale gas systems. Currently, there is little consensus regarding the effects of non...

Olorode, Olufemi Morounfopefoluwa

2012-02-14T23:59:59.000Z

3

Shale Gas Development Challenges: Fracture Fluids | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE Former Worker/EnergyFracture Fluids Shale Gas

4

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING SCALING METHODS  

E-Print Network [OSTI]

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING P. Marder University of Texas at Austin ABSTRACT The Haynesville Shale is one of the largest. The reservoir temperature is also high, up to 3000 F. These pressures are uniquely high among shale gas

Patzek, Tadeusz W.

5

Fractured shale reservoirs: Towards a realistic model  

SciTech Connect (OSTI)

Fractured shale reservoirs are fundamentally unconventional, which is to say that their behavior is qualitatively different from reservoirs characterized by intergranular pore space. Attempts to analyze fractured shale reservoirs are essentially misleading. Reliance on such models can have only negative results for fractured shale oil and gas exploration and development. A realistic model of fractured shale reservoirs begins with the history of the shale as a hydrocarbon source rock. Minimum levels of both kerogen concentration and thermal maturity are required for effective hydrocarbon generation. Hydrocarbon generation results in overpressuring of the shale. At some critical level of repressuring, the shale fractures in the ambient stress field. This primary natural fracture system is fundamental to the future behavior of the fractured shale gas reservoir. The fractures facilitate primary migration of oil and gas out of the shale and into the basin. In this process, all connate water is expelled, leaving the fractured shale oil-wet and saturated with oil and gas. What fluids are eventually produced from the fractured shale depends on the consequent structural and geochemical history. As long as the shale remains hot, oil production may be obtained. (e.g. Bakken Shale, Green River Shale). If the shale is significantly cooled, mainly gas will be produced (e.g. Antrim Shale, Ohio Shale, New Albany Shale). Where secondary natural fracture systems are developed and connect the shale to aquifers or to surface recharge, the fractured shale will also produce water (e.g. Antrim Shale, Indiana New Albany Shale).

Hamilton-Smith, T. [Applied Earth Science, Lexington, KY (United States)

1996-09-01T23:59:59.000Z

6

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

7

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network [OSTI]

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

8

A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in  

E-Print Network [OSTI]

and Hydraulic Fracturing in the United States Avner Vengosh,*, Robert B. Jackson,, Nathaniel Warner,§ Thomas H: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations

Jackson, Robert B.

9

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

10

Gas sales starting from Indiana`s fractured New Albany shale  

SciTech Connect (OSTI)

The Indiana Department of Natural Resources, Division of Oil and Gas issued 138 drilling permits from Dec. 1, 1994, through July 31, 1996, in 17 counties in a growing play for gas in Devonian New Albany shale in southern Indiana. The permits are active in the form of locations, drilling wells, wells in the completion process, and wells producing gas in the dewatering stage. Geologically in southwestern Indiana the New Albany shale exploration play is found in three provinces. These are the Wabash platform, the Terre Haute reef bank, and the Vincennes basin. Exploration permits issued on each of these geologic provinces are as follows: Wabash platform 103, Terra Haute reef bank 33, and Vincennes basin two. The authors feel that the quantity and effectiveness of communication of fracturing in the shale will control gas production and water production. A rule of thumb in a desorption reservoir is that the more water a shale well makes in the beginning the more gas it will make when dewatered.

Minihan, E.D.; Buzzard, R.D. [Minihan/Buzzard Consulting Geologists, Fort Worth, TX (United States)

1996-09-02T23:59:59.000Z

11

Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology  

E-Print Network [OSTI]

are needed in order to accurately characterize hydraulic fractures in shale gas reservoirs. In this study, a stochastic inverse problem is set up with the objective of inferring hydraulic fracture characteristics, such as fracture half...

Moreno, Jose A

2014-08-12T23:59:59.000Z

12

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

13

Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

Zhang, Junjing

2014-07-10T23:59:59.000Z

14

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network [OSTI]

Frequently a discrepancy is found between the stimulated shale volume (SSV) estimated from production data and the SSV expected from injected water and proppant volume. One possible explanation is the presence of a fracture network, often termed...

Apiwathanasorn, Sippakorn

2012-10-19T23:59:59.000Z

15

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network [OSTI]

............................................................................................ 41 xii FIGURE Page 3.15 Matching the linear flow interval to evaluate Acm using the Shale Gas VBA... .................................................................................................... 42 3.16 After resetting the time to zero and matching the interval with gas lift effect, the same calculations were cared to evaluate Acm using the Shale Gas VBA...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

16

Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas  

SciTech Connect (OSTI)

Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, ?-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

2013-12-01T23:59:59.000Z

17

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

18

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

19

Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir  

E-Print Network [OSTI]

The fundamental behavior of fluid production from shale/ultra-low permeability reservoirs that are produced under a constant wellbore pressure remains difficult to quantify, which is believed to be (at least in part) due to the complexity...

Mhiri, Adnene

2014-08-10T23:59:59.000Z

20

COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MBG Auditorium COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and Hydraulic Fracturing" Professor Robert Jackson Duke University Presentation:...

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

22

What is shale gas and why is it important?  

Reports and Publications (EIA)

Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

2012-01-01T23:59:59.000Z

23

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network [OSTI]

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

24

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

25

Process Design and Integration of Shale Gas to Methanol  

E-Print Network [OSTI]

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

Ehlinger, Victoria M.

2013-02-04T23:59:59.000Z

26

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

such as the Eagle Ford Shale. This work investigates the fracture conductivities of seven Eagle Ford Shale samples collected from an outcrop of facies B. Rough fractures were induced in the samples and laboratory experiments that closely followed the API RP-61...

Guzek, James J

2014-07-25T23:59:59.000Z

27

Assessment of fracture properties and rate effects on fracture of materials by micro scratching: application to gas shale  

E-Print Network [OSTI]

Since 1921, several experimental methods have been implemented to measure the Griffith fracture energy. The challenge lies in providing a measure that is intrinsic and invariant with respect to external factors such as ...

Akono, Ange-Therese

2013-01-01T23:59:59.000Z

28

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

29

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network [OSTI]

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

30

Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells  

E-Print Network [OSTI]

and approaches special for estimating rate decline and recovery of shale gas wells were developed. As the strategy of the horizontal well with multiple transverse fractures (MTFHW) was discovered and its significance to economic shale gas production...

Song, Bo

2010-10-12T23:59:59.000Z

31

CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER  

E-Print Network [OSTI]

hearings on the issues of horizontal drilling and hydraulic fracturing for shale gas extraction. 3 Unlike viable in recent years due to advances in horizontal drilling and hydraulic fracturing techniques, which prohibits both horizontal drilling and the injection of waste (including hydraulic fracturing fluids

Jackson, Robert B.

32

Shale Gas Glossary | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE Former Worker/EnergyFracture Fluids Shale GasShale

33

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network [OSTI]

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

Vera Rosales, Fabian 1986-

2012-12-11T23:59:59.000Z

34

The Influence of Vertical Location on Hydraulic Fracture Conductivity in the Fayetteville Shale  

E-Print Network [OSTI]

productivity; therefore, the oil and gas industry is currently trying to better understand what impacts fracture conductivity. Shale is a broad term for a fine-grained, detrital rock, composed of silts and clays, which often suggest laminar, fissile structure...

Briggs, Kathryn

2014-05-05T23:59:59.000Z

35

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect (OSTI)

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

36

Production Trends of Shale Gas Wells  

E-Print Network [OSTI]

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

Khan, Waqar A.

2010-01-14T23:59:59.000Z

37

I. Canada EIA/ARI World Shale Gas and Shale Oil Resource Assessment I. CANADA SUMMARY  

E-Print Network [OSTI]

by this resource study. Figure I-1 illustrates certain of the major shale gas and shale oil basins in

unknown authors

38

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network [OSTI]

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

39

Shale Gas Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. Natural GasquestionnairesquestionnairesGasA.San JuanGas Production

40

Challenges and strategies of shale gas development.  

E-Print Network [OSTI]

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of… (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas  

E-Print Network [OSTI]

Oil and Gas CDT Using noble gas isotopes to develop a mechanistic understanding of shale gas, desorbtion, tracing, migration Overview The discovery of shale gas in UK Shales demonstrates how important and no doubt will vary from shale to shale. An improved understanding of the controls on gas production from

Henderson, Gideon

42

Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers  

E-Print Network [OSTI]

that fracking the shale could reduce that transport time to tens or hundreds of years. Conductive faults to reach a new equilibrium reflecting the significant changes caused by fracking the shale, which could for development. Hydraulic fracturing (fracking, the industry term for the operation; Kramer 2011) loosens

43

,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

44

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network [OSTI]

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

Yan, Bicheng

2013-07-15T23:59:59.000Z

45

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs.  

E-Print Network [OSTI]

??Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned… (more)

Statton, James Cody

2012-01-01T23:59:59.000Z

46

Geomechanical Development of Fractured Reservoirs During Gas Production  

E-Print Network [OSTI]

is constructed by implementing a poroviscoelastic model into the dual permeability (DPM)-finite element model (FEM) to investigate the coupled time-dependent viscoelastic deformation, fracture network evolution and compressible fluid flow in gas shale reservoir...

Huang, Jian

2013-04-05T23:59:59.000Z

47

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network [OSTI]

Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

48

Modern Devonian shale gas search starting in southwestern Indiana  

SciTech Connect (OSTI)

The New Albany shale of southwestern Indiana is a worthwhile exploration and exploitation objective. The technical ability to enhance natural fractures is available, the drilling depths are shallow, long term gas reserves are attractive, markets are available, drilling costs are reasonable, risks are very low, multiple drilling objectives are available, and the return on investment is good. Indiana Geological Survey records are well organized, accessible, and easy to use. The paper describes the New Albany shale play, play size, early exploration, geologic setting, completion techniques, and locating prime areas.

Minihan, E.D.; Buzzard, R.D. (Minihan/Buzzard Consulting Firm, Fort Worth, TX (United States))

1995-02-27T23:59:59.000Z

49

2012 by the American Academy of Arts & Sciences Is Shale Gas Good for Climate Change?  

E-Print Network [OSTI]

- ence and Engineering at Harvard University, where he is also Direc- tor of the Center for the Environ fracturing ("fracking") techniques that greatly increase the permeability of the shale, vast reserves emissions overall. I argue that the main impact of shale gas on climate change is neither the reduced

Schrag, Daniel

50

Characterization of Gas Shales by X-ray Raman Spectroscopy |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

51

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network [OSTI]

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

Kamenov, Anton

2013-04-11T23:59:59.000Z

52

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

53

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

54

Gas potential of new Albany shale (Devonian-Mississippian) in the Illinois Basin  

SciTech Connect (OSTI)

A study to update and evaluate publicly available data relating to present and potential gas production from New Albany Shale in the Illinois basin was conducted cooperatively by the Indiana. Illinois, and Kentucky geological surveys (Illinois Basin Consortium), and was partially funded by the Gas Research Institute. Deliverables included a plate of stratigraphic cross sections and six basin-wide maps at a scale of 1:1,000,000. The New Albany Shale is an organic-rich brownish black shale present throughout the Illinois basin. Gas potential of the New Albany Shale may be great because it contains an estimated 86 tcf of natural gas and has produced modest volumes since 1858 from more than 60 fields, mostly in the southeastern part of the basin. Reservoir beds include organic-rich shales of the Grassy Creek (Shale), Clegg Creek, and Blocher (Shale) members. Limited geologic and carbon isotope data indicate that the gas is indigenous and thermogenic. T[sub max] data suggest that the gas generation begins at R[sub o] values of 0.53% and may begin at R[sub 0] values as low as 0.41% in some beds. New Albany Shale reservoirs contain both free gas in open-pore space and gas adsorbed on clay and kerogen surfaces. Natural fracturing is essential for effective reservoir permeability. Fractures are most common near structures such as faults, flexures, and buried carbonate banks. Based on limited data, fractures and joints have preferred orientations of 45-225[degrees] and 135-315[degrees]. Commercial production requires well stimulation to connect the well bore with the natural fracture system and to prop open pressure-sensitive near-borehole fractures. Current stimulations employ hydraulic fracture treatments using nitrogen and foam, with sand as a propping agent.

Comer, J.B.; Hasenmueller, N.R. (Indiana Geological Survey, Bloomington, IN (United States)); Frankie, W.T. (Illinois State Geological Survey, Champaign, IL (United States)); Hamilton-Smith, T. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

55

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network [OSTI]

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Transitions: A Systems Approach Including Marcellus Shale Gas Development Executive Summary In the 21st the Marcellus shale In addition to the specific questions identified for the case of Marcellus shale gas in New

Angenent, Lars T.

56

A1. SHALE GAS PRODUCTION GROWTH IN THE UNITED STATES..............................1 A2. VARIABILITY IN SHALE WELL PRODUCTION PERFORMANCE ............................1  

E-Print Network [OSTI]

basin, and of late the Eagle Ford shale located in southwest Texas. Figure A1 illustrates the growth reservoir pressure, total organic content, thermal maturity, porosity, the presence of natural fractures Eagle Ford Marcellus Haynesville Woodford Fayetteville Barnett Figure A1. Growth in natural gas

57

Life-cycle analysis of shale gas and natural gas.  

SciTech Connect (OSTI)

The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)

2012-01-27T23:59:59.000Z

58

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect (OSTI)

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

59

Reservoir and stimulation analysis of a Devonian Shale gas field  

E-Print Network [OSTI]

. The Gas Research Institute (GRI) which sponsored this work under GRI Contract No. 5084-213-0980, "Analysis of Eastern Devonian Gas Shales Production Data;" 2. Doug Terry and Joe Petty with Union Drilling, Inc. who showed great interest in this study... and enhance productivity. ~St h The Devonian Shales in the Mason County Field study area can be subdivided using gamma ray logs as follows (in descending order): Upper Devonian Undivided, Huron Shale Member of the Ohio Shale, Java Formation, Angola Shale...

Shaw, James Stanley

1986-01-01T23:59:59.000Z

60

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network [OSTI]

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale.  

E-Print Network [OSTI]

??Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of… (more)

Deshpande, Vaibhav Prakashrao

2009-01-01T23:59:59.000Z

62

Shale Oil Production Performance from a Stimulated Reservoir Volume.  

E-Print Network [OSTI]

??The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale… (more)

Chaudhary, Anish Singh

2011-01-01T23:59:59.000Z

63

Shale Gas and the Environment: Critical Need for a  

E-Print Network [OSTI]

Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P o l i c y m a k e r G u i d e #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

McGaughey, Alan

64

Shale Gas and the Environment: Critical Need for a  

E-Print Network [OSTI]

Shale Gas and the Environment: Critical Need for a Government­University­Industry Research Initiative P O L I C Y M A K E R G U I D E #12;Shale gas production is increasing at a rapid rate initiative is needed to fill critical gaps in knowledge at the interface of shale gas development

McGaughey, Alan

65

Development of the Natural Gas Resources in the Marcellus Shale  

E-Print Network [OSTI]

Development of the Natural Gas Resources in the Marcellus Shale New York, Pennsylvania, Virginia for informational purposes only and does not support or oppose development of the Marcellus Shale natural gas information regarding shale gas well development, ancillary facilities asso- ciated with that development

Boyer, Elizabeth W.

66

Risks and Risk Governance in Unconventional Shale Gas Development  

E-Print Network [OSTI]

Risks and Risk Governance in Unconventional Shale Gas Development Mitchell J. Small,*, Paul C, Desert Research Institute, Reno, Nevada 89512, United States 1. INTRODUCTION The recent U.S. shale gas Issue: Understanding the Risks of Unconventional Shale Gas Development Published: July 1, 2014 A broad

Jackson, Robert B.

67

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network [OSTI]

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

68

A New Type Curve Analysis for Shale Gas/Oil Reservoir Production Performance with Dual Porosity Linear System  

E-Print Network [OSTI]

With increase of interest in exploiting shale gas/oil reservoirs with multiple stage fractured horizontal wells, complexity of production analysis and reservoir description have also increased. Different methods and models were used throughout...

Abdulal, Haider Jaffar

2012-02-14T23:59:59.000Z

69

4D imaging of fracturing in organic-rich shales during heating  

SciTech Connect (OSTI)

To better understand the mechanisms of fracture pattern development and fluid escape in low permeability rocks, we performed time-resolved in situ X-ray tomography imaging to investigate the processes that occur during the slow heating (from 60 to 400 C) of organic-rich Green River shale. At about 350 C cracks nucleated in the sample, and as the temperature continued to increase, these cracks propagated parallel to shale bedding and coalesced, thus cutting across the sample. Thermogravimetry and gas chromatography revealed that the fracturing occurring at {approx}350 C was associated with significant mass loss and release of light hydrocarbons generated by the decomposition of immature organic matter. Kerogen decomposition is thought to cause an internal pressure build up sufficient to form cracks in the shale, thus providing pathways for the outgoing hydrocarbons. We show that a 2D numerical model based on this idea qualitatively reproduces the experimentally observed dynamics of crack nucleation, growth and coalescence, as well as the irregular outlines of the cracks. Our results provide a new description of fracture pattern formation in low permeability shales.

Maya Kobchenko; Hamed Panahi; François Renard; Dag K. Dysthe; Anders Malthe-Sřrenssen; Adriano Mazzini; Julien Scheibert1; Bjřrn Jamtveit; Paul Meakin

2011-12-01T23:59:59.000Z

70

Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays  

Reports and Publications (EIA)

To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

2011-01-01T23:59:59.000Z

71

Target-rate Tracking for Shale-gas Multi-well Pads by Scheduled Shut-ins  

E-Print Network [OSTI]

horizontal wells and stimulation with multistage hydraulic fracturing. This practice normally leads with hydraulic fracturing (HF) is therefore crucial for draining reasonable amounts of gas from the low permeable shale. Horizontal wells together with multistage hydraulic fracturing is by far the most common

Foss, Bjarne A.

72

Economics and Politics of Shale Gas in Europe  

E-Print Network [OSTI]

, Asia Pacific – JKM) Source: Henry Hub and NBP – Bloomberg; JKM - Platts Overall, the US shale gas revolution produced improvements along several key dimensions: 1. Climate change mitigation – U.S. CO2 emissions fell by 5.3% between 2010- 2012... entry). 18 References AMION Consulting (2014). Potential Economic Impacts of Shale Gas in the Ocean Gateway. Available at: http://www.igasplc.com/media/10851/ocean- gateway-shale-gas-impact-study.pdf Barteau, M. and S. Kota (2014). Shale...

Chyong, Chi Kong; Reiner, David M.

2015-01-01T23:59:59.000Z

73

Outlook for U.S. shale oil and gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated offshore Non-associated onshore Projections History 2012 Adam Sieminski, IAEEAEA January...

74

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network [OSTI]

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

Ahmed, Ibraheem 1987-

2012-11-30T23:59:59.000Z

75

Economic viability of shale gas production in the Marcellus Shale; indicated by production rates, costs and current natural gas prices.  

E-Print Network [OSTI]

?? The U.S. natural gas industry has changed because of the recent ability to produce natural gas from unconventional shale deposits. One of the largest… (more)

Duman, Ryan J.

2012-01-01T23:59:59.000Z

76

Oil shale retorting with steam and produced gas  

SciTech Connect (OSTI)

This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

Merrill, L.S. Jr.; Wheaton, L.D.

1991-08-20T23:59:59.000Z

77

Temperature Prediction Model for Horizontal Well with Multiple Fractures in Shale Reservoir  

E-Print Network [OSTI]

Fracture diagnostics is a key technology for well performance prediction of a horizontal well in a shale reservoir. The combination of multiple fracture diagnostic techniques gives reliable results, and temperature data has potential to provide more...

Yoshida, Nozomu

2013-04-12T23:59:59.000Z

78

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

79

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network [OSTI]

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev, and environmental effects. In turn, the greenhouse gas and atmospheric aerosol assumptions underlying climate://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O

80

The U.S. Natural Gas and Shale Production Outlook  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind  

E-Print Network [OSTI]

Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind #12;1 Pennsylvania Energy Impacts Assessment Report 1: Marcellus Shale Natural Gas and Wind November 15, 2010 Author.....................................................................................................................3 Marcellus Shale Natural Gas

Boyer, Elizabeth W.

82

Oil and Gas CDT Structural and depositional controls on shale gas resources in  

E-Print Network [OSTI]

Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

Henderson, Gideon

83

Computer simulation of hydraulic fracturing in shales-influences on primary migration  

SciTech Connect (OSTI)

Hydraulic tension fractures in a shale layer during sedimentation are simulated by use of computer techniques. The depth at which fractures form is directly proportional to the hydraulic conductivity and tensile strength, and inversely proportional to the rate of sedimentation and thickness of the shale layer. Hydraulic fractures may form at depths of oil generation to facilitate primary migration. This paper describes an attempt to simulate the process of hydraulic fracturing during burial and compaction of a shale layer by use of an elementary model. One objective is to investigate the role of various factors in hydraulic tension fracturing of shales in a tectonically relaxed area. Another objective is to see whether hydraulic fractures form at depths of oil generation.

Ozkaya, I.

1984-05-01T23:59:59.000Z

84

90-day Second Report on Shale Gas Production - Secretary of Energy...  

Broader source: Energy.gov (indexed) [DOE]

90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board Novemeber 18,...

85

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network [OSTI]

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil… (more)

Chen, Ke

2013-01-01T23:59:59.000Z

86

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

87

Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in  

E-Print Network [OSTI]

Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

88

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information  

E-Print Network [OSTI]

Life Cycle Analysis on Greenhouse Gas (GHG) Emissions of Marcellus Shale Gas Supporting Information 1. GHG Emissions Estimation for Production of Marcellus Shale Gas 1.1 Preparation of Well Pad estimate from Columbia University shows the size of a multi-well pad of Marcellus Shale averages 20

Jaramillo, Paulina

89

90-day Interim Report on Shale Gas Production - Secretary of...  

Broader source: Energy.gov (indexed) [DOE]

reduce the environmental impact and improve the safety of shale gas production. Natural gas is a cornerstone of the U.S. economy, providing a quarter of the country's total...

90

La Revolucin del Shale Gas Profesor: Hugh Rudnick  

E-Print Network [OSTI]

................................ 36 Impacto / PreocupaciĂłn Ambiental...................................................................................... 38 Impacto Ambiental en los Procesos de ExtracciĂłn del Shale Gas.................................................................................................................. 11 Impacto en las Reservas Mundiales de Gas y Proyecciones Relevantes

Rudnick, Hugh

91

Forecasting long-term gas production from shale  

E-Print Network [OSTI]

Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

Cueto-Felgueroso, Luis

92

A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models  

E-Print Network [OSTI]

Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

Samandarli, Orkhan

2012-10-19T23:59:59.000Z

93

Stimulation rationale for shale gas wells: a state-of-the-art report  

SciTech Connect (OSTI)

Despite the large quantities of gas contained in the Devonian Shales, only a small percentage can be produced commercially by current production methods. This limited production derives both from the unique reservoir properties of the Devonian Shales and the lack of stimulation technologies specifically designed for a shale reservoir. Since October 1978 Science Applications, Inc. has been conducting a review and evaluation of various shale well stimulation techniques with the objective of defining a rationale for selecting certain treatments given certain reservoir conditions. Although this review and evaluation is ongoing and much more data will be required before a definitive rationale can be presented, the studies to date do allow for many preliminary observations and recommendations. For the hydraulic type treatments the use of low-residual-fluid treatments is highly recommended. The excellent shale well production which is frequently observed with only moderate wellbore enlargement treatments indicates that attempts to extend fractures to greater distances with massive hydraulic treatments are not warranted. Immediate research efforts should be concentrated upon limiting production damage by fracturing fluids retained in the formation, and upon improving proppant transport and placement so as to maximize fracture conductivity. Recent laboratory, numerical modeling and field studies all indicate that the gas fracturing effects of explosive/propellant type treatments are the predominate production enhancement mechanism and that these effects can be controlled and optimized with properly designed charges. Future research efforts should be focused upon the understanding, prediction and control of wellbore fracturing with tailored-pulse-loading charges. 36 references, 7 figures, 2 tables.

Young, C.; Barbour, T.; Blanton, T.L.

1980-12-01T23:59:59.000Z

94

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 New methods for maximising shale permeability and minimising risk  

E-Print Network [OSTI]

shale permeability and minimising risk during hydraulic fracturing Supervisor(s): Agust Gudmundsson-fracture mechanics, rock physics, and sedimentology there are three aspects of hydraulic fracturing of gas shales. More specifically, hydraulic fracturing of gas shales requires that fluid-driven fractures propagate

Sheldon, Nathan D.

95

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth  

E-Print Network [OSTI]

The role of surface chemical effects in hydraulic fracturing of shale is studied using the results of unconfined compression tests and Brazilian tests on Mancos shale- cored at depths of 20-60 ft. The rock mineralogy, total organic carbon and cation...

Aderibigbe, Aderonke

2012-07-16T23:59:59.000Z

96

Evaluation of massive hydraulic fracturing experiments in the Devonian Shales in Lincoln County, West Virginia  

E-Print Network [OSTI]

EVALUATION OF MASSIVE HYDRAULIC FRACTURING EXPERIMENTS IN THE DEVONIAN SHALES IN LINCOLN COUNTY, WEST VIRGINIA A Thesis by KAREN ELAINE HOLGATE Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering EVALUATION OF MASSIVE HYDRAULIC FRACTURING EXPERIMENTS IN THE DEVONIAN SHALES IN LINCOLN COUNTY, WEST VIRGINIA A Thesis by KAREN ELAINE HDLGATE Approved...

Holgate, Karen Elaine

1987-01-01T23:59:59.000Z

97

Occurrence of Multiple Fluid Phases Across a Basin, in the Same Shale Gas Formation – Eagle Ford Shale Example  

E-Print Network [OSTI]

Shale gas and oil are playing a significant role in US energy independence by reversing declining production trends. Successful exploration and development of the Eagle Ford Shale Play requires reservoir characterization, recognition of fluid...

Tian, Yao

2014-04-29T23:59:59.000Z

98

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011. References to popular press and advocacy groups, both of which are numerous and described in detail elsewhere of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners

Manning, Sturt

99

Assessment of Eagle Ford Shale Oil and Gas Resources  

E-Print Network [OSTI]

, and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

Gong, Xinglai

2013-07-30T23:59:59.000Z

100

A study of the effects of stimulation on Devonian Shale gas well performance  

E-Print Network [OSTI]

of actual production data from producing Devonian Shale gas wells throughout the Appalachian Basin. These comparisons are of limited use, however, because they fail to take into account recently developed stimulation technologies and because compari... by analysis of these data. Unfortunately, too little data are available for wells stimulated using current technologies. This study included no production data from wells stimulated by radial (tailored-pulse) fracturing methods. These data are vital...

Zuber, Michael Dean

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek, University of Texas At Austin  

E-Print Network [OSTI]

to unconventional hydrocarbon reservers such as oil shales, gas shales, tight gas sands, coalbed methane, and gas

Patzek, Tadeusz W.

102

Back to previous page Shale gas: Can we safely tap  

E-Print Network [OSTI]

and associated hydrocarbon liquids are produced by hydraulic fracturing, or "fracking." One million to 5 million gallons of fracking fluid -- a mixture of water, sand and chemical additives -- is injected along that fracking fluid can contaminate shallow underground drinking-water supplies, the distance between deep shale

Deutch, John

103

RPSEA UNCONVENTIONAL GAS CONFERENCE 2012: Geology, the Environment, Hydraulic Fracturing  

E-Print Network [OSTI]

Recovery and Salt Production - Jim Silva, GE Oil & Gas 9:30 a.m. Appalachian Shale and Barnett Area Water Shale Coalition 8:30 a.m. Meeting Overview & Agenda - Kent Perry, Vice President, Onshore Programs Isotope Interpretation Tools to Optimize Gas Shale Production - Yongchun Tang, PEER Institute Shale Gas

Yener, Aylin

104

4D imaging of fracturing in organic-rich shales during heating1 Maya Kobchenko1  

E-Print Network [OSTI]

1 4D imaging of fracturing in organic-rich shales during heating1 2 Maya Kobchenko1 , Hamed Panahi1, Ecully CEDEX,9 France.10 5 Idaho National Laboratory, Idaho Falls, USA11 6 Institute for Energy Technology, Kjeller, Norway12 13 #12;2 Abstract14 To better understand the mechanisms of fracture pattern

Boyer, Edmond

105

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale  

E-Print Network [OSTI]

Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

Deshpande, Vaibhav Prakashrao

2009-05-15T23:59:59.000Z

106

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

107

Shale Gas and Climate Targets: Can They Be Reconciled?  

E-Print Network [OSTI]

Shale Gas and Climate Targets: Can They Be Reconciled? Mark Jaccard and Brad Griffin School greenhouse gas (GHG) emissions 33% below their 2007 level by 2020. By 2050, it has committed to emissions to promote the exploitation of highly valuable provincial natural gas resources in spite of the challenges

Pedersen, Tom

108

Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale  

SciTech Connect (OSTI)

An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

Barbour, T.G.; Mihalik, G.R.

1980-11-01T23:59:59.000Z

109

Review article Oil and gas wells and their integrity: Implications for shale and  

E-Print Network [OSTI]

Review article Oil and gas wells and their integrity: Implications for shale and unconventional by Elsevier Ltd. 1. Introduction The rapid expansion of shale gas and shale oil exploration and exploitation xxx Keywords: Shale Fracking Integrity Barrier Integrity Wells a b s t r a c t Data from around

Jackson, Robert B.

110

Evaluation of the EOR potential in shale oil reservoirs by cyclic gas injection.  

E-Print Network [OSTI]

??Abstract The current available technique to produce shale oil is through primary depletion using horizontal wells with multiple transverse fractures. The oil recovery factor is… (more)

Wan, Tao

2013-01-01T23:59:59.000Z

111

Evaluation of the EOR Potential in Shale Oil Reservoirs by Cyclic Gas Injection.  

E-Print Network [OSTI]

??Abstract The current available technique to produce shale oil is through primary depletion using horizontal wells with multiple transverse fractures. The oil recovery factor is… (more)

Wan, Tao

2013-01-01T23:59:59.000Z

112

Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas Reservoir  

E-Print Network [OSTI]

SPE 141058 Numerical Simulation and Multiple Realizations for Sensitivity Study of Shale Gas. The abstract must contain conspicuous acknowledgment of SPE copyright. Abstract Shale gas in the United States the largest conventional gas accumulations in the world. Shale gas success is directly the result

Mohaghegh, Shahab

113

Characterization of an Eastern Kentucky Devonian Shales well using a naturally fractured, layered reservoir description  

E-Print Network [OSTI]

of gas in place. ' Although production from the Devonian Shales began as early as 1821, only an estimated 2. 5 Tscf of gas had been produced through 1980, z with estimates of remaining recoverable gas ranging from 27 Tscf using a current technology... scenario, to 42 Tscf by applying advanced technology. ' Current production frotn the Devonian Shales of the Appalachian Basin is estimated at 0. 2 Tscf per year. ' The Devonian S hales is actively being developed in large portions of Pennsylvania, West...

Jochen, John Edward

1993-01-01T23:59:59.000Z

114

Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide  

SciTech Connect (OSTI)

This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

Hall, V.S. (comp.)

1980-06-01T23:59:59.000Z

115

Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from  

E-Print Network [OSTI]

SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

Torres-VerdĂ­n, Carlos

116

Assessment of Factors Influencing Effective CO{sub 2} Storage Capacity and Injectivity in Eastern Gas Shales  

SciTech Connect (OSTI)

Building upon advances in technology, production of natural gas from organic-rich shales is rapidly developing as a major hydrocarbon supply option in North America and around the world. The same technology advances that have facilitated this revolution - dense well spacing, horizontal drilling, and hydraulic fracturing - may help to facilitate enhanced gas recovery (EGR) and carbon dioxide (CO{sub 2}) storage in these formations. The potential storage of CO {sub 2} in shales is attracting increasing interest, especially in Appalachian Basin states that have extensive shale deposits, but limited CO{sub 2} storage capacity in conventional reservoirs. The goal of this cooperative research project was to build upon previous and on-going work to assess key factors that could influence effective EGR, CO{sub 2} storage capacity, and injectivity in selected Eastern gas shales, including the Devonian Marcellus Shale, the Devonian Ohio Shale, the Ordovician Utica and Point Pleasant shale and equivalent formations, and the late Devonian-age Antrim Shale. The project had the following objectives: (1) Analyze and synthesize geologic information and reservoir data through collaboration with selected State geological surveys, universities, and oil and gas operators; (2) improve reservoir models to perform reservoir simulations to better understand the shale characteristics that impact EGR, storage capacity and CO{sub 2} injectivity in the targeted shales; (3) Analyze results of a targeted, highly monitored, small-scale CO{sub 2} injection test and incorporate into ongoing characterization and simulation work; (4) Test and model a smart particle early warning concept that can potentially be used to inject water with uniquely labeled particles before the start of CO{sub 2} injection; (5) Identify and evaluate potential constraints to economic CO{sub 2} storage in gas shales, and propose development approaches that overcome these constraints; and (6) Complete new basin-level characterizations for the CO{sub 2} storage capacity and injectivity potential of the targeted eastern shales. In total, these Eastern gas shales cover an area of over 116 million acres, may contain an estimated 6,000 trillion cubic feet (Tcf) of gas in place, and have a maximum theoretical storage capacity of over 600 million metric tons. Not all of this gas in-place will be recoverable, and economics will further limit how much will be economic to produce using EGR techniques with CO{sub 2} injection. Reservoir models were developed and simulations were conducted to characterize the potential for both CO{sub 2} storage and EGR for the target gas shale formations. Based on that, engineering costing and cash flow analyses were used to estimate economic potential based on future natural gas prices and possible financial incentives. The objective was to assume that EGR and CO{sub 2} storage activities would commence consistent with the historical development practices. Alternative CO{sub 2} injection/EGR scenarios were considered and compared to well production without CO{sub 2} injection. These simulations were conducted for specific, defined model areas in each shale gas play. The resulting outputs were estimated recovery per typical well (per 80 acres), and the estimated CO{sub 2} that would be injected and remain in the reservoir (i.e., not produced), and thus ultimately assumed to be stored. The application of this approach aggregated to the entire area of the four shale gas plays concluded that they contain nearly 1,300 Tcf of both primary production and EGR potential, of which an estimated 460 Tcf could be economic to produce with reasonable gas prices and/or modest incentives. This could facilitate the storage of nearly 50 Gt of CO{sub 2} in the Marcellus, Utica, Antrim, and Devonian Ohio shales.

Godec, Michael

2013-06-30T23:59:59.000Z

117

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

118

NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT  

E-Print Network [OSTI]

NBER WORKING PAPER SERIES THE HOUSING MARKET IMPACTS OF SHALE GAS DEVELOPMENT Lucija Muehlenbachs © notice, is given to the source. #12;The Housing Market Impacts of Shale Gas Development Lucija to control for confounding factors, we recover hedonic estimates of property value impacts from shale gas

Habib, Ayman

119

Strategic Planning, Design and Development of the Shale Gas Supply Chain Network  

E-Print Network [OSTI]

1 Strategic Planning, Design and Development of the Shale Gas Supply Chain Network Diego C. Cafaro1-term planning of the shale gas supply chain is a relevant problem that has not been addressed before Shale gas, supply chain, strategic planning, MINLP, solution algorithm * Corresponding author. Tel.: +1

Grossmann, Ignacio E.

120

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker  

E-Print Network [OSTI]

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use

Angenent, Lars T.

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed  

E-Print Network [OSTI]

Exploring the Environmental Effects of Shale Gas Development in the Chesapeake Bay Watershed STAC Committee). 2013. Exploring the environmental effects of shale gas development in the Chesapeake Bay of shale gas development in the Chesapeake Bay Watershed. The purpose of this workshop was to engage

122

www.tyndall.ac.uk Shale gas: an updated assessment of  

E-Print Network [OSTI]

, such as oil derived from tar sands. Nevertheless, there are several routes by which shale gas extraction maywww.tyndall.ac.uk Shale gas: an updated assessment of environmental and climate change impacts Summary This report, commissioned by The Co-operative, is an update on our January report, Shale gas

Matthews, Adrian

123

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1  

E-Print Network [OSTI]

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick1 , P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

124

Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows  

SciTech Connect (OSTI)

Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

Broadhead, R.F.; Potter, P.E.

1980-11-01T23:59:59.000Z

125

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

Henderson, Gideon

126

World Shale Gas Resources: An Initial Assessment of 14 Regions  

E-Print Network [OSTI]

resources is also reflected in EIA's Annual Energy Outlook 2011 (AEO2011) energy projectionsWorld Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States APRIL 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 #12;The information presented

Boyer, Elizabeth W.

127

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development  

E-Print Network [OSTI]

Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development A Report Engineering) W. VA #12;Energy Transitions: A Systems Approach August 2011 version Page 2 Energy Transitions sources globally, some very strong short-term drivers of energy transitions reflect rising concerns over

Walter, M.Todd

128

Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently in great  

E-Print Network [OSTI]

Shale Gas Opportunities It's no secret that petroleum and natural gas engineers are currently and natural gas engineers design and develop methods for getting oil and gas from underground deposits's Department of Petroleum and Natural Gas Engineering is competitive, with qualified applicants receiving

Mohaghegh, Shahab

129

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

130

Natural Gas from Shale | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy - Third QuarterNaturalShale

131

NATURAL GAS FROM SHALE: Questions and Answers  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving AwayAvailability ofMyChallengesis shale

132

New Albany shale gas flow starts in western Indiana  

SciTech Connect (OSTI)

This paper briefly describes the stratigraphy and lithology of the New Albany shale and how this affects the placement of gas recovery wells in the Greene County, Indiana area. It reviews the project planning aspects including salt water reinjection and well spacing for optimum gas recovery. It also briefly touches on how the wells were completed and brought on-line for production and distribution.

NONE

1996-04-29T23:59:59.000Z

133

Synthesis of organic geochemical data from the Eastern Gas Shales  

SciTech Connect (OSTI)

Over 2400 core and cuttings samples of Upper Devonian shales from wells in the Appalachian, Illinois, and Michigan Basins have been characterized by organic geochemical methods to provide a basis for accelerating the exploitation of this unconventional, gas-rich resource. This work was part of a program initiated to provide industry with criteria for locating the best areas for future drilling and for the development of stimulation methods that will make recovery of the resource economically attractive. The geochemical assessment shows that the shale, in much of the Appalachian, Illinois, and Michigan Basins is source rock that is capable of generating enormous quantities of gas. In some areas the shales are also capable of generating large quantities of oil as well. The limiting factors preventing these sources from realizing most of their potential are their very low permeabilities and the paucity of potential reservoir rocks. This geochemical data synthesis gives direction to future selection of sites for stimulation research projects in the Appalachian Basin by pinpointing those areas where the greatest volumes of gas are contained in the shale matrix. Another accomplishment of the geochemical data synthesis is a new estimate of the total resource of the Appalachian Basin. The new estimate of 2500 TCF is 25 percent greater than the highest previous estimates. This gives greater incentive to government and industry to continue the search for improved stimulation methods, as well as for improved methods for locating the sites where those improved stimulation methods can be most effectively applied.

Zielinski, R.E.; McIver, R.D.

1982-01-01T23:59:59.000Z

134

Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems  

E-Print Network [OSTI]

Lagrangian Relaxation Based Decompositon for Well Scheduling in Shale-gas Systems Brage Rugstad of mid and late-life wells in shale-gas systems. This state of the wells can be prevented by performing. In this paper, we present a Lagrangian relaxation based scheme for shut-in scheduling of distributed shale multi

Grossmann, Ignacio E.

135

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network [OSTI]

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

136

Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon  

E-Print Network [OSTI]

generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

Boyer, Elizabeth W.

137

Forecasting long-term gas production Luis Cueto-Felguerosoa  

E-Print Network [OSTI]

by increasing the length of a single well within the gas-bearing shale. Hydraulic fracturing, or "fracking" (9

Patzek, Tadeusz W.

138

Trip report for field visit to Fayetteville Shale gas wells.  

SciTech Connect (OSTI)

This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.

Veil, J. A.; Environmental Science Division

2007-09-30T23:59:59.000Z

139

Shale gas - what happened? | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecoveryAwardsFacility inDepartmentFractureOil &

140

High Energy Gas Fracturing Test  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

Schulte, R.

2001-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oil and Gas CDT Are non-marine organic-rich shales suitable exploration  

E-Print Network [OSTI]

Oil and Gas CDT Are non-marine organic-rich shales suitable exploration targets? The University Hesselbo, University of Exeter http://emps.exeter.ac.uk/csm/staff/sph216 Key Words Shales, depositional environments, diagenesis, sedimentology, geochemistry Overview Shales are of increasing interest not only

Henderson, Gideon

142

The Influence of Shale gas on U.S. Energy and Environmental Policy  

E-Print Network [OSTI]

The emergence of U.S. shale gas resources to economic viability affects the nation’s energy outlook and the expected role of natural gas in climate policy. Even in the face of the current shale gas boom, however, questions ...

Jacoby, H.D.

143

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network [OSTI]

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large

Jackson, Robert B.

144

TOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen  

E-Print Network [OSTI]

the nation's energy landscape. However, the environmental impacts associated with ``fracking'' for shale gas: November 20th , 12:00 -1:00pm, 300 Rice Hall Atmospheric Impacts of Expanded Natural Gas Use HydraulicTOPIC: Shale Gas Emissions w/David Allen, Energy Institute HOST: Jeff Tester and Todd Cowen DATE

Angenent, Lars T.

145

Natural gas potential of the New Albany shale group (Devonian-Mississippian) in southeastern Illinois  

SciTech Connect (OSTI)

Data from geologic and geochemical studies of the New Albany shale group indicate that a 19-country area of southeastern Illinois is a favorable area to explore for gas in Devonian shale. Although gas shows in the shales have been encountered in several wells drilled in this area, no attempts were made to complete or evaluate a shale gas well until 1979. It is found that conventional rotary drilling with mud base drilling fluids likely causes extensive formation damage and may account for the paucity of gas shows and completion attempts in the Devonian shales; therefore, commercial production of shale gas in Illinois probably will require novel drilling completion techniques not commonly used by local operators. 16 refs.

Cluff, R.M.; Dickerson, D.R.

1982-04-01T23:59:59.000Z

146

Shale Gas 101 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment of EnergyAprilAShale Gas 101 This

147

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Life cycle greenhouse gas emissions of Marcellus shale gas This article has been downloaded from.1088/1748-9326/6/3/034014 Life cycle greenhouse gas emissions of Marcellus shale gas Mohan Jiang1 , W Michael Griffin2,3 , Chris greenhouse gas (GHG) emissions from the production of Marcellus shale natural gas and compares its emissions

Jaramillo, Paulina

148

Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs  

E-Print Network [OSTI]

pressures )( p by conventional well tests due to very low permeabilities. Decline curves for conventional gas, when applied on shale gas reservoirs, can not be validated by material balance due to unavailability of average reservoir pressure. However...* variable rate gas BDF including adsorbed gas exhibiting exponential decline (b = 1)................. 25 4.6 Plot of [m(pi )? m(pwf )] / qg(t) vs material balance pseudo time tca*, xii FIGURE...

Mengal, Salman Akram

2010-10-12T23:59:59.000Z

149

Deep, water-free gas potential is upside to New Albany shale play  

SciTech Connect (OSTI)

The New Albany shale of the Illinois basin contains major accumulations of Devonian shale gas, comparable both to the Antrim shale of the Michigan basin and the Ohio shale of the Appalachian basin. The size of the resource originally assessed at 61 tcf has recently been increased to between 323 tcf and 528 tcf. According to the 1995 US Geological Survey appraisal, New Albany shale gas represents 52% of the undiscovered oil and gas reserves of the Illinois basin, with another 45% attributed to coalbed methane. New Albany shale gas has been developed episodically for over 140 years, resulting in production from some 40 fields in western Kentucky, 20 fields in southern Indiana, and at least 1 field in southern Illinois. The paper describes two different plays identified by a GRI study and prospective areas.

Hamilton-Smith, T. [Hamilton-Smith LLC, Lexington, KY (United States)

1998-02-16T23:59:59.000Z

150

Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania  

E-Print Network [OSTI]

Fast-paced growth in natural gas production in the Marcellus Shale has fueled intense debate over the risk of groundwater contamination from hydraulic fracturing and the shale gas extraction process at large. While several ...

Fletcher, Sarah Marie

2012-01-01T23:59:59.000Z

151

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network [OSTI]

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

Wang, Z. Jane

152

Effective fracture geometry obtained with large water sand ratio  

E-Print Network [OSTI]

Shale gas formation exhibits some unusual reservoir characteristics: nano-darcy matrix permeability, presence of natural fractures and gas storage on the matrix surface that makes it unique in many ways. It’s difficult to design an optimum fracture...

Kumar, Amrendra

2009-05-15T23:59:59.000Z

153

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network [OSTI]

on Production from Shale Formations: Application to New Albany Shale A. Kalantari Dahaghi, S. D. Mohaghegh, West and the orientation of horizontal wells on gas production in New Albany Shale. The study was conducted using as fracture bedding of the New Albany Shale are modeled using information found in the literature and outcrops

Mohaghegh, Shahab

154

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

155

Shale Oil and Gas, Frac Sand, and Watershed  

E-Print Network [OSTI]

;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

Minnesota, University of

156

Gas seal for an in situ oil shale retort and method of forming thermal barrier  

DOE Patents [OSTI]

A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.

Burton, III, Robert S. (Mesa, CO)

1982-01-01T23:59:59.000Z

157

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas information  

E-Print Network [OSTI]

Implementation of FracTracker.org: A GeoWeb platform to manage and communicate shale gas Health, GSPH. Background Natural gas drilling in shale formations worldwide employs relatively new drilling in the Marcellus Shale (See Figure 1.) of the northeastern United States necessitates better

Sibille, Etienne

158

A Political Ecology of Hydraulic Fracturing for Natural Gas in  

E-Print Network [OSTI]

environments, both in terms of perception and in terms of physical space. (Robbins 2004) #12;Outline ! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study Corbett #12;PA's Marcellus Shale Country is constructed as a Neoliberal Environment · Residents

Scott, Christopher

159

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

2012-02-24T23:59:59.000Z

160

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect (OSTI)

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

162

Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method  

E-Print Network [OSTI]

There is a huge demand in the industry to forecast production in shale gas reservoirs accurately. There are many methods including volumetric, Decline Curve Analysis (DCA), analytical simulation and numerical simulation. Each one of these methods...

Joshi, Krunal Jaykant

2012-10-19T23:59:59.000Z

163

Precise inversion of logged slownesses for elastic parameters in a gas shale formation  

E-Print Network [OSTI]

Dipole sonic log data recorded in a vertical pilot well and the associated production well are analyzed over a 200×1100-ft section of a North American gas shale formation. The combination of these two wells enables angular ...

Miller, Douglas E.

164

Regulation of shale gas development : an argument for state preeminence with federal support  

E-Print Network [OSTI]

Shale gas development has become big business in the United States during the past decade, introducing drilling to parts of the country that have not seen it in decades and provoking an accelerating shift in the country's ...

Kansal, Tushar, M.C.P. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

165

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

166

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

In March, work continued on characterizing probabilities for determining natural fracturing associated with the GGRB for the Upper Cretaceous tight gas plays. Structural complexity, based on potential field data and remote sensing data was completed. A resource estimate for the Frontier and Mesa Verde play was also completed. Further, work was also conducted to determine threshold economics for the play based on limited current production in the plays in the Wamsutter Ridge area. These analyses culminated in a presentation at FETC on 24 March 1999 where quantified natural fracture domains, mapped on a partition basis, which establish ''sweet spot'' probability for natural fracturing, were reviewed. That presentation is reproduced here as Appendix 1. The work plan for the quarter of January 1, 1999--March 31, 1999 comprised five tasks: (1) Evaluation of the GGRB partitions for structural complexity that can be associated with natural fractures, (2) Continued resource analysis of the balance of the partitions to determine areas with higher relative gas richness, (3) Gas field studies, (4) Threshold resource economics to determine which partitions would be the most prospective, and (5) Examination of the area around the Table Rock 4H well.

NONE

1999-04-30T23:59:59.000Z

167

Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar AprFeet) Year

168

Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar AprFeet)

169

Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources  

E-Print Network [OSTI]

was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford... and Agua Nueva shales combined resources were estimated to be 27-87 TCF (P90-P10) (PEMEX 2011). An assessment of the Eagle Ford shale oil and gas resources in the US is being done by the Crisman Institute for Petroleum Research at Texas A&M University...

Morales Velasco, Carlos Armando

2013-08-02T23:59:59.000Z

170

Interdisciplinary Investigation of CO2 Sequestration in Depleted Shale Gas Formations  

SciTech Connect (OSTI)

This project investigates the feasibility of geologic sequestration of CO2 in depleted shale gas reservoirs from an interdisciplinary viewpoint. It is anticipated that over the next two decades, tens of thousands of wells will be drilled in the 23 states in which organic-rich shale gas deposits are found. This research investigates the feasibility of using these formations for sequestration. If feasible, the number of sites where CO2 can be sequestered increases dramatically. The research embraces a broad array of length scales ranging from the ~10 nanometer scale of the pores in the shale formations to reservoir scale through a series of integrated laboratory and theoretical studies.

Zoback, Mark; Kovscek, Anthony; Wilcox, Jennifer

2013-09-30T23:59:59.000Z

171

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

172

Numerical-model developments for stimulation technologies in the Eastern Gas Shales Project  

SciTech Connect (OSTI)

These efforts were directed towards the development of a numerical tensile failure model that could be used to make a parameter sensitivity study of the EGSP wellbore stimulation methods for gas recovery in Devonain shales, calculations were performed using the NTS Multi-Frac Mineback Experiments as the geometry, boundary conditions and material properties of the models. Several major accomplishments were achieved during this task. These include: development of a Crack and Void Strain (CAVS) tensile failure model for one-dimensional fracture analysis using the one-dimensional geometries available in SAI's STEALTH 1-D finite-difference code; modification of the original CAVS tensile failure criteria to improve its representation of multiple fracture development by introducing a logic that adjusts the material's tensile strength (both for crack initiation and crack propagation) according to the degree of cracking that has occurred; adding a submodel to CAVS to allow for cracking propping when a crack is reclosed and to require energy to be expanded during this process; adding a submodel to CAVS to allow for crack pressurization when a crack void strain is in communication with the fluid pressure of the borehole; and performing a parameter sensitivity analysis to determine the effect that the material properties of the rock has on crack development, to include the effects of yielding and compaction. Using the CAVS model and its submodels, a series of STEALTH calculations were then performed to estimate the response of the NTS unaugmented Dynafrac experiment. Pressure, acceleration and stress time histories and snapshot data were obtained and should aid in the evaluation of these experiments. Crack patterns around the borehole were also calculated and should be valuable in a comparison with the fracture patterns observed during mineback.

Barbour, T.G.; Maxwell, D.E.; Young, C.

1980-01-01T23:59:59.000Z

173

The effect of fractures, faults, and sheared shale zones on the hydrology of Bear Creek Burial Grounds A-South, Oak Ridge, Tennessee  

E-Print Network [OSTI]

Previous hydrologic models of flow in Bear Creek Valley have presented lateral flow as occurring through the Nolichucky Shale in parallel to strike fractures within thin carbonate beds; the effects of faults were not considered. This study presents...

Hollon, Dwight Mitchell

1997-01-01T23:59:59.000Z

174

Oil & Gas Research | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

175

Explosively produced fracture of oil shale. Progress report, July-September 1981. [Field experiments; computer models; retort stability  

SciTech Connect (OSTI)

The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to create a rubble bed for a modified in situ retort. This report outlines our first field experiments at the Anvil Points Mine in Colorado. These experiments are part of a research program, sponsored by the Laboratory through the Department of Energy and by a Consortium of oil companies. Also included are some typical numerical calculations made in support of proposed field experiments. Two papers detail our progress in computer modeling and theory. The first presents a method for eliminating hourglassing in two-dimensional finite-difference calculations of rock fracture without altering the physical results. The second discusses the significant effect of buoyancy on tracer gas flow through the retort. A paper on retort stability details a computer application of the Schmidt graphical method for calculating fine-scale temperature gradients in a retort wall. The final paper, which describes our approach to field experiments, presents the instrumentation and diagnostic techniques used in rock fragmentation experiments at Anvil Points Mine.

none,

1982-04-01T23:59:59.000Z

176

Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14AlaskaShale Gas

177

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network [OSTI]

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

178

Selection of fracture fluid for stimulating tight gas reservoirs  

E-Print Network [OSTI]

..........................................51 6 Water Fracture Fluid Description ..............................................................56 7 Gel Fracture Fluid Description ..................................................................56 8 Proppant Description... Based on Proppant Concentration ........................66 24 Cumulative Frequency Distribution for 3-Year Cumulative Gas Production for Both Groups and Both Treatments (Carthage...

Malpani, Rajgopal Vijaykumar

2007-04-25T23:59:59.000Z

179

,"Miscellaneous States Shale Gas Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale Proved Reserves (Billion Cubic Feet)"ShaleCoalbed Methane ProvedShale Gas Proved

180

Barnett Shale Municipal Oil and Gas Ordinance Dynamics: A Spatial Perspective  

E-Print Network [OSTI]

criticisms of shale gas wells is the environmental impact, not the least of which is watershed and aquifer degradation due to the usage of fracking fluids (Mantell 2011) that contain known carcinogens including benzene, toluene, and formaldehyde (Rahm 2011... residents concerned that drilling — or more precisely, the injection of spent fracking fluids deep underground — is jeopardizing the underlying geologic stability of the Barnett Shale (Malewitz 2014a). Municipal responses to impacts In an effort to allay...

Murphy, Trey Daniel-Aaron

2013-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

INTEGRATION OF HIGH TEMPERATURE GAS REACTORS WITH IN SITU OIL SHALE RETORTING  

SciTech Connect (OSTI)

This paper evaluates the integration of a high-temperature gas-cooled reactor (HTGR) to an in situ oil shale retort operation producing 7950 m3/D (50,000 bbl/day). The large amount of heat required to pyrolyze the oil shale and produce oil would typically be provided by combustion of fossil fuels, but can also be delivered by an HTGR. Two cases were considered: a base case which includes no nuclear integration, and an HTGR-integrated case.

Eric P. Robertson; Michael G. McKellar; Lee O. Nelson

2011-05-01T23:59:59.000Z

182

Study of gas production potential of New Albany Shale (group) in the Illinois basin  

SciTech Connect (OSTI)

The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

183

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

184

Table 4. Principal shale gas plays: natural gas production and proved reserves, 2012-13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shale gas plays:

185

DOE's Shale Gas and Hydraulic Fracturing Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Departmentto Develop Next-GenerationEnergy OnMay

186

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network [OSTI]

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

187

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

188

Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are  

E-Print Network [OSTI]

of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

Angenent, Lars T.

189

Water management in hydraulic fracturing-a planning and decision optimization platform  

E-Print Network [OSTI]

Recent developments in hydraulic fracturing technology have enabled cost-effective production of unconventional resources, particularly shale gas in the U.S. The process of hydraulic fracturing is water intensive, requiring ...

Mehta, Neha, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

190

Gasification kinetics of six eastern shales in steam and synthesis gas atmospheres  

SciTech Connect (OSTI)

Gasification reactivities have been determined for six Eastern shales with conversions described by a model incorporating fast and slow gasification reactions. A simple model, based on Indiana New Albany shale, was developed to describe the fast and slow weight loss as well as the slow sulfur and organic carbon gasification rates. The slow sulfur and organic carbon reactions are described by rate equations that are first order in sulfur and organic carbon and include the steam pressure. Terms in the organic carbon rate expression account for hydrogen and carbon monoxide inhibition of the steam-carbon reaction. The fraction of shale species lost by fast and slow gasification and the rate of slow sulfur gasification are similar (and assumed to be equal) for the six Eastern shales studied. Eastern shale organic carbon reactivities are different and have been described with different kinetic parameters in the slow organic carbon gasification rate equation. The kinetic expressions developed for Eastern shale gasification are valid in steam and steam; synthesis gas mixtures and for residence times of more than 3 minutes. Gasification is described for temperature and pressure ranges of 1144 to 1311 K and 0.20 to 3.55 MPa, respectively.

Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA))

1989-03-01T23:59:59.000Z

191

Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M.ASCE and Lynn E. Brown2  

E-Print Network [OSTI]

Page 1 Design of Bulk Railway Terminals for the Shale Oil and Gas Industry C. Tyler Dick, P.E., M: Railway transportation is playing a key role in the development of many new shale oil and gas reserves in North America. In the rush to develop new shale oil and gas plays, sites for railway transload terminals

Barkan, Christopher P.L.

192

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

193

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network [OSTI]

in unconventional reservoirs such as coalbed methane, shale gas and tight gas reservoirs. Developing these types of unconventional gas reservoirs improves our energy security, and benefits the overall economy. Also, natural gas is one of the cleanest and most...

Romero Lugo, Jose 1985-

2012-10-24T23:59:59.000Z

194

Geomechanical review of hydraulic fracturing technology  

E-Print Network [OSTI]

Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been documented in literature on the subject. The ...

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

195

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

, is widely used in industry to forecast shale gas wells. Left unconstrained, the model often overestimates reserves by a great deal. A minimum decline rate is imposed to prevent overestimation of reserves but with less than ten years of production history...

Statton, James Cody

2012-07-16T23:59:59.000Z

196

Intergrated study of the Devonian-age black shales in eastern Ohio. Final report  

SciTech Connect (OSTI)

This integrated study of the Devonian-age shales in eastern Ohio by the Ohio Department of Natural Resources, Division of Geological Survey is part of the Eastern Gas Shales Project sponsored by the US Department of Energy. The six areas of research included in the study are: (1) detailed stratigraphic mapping, (2) detailed structure mapping, (3) mineralogic and petrographic characterization, (4) geochemical characterization, (5) fracture trace and lineament analysis, and (6) a gas-show monitoring program. The data generated by the study provide a basis for assessing the most promising stratigraphic horizons for occurrences of natural gas within the Devonian shale sequence and the most favorable geographic areas of the state for natural gas exploration and should be useful in the planning and design of production-stimulation techniques. Four major radioactive units in the Devonian shale sequence are believed to be important source rocks and reservoir beds for natural gas. In order of potential for development as an unconventional gas resource, they are (1) lower and upper radioactive facies of the Huron Shale Member of the Ohio Shale, (2) upper Olentangy Shale (Rhinestreet facies equivalent), (3) Cleveland Shale Member of the Ohio Shale, and (4) lower Olentangy Shale (Marcellus facies equivalent). These primary exploration targets are recommended on the basis of areal distribution, net thickness of radioactive shale, shows of natural gas, and drilling depth to the radioactive unit. Fracture trends indicate prospective areas for Devonian shale reservoirs. Good geological prospects in the Devonian shales should be located where the fracture trends coincide with thick sequences of organic-rich highly radioactive shale.

Gray, J.D.; Struble, R.A.; Carlton, R.W.; Hodges, D.A.; Honeycutt, F.M.; Kingsbury, R.H.; Knapp, N.F.; Majchszak, F.L.; Stith, D.A.

1982-09-01T23:59:59.000Z

197

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-10T23:59:59.000Z

198

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-04-28T23:59:59.000Z

199

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-11T23:59:59.000Z

200

Shale Gas Spreads to the South | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluatingconstructionSessioneight NewShadesWaterShale

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

202

Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs  

SciTech Connect (OSTI)

The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

Stephen Holditch; A. Daniel Hill; D. Zhu

2007-06-19T23:59:59.000Z

203

Partitioning and chemical speciation of mercury, arsenic, and selenium during inert gas oil shale retorting  

SciTech Connect (OSTI)

A Green River shale from Colorado and a New Albany shale from Kentucky were retorted in the Pacific Northwest Laboratory 6-kg bench-scale retort at 1 to 2C/min and at 10C/min to maximum temperatures of 500 and 750C under a nitrogen sweep gas. The product streams were analyzed using a variety of methods including Zeeman atomic aabsortion spectroscopy, microwave-induced helium plasma spectroscopy, x-ray fluorescence, instrumental neutron activation analysis, high-pressure liquid and silica gel column chromatography, and mercury cold vapor atomic absorption. The results obtained using these analytical methods indicate the the distribution of mercury, arsenic, and selenium in the product stream is a function of oil shale type, heating rates, and maximum retorting temperatures. 23 refs., 15 figs., 5 tabs.

Olsen, K.B.; Evans, J.C.; Sklarew, D.S.; Girvin, D.C.; Nelson, C.L.; Lepel, E.A.; Robertson, D.E.; Sanders, R.W.

1985-12-01T23:59:59.000Z

204

Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques  

SciTech Connect (OSTI)

Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (<2 nm) size distribution. Micropore and mesopore volumes correlate with organic matter content in the samples. Accessibility of pores in coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

Mastalerz, Maria [Indiana Geological Survey; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Rupp, John A [ORNL

2012-01-01T23:59:59.000Z

205

Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

of pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this with the hope that we will eventually be able to determine how natural phenomena and additives affect long term resource production from unconventional oil...

Qureshi, Maha

2013-09-29T23:59:59.000Z

206

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

of pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this with the hope that we will eventually be able to determine how natural phenomena and additives affect long term resource production from unconventional oil...

Plamin, Sammazo Jean-bertrand

2013-09-29T23:59:59.000Z

207

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-01-01T23:59:59.000Z

208

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-04-01T23:59:59.000Z

209

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-10-29T23:59:59.000Z

210

Estimation of Fracture Porosity in an Unsaturated Fractured Welded Tuff Using Gas Tracer Testing  

SciTech Connect (OSTI)

Kinematic fracture porosity is an important hydrologic transport parameter for predicting the potential of rapid contaminant migration through fractured rock. The transport velocity of a solute moving within a fracture network is inversely related to the fracture porosity. Since fracture porosity is often one or two orders of magnitude smaller than matrix porosity, and fracture permeability is often orders of magnitude greater than matrix permeability, solutes may travel significantly faster in the fracture network than in the surrounding matrix. This dissertation introduces a new methodology for conducting gas tracer tests using a field portable mass spectrometer along with analytical tools for estimating fracture porosity using the measured tracer concentration breakthrough curves. Field experiments were conducted at Yucca Mountain, Nevada, consisting of air-permeability transient testing and gas-tracer-transport tests. The experiments were conducted from boreholes drilled within an underground tunnel as part of an investigation of rock mass hydrological behavior. Air-permeability pressure transients, recorded during constant mass flux injections, have been analyzed using a numerical inversion procedure to identify fracture permeability and porosity. Dipole gas tracer tests have also been conducted from the same boreholes used for air-permeability testing. Mass breakthrough data has been analyzed using a random walk particle-tracking model, with a dispersivity that is a function of the advective velocity. The estimated fracture porosity using the tracer test and air-injection test data ranges from .001 to .015. These values are an order of magnitude greater than the values estimated by others using hydraulically estimated fracture apertures. The estimates of porosity made using air-permeability test data are shown to be highly sensitive to formation heterogeneity. Uncertainty analyses performed on the gas tracer test results show high confidence in the parameter estimates made.

B.M. Freifeild

2001-10-18T23:59:59.000Z

211

202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States  

E-Print Network [OSTI]

This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 © 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

212

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

213

Recovery of oil from fractured reservoirs by gas displacement  

E-Print Network [OSTI]

RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

Unneberg, Arild

2012-06-07T23:59:59.000Z

214

EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

215

Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water  

E-Print Network [OSTI]

A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

Kleinguetl, Kevin (Kevin G.)

2011-01-01T23:59:59.000Z

216

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

NONE

1998-09-30T23:59:59.000Z

217

Shale Gas and Climate Targets: Can They Be Reconciled?  

E-Print Network [OSTI]

objectives. Second, because industry must incur the cost of CO2 separation as part of the production process this strategy creates for its GHG objectives. In recent years, natural gas exploration and development have is normally vented to the atmosphere as the gas is processed to market standards. While the expansion of B

218

Shale Gas Development Challenges: Surface Impacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecoveryAwardsFacility inDepartmentFracture Fluids

219

Shale Gas Development Challenges: Water | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecoveryAwardsFacility inDepartmentFracture FluidsWater

220

A study of natural gas extraction in Marcellus shale  

E-Print Network [OSTI]

With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Outlook for U.S. shale oil and gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argus Americas Crude Summit January 22, 2014 | Houston, TX By Adam Sieminski, EIA Administrator Six key plays account for nearly all recent growth in oil and natural gas production...

222

Thermochemically Driven Gas-Dynamic Fracturing (TDGF)  

SciTech Connect (OSTI)

This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in Chapter 4: use of diesel-fuel to raise the rock temperature by a combustion process in the well. The requirements for such a Gas-Vapor Generator are laid out, and the development of a prototype machine is explained. This is backed up with laboratory experiments showing that the fuel-water mixture used does significantly increase the viscosity of the oil samples. The prototype Gas-Vapor Generator is shown to be able to operate at temperatures of 240 C and pressures of 200 atm. Unfortunately, geopolitical and economic factors outside of our control led to the cancellation of the project before the field testing phase of the generator could be commenced. Nevertheless, it is to be hoped that this report demonstrates both the feasibility and desirability of the Gas-Vapor Generator approach to the application of TDGF technology in both existing and new wells, and provides a foundation for further research in the future.

Michael Goodwin

2008-12-31T23:59:59.000Z

223

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009  

E-Print Network [OSTI]

The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West for this research was provided by the West Virginia Oil and Natural Gas Association (WVONGA). The opinions herein Natural gas is a colorless, odorless, and tasteless fuel that is used by households, manufacturers

Mohaghegh, Shahab

224

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

225

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

226

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

227

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

228

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

in the rate and pressure data. Integration of the compositional shift analysis of this work with modern production analysis is used to infer reservoir properties. This work extends the current understanding of flow behavior and well performance for shale...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

229

Data Bias in Rate Transient Analysis of Shale Gas Wells  

E-Print Network [OSTI]

) ......................................................................................................... 10 6 Rate and time relationship developed by Gentry (1972) ............................ 11 7 Fetkovich type-curves ................................................................................ 13 8 Gas type-curves developed by Carter (1985... the production data analyst to the proper use of superposition diagnostic plots ? To program a VBA program that performs proper use of superposition time functions according to the proposed work flow. 5 1.4 Organization of the thesis This report...

Agnia, Ammar Khalifa Mohammed

2012-07-16T23:59:59.000Z

230

Low permeability gas reservoir production using large hydraulic fractures  

E-Print Network [OSTI]

extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

Holditch, Stephen A

1970-01-01T23:59:59.000Z

231

Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures  

E-Print Network [OSTI]

FRACTURED GAS WELL ANALYSIS - EVALUATION OF IN SITU RESERVOIR PROPERTIES OF LOW PERMEABILITY GAS WELLS STIMULATED BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Submitted to the Graduate College of Texas AQ1... BY FINITE CONDUCTIVITY HYDRAULIC FRACTURES A Thesis by CHARLES ADOIZA MAKOJU Approved as to style and content by: C a~ an o ommsttee Member Member em er Hea o Department December 1978 ABSTRACT FRACTURED GAS HELL ANALYSIS - EVALUATION OF IN SITU...

Makoju, Charles Adoiza

1978-01-01T23:59:59.000Z

232

Kansas Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0Month Previous YearThousand1 3 2 4 6

233

Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15IndustrialVehicleThousand Cubic20 55 10

234

LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396

235

Louisiana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289886,084 889,5705,02044 149858

236

Michigan Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 6 0 0

237

Miscellaneous Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15Thousand CubicYear46 4722 35 42724

238

Mississippi Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic Feet)(Million

239

Montana Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384FuelYear125 137 186 192 216 229

240

How is shale gas produced? | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistory History On7,How GasHow YouHow is

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Colorado Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283 607 1996-20132008

242

Shale Gas R&D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment of EnergyAprilAShale Gas 101

243

File:EIA-shale-gas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:Decembercbmusa1.pdf Jump to:offshore-gas.pdf

244

California Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 (Million0,515,162180,648(Million Cubic

245

Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration  

SciTech Connect (OSTI)

Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with previous (legacy) oil and gas operations. The great majority of the leakage issues in Pennsylvania are due to improperly abandoned wells, however in the media there is no clear distinction between past and present problems. In any case, significant analytical work is required to attribute differing sources of methane (or CO{sub 2} in the case of sequestration). In Pennsylvania, a relatively lax regulatory environment appears to have contributed to the problem with inadequate oversight of well design and testing to ensure well integrity. New rules were adopted at the end of 2010, and it will be interesting to observe whether methane leakage problems are significantly reduced.

Carey, James W. [Los Alamos National Laboratory; Simpson, Wendy S. [Los Alamos National Laboratory; Ziock, Hans-Joachim [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

246

,"U.S. Shale Gas Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (DollarsLiquidsAnnual",2014,"6/30/1993"Refinery,Gas

247

US-China_Fact_Sheet_Shale_Gas.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy,UCORRenewable_Energy.pdfShale_Gas.pdf

248

Accounting for Remaining Injected Fracturing Fluid  

E-Print Network [OSTI]

The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

Zhang, Yannan

2013-12-06T23:59:59.000Z

249

Workshop on gas potential of New Albany shale held in conjunction with the 1995 Ioga meeting in Evansville, Indiana on March 1, 1995. Topical report  

SciTech Connect (OSTI)

This workshop is intended to provide an overview of the organic lithofacies, organic carbon content, thermal maturity, and gas potential of the Devonian and Mississippian New Albany Shale in the Illinois Basin. In addition, the reservoir characteristics and completion technology for productive organic-rich Devonian shales in the Michigan and Appalachian Basins are also reviewed. Emphasis is being placed on how proven technologies together with appropriate geologic and geochemical information can be used to explore for gas in the New Albany Shale.

NONE

1996-01-01T23:59:59.000Z

250

Naturally fractured tight gas reservoir detection optimization. Final report  

SciTech Connect (OSTI)

This DOE-funded research into seismic detection of natural fractures is one of six projects within the DOE`s Detection and Analysis of Naturally Fractured Gas Reservoirs Program, a multidisciplinary research initiative to develop technology for prediction, detection, and mapping of naturally fractured gas reservoirs. The demonstration of successful seismic techniques to locate subsurface zones of high fracture density and to guide drilling orientation for enhanced fracture permeability will enable better returns on investments in the development of the vast gas reserves held in tight formations beneath the Rocky Mountains. The seismic techniques used in this project were designed to capture the azimuthal anisotropy within the seismic response. This seismic anisotropy is the result of the symmetry in the rock fabric created by aligned fractures and/or unequal horizontal stresses. These results may be compared and related to other lines of evidence to provide cross-validation. The authors undertook investigations along the following lines: Characterization of the seismic anisotropy in three-dimensional, P-wave seismic data; Characterization of the seismic anisotropy in a nine-component (P- and S-sources, three-component receivers) vertical seismic profile; Characterization of the seismic anisotropy in three-dimensional, P-to-S converted wave seismic data (P-wave source, three-component receivers); and Description of geological and reservoir-engineering data that corroborate the anisotropy: natural fractures observed at the target level and at the surface, estimation of the maximum horizontal stress in situ, and examination of the flow characteristics of the reservoir.

NONE

1997-11-19T23:59:59.000Z

251

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

252

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

253

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-08-01T23:59:59.000Z

254

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

255

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas...

Reza, Rostami Ravari

2004-11-15T23:59:59.000Z

256

Turbulent flow of gas in fractures  

E-Print Network [OSTI]

sises of 40 - 60, 20 - 40 and 10 - 20 mesh and with varying concentration of proppants . The confining pressure was varied for each core up to $, 000 psi step by step. The proppant concentration in each fracture was varied up to a complete monolayer... an ovex'bux'den pressure of 4, 000 psi, the reduction in flow capaoity would vary from 86 $ to 76 4 with corresponding change of pressure dxop from 2, 000 psi to 7, 000 psi across a 320 ft long fractuxe. ACKHOWLEDGENEN% The author wishes to extend...

Koh, Wong In

1974-01-01T23:59:59.000Z

257

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations  

E-Print Network [OSTI]

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

258

Evaluation of Devonian shale potential in Illinois, Indiana, and western Kentucky  

SciTech Connect (OSTI)

Potential natural gas resources in the New Albany Shale of the Illinois basin may be related to five key factors: relative organic content of the shale; relative thickness of the organically-rich shale; thermal maturity as related to depth of burial; presence of natural fractures; and type of organic matter. The shale that is organically richest is in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois basin. The shales are thickest (about 400 feet) near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. The area is deeply buried by younger rocks, and the organic matter has the highest thermal maturity. In addition, natural fault-induced fractures in the shale, which may aid in collecting gas from a larger volume of shale, may be present, since major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin. Thus, this area near the basin center where the shale is thickest and rich organically and where fault-induced fractures may be present has the greatest potential for natural-gas resources. The eastern side of the basin, where the shale is organic-rich but thin, may have poor to moderate potential for additional discoveries of small gas fields similar to those found in the past. In western Illinois and the northern part of the basin, the potential is poor, because the organic content of the dominantly greenish-gray shale in this area is low. More exploration will be required to properly evaluate potential resources of natural gas that may exist in the New Albany Shale.

Not Available

1981-01-01T23:59:59.000Z

259

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

SciTech Connect (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-01T23:59:59.000Z

260

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

NONE

1998-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study  

E-Print Network [OSTI]

injection into saline aquifer, CO2-EOR, CO2-ECBM, and so forth, have been studied to minimize the CO22-EOR, CO2-ECBM, and so forth, have been studied to minimize the CO2 release into the atmosphere1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation

Mohaghegh, Shahab

262

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network [OSTI]

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-VerdĂ­n, Carlos

263

Focus on the Marcellus Shale By Lisa Sumi  

E-Print Network [OSTI]

Shale Gas: Focus on the Marcellus Shale By Lisa Sumi FOR THE OIL & GAS ACCOUNTABILITY PROJECT on potential oil and gas development in the Marcellus Shale formation in northeastern Pennsylvania · www.ogap.org #12;Shale Gas: Focus on the Marcellus Shale A REPORT COMPILED FOR THE OIL AND GAS

Boyer, Elizabeth W.

264

,"U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars perReservesAnnual",2013 ,"Release

265

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

266

Development of an improved methodology to assess potential unconventional gas resources in North America  

E-Print Network [OSTI]

) According to Haskett, resources recoverable from reservoirs of difficult nature have come to be called “unconventional resources.” These include fractured reservoirs, tight gas, gas/oil shale, oil sands and CBM. There are many definitions but most...

Salazar Vanegas, Jesus

2007-09-17T23:59:59.000Z

267

Investigation of methane adsorption and its effect on gas transport in shale matrix through microscale and mesoscale simulations  

E-Print Network [OSTI]

Methane adsorption and its effect on fluid flow in shale matrix are investigated through multi-scale simulation scheme by using molecular dynamics (MD) and lattice Boltzmann (LB) methods. Equilibrium MD simulations are conducted to study methane adsorption on the organic and inorganic walls of nanopores in shale matrix with different pore sizes and pressures. Density and pressure distributions within the adsorbed layer and the free gas region are discussed. The illumination of the MD results on larger scale LB simulations is presented. Pressure-dependent thickness of adsorbed layer should be adopted and the transport of adsorbed layer should be properly considered in LB simulations. LB simulations, which are based on a generalized Navier-Stokes equation for flow through low-permeability porous media with slippage, are conducted by taking into consideration the effects of adsorbed layer. It is found that competitive effects of slippage and adsorbed layer exist on the permeability of shale matrix, leading to di...

Li, ZhongZhen; Chen, Li; Kangd, Qinjun; He, Ya-Ling; Tao, Wen-Quan

2015-01-01T23:59:59.000Z

268

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

269

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network [OSTI]

argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

270

Numerical Modeling of Diffusion in Fractured Media for Gas-Injection  

E-Print Network [OSTI]

injection in oil reser- voirs and recycling in gas/condensate reservoirs. The physical diffusion, similar be distinctly different. For gas injection in some fractured oil reservoirs, gas preferentially goes through- sion on oil recovery in fractured reservoirs (Coats 1989; da Silva and Belery 1989; Thomas et al. 1991

Firoozabadi, Abbas

271

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network [OSTI]

, this work suggests a physics-based regularization approach, based on critical velocity concept. Applied to selected Barnett Shale gas wells, the suggested method leads to reliable and consistent EURs. To further understand the interaction of the different...

Akbarnejad Nesheli, Babak

2012-07-16T23:59:59.000Z

272

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

273

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test.  

E-Print Network [OSTI]

??Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process… (more)

Romero Lugo, Jose 1985-

2012-01-01T23:59:59.000Z

274

Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1--September 30, 1994  

SciTech Connect (OSTI)

Research continued in the detection of naturally fractured tight gas reservoirs. Tasks include modeling, data analysis, geologic assessment of the Piceance Basin, and remote sensing.

NONE

1997-05-01T23:59:59.000Z

275

Secretary of Energy Advisory Board Hosts Conference Call on Shale...  

Office of Environmental Management (EM)

Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report Secretary of Energy Advisory Board Hosts Conference Call on Shale Gas Draft Report November 10,...

276

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

277

Design and Implementation of Energized Fracture Treatment in Tight Gas Sands  

SciTech Connect (OSTI)

Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressure that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.

Mukul Sharma; Kyle Friehauf

2009-12-31T23:59:59.000Z

278

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

279

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence Livermoreits contact with the oil and shale. The gas condensate, onkinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

280

ADVANCED FRACTURING TECHNOLOGY FOR TIGHT GAS: AN EAST TEXAS FIELD DEMONSTRATION  

SciTech Connect (OSTI)

The primary objective of this research was to improve completion and fracturing practices in gas reservoirs in marginal plays in the continental United States. The Bossier Play in East Texas, a very active tight gas play, was chosen as the site to develop and test the new strategies for completion and fracturing. Figure 1 provides a general location map for the Dowdy Ranch Field, where the wells involved in this study are located. The Bossier and other tight gas formations in the continental Unites States are marginal plays in that they become uneconomical at gas prices below $2.00 MCF. It was, therefore, imperative that completion and fracturing practices be optimized so that these gas wells remain economically attractive. The economic viability of this play is strongly dependent on the cost and effectiveness of the hydraulic fracturing used in its well completions. Water-fracs consisting of proppant pumped with un-gelled fluid is the type of stimulation used in many low permeability reservoirs in East Texas and throughout the United States. The use of low viscosity Newtonian fluids allows the creation of long narrow fractures in the reservoir, without the excessive height growth that is often seen with cross-linked fluids. These low viscosity fluids have poor proppant transport properties. Pressure transient tests run on several wells that have been water-fractured indicate a long effective fracture length with very low fracture conductivity even when large amounts of proppant are placed in the formation. A modification to the water-frac stimulation design was needed to transport proppant farther out into the fracture. This requires suspending the proppant until the fracture closes without generating excessive fracture height. A review of fracture diagnostic data collected from various wells in different areas (for conventional gel and water-fracs) suggests that effective propped lengths for the fracture treatments are sometimes significantly shorter than those predicted by fracture models. There was no accepted optimal method for conducting hydraulic fracturing in the Bossier. Each operator used a different approach. Anadarko, the most active operator in the play, had tested at least four different kinds of fracture treatments. The ability to arrive at an optimal fracturing program was constrained by the lack of adequate fracture models to simulate the fracturing treatment, and an inability to completely understand the results obtained in previous fracturing programs. This research aimed at a combined theoretical, experimental and field-testing program to improve fracturing practices in the Bossier and other tight gas plays.

Mukul M. Sharma

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale  

SciTech Connect (OSTI)

The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

Not Available

1981-09-01T23:59:59.000Z

282

Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah  

SciTech Connect (OSTI)

Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.

Michael Vanden Berg; Paul Anderson; Janae Wallace; Craig Morgan; Stephanie Carney

2012-04-30T23:59:59.000Z

283

Experimental and simulation study of improved oil recovery in shale formations.  

E-Print Network [OSTI]

??Shale has ultra low permeability and cannot produce without hydraulic fracturing to improve the contact between reservoir matrix with wellbore. In addition, shale production declines… (more)

Morsy, Samiha

2014-01-01T23:59:59.000Z

284

DOE-Sponsored Software Application Assists Exploration of Gas-Rich Fayetteville Shale  

Broader source: Energy.gov [DOE]

A project sponsored by the U.S. Department of Energy has resulted in the development of the Fayetteville Shale Infrastructure Placement Analysis System, or IPAS, which is now available online.

285

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network [OSTI]

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

286

Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan Feb Mar Apr

287

Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan Feb Mar AprYear

288

Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreasesFeet) Year Jan

289

Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreasesFeet) Year JanYear

290

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year JanYear

291

Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0Feet) Year JanYearYear

292

Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet)Decade Year-0

293

Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0Feet)Decade

294

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb Mar Apr May Jun

295

Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb Mar Apr May JunYear

296

Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0Decade

297

Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0DecadeYear Jan

298

Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year JanYear

299

Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet) Year JanYearYear

300

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear JanYear Jan

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear JanYear JanYear Jan

302

Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYear Jan Feb

303

Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYear Jan FebYear

304

Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005.Feet) Year Jan

305

Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005.Feet) Year JanYear

306

Oregon Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013 TotalYear

307

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as a reductant. Oxidized Green River oil shale heated at 10{degree}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppM/4000 ppM) with a gas residence time of {approximately}0.6 sec removed NO between 250 and 500{degree}C, with maximum removal of 70% at {approximately}400{degree}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH{sub 3} as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant. Parameters calculated for implementing oxidized oil shale for NO{sub x} remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

308

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 2  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL Hot-Recycled-Solids (HRS) oil shale retorting process has been found to be a catalyst for removing nitrogen oxides from laboratory gas streams using NH[sub 3] as a reductant. Oxidized Green River oil shale heated at 10[degree]C/min in an Ar/O[sub 2]/NO/NH[sub 3] mixture ([approximately]93%/6%/2000 ppM/4000 ppM) with a gas residence time of [approximately]0.6 sec removed NO between 250 and 500[degree]C, with maximum removal of 70% at [approximately]400[degree]C. Under isothermal conditions with the same gas mixture, the maximum NO removal was [approximately]64%. When CO[sub 2] was added to the gas mixture at [approximately]8%, the NO removal dropped to [approximately]50%. However, increasing the gas residence time to [approximately]1.2 sec, increased NO removal to 63%. Nitrogen balances of these experiments suggest selective catalytic reduction of NO is occurring using NH[sub 3] as the reductant. These results are not based on completely optimized process conditions, but indicate oxidized oil shale is an effective catalyst for NO removal from combustion gas streams using NH[sub 3] as the reductant. Parameters calculated for implementing oxidized oil shale for NO[sub x] remediation on the current HRS retort indicate an abatement device is practical to construct.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1993-01-04T23:59:59.000Z

309

Marcellus Shale Educational Webinar Series  

E-Print Network [OSTI]

#12;Marcellus Shale Litigation and Legislation December 17, 2009 7 . Pennsylvania Oil and Gas Law1 Marcellus Shale Educational Webinar Series October 2009 - March 2010 Penn State Cooperative Extension #12;2 Marcellus Shale Webinar Series Planning Committee · Members ­ Mark Douglass, Jefferson

Boyer, Elizabeth W.

310

Shale Play Industry Transportation Challenges,  

E-Print Network [OSTI]

­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

Minnesota, University of

311

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

312

Naturally fractured tight gas - gas reservoir detection optimization. Quarterly report, June 1, 1996--September 30, 1996  

SciTech Connect (OSTI)

This document contains the status report for the Naturally Fractured Tight Gas-Gas Reservoir Detection Optimization project for the contract period 9/30/93 to 3/31/97. Data from seismic surveys are analyzed for structural imaging of reflector units. The data were stacked using the new, improved statics and normal moveout velocities. The 3-D basin modeling effort is continuing with code development. The main activities of this quarter were analysis of fluid pressure data, improved sedimentary history, lithologic unit geometry reconstruction algorithm and computer module, and further improvement, verification, and debugging of the basin stress and multi-phase reaction transport module.

Maxwell, J.M.; Ortoleva, P.; Payne, D.; Sibo, W.

1996-11-15T23:59:59.000Z

313

Multi-scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution  

SciTech Connect (OSTI)

Organic geochemical analyses, including solvent extraction or pyrolysis, followed by gas chromatography and mass spectrometry, are generally conducted on bulk gas shale samples to evaluate their source and reservoir properties. While organic petrology has been directed at unravelling the matrix composition and textures of these economically important unconventional resources, their spatial variability in chemistry and structure is still poorly documented at the sub-micrometre scale. Here, a combination of techniques including transmission electron microscopy and a synchrotron-based microscopy tool, scanning transmission X-ray microscopy, have been used to characterize at a multiple length scale an overmature organic-rich calcareous mudstone from northern Germany. We document multi-scale chemical and mineralogical heterogeneities within the sample, from the millimetre down to the nanometre-scale. From the detection of different types of bitumen and authigenic minerals associated with the organic matter, we show that the multi-scale approach used in this study may provide new insights into gaseous hydrocarbon generation/retention processes occurring within gas shales and may shed new light on their thermal history.

Bernard, S.; Horsfield, B; Schultz, H; Schreiber, A; Wirth, R; Thi AnhVu, T; Perssen, F; Konitzer, S; Volk, H; et. al.

2010-01-01T23:59:59.000Z

314

Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs  

E-Print Network [OSTI]

-Darcy flow in the hydraulic fracture and its effects on pressure buildup analysis of hydraulically fractured gas reservoirs. A reservoir simulator was used to generate pressure drawdown and buildup data both with and without the effects of non-Darcy flow...

Alvarez Vera, Cesar

2001-01-01T23:59:59.000Z

315

Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing various production...

Jayakumar, Swathika 1986-

2012-07-09T23:59:59.000Z

316

Evaluation of fracture treatment type on the recovery of gas from the cotton valley formation  

E-Print Network [OSTI]

Every tight gas well needs to be stimulated with a hydraulic fracture treatment to produce natural gas at economic flow rates and recover a volume of gas that provides an acceptable return on investment. Over the past few decades, many different...

Yalavarthi, Ramakrishna

2009-05-15T23:59:59.000Z

317

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations  

E-Print Network [OSTI]

New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can tool is validated by examining the composition of effluent discharge from an oil and gas brine

Jackson, Robert B.

318

Catalytic activity of oxidized (combusted) oil shale for removal of nitrogen oxides with ammonia as a reductant in combustion gas streams, Part 1  

SciTech Connect (OSTI)

Oxidized oil shale from the combustor in the LLNL hot recycle solids oil shale retorting process has been studied as a catalyst for removing nitrogen oxides from laboratory gas streams using NH{sub 3} as areductant. Combusted Green River oil shale heated at 10{degrees}C/min in an Ar/O{sub 2}/NO/NH{sub 3} mixture ({approximately}93%/6%/2000 ppm/4000 ppm) with a gas residence time of {approximately}0.6 sec exhibited NO removal between 250 and 500{degrees}C, with maximum removal of 70% at {approximately}400{degrees}C. Under isothermal conditions with the same gas mixture, the maximum NO removal was found to be {approximately}64%. When CO{sub 2} was added to the gas mixture at {approximately}8%, the NO removal dropped to {approximately}50%. However, increasing the gas residence time to {approximately}1.2 sec, increased NO removal to 63%. These results are not based on optimized process conditions, but indicate oxidized (combusted) oil shale is an effective catalyst for NO removal from combustion gas streams using NH{sub 3} as the reductant.

Reynolds, J.G.; Taylor, R.W.; Morris, C.J.

1992-06-10T23:59:59.000Z

319

NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS  

SciTech Connect (OSTI)

Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

Unknown

1999-12-01T23:59:59.000Z

320

The analysis of liquid loading problems in hydraulically fractured gas wells  

E-Print Network [OSTI]

THE ANALYSIS OF LIQUID LOADING PROBLEMS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by CHARLES EDWARD PIETSCH g~ e~q) Submitted to the Graduate College of Texas A & M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Petroleum Engineering THE ANALYSIS OF LIQUID LOADING PROBLEMS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by CHARLES EDWARD PIETSCH Approved as to style and content by: Stephen A. Holditch (Chairman...

Pietsch, Charles Edward

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Naturally fractured tight gas reservoir detection optimization. Quarterly report, January 1, 1997--March 31, 1997  

SciTech Connect (OSTI)

This document contains the quarterly report dated January 1-March 31, 1997 for the Naturally Fractured Tight Gas Reservoir Detection Optimization project. Topics covered in this report include AVOA modeling using paraxial ray tracing, AVOA modeling for gas- and water-filled fractures, 3-D and 3-C processing, and technology transfer material. Several presentations from a Geophysical Applications Workshop workbook, workshop schedule, and list of workshop attendees are also included.

NONE

1998-04-01T23:59:59.000Z

322

Transient pressure behavior of multiple-fractured gas wells  

E-Print Network [OSTI]

with the dimensionless terms C = wk /vkxf and r xf 12 Xf 1/Xf2 where Cr is the dimensionless fracture conductivity and xf 1& is the fracture half-length ratio. fr 12 The symbols, xf1 and xf2, represent the half-length of the primary fracture and the auxiliary fr... actur e, respectively. Results also show that when C & 10, multiple fracture transient pressure behavior is significantly different from that of a single plane fr actur e. A family of type cur ves was constructed using cross-plots of Pwp vs tpx...

Choo, Yew Kai

1985-01-01T23:59:59.000Z

323

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

324

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

325

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect (OSTI)

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

326

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

327

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network [OSTI]

make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a...

Correa Castro, Juan

2011-08-08T23:59:59.000Z

328

Permeability Estimation from Fracture Calibration Test Analysis in Shale and Tight Gas  

E-Print Network [OSTI]

closure can be used to estimate the reservoir permeability. However, for very low permeability, the time to reach radial flow can exceed any practical duration. This study shows how to use the reservoir pressure to estimate the maximum reservoir...

Xue, Han 1988-

2012-12-13T23:59:59.000Z

329

Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates  

E-Print Network [OSTI]

. [ ( ) ] .................................................................................. (4) In Eq. (4), ? is a dimensionless exponent parameter and ? is the characteristic time parameter, months. Can and Kabir (2012) analyzed production data from 820 wells from three different shale formations (220 wells in the Bakken oil shale...

Gonzalez Jimenez, Raul 1988-

2012-11-30T23:59:59.000Z

330

Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir  

E-Print Network [OSTI]

, Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties... for their support. The author also wishes to express his deepest appreciation to Dr. H. Chen for all the help and suggestions he made in this study. The author expresses his gratitude to every one in Empresa Colombiana de Petroleos, Ecopetrol, who made possible...

Santiago Molina, Cesar Alfonso

1991-01-01T23:59:59.000Z

331

Effects of reservoir geometry and permeability anisotropy on ultimate gas recovery in Devonian Shale reservoirs  

E-Print Network [OSTI]

for assistance and guidance during the course of my thesis research: L Dr. WL Lee for his wisdom, understanding, and technical expertise and for his insistence on striving for excellence as well as accuracy; 2. David Lancaster for his direction and his ability... Econotnic Projections for Selected Stimulated Cases, Fracture Parallel to k ?, L, =100 ft, 160-acre Well Spacing, 50-year Well Life . . 156 Economic Projections for Selected Stimulated Cases, Fracture Perpendicular to k ?, L, =100 ft, 160-acre Well...

Starnes, Lee McKennon

2012-06-07T23:59:59.000Z

332

Coordinated study of the Devonian black shale in the Illinois Basin: Illinois, Indiana, and western Kentucky. Final report  

SciTech Connect (OSTI)

An evaluation of the resource potential of the Devonian shales, called the Eastern Gas Shales Project (EGSP) was begun. A study of the stratigraphy, structure, composition, and gas content of the Devonian shale in the Illinois Basin was undertaken by the State Geological Surveys of Illinois, Indiana, and Kentucky, under contract to the U.S. DOE as a part of the EGSP. Certain additional data were also developed by other research organizations (including Monsanto Research Corporation-Mound Facility and Battelle-Columbus Laboratory) on cores taken from the Illinois Basin. This report, an overview of geological data on the Illinois basin and interpretations of this data resulting from the EGSP, highlights areas of potential interest as exploration targets for possible natural gas resources in the Devonian shale of the basin. The information in this report was compiled during the EGSP from open file data available at the three State Geological surveys and from new data developed on cores taken by the DOE from the basin specifically for the EGSP. The organically richest shale is found in southeastern Illinois and in most of the Indiana and Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky portions of the Illinois Basin. The organic-rich shales in the New Albany are thickest near the center of the basin in southeastern Illinois, southwestern Indiana, and adjacent parts of Kentucky. Natural fractures in the shale may aid in collecting gas from a large volume of shale. These fractures may be more abundant and interconnected to a greater degree in the vicinity of major faults. Major faults along the Rough Creek Lineament and Wabash Valley Fault System cross the deeper part of the basin.

Lineback, J.A.

1980-12-31T23:59:59.000Z

333

GEOLOGIC ASSESSMENT OF DRILLING, COMPLETION, AND STIMULATION METHODS IN SELECTED GAS SHALE PLAYS WORLDWIDE  

E-Print Network [OSTI]

The United States regularly imports majority of the transportation oil, and several TCF of natural gas annually. Nevertheless, there is very large resource of natural gas in unconventional reservoirs, with over 2,200 TCF of natural gas in just...

Patel, Harsh Jay

2014-04-11T23:59:59.000Z

334

Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado  

SciTech Connect (OSTI)

As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

335

Oil shale retorting method and apparatus  

SciTech Connect (OSTI)

Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

York, E.D.

1983-03-22T23:59:59.000Z

336

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

SciTech Connect (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

Jin, Lixin [University of Texas at El Paso] [University of Texas at El Paso; Ryan, Mathur [Juniata College, Huntingdon] [Juniata College, Huntingdon; Rother, Gernot [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA] [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University] [Pennsylvania State University; Alex, Carone [Pennsylvania State University] [Pennsylvania State University; Brantley, S. L. [Pennsylvania State University, University Park, PA] [Pennsylvania State University, University Park, PA

2013-01-01T23:59:59.000Z

337

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

SciTech Connect (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

Jin, Lixin [ORNL; Mathur, Ryan [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Carone, Alex [Pennsylvania State University, University Park, PA; Brantley, Susan L [ORNL

2013-01-01T23:59:59.000Z

338

Oil shale retort apparatus  

DOE Patents [OSTI]

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

339

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

.1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

340

Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs  

SciTech Connect (OSTI)

In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

James Reeves

2005-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Identification of Parameters Influencing the Response of Gas Storage Wells to Hydraulic Fracturing with the Aid of a Neural Network  

E-Print Network [OSTI]

75083-3836, U.S.A. Telex, 163245 SPEUT. Abstract Performing hydraulic fractures on gas storage wells necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data

Mohaghegh, Shahab

342

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network [OSTI]

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

343

Natural and Induced Fracture Diagnostics from 4-D VSP Low Permeability Gas Reservoirs  

SciTech Connect (OSTI)

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark E. Willis; Daniel R. Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

344

Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs  

E-Print Network [OSTI]

engineering effort with a complete formation evaluation prior to the stimulation treatment can one understand a well containing a vertical hydraulic fracture. If the reservoir produces substantial volumes of either fracture fluid or formation water, along... and Water Permeability . . . 21 Fracture Relative Gas and Water Permeability . . . . . . 24 Created and Propped Fracture Lengths as a Function of Treatment Volume Based on FRACDIM ZI One Quarter of a Square Pattern with Wellbore Centered in Middle...

Montgomery, Kevin Todd

1990-01-01T23:59:59.000Z

345

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

SciTech Connect (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-03-20T23:59:59.000Z

346

Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles  

ScienceCinema (OSTI)

Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

Dick Cirillo; Guenter Conzelmann

2013-06-07T23:59:59.000Z

347

Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage  

SciTech Connect (OSTI)

The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

2006-10-31T23:59:59.000Z

348

Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...  

Energy Savers [EERE]

(SEAB) on Shale Gas Production Posts Draft Report Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale Gas Production Posts Draft Report November 10, 2011 - 1:12pm...

349

Can We Accurately Model Fluid Flow in Shale?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 00:00 Over 20 trillion cubic meters of natural gas are trapped in shale, but many shale oil and gas producers still use models of underground fluid flow that date back to...

350

COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis15 CNMSHydraulic Fracturing" |

351

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

Solution for Uniform Influx................................. 28 2.5 Effect of Stress on Non-Darcy Flow with Uniform Influx............................. 40 2.6 Hydraulically Fractured Reservoir with Two-Phase Flow ............................. 45 2... ............................................................................................................... 21 2.6 Gas expansion factor divided by gas viscosity Eg/µg = 1/(Bµ), which is roughly constant at or above pressures of 6,000 psi. .................................... 22 2.7 Relative permeability functions from Table 2.1 normalized...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

352

Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface  

E-Print Network [OSTI]

of geothermal, gas- condensate, and steam injection reservoirs. From this work, the main conclusions are: (1 which reflect the interactions among fluids and the rough fracture surface; (2) the steam-water flow Transformation and Surface Roughness Chih-Ying Chen June 2005 Financial support was provided through the Stanford

Stanford University

353

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network [OSTI]

program. The main contributions of this work are: An optimal fracture design methodology called unified fracture design (UFD) is presented and damage effects are considered in the optimal design calculation. As a by-product of UFD, a fracture evaluation...

Wang, Wenxin

2006-04-12T23:59:59.000Z

354

SPENT SHALE AS A CONTROL TECHNOLOGY FOR OIL SHALE RETORT WATER. ANNUAL REPORT FOR PERIOD OCTOBER 1, 1978 - SEPTEMBER 30, 1979.  

E-Print Network [OSTI]

of Control Technology for Shale Oil Wastewaters,~~ inpyrolysized to produce shale oil, gas, a solid referred towaters are co-produced with shale oil and separated from it

Fox, J.P.

2013-01-01T23:59:59.000Z

355

Decline Curve Analysis of Shale Oil Production.  

E-Print Network [OSTI]

?? Production of oil and gas from shale is often described as a revolution to energyproduction in North America. Since the beginning of this century… (more)

Lund, Linnea

2014-01-01T23:59:59.000Z

356

Location and Geology Fig 1. The Macasty black shale  

E-Print Network [OSTI]

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

357

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network [OSTI]

on Clean-Up Mobile Water Phase 84 17 Effects of Hystexesis on Clean-Up immobile Water Phase 84 18 Effects of Initial Flow Conditions on Gas Production Initial Resexvor Pressure = 11, 700 psi ? Single Phase . . . 95 Table 19 21 22 23 24 25... Effects of Initial How Conditions on Gas Pmduction Initial Reservor Pressure = 7, 800 psi - Single Phase Effects of Initial Flow Conditions on Productivity With No Water Injection Initial Reservoir Pressure = 11, 700 psi ? Initial Cr = 10 Effects...

Berthelot, Jan Marie

1990-01-01T23:59:59.000Z

358

Dash for Gas: The Sequel Christopher R. Knittel Konstantinos Metaxoglou Andre Trindade  

E-Print Network [OSTI]

Dash for Gas: The Sequel Christopher R. Knittel Konstantinos Metaxoglou Andre Trindade March 28 of the post-2005 natural gas glut in the United States due to the rapid development of technology related to hydraulic fracturing for extracting shale gas. We focus on fuel switching decisions by electric power plants

Rothman, Daniel

359

Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Shale  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705 740 725WellsGas

360

New York Marcellus Shale: Industry boom put on hold  

SciTech Connect (OSTI)

Key catalysts for Marcellus Shale drilling in New York were identified. New York remains the only state in the nation with a legislative moratorium on high-volume hydraulic fracturing, as regulators and state lawmakers work to balance the advantages of potential economic benefits while protecting public drinking water resources and the environment. New York is being particularly careful to work on implementing sufficiently strict regulations to mitigate the environmental impacts Pennsylvania has already seen, such as methane gas releases, fracturing fluid releases, flowback water and brine controls, and total dissolved solids discharges. In addition to economic and environmental lessons learned, the New York Department of Environmental Conservation (DEC) also acknowledges impacts to housing markets, security, and other local issues, and may impose stringent measures to mitigate potential risks to local communities. Despite the moratorium, New York has the opportunity to take advantage of increased capital investment, tax revenue generation, and job creation opportunities by increasing shale gas activity. The combination of economic benefits, industry pressure, and recent technological advances will drive the pursuit of natural gas drilling in New York. We identify four principal catalysts as follows: Catalyst 1: Pressure from Within the State. Although high-volume hydraulic fracturing has become a nationally controversial technology, shale fracturing activity is common in every U.S. state except New York. The regulatory process has delayed potential economic opportunities for state and local economies, as well as many industry stakeholders. In 2010, shale gas production accounted for $18.6 billion in federal royalty and local, state, and federal tax revenues. (1) This is expected to continue to grow substantially. The DEC is under increased pressure to open the state to the same opportunities that Alabama, Arkansas, California, Colorado, Kansas, Louisiana, Montana, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, South Dakota, Texas, Utah, West Virginia, and Wyoming are pursuing. Positive labor market impacts are another major economic draw. According to the Revised Draft SGEIS on the Oil, Gas and Solution Mining Regulatory Program (September 2011), hydraulic fracturing would create between 4,408 and 17,634 full-time equivalent (FTE) direct construction jobs in New York State. Indirect employment in other sectors would add an additional 29,174 FTE jobs. Furthermore, the SGEIS analysis suggests that drilling activities could add an estimated $621.9 million to $2.5 billion in employee earnings (direct and indirect) per year, depending upon how much of the shale is developed. The state would also receive direct tax receipts from leasing land, and has the potential to see an increase in generated indirect revenue. Estimates range from $31 million to $125 million per year in personal income tax receipts, and local governments would benefit from revenue sharing. Some landowner groups say the continued delay in drilling is costing tens of thousands of jobs and millions of dollars in growth for New York, especially in the economically stunted upstate. A number of New York counties near Pennsylvania, such as Chemung, NY, have experienced economic uptick from Pennsylvania drilling activity just across the border. Chemung officials reported that approximately 1,300 county residents are currently employed by the drilling industry in Pennsylvania. The Marcellus shale boom is expected to continue over the next decade and beyond. By 2015, gas drilling activity could bring 20,000 jobs to New York State alone. Other states, such as Pennsylvania and West Virginia, are also expected to see a significant increase in the number of jobs. Catalyst 2: Political Reality of the Moratorium. Oil and gas drilling has taken place in New York since the 19th century, and it remains an important industry with more than 13,000 currently active wells. The use of hydraulic fracturing in particular has been employed for decades. Yet, as technological

Mercurio, Angelique

2012-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Optimal use of Hybrid feedstock, Switchgrass and Shale gas, for the  

E-Print Network [OSTI]

removal of the sour gases, and its composition is adjusted (using either water gas shift reaction or pressure swift adsoprtion) and the liquid fuels are obtained in an FT reactor. The heavy liquids are the most promising due to their compatibility with the current supply chain and automobiles. However

Grossmann, Ignacio E.

362

Kerogen extraction from subterranean oil shale resources  

DOE Patents [OSTI]

The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

2010-09-07T23:59:59.000Z

363

Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process  

SciTech Connect (OSTI)

Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

364

Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence  

E-Print Network [OSTI]

matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

Mohaghegh, Shahab

365

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network [OSTI]

enggeo.2013.05.021. CNX/GTI (2008). New Albany ShaleRVSP, New Albany Shale Gas Project, RVSP Seismic Projectisopach maps of the New Albany Shale, Illinois Basin. Figure

Dobson, Patrick

2014-01-01T23:59:59.000Z

366

Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994  

SciTech Connect (OSTI)

This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

NONE

1994-10-01T23:59:59.000Z

367

Lower 48 States Shale Gas Proved Reserves, Reserves Changes, and Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342Cubic Feet) Decade4,871 5,382

368

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the United States. Most of the fields in this part of the country being used for storage are old. Reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old fields. This paper introduces a new methodology by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The study was conducted on a gas storage field in the Clinton formation of Northeastern Ohio. It was found that well performance indicators prior to a hydraulic fracture play an important role in how good the well will respond to a new frac job. Several other important factors were also identified.

McVey, D.S.; Mohaghegh, S.; Aminian, K.

1994-12-31T23:59:59.000Z

369

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network [OSTI]

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

370

Analysis of error in using fractured gas well type curves for constant pressure production  

E-Print Network [OSTI]

of normalized time and normalized cumulative production is a large improvement over using a constant evaluation pressure. 0 imens ion less cumulative production type curves are particularly useful in modeling production for economic projections, such as re... of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering ANALYSIS OF ERROR IN USING FRACTURED GAS WELL TYPE CURVES FOR CONSTANT PRESSURE PRDDUCTION A Thesis by DAVID WAYNE SCHKADE Approved as to style and content by: S. A. Ho lditch...

Schkade, David Wayne

1987-01-01T23:59:59.000Z

371

Comprehensive Lifecycle Planning and Management System For Addressing Water Issues Associated With Shale Gas Development In New York, Pennsylvania, And West Virginia  

SciTech Connect (OSTI)

The objective of this project is to develop a modeling system to allow operators and regulators to plan all aspects of water management activities associated with shale gas development in the target project area of New York, Pennsylvania, and West Virginia (â??target areaâ?ť), including water supply, transport, storage, use, recycling, and disposal and which can be used for planning, managing, forecasting, permit tracking, and compliance monitoring. The proposed project is a breakthrough approach to represent the entire shale gas water lifecycle in one comprehensive system with the capability to analyze impacts and options for operational efficiency and regulatory tracking and compliance, and to plan for future water use and disposition. It will address all of the major water-related issues of concern associated with shale gas development in the target area, including water withdrawal, transport, storage, use, treatment, recycling, and disposal. It will analyze the costs, water use, and wastes associated with the available options, and incorporate constraints presented by permit requirements, agreements, local and state regulations, equipment and material availability, etc. By using the system to examine the water lifecycle from withdrawals through disposal, users will be able to perform scenario analysis to answer "what if" questions for various situations. The system will include regulatory requirements of the appropriate state and regional agencies and facilitate reporting and permit applications and tracking. These features will allow operators to plan for more cost effective resource production. Regulators will be able to analyze impacts of development over an entire area. Regulators can then make informed decisions about the protections and practices that should be required as development proceeds. This modeling system will have myriad benefits for industry, government, and the public. For industry, it will allow planning all water management operations for a project or an area as one entity to optimize water use and minimize costs subject to regulatory and other constraints. It will facilitate analysis of options and tradeoffs, and will also simplify permitting and reporting to regulatory agencies. The system will help regulators study cumulative impacts of development, conserve water resources, and manage disposal options across a region. It will also allow them to track permits and monitor compliance. The public will benefit from water conservation, improved environmental performance as better system wide decisions are made, and greater supply of natural gas, with attendant lower prices, as costs are reduced and development is assisted through better planning and scheduling. Altogether, better economics and fewer barriers will facilitate recovery of the more than 300 trillion cubic feet of estimated recoverable natural gas resource in the Marcellus Shale in a manner that protects the environment.

J. Daniel Arthur

2012-03-31T23:59:59.000Z

372

Secretary of Energy Advisory Board Subcommittee Releases Shale...  

Office of Environmental Management (EM)

environmental management of shale gas, which has rapidly grown to nearly 30 percent of natural gas production in the United States. Increased transparency and a focus on best...

373

Fracture behavior of advanced ceramic hot gas filters: Final report  

SciTech Connect (OSTI)

This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-03-01T23:59:59.000Z

374

Simulator for unconventional gas resources multi-dimensional model SUGAR-MD. Volume I. Reservoir model analysis and validation  

SciTech Connect (OSTI)

The Department of Energy, Morgantown Energy Technology Center, has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are: (1) To develop and validate a mathematical model which describes gas flow through Devonian shales. (2) To determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales. (3) To recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales. (4) To analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance. (5) To study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. The flow equations that are the mathematical basis of the two-dimensional model are presented. It is assumed that gas transport to producing wells in Devonian shale reservoirs occurs through a natural fracture system into which matrix blocks of contrasting physical properties deliver contained gas. That is, the matrix acts as a uniformly distributed gas source in a fracture medium. Gas desorption from pore walls is treated as a uniformly distributed source within the matrix blocks. 24 references.

Not Available

1982-01-01T23:59:59.000Z

375

Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale  

E-Print Network [OSTI]

and kerogen surfaces, very similar to the way methane is stored within coal beds. It has been demonstrated in gassy coals that on average; CO2 is preferentially adsorbed, displacing methane at a ratio of two for one or more. Black shale reservoirs may react similarly and desorb methane in the presence

Mohaghegh, Shahab

376

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

377

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the US. Most fields used for storage in this region are old, and the reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce. This paper introduces a new method by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The authors conducted the study on a gas storage field in the Clinton formation of northeastern Ohio. They found that well-performance indicators before a hydraulic fracture play an important role in how good the well will respond to a new frac job. They also identified several other important factors. The identification of controlling parameters serves as a foundation for improved frac job design in the fields where adequate engineering data are not available. Another application of this type of study could be the enhancement of selection criteria among the candidate wells for hydraulic fracturing. To achieve the objective of this study, the authors designed, trained, and applied an artificial neural network. The paper will discuss the results of the incorporation of this new technology in hydraulic fracture design and evaluation.

McVey, D.S. [East Ohio Gas Co., North Canton, OH (United States); Mohaghegh, S.; Aminian, K.; Ameri, S. [West Virginia Univ., Morgantown, WV (United States)

1996-04-01T23:59:59.000Z

378

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

on the productivity of hydraulically fractured wells is conducted and an optimum fracture design is proposed for a tight gas formation in south Texas using the Unified Fracture Design (UFD) Technique to compensate for the mentioned effects by calculating the effective...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

379

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

380

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

SciTech Connect (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

382

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale  

E-Print Network [OSTI]

SPE-163690-MS Synthetic, Geomechanical Logs for Marcellus Shale M. O. Eshkalak, SPE, S. D of hydrocarbons from the reservoirs, notably shale, is attributed to realizing the key fundamentals of reservoir and mineralogy is crucial in order to identify the "right" pay-zone intervals for shale gas production. Also

Mohaghegh, Shahab

383

The Public Health Implications of Marcellus Shale Activities  

E-Print Network [OSTI]

INCIDENT #12;#12;#12;Implications of the Gulf Oil Spill to Marcellus Shale Activities - EnvironmentalThe Public Health Implications of Marcellus Shale Activities Bernard D. Goldstein, MD Department using Data.FracTracker.org. #12;Drilling Rig in Rural Upshur County, WV Source: WVSORO, Modern Shale Gas

Jiang, Huiqiang

384

Conversion characteristics of 10 selected oil shales  

SciTech Connect (OSTI)

The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

Miknis, F.P.

1989-08-01T23:59:59.000Z

385

Production of hydrogen from oil shale  

SciTech Connect (OSTI)

A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

1985-12-24T23:59:59.000Z

386

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April  

E-Print Network [OSTI]

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

Kulp, Mark

387

A Resolution of the First Unitarian Universalist Society of Albany to Oppose the Current Practice of Hydraulic Fracturing and Support the  

E-Print Network [OSTI]

existence of which we are a part, we are concerned that fracking endangers the environment, posing risks health and environmental adverse impacts of fracking, there is neither sufficient incentive to industry-volume hydraulic fracturing ("fracking") is a recently- developed technology for extracting methane gas from shale

Bystroff, Chris

388

Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group Analysis from Texas  

E-Print Network [OSTI]

Potential Economic Impacts of Marcellus Shale in Pennsylvania: Reflections on the Perryman Group The exploration and development of the Marcellus Shale natural gas play has significant potential to affect in the Barnett Shale region of north Texas. The Barnett Shale play is very similar in geology to the Marcellus

Boyer, Elizabeth W.

389

Oil and Gas CDT Prediction of flow through fractures and maximising recovery  

E-Print Network [OSTI]

fracking. Fractured carbonate formation in Morocco The project aims to tackle the problem of quantifying

Henderson, Gideon

390

Fracture mechanics investigations on high-temperature gas-cooled reactor materials  

SciTech Connect (OSTI)

The prototype nuclear process heat plant and the high-temperature gas-cooled reactor need materials that can withstand temperatures up to 1223 K (950/sup 0/C). An elaboration of fracture mechanics concepts that holds for the complete temperature regime must consider all possible phenomena like creep damage and precipitation during exposure, etc. In tests on the Inconel-617, Hastelloy-X, and Nimonic-86 alloys with respect to fatigue crack growth, creep crack growth, and toughness (J integral R curves) up to 1273 K (1000/sup 0/C), the first creep crack growth results were obtained in helium to compare with the air results. It was shown that pure fatigue crack growth behavior can be described by linear elastic fracture mechanics up to 1273 K. An example of Hastelloy-X at 1223 K proves that evaluating fatigue crack growth according to the J intergral concept gives, within a small scatterband, the same results as by following the linear elastic concept. Hastelloy-X shows a decreasing fracture toughness with increasing temperatures. It is emphasized that the J integral concept holds only if creep deformation can be neglected. The experimental evidence at highest temperatures shows that the J integral R curve is not at all similar to that found at lower temperatures under ideal conditions. Creep crack growth for Nimonic-86 at 1073 less than or equal to T/K less than or equal to 1273 shows that crack growth at 1223 K in helium is found to be larger than in air. Problems arise when correlating the creep crack growth results. The application of the energy rate integral C* seems promising, but this has yet to be proven. A combination of long-term creep with fatigue crack growth is presently impossible.

Krompholz, K.; Bodmann, E.; Gnirss, G.K.; Huthmann, H.

1984-08-01T23:59:59.000Z

391

Multiscale strength homogenization : application to shale nanoindentation  

E-Print Network [OSTI]

Shales are one of the most encountered materials in sedimentary basins. Because of their highly heterogeneous nature, their strength prediction for oil and gas exploitation engineering has long time been an enigma. In this ...

Gathier, Benjamin

2008-01-01T23:59:59.000Z

392

Radon in Soil Gas Above Bedrock Fracture Sets at the Shepley’s Hill Superfund Site  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) recently provided technical support for ongoing environmental remediation activities at the Shepley’s Hill remediation site near Devens, MA (Figure 1). The technical support was requested as follow-on work to an initial screening level radiation survey conducted in 2008. The purpose of the original study was to assess the efficacy of the INL-developed Backpack Sodium Iodide System (BaSIS) for detecting elevated areas of natural radioactivity due to the decay of radon-222 gases emanating from the underlying fracture sets. Although the results from the initial study were mixed, the BaSIS radiation surveys did confirm that exposed bedrock outcrops have higher natural radioactivity than the surficial soils, thus a high potential for detecting elevated levels of radon and/or radon daughter products. (INL 2009) The short count times associated with the BaSIS measurements limited the ability of the system to respond to elevated levels of radioactivity from a subsurface source, in this instance radon gas emanating from fracture sets. Thus, it was postulated that a different methodology be employed to directly detect the radon in the soil gases. The CR-39 particle track detectors were investigated through an extensive literature and technology search. The relatively long deployment or “detection” time of several days, as well as the sensitivity of the measurement and robustness of the detectors made the CR-39 technology promising for deployment at the Shepley’s Hill site.

J.R. Giles; T.L. McLing; M.V. Carpenter; C.J. Smith; W. Brandon

2012-12-01T23:59:59.000Z

393

Studies of New Albany shale in western Kentucky. Final report  

SciTech Connect (OSTI)

The New Albany (Upper Devonian) Shale in western Kentucky can be zoned by using correlative characteristics distinguishable on wire-line logs. Wells drilled through the shale which were logged by various methods provided a basis for zonation of the subsurface members and units of the Grassy Creek, Sweetland Creek, and Blocher. Structure and isopach maps and cross sections were prepared. The Hannibal Shale and Rockford Limestone were found in limited areas; isopach maps were not made for these members. Samples of cuttings from selected wells were studied in order to identify the contact of the shale with underlying and overlying rock units. A well-site examination of cuttings through the shale section was conducted, and the presence of natural gas was observed in the field. The New Albany Shale has the potential for additional commercially marketable natural gas production. Exploratory drilling is needed to evaluate the reservoir characteristics of the New Albany Shale.

Schwalb, H.R.; Norris, R.L.

1980-02-01T23:59:59.000Z

394

Perform research in process development for hydroretorting of Eastern oil shales: Volume 2, Expansion of the Moving-Bed Hydroretorting Data Base for Eastern oil shales  

SciTech Connect (OSTI)

An extensive data base was developed for six Eastern oil shales: Alabama Chattanooga, Indiana New Albany, Kentucky Sunbury, Michigan Antrim, Ohio Cleveland, and Tennessee Chattanooga shales. The data base included the hydroretorting characteristics of the six shales, as well as the retorting characteristics in the presence of synthesis gas and ionized gas. Shale gasification was also successfully demonstrated. Shale fines (20%) can produce enough hydrogen for the hydroretorting of the remaining 80% of the shale. The amount of fines tolerable in a moving bed was also determined. 16 refs., 59 figs., 43 tabs.

Not Available

1989-11-01T23:59:59.000Z

395

Gasification characteristics of eastern oil shale  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

396

Deformation of shale: mechanical properties and indicators of mechanisms  

E-Print Network [OSTI]

Basins, shales of Devonian age are commonly considered reservoir rocks I' or natural gas [Woodward, 1958; Lockett, 1968; Long, 1979; Gonzales and Johnson, 1985], Economic gas production from the Devonian shales of these basins is associated...] and slates [Donath, 1961], may be expected to be weak. Finally, Microstructural studies of deformed shales have been restricted by optical resolution, and the role of crystal plasticity in clays may have been overlooked. Results for the brittle and semi...

Ibanez, William Dayan

1993-01-01T23:59:59.000Z

397

Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

398

An Analysis of Surface and Subsurface Lineaments and Fractures for Oil and Gas Exploration in the Mid-Continent Region  

SciTech Connect (OSTI)

An extensive literature search was conducted and geological and mathematical analyses were performed to investigate the significance of using surface lineaments and fractures for delineating oil and gas reservoirs in the Mid-Continent region. Tremendous amount of data were acquired including surface lineaments, surface major fracture zones, surface fracture traces, gravity and magnetic lineaments, and Precambrian basement fault systems. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the region. The correlation between surface linear features and subsurface oil and gas traps was assessed, and the implication of using surface lineament and fracture analysis for delineating hydrocarbon reservoirs in the Mid-Continent region discussed. It was observed that the surface linear features were extremely consistent in orientation with the gravity and magnetic lineaments and the basement faults in the Mid-Continent region. They all consist of two major sets bending northeast and northwest, representing, therefore, the basic structural grains of the region. This consistency in orientation between the surface and subsurface linear features suggests that the systematic fault systems at the basement in the Mid-Continent region have probably been reactivated many times and have propagated upward all the way to the surface. They may have acted as the loci for the development of other geological structures, including oil and gas traps. Also observed was a strong association both in orientation and position between the surface linear features and the subsurface reservoirs in various parts of the region. As a result, surface lineament and fracture analysis can be used for delineating additional oil and gas reserves in the Mid-Continent region. The results presented in this paper prove the validity and indicate the significance of using surface linear features for inferring subsurface oil and gas reservoirs in the Mid-Continent region. Any new potential oil and gas reservoirs in the Mid-Continent region, if they exist, will be likely associated with the northeast- and northwest-trending surface lineaments and fracture traces in the region.

Guo, Genliang; and George, S.A.

1999-04-08T23:59:59.000Z

399

In situ method for recovering hydrocarbon from subterranean oil shale deposits  

SciTech Connect (OSTI)

This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

Friedman, R.H.

1987-11-03T23:59:59.000Z

400

CONTAMINATION OF GROUNDWATER BY ORGANIC POLLUTANTS LEACHED FROM IN-SITU SPENT SHALE  

E-Print Network [OSTI]

Bureau of Mines (USBM) gas combustion retorting process; (2)th or without recycle gas), combustion conditions exist durTvoe Combustion Inert gas Combustion Inert gas Air gas shale

Amy, Gary L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction Marcellus Shale Production  

E-Print Network [OSTI]

Shale Production Overview (problem and challenges) During the preliminary production stage, Marcellus Shale natural gas wells have a wellhead pressure that exceeds the material limits of typical above understanding of Marcellus Shale natural gas wells and drilling was gathered on-site. Evaluation of (5

Demirel, Melik C.

402

Effects of stimulation/completion practices on Eastern Devonian Shale well productivity  

E-Print Network [OSTI]

in the Devonian shale, ' then the degree of fracture density and fracture preferential direction caused by these stresses should dictate the choice of stimulation method. Young states that fracture orientation will be dictated by the in-situ stress field...EFFECTS OF STIMULATION/COMPLETION PRACTICES ON EASTERN DEVONIAN SHALE WELL PRODUCTIVITY A Thesis by TIMOTHY RAY NEARING Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree...

Nearing, Timothy Ray

1988-01-01T23:59:59.000Z

403

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs  

E-Print Network [OSTI]

, Damage diffusion, Reservoir geo-mechanics, Brittle fracture. 1. Introduction Solid mechanics and strength of materials are two of the oldest engineering mechanics problems. The fundamental works of Galileo [1 such as diatomite oilfield or gas shale [3]. Continuum damage mechanics (CDM) is a branch of solid mechanics which

Patzek, Tadeusz W.

404

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Holes from the Naval Oil Shale Reserve No. 1 R. D. Giauque,all of the known oil and gas reserves in the United States.cores from the Naval Oil Shale Reserve No. 1 were sectioned

,

2012-01-01T23:59:59.000Z

405

Characterization of mercury, arsenic, and selenium in the product streams of a bench-scale, inert-gas, oil shale retort  

SciTech Connect (OSTI)

The purpose of this study was to determine the effects of heating rates and maximum temperatures on the redistribution of mercury, arsenic, and selenium into the shale oil, retort water, and offgas of a 6-kg bench-scale retort. A Green River shale (western) from Colorado and a New Albany shale (eastern) from Kentucky were heated at 1-2{degree}C/min to a maximum temperature of 500{degree}C. The eastern and western shales were also heated at 2{degree}C/min to 750{degree}C and at 10{degree}C/min to 750{degree}C. Real-time monitoring of the offgas stream for mercury was accomplished with Zeeman atomic absorption spectroscopy or a microwave-induced helium plasma spectroscopy. Microwave-induced helium plasma spectroscopy was also used to monitor for arsenic in the offgas during retorting; little or no arsenic was observed in the offgas. Mass balance calculations for arsenic and selenium accounted for essentially 100% of those elements in the spent shale, shale oil, and retort water. The mass balance calculations suggest little offgas component for arsenic and selenium. This agrees with the results of the MPD monitoring of the offgas. These results indicate the potential pathway for mercury to enter the environment is from the offgas. Arsenic and selenium preferential redistribution into the shale oil may present problems during the upgrading process.

Olsen, K.B.; Evans, J.C.; Fruchter, J.S.; Girvin, D.C.; Nelson, C.L. (Pacific Northwest Lab., Richland, WA (USA))

1990-02-01T23:59:59.000Z

406

Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well  

E-Print Network [OSTI]

, and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, and mineral composition is an integral part of unconventional shale reservoir formation evaluation. Porosity requirement for economically viable flow of gas in very-low permeability shales. Brittle shales are favorable

Torres-VerdĂ­n, Carlos

407

TOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS Shahab D. Mohaghegh1 & Grant Bromhal2  

E-Print Network [OSTI]

development in the oil and gas industry and is being used on some shale formations. BAKKEN SHALE MuchTOP-DOWN MODELING; PRACTICAL, FAST TRACK, RESERVOIR SIMULATION & MODELING FOR SHALE FORMATIONS based on measure data, called Top-Down, Intelligent Reservoir Modeling for the shale formations

Mohaghegh, Shahab

408

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List This list is in no way exhaustive. Rather, it attempts to provide a set of primary references that offer key pieces of  

E-Print Network [OSTI]

development Impact Assessment of Natural Gas Production in the New York City Water Supply Watershed (2009). NYCDEP http://home2.nyc.gov/html/dep/html/news/natural_gas_drilling.shtml Review of water related and infiltration events Short Scholarly Features Natural Gas Plays in the Marcellus Shale: Challenges & Potential

Wang, Z. Jane

409

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

410

A Technical and Economic Study of Completion Techniques In Five Emerging U.S. Gas Shale Plays  

E-Print Network [OSTI]

substantial progress in developing the technologies required to bring these unconventional reserves to the market. A common misconception is that there are not enough domestic oil and gas reserves to fuel our economy. The United States imports most of the oil...

Agrawal, Archna

2010-07-14T23:59:59.000Z

411

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin. Application to Lower Huron Shale in Eastern Kentucky  

SciTech Connect (OSTI)

In this paper a fast track reservoir modeling and analysis of the Lower Huron Shale in Eastern Kentucky is presented. Unlike conventional reservoir simulation and modeling which is a bottom up approach (geo-cellular model to history matching) this new approach starts by attempting to build a reservoir realization from well production history (Top to Bottom), augmented by core, well-log, well-test and seismic data in order to increase accuracy. This approach requires creation of a large spatial-temporal database that is efficiently handled with state of the art Artificial Intelligence and Data Mining techniques (AI & DM), and therefore it represents an elegant integration of reservoir engineering techniques with Artificial Intelligence and Data Mining. Advantages of this new technique are a) ease of development, b) limited data requirement (as compared to reservoir simulation), and c) speed of analysis. All of the 77 wells used in this study are completed in the Lower Huron Shale and are a part of the Big Sandy Gas field in Eastern Kentucky. Most of the wells have production profiles for more than twenty years. Porosity and thickness data was acquired from the available well logs, while permeability, natural fracture network properties, and fracture aperture data was acquired through a single well history matching process that uses the FRACGEN/NFFLOW simulator package. This technology, known as Top-Down Intelligent Reservoir Modeling, starts with performing conventional reservoir engineering analysis on individual wells such as decline curve analysis and volumetric reserves estimation. Statistical techniques along with information generated from the reservoir engineering analysis contribute to an extensive spatio-temporal database of reservoir behavior. The database is used to develop a cohesive model of the field using fuzzy pattern recognition or similar techniques. The reservoir model is calibrated (history matched) with production history from the most recently drilled wells. The calibrated model is then further used for field development strategies to improve and enhance gas recovery.

Grujic, Ognjen; Mohaghegh, Shahab; Bromhal, Grant

2010-07-01T23:59:59.000Z

412

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

413

Oil and Gas CDT Quantification of hydraulic fracturing induced seismic risks  

E-Print Network [OSTI]

quantification Overview Hydraulic fracturing or "fracking" is a technique that uses fluids, pumped at high. Seismic risks due to hydraulic fracturing have been identified following the fracking activities predictions of the coupled multi-physics phenomenon of fracking might arise from two primary sources

Henderson, Gideon

414

Oil shale ash-layer thickness and char combustion kinetics  

SciTech Connect (OSTI)

A Hot-Recycled-Solids (HRS) oil shale retort is being studied at Lawrence Livermore National Laboratory. In the HRS process, raw shale is heated by mixing it with burnt retorted shale. Retorted shale is oil shale which has been heated in an oxygen deficient atmosphere to pyrolyze organic carbon, as kerogen into oil, gas, and a nonvolatile carbon rich residue, char. In the HRS retort process, the char in the spent shale is subsequently exposed to an oxygen environment. Some of the char, starting on the outer surface of the shale particle, is burned, liberating heat. In the HRS retort, the endothermic pyrolysis step is supported by heat from the exothermic char combustion step. The rate of char combustion is controlled by three resistances; the resistance of oxygen mass transfer through the gas film surrounding the solid particle, resistance to mass transfer through a ash layer which forms on the outside of the solid particles as the char is oxidized and the resistance due to the intrinsic chemical reaction rate of char and oxygen. In order to estimate the rate of combustion of the char in a typical oil shale particle, each of these resistances must be accurately estimated. We begin by modeling the influence of ash layer thickness on the over all combustion rate of oil shale char. We then present our experimental measurements of the ash layer thickness of oil shale which has been processed in the HRS retort.

Aldis, D.F.; Singleton, M.F.; Watkins, B.E.; Thorsness, C.B.; Cena, R.J.

1992-04-15T23:59:59.000Z

415

Nitrogen chemistry during oil shale pyrolysis  

SciTech Connect (OSTI)

Real time evolution of ammonia (NH{sub 3}) and hydrogen cyanide (HCN), two major nitrogen-containing volatiles evolved during oil shale pyrolysis, was measured by means of a mass spectrometer using chemical ionization and by infrared spectroscopy. While the on-line monitoring of NH{sub 3} in oil shale pyrolysis games was possible by both techniques, HCN measurements were only possible by IR. We studied one Green River Formation oil shale and one New Albany oil shale. The ammonia from the Green River oil shale showed one broad NH{sub 3} peak maximizing at a high temperature. For both oil shales, most NH{sub 3} evolves at temperatures above oil-evolving temperature. The important factors governing ammonia salts such as Buddingtonite in Green River oil shales, the distribution of nitrogen functional groups in kerogen, and the retorting conditions. The gas phase reactions, such as NH{sub 3} decomposition and HCN conversion reactions, also play an important role in the distribution of nitrogen volatiles, especially at high temperatures. Although pyrolysis studies of model compounds suggests the primary nitrogen product from kerogen pyrolysis to be HCN at high temperatures, we found only a trace amount of HCN at oil-evolving temperatures and none at high temperatures (T {gt} 600{degree}C). 24 refs., 6 figs., 2 tabs.

Oh, Myongsook S.; Crawford, R.W.; Foster, K.G.; Alcaraz, A.

1990-01-10T23:59:59.000Z

416

Isothermal kinetics of new Albany oil shale  

SciTech Connect (OSTI)

From the development of technologies for the utilization of eastern U.S. oil shales, fluidized bed pyrolysis technology is emerging as one of the most promising in terms of oil yield, operating cost, and capital investment. Bench-scale testing of eastern shales has reached a level where scale-up represents the next logical step in the evolution of this technology. A major consideration in this development and an essential part of any fluidized bed reactor scale-up effort--isothermal kinetics-- has largely been ignored for eastern US shale with the exception of a recent study conducted by Richardson et al. with a Cleveland shale. The method of Richardson et al. was used previously by Wallman et al. with western shale and has been used most recently by Forgac, also with western shale. This method, adopted for the present study, entails injecting a charge of shale into a fluidized bed and monitoring the hydrocarbon products with a flame ionization detector (FID). Advantages of this procedure are that fluidized bed heat-up effects are simulated exactly and real-time kinetics are obtained due to the on-line FID. Other isothermal methods have suffered from heat-up and cool-down effects making it impossible to observe the kinetics at realistic operating temperatures. A major drawback of the FID approach, however, is that no differentiation between oil and gas is possible.

Carter, S.D.

1987-04-01T23:59:59.000Z

417

In situ retorting or oil shale  

SciTech Connect (OSTI)

An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

Hettinger, W.P. Jr.

1984-09-11T23:59:59.000Z

418

Eastern shale hydroretorting  

SciTech Connect (OSTI)

The overall objective of the Bench-Scale Unit (BSU) test program was to determine the effects of major process variables on conversion of organic carbon, yields and properties of oil and gas and consumption of hydrogen for hydroretorting of a specific Indiana New Albany shale. A preliminary error-propagation analysis was performed to identify possible improvements in BSU measurements that could lead to better overall material and elemental balances. A list of additional potential sources of uncertainty (primarily due to the operating procedures used) was compiled. Based on the identification of these possible sources of uncertainty, additional equipment was ordered and installed and existing operating procedures and calculation methods were modified. The result was excellent overall material balance closures (100% +/- 1%).

Roberts, M.J.; Feldkirchner, H.L.; Punwani, D.V.; Rex, R.C. Jr.

1984-01-01T23:59:59.000Z

419

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network [OSTI]

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

Lolon, Elyezer P.

2006-04-12T23:59:59.000Z

420

H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect (OSTI)

This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Raw shale dissolution as an aid in determining oil shale mineralogy  

SciTech Connect (OSTI)

With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus_minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

Duewer, T.I.; Foster, K.G.; Coburn, T.T.

1991-11-11T23:59:59.000Z

422

Raw shale dissolution as an aid in determining oil shale mineralogy  

SciTech Connect (OSTI)

With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

Duewer, T.I.; Foster, K.G.; Coburn, T.T.

1991-11-11T23:59:59.000Z

423

PILOT TESTING: PRETREATMENT OPTIONS TO ALLOW RE-USE OF FRAC FLOWBACK AND PRODUCED BRINE FOR GAS SHALE RESOURCE DEVELOPMENT  

SciTech Connect (OSTI)

The goal of the A&M DOE NETL Project No. DE-FE0000847 was to develop a mobile, multifunctional water treatment capability designed specifically for “pre-treatment” of field waste brine. The project consisted of constructing s mobile “field laboratory” incorporating new technology for treating high salinity produced water and using the lab to conduct a side-by-side comparison between this new technology and that already existing in field operations. A series of four field trials were performed utilizing the mobile unit to demonstrate the effectiveness of different technology suitable for use with high salinity flow back brines and produced water. The design of the mobile unit was based on previous and current work at the Texas A&M Separation Sciences Pilot Plant. The several treatment techniques which have been found to be successful in both pilot plant and field tests had been tested to incorporate into a single multifunctional process train. Eight different components were evaluated during the trials, two types of oil and grease removal, one BTEX removal step, three micro-filters, and two different nanofilters. The performance of each technique was measured by its separation efficiency, power consumption, and ability to withstand fouling. The field trials were a success. Four different field brines were evaluated in the first trial in New York. Over 16,000 gallons of brine were processed. Using a power cost of $.10 per kWh, media pretreatment power use averaged $0.004 per barrel, solids removal $.04 per barrel and brine “softening” $.84 per barrel. Total power cost was approximately $1.00 per barrel of fluid treated. In Pennsylvania, brines collected from frac ponds were tested in two additional trials. Each of the brines was converted to an oil-free, solids-free brine with no biological activity. Brines were stable over time and would be good candidates for use as a make-up fluid in a subsequent fracturing fluid design. Reports on all of the field trials and subcontractor research have been summarized in this Final Report. Individual field trial reports and research reports are contained in the companion volume titled “Appendices”

Burnett, David

2012-12-31T23:59:59.000Z

424

Clay and SHale--2004 18.1 Clay and Shale  

E-Print Network [OSTI]

Clay and SHale--2004 18.1 Clay and Shale By Robert l. Virta Domestic survey data and tables were). Common Clay and Shale.--In 2004, 162 companies produced common clay and shale from approximately 459 pits in 41 States and Puerto Rico. In States not reporting production, common clay and shale probably

425

Review of {sup 222}Rn in natural gas produced from unconventional sources  

SciTech Connect (OSTI)

A review of the literature on trace radioactivity in natural gas and natural gas products has been performed and the consequent radioactivity concentrations and dose rates due to natural radioactive elements in natural gas produced from Devonian shale wells, western tight gas sands, geo-pressurized aquifiers and coal beds have been studied. Preliminary data on {sup 222}Rn concentrations from these energy sources fall within the range observed for more conventional sources. Gas produced from reservoirs with higher than average natural /sup 238/U higher than average levels of {sup 222}Rn. Massive fracturing techniques do not appear to raise the relative concentration of radon in natural gas.

Gogolak, C.V.

1980-11-01T23:59:59.000Z

426

Utilization of Estonian oil shale at power plants  

SciTech Connect (OSTI)

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

427

Forecasting, Sensitivity and Economic Analysis of Hydrocarbon Production from Shale Plays Using Artificial Intelligence & Data Mining  

E-Print Network [OSTI]

SPE 162700 Forecasting, Sensitivity and Economic Analysis of Hydrocarbon Production from Shale-cluster, multi-stage hydraulic fractures, that have proven to be essential for economic recovery from Shale plays, sensitivity and economic analysis are performed in order to identify the impact of different reservoir

Mohaghegh, Shahab

428

OIL SHALE DEVELOPMENT IN CHINA  

E-Print Network [OSTI]

In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

J. Qian; J. Wang; S. Li

429

Oil shale as an energy source in Israel  

SciTech Connect (OSTI)

Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

1996-01-01T23:59:59.000Z

430

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250 Rev.TechDepartment ofChallengesWater Key

431

Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1  

E-Print Network [OSTI]

, the Eagle Ford Shale (EFS) play has had a remarkable development in natural gas and oil production. EFSEG39 Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muñoz Torres, J.1 javier (bcf) of natural gas and 8,049 thousand barrels of oil. Up to 2020, it is expected that natural gas

Texas at Austin, University of

432

Property measurement and correlation for homogeneous and naturally fractured low permeability cores  

E-Print Network [OSTI]

This thesis presents the results of measurements from ten naturally fractured Devonian Shale cores using a new laboratory technique to determine the distinctive properties of the matrix and the fractures. The new technique is based on a pressure...

Fan, Jin

2012-06-07T23:59:59.000Z

433

Comparison of Emperical Decline Curve Analysis for Shale Wells  

E-Print Network [OSTI]

This study compares four recently developed decline curve methods and the traditional Arps or Fetkovich approach. The four methods which are empirically formulated for shale and tight gas wells are: 1. Power Law Exponential Decline (PLE). 2...

Kanfar, Mohammed Sami

2013-07-13T23:59:59.000Z

434

Water mist injection in oil shale retorting  

DOE Patents [OSTI]

Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

1980-07-30T23:59:59.000Z

435

Shale Natural Gas Estimated Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand

436

The Shale Gas Matt Ridley  

E-Print Network [OSTI]

Environmental impacts ................................................................19 Fracking fluid

Boyer, Elizabeth W.

437

CLAY AND SHALE--2001 18.1 CLAY AND SHALE  

E-Print Network [OSTI]

operated approximately 633 clay and shale pits or quarries. The largest 20 companies, many with multiple

438

CLAY AND SHALE--2002 18.1 CLAY AND SHALE  

E-Print Network [OSTI]

CLAY AND SHALE--2002 18.1 CLAY AND SHALE By Robert L. Virta Domestic survey data and tables were clay, bentonite, common clay and shale, fire clay, fuller's earth, and kaolin. Ball clays consist of feldspars, biotite, and quartz. Common clay and shale contain illite and chlorite as major components. Fire

439

Western oil shale conversion using the ROPE copyright process  

SciTech Connect (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

440

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oil shale research in China  

SciTech Connect (OSTI)

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

442

Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same  

DOE Patents [OSTI]

Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

Boardman, Richard D.; Carrington, Robert A.

2010-05-04T23:59:59.000Z

443

Natural Gas: From Shortages to Abundance in the U.S.  

E-Print Network [OSTI]

The recent dramatic and largely unanticipated growth in the current and expected future production of shale gas, and the related developments in the production of shale oil, have dramatically changed the energy future of the U.S. and potentially of the world compared to what experts were forecasting only a few years ago. These changes would not have been realized as quickly and efficiently absent deregulation of the wellhead price of natural gas, unbundling of gas supplies from pipeline transportation services, the associated development of efficient liquid markets for natural gas, and reforms to the licensing and regulation of prices for gas pipelines charge to move gas from where it is produced to where it is consumed. This economic platform supported the integration of technological advances in vertical drilling, downhole telemetry, horizontal drilling, monitoring and control of deep drilling equipment, and hydraulic fracturing to exploit economically shale gas deposits that were identified long ago, but considered to be uneconomical until recently. I. Natural Gas Wellhead Price and Pipeline Regulation Federal regulation of the natural gas industry began with the Natural Gas Act of 1938 (NGA). The NGA gave the Federal Power Commission (FPC), later the Federal Energy Regulatory Commission (FERC), the authority to license the construction and expansion of new interstate natural gas pipelines, to ensure that they are operated safely, and to regulate the prices 1

Paul L. Joskow

2012-01-01T23:59:59.000Z

444

Characterization of interim reference shales  

SciTech Connect (OSTI)

Measurements have been made on the chemical and physical properties of two oil shales designated as interim reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Anvil Points mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, kerogen concentrates, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. The measured properties of the interim reference shales are comparable to results obtained from previous studies on similar shales. The western interim reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern interim reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the interim reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. The experimental determination of many of the shale oil properties was beyond the scope of this study. Therefore, direct comparison between calculated and measured values of many properties could not be made. However, molecular weights of the shale oils were measured. In this case, there was poor agreement between measured molecular weights and those calculated from API and other published correlations. 23 refs., 12 figs., 15 tabs.

Miknis, F.P.; Sullivan, S.; Mason, G.

1986-03-01T23:59:59.000Z

445

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

2009-01-01T23:59:59.000Z

446

Division of Oil, Gas, and Mining Permitting  

E-Print Network [OSTI]

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

447

Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System  

SciTech Connect (OSTI)

Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude of river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996) methodology to assess the shifting and alteration of the flow regime within the river and streams of the study area. 2) Evaluate the effect of measurable land use changes related to gas development (well-pad placement, access road completion, etc.) on surface water flow in the region (Task/Section 3.7). Results showed that since the upsurge in shale-gas related activities in the Fayetteville Shale Play (between 2006 and 2010), shale-gas related infrastructure in the region have increase by 78%. This change in land-cover in comparison with other land-cover classes such as forest, urban, pasture, agricultural and water indicates the highest rate of change in any land-cover category for the study period. A Soil and Water Assessment Tool (SWAT) flow model of the Little Red River watershed simulated from 2000 to 2009 showed a 10% increase in storm water runoff. A forecast scenario based on the assumption that 2010 land-cover does not see any significant change over the forecast period (2010 to 2020) also showed a 10% increase in storm water runoff. Further analyses showed that this change in the stream-flow regime for the forecast period is attributable to the increase in land-cover as introduced by the shale-gas infrastructure. 3) Upgrade the Fayetteville Shale Information System to include information on watershed status. (Tasks/Sections 2.1 and 2.2). This development occurred early in the project period, and technological improvements in web-map API’s have made it possible to further improve the map. The current sites (http://lingo.cast.uark.edu) is available but is currently being upgraded to a more modern interface and robust mapping engine using funds outside this project. 4) Incorporate the methodologies developed in Tasks/Sections 3.5 and 3.7 into a Spatial Decision Support System for use by regulatory agencies and producers in the play. The resulting system is available at http://fayshale.cast.uark.edu and is under review the Arkansas Natural Resources Commission.

Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro; Limp, Fred

2013-06-30T23:59:59.000Z

448

This is the pre-peer reviewed version of the following article: "Can hydraulic fracturing make Poland self-sufficient in natural gas?", which will be published in final form in a  

E-Print Network [OSTI]

Poland self-sufficient in natural gas?", which will be published in final form in a special issue-4296 Can hydraulic fracturing make Poland self-sufficient in natural gas? Kjell Alekletta,b,* , Tadeusz to be able to replace gas from Russia with domestic natural gas production and eventually to become self

Patzek, Tadeusz W.

449

Microporomechanical modeling of shale  

E-Print Network [OSTI]

Shale, a common type of sedimentary rock of significance to petroleum and reservoir engineering, has recently emerged as a crucial component in the design of sustainable carbon and nuclear waste storage solutions and as a ...

Ortega, J. Alberto (Jose Alberta Ortega Andrade)

2010-01-01T23:59:59.000Z

450

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

451

DOE Oil Shale Reference Sample Bank. Quarterly reports, October-December 1985; January-March 1986. [Samples from eastern and western USA  

SciTech Connect (OSTI)

Two FY-86 reference shales have been acquired, processed and stored under inert gas. The Eastern shale, designated E86, was obtained from the Clegg Creek Member of the New Albany Shale at a quarry near Louisville, Kentucky in the first quarter of FY86. The western shale was obtained from the Exxon Colony Mine, located near Parachute, Colorado, during the second quarter of FY 86. Partial distributions of both shales have been made to DOE contractors. Complete descriptions of the reference shale locales, shale processing procedures and analytical characterization are provided in the following sections of this report. 26 tabs.

Owen, L.B.

1986-04-01T23:59:59.000Z

452

Improved Detection of Bed Boundaries for Petrophysical Evaluation with Well Logs: Applications to Carbonate and Organic-Shale Formations  

E-Print Network [OSTI]

: Applications to Carbonate and Organic-Shale Formations Zoya Heidari, SPE, Texas A&M University and Carlos of well logs acquired in organic shales and carbonates is challenging because of the presence of thin beds acquired in thinly bedded carbonates and in the Haynesville shale-gas formation. Estimates of petrophysical

Torres-VerdĂ­n, Carlos

453

Fast Track Reservoir Modeling of Shale Formations in the Appalachian Basin.  

E-Print Network [OSTI]

· Highly organically rich, dark, fine laminated, naturally fractured shale; · Porosity (core measurements ) is from 1 to 5%; · Permeability (core measurements) is in the range of 10-7 to 10-9 md; · Natural fracture was performed in support of the NETL- RUA Authors would like to acknowledge: · NETL/DOE for financially

Mohaghegh, Shahab

454

Beneficiation and hydroretorting of low grade oil shale  

SciTech Connect (OSTI)

A new approach to oil recovery from low grade oil shales has been developed jointly by the Mineral Resources Institute (MRI) of The University of Alabama and the HYCRUDE Corporation. The approach is based on the HYTORT process, which utilized hydrogen gas during the retorting process to enhance oil yields from many types of oil shales. The performance of the HYTORT process is further improved by combining it with MRI's froth flotation process. Taking advantage of differences in the surface properties of the kerogen and the inorganic mineral constituents of the oil shales, the MRI process can reject up to three quarters by weight of relatively kerogen-free inorganic fractions of the oil shale before HYTORT processing. The HYTORT and MRI processes are discussed. Results of tests by each process on oil shales of low to moderate inherent kerogen content are presented. Also discussed are the results of the combined processes on an Indiana New Albany oil shale. By combining the two processes, the raw shale which yielded 12 gallons of oil per ton by Fischer Assay was upgraded by flotation to a product yielding 27 gallons of Fischer Assay oil per ton. HYTORT processing of the beneficiated product recovered 54 gallons of oil per ton, an improvement in oil yield by a factor of 4.5 over the raw shale Fischer Assay.

Tippin, R.B.; Hanna, J.; Janka, J.C.; Rex, R.C. Jr.

1985-02-01T23:59:59.000Z

455

Reactive gases evolved during pyrolysis of Devonian oil shale  

SciTech Connect (OSTI)

Computer modeling of oil shale pyrolysis is an important part of the Lawrence Livermore National Laboratory (LLNL) Oil Shale Program. Models containing detailed chemistry have been derived from an investigation of Colorado oil shale. We are currently attempting to use models to treat more completely reactions of nitrogen and sulfur compounds in the retort to better understand emissions. Batch retorting work on Devonian oil shale is proving particularly useful for this study of nitrogen/sulfur chemistry. Improved analytical methods have been developed to quantitatively determine reactive volatiles at the parts-per-million level. For example, the triple quadrupole mass spectrometer (TQMS) is used in the chemical ionization (CI) mode to provide real-time analytical data on ammonia evolution as the shale is pyrolyzed. A heated transfer line and inlet ensure rapid and complete introduction of ammonia to the instrument by preventing water condensation. Ammonia and water release data suitable for calculating kinetic parameters have been obtained from a New Albany Shale sample. An MS/MS technique with the TQMS in the electron ionization (EI) mode allows hydrogen sulfide, carbonyl sulfide, and certain trace organic sulfur compounds to be monitored during oil shale pyrolysis. Sensitivity and selectivity for these compounds have been increased by applying artificial intelligence techniques to tuning of the spectrometer. Gas evolution profiles (100 to 900/sup 0/C) are reported for hydrogen sulfide, water, ammonia, and trace sulfur species formed during pyrolysis of Devonian oil shale. Implications for retorting chemistry are discussed. 18 refs., 11 figs., 3 tabs.

Coburn, T.T.; Crawford, R.W.; Gregg, H.R.; Oh, M.S.

1986-11-01T23:59:59.000Z

456

Autopoietic landscapes : the architectural implications of mining the Marcellus Shale  

E-Print Network [OSTI]

Hydraulic fracturing, a form of natural gas extraction, is a process deeply embedded in the networks of politics, power, economics, energy, infrastructure, and land use. Hydraulic fracturing has become a standard practice ...

Winfield, Catherine (Catherine Anne)

2013-01-01T23:59:59.000Z

457

Biologically active filtration for treatment of produced water and fracturing flowback wastewater in the O&G industry.  

E-Print Network [OSTI]

??Sustainable development of unconventional oil and gas reserves, particularly tight oil, tight gas, and shale gas, requires prudent management of water resources used during drilling,… (more)

Freedman, Daniel E.

2014-01-01T23:59:59.000Z

458

DOE oil shale reference sample bank: Quarterly report, July-September 1987  

SciTech Connect (OSTI)

The DOE Oil Shale Program was restructured in FY84 to implement a 5-year period of basic and applied research in the study of the phenomena involved in oil shale pyrolysis/retorting. The program calls for the study of two reference shales per year for a period of 5 years. Consequently, the program calls for the identification, acquisition, processing, characterization, storage, disbursement, and record keeping for ten reference shales in a period of 5 years. Two FY86 and one FY87 reference shales have been acquired, processed and stored under inert gas. The Eastern shale, designated E86, was obtained from the Clegg Creek Member of the New Albany Shale at a quarry near Louisville, Kentucky in the first quarter of FY86. The FY86 Western Shale was obtained from the Exxon Colony Mine, located near Parachute, Colorado, during the first quarter of FY86. The FY87 Western Shale was obtained from the Tipton Member of the Green River Formation near Rock Springs, Wyoming during the fourth quarter of FY87. Partial distributions of the FY86 shale have been made to DOE and non-DOE contractors. Complete descriptions of the FY87 Western reference shale locale, shale processing procedures and analytical characterization are provided in this report. 7 refs., 6 figs., 1 tab.

Owen, L.B.

1987-09-01T23:59:59.000Z

459

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network [OSTI]

fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale....

Serajian, Vahid

2011-10-21T23:59:59.000Z

460

Fluidized-bed gasification of an eastern oil shale  

SciTech Connect (OSTI)

The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Results of rapid pyrolysis experiments using eastern US oil shale in the Livermore solid-recycle retort  

SciTech Connect (OSTI)

Over the past several years Lawrence Livermore National Laboratory has operated a 2-ton/day pilot-scale solid-recycle system for the study of oil shale retorting under rapid-pyrolysis conditions. Results of processing eastern US New Albany oil shale are presented and compared with results obtained previously using two western US Green River oil shales. The retort consists of a cascading mixer and plug-flow soak-tank pyrolyzer with an air lift pipe and cascading-bed combustor. In the solid-recycle system, spent shale leaving the pyrolyzer is burned in the lift and cascading-bed combustor and then returned to the retort to heat the incoming raw shale. In laboratory experiments, when raw shale is rapidly heated in a fluidized bed of sand, oil yields above those of Fischer assay are obtained. In the present experiments, hot-recycled shale is used as the heat-carrying media, resulting in oil yields comparable to those obtained from Fischer assay. The distribution and composition of solid, oil, and gas throughout the recycle system is reported for the three shales studied. The distribution of sulfur and nitrogen during processing Green River oil shale has been the focus of environmental studies at LLNL. Eastern oil shale contains 5 to 10 times more sulfur and approximately the same amount of nitrogen as western oil shale. The high sulfur content coupled with low carbonate mineral concentrations results in significant sulfur releases in the combustor-gas, compared with trace releases for western shale. Iron oxide in the recycled solid was found to effectively scrub H/sub 2/S from the pyrolysis gas for both western and eastern shales. From 0.4 to 3% of the raw shale nitrogen is released as NO/sub x/ in the combustor-gas for western shale. Releases for New Albany shale are one-tenth these levels. 8 refs., 9 figs., 7 tabs.

Cena, R.J.; Taylor, R.W.

1986-11-01T23:59:59.000Z

462

Shale gas is natural gas trapped inside  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitment for aIn this update, readTo beSavings

463

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

464

January 20, 2011 Marcellus Shale 101  

E-Print Network [OSTI]

. Will oil shale be viable as well? Oil shale will not be economically viable anytime in the near future

Hardy, Christopher R.

465

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

466

Water Use in the Eagle Ford Shale: An Economic and Policy Analysis of Water Supply and Demand  

E-Print Network [OSTI]

inaccessible shale reserves to produce abundant amounts of oil and gas. The oil and gas proliferation in the Eagle Ford has seen exponential growth, and production is not anticipated to decline until 2025. In addition, a typical HF well in the Eagle Ford... Figures Figure 1: Map of the Eagle Ford Shale Oil, Gas and Condensate Play .......................................................... 4 Figure 2: Production Growth within the Eagle Ford Shale...

Arnett, Benton; Healy, Kevin; Jiang, Zhongnan; LeClere, David; McLaughlin, Leslie; Roberts, Joey; Steadman, Maxwell

2014-01-01T23:59:59.000Z

467

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-01-01T23:59:59.000Z

468

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-12-31T23:59:59.000Z

469

FE-Funded Study Released on Key Factors Affecting China Shale...  

Broader source: Energy.gov (indexed) [DOE]

government gives priority to the development of China's shale gas sector to help fight air pollution and reduce reliance on natural gas imports; and The U.S. government supports...

470

REGIONAL DEPOSITIONAL TRENDS IN THE DEVONIAN GENESEO/BURKET BLACK SHALE BASED ON GAMMA RAY-DENSITY TRENDS.  

E-Print Network [OSTI]

??ABSTRACTGas shales are becoming increasingly important as new technologies are applied to enhance their production of natural gas. The Barnett, the Fayetteville, and the Haynesville… (more)

Arnold, LaMichelle

2010-01-01T23:59:59.000Z

471

An Investigation of Regional Variations of Barnett Shale Reservoir Properties, and Resulting Variability of Hydrocarbon Composition and Well Performance  

E-Print Network [OSTI]

In 2007, the Barnett Shale in the Fort Worth basin of Texas produced 1.1 trillion cubic feet (Tcf) gas and ranked second in U.S gas production. Despite its importance, controls on Barnett Shale gas well performance are poorly understood. Regional...

Tian, Yao

2010-07-14T23:59:59.000Z

472

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

473

Net Withdrawals of Natural Gas from Underground Storage (Summary...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

474

Natural Gas Withdrawals from Underground Storage (Annual Supply...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

475

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

476

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

study of retorted oil shale," Lawrence Livermore Laboratoryb) using columns of spent shale. REFERENCES Burnham, Alankinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

477

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network [OSTI]

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

478

Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil  

SciTech Connect (OSTI)

A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

Burnham, A K

2003-08-20T23:59:59.000Z

479

Examination of shale-derived polar compounds and their effects on diesel fuel stability  

SciTech Connect (OSTI)

This study is an examination of the effects of adding shale-derived polar fractions to a stable shale base fuel. Polar compounds have been isolated from two different shale sources by mild acid extraction followed by adsorption on silica gel. The identification of the extract components by combined gas chromatography - mass spectrometry, as well as the results of accelerated storage stability tests, are described in this paper.

Cooney, J.V.; Beal, E.J.; Hazlett, R.N.

1984-01-01T23:59:59.000Z

480

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

Note: This page contains sample records for the topic "gas shale fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481