Sample records for gas sampling rock

  1. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18T23:59:59.000Z

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  2. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...

  3. ELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION

    E-Print Network [OSTI]

    to successfully produce low permeability gas reservoirs. My study links rock physics to well log and seismic data shales to reservoir sandstones. Typically, the presence of gas-saturated sandstones lowers the Vp/Vs evenELASTIC ROCK PROPERTIES OF TIGHT GAS SANDSTONES FOR RESERVOIR CHARACTERIZATION AT RULISON FIELD

  4. Rock-physics Models for Gas-hydrate Systems Associated

    E-Print Network [OSTI]

    Texas at Austin, University of

    Rock-physics Models for Gas-hydrate Systems Associated with Unconsolidated Marine Sediments Diana at Austin, Austin, Texas, U.S.A. ABSTRACT R ock-physics models are presented describing gas-hydrate systems associated with unconsolidated marine sediments. The goals are to predict gas-hydrate concentration from

  5. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1990-01-01T23:59:59.000Z

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  6. Gas sampling system for reactive gas-solid mixtures

    DOE Patents [OSTI]

    Daum, Edward D. (Alliance, OH); Downs, William (Alliance, OH); Jankura, Bryan J. (Mogadore, OH); McCoury, Jr., John M. (Mineral City, OH)

    1989-01-01T23:59:59.000Z

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  7. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  8. Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 JumpGas Sampling Jump to:

  9. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30T23:59:59.000Z

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  10. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect (OSTI)

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18T23:59:59.000Z

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  11. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  12. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  13. Improved helium exchange gas cryostat and sample tube designs for automated gas sampling and cryopumping

    E-Print Network [OSTI]

    Severinghaus, Jeffrey P.

    Improved helium exchange gas cryostat and sample tube designs for automated gas sampling, California 92093-0244, USA [1] In order to eliminate the use of liquid helium for the extraction of atmospheric gases from polar ice cores, two units of a redesigned top load helium exchange gas cryostat were

  14. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  15. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    Gas Analysis In Mineral Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Fluid Inclusion And Rock-Gas Analysis In...

  16. Ammonia Results Review for Retained Gas Sampling

    SciTech Connect (OSTI)

    Mahoney, Lenna A.

    2000-09-20T23:59:59.000Z

    This report was prepared as part of a task supporting the deployment of the retained gas sampler (RGS) system in Flammable Gas Watch List Tanks. The emphasis of this report is on presenting supplemental information about the ammonia measurements resulting from retained gas sampling of Tanks 241-AW-101, A-101, AN-105, AN-104, AN-103, U-103, S-106, BY-101, BY-109, SX-106, AX-101, S-102, S-111, U-109, and SY-101. This information provides a better understanding of the accuracy of past RGS ammonia measurements, which will assist in determining flammable and toxicological hazards.

  17. Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples...

  18. Rock Sampling At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  19. Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity Date

  20. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity

  1. computed seismic speeds and attenuation in rocks with partial gas ...

    E-Print Network [OSTI]

    White, J. E.

    At the gas-oil or gas-water contact in a homo- geneous ... Shale stringers may seal off local pockets of gas ... During production of a field, gas may ..... 3(1 - US)/

  2. On grouting using a suspension of ultrafine clay on artificially cracked rock samples

    SciTech Connect (OSTI)

    Ito, Y.; Sakaguchi, T.; Nishiyama, K. [Kumagai Gumi Co., Ltd., Tokyo (Japan). Nuclear and Energy Dept.; Fujiwara, A. [Radioactive Waste Management Center, Tokyo (Japan). Second Research Div.

    1993-12-31T23:59:59.000Z

    Recently there has been increasing social interest in the effective disposal of low-level radioactive wastes. The use of underground rock caverns is considered as a possible repository space. This paper presents a new grouting method which uses a suspension of liquefied ultrafine clay in fractured rock masses. In order to demonstrate the effect to block open cracks, two experiments were carried out on large-sized granite samples with open cracks. The experiments proved the method to be highly effective.

  3. Acid Fracture and Fracture Conductivity Study of Field Rock Samples

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    (Black and Hower 1965). Clays consist of negatively charged aluminosilicate layers kept together by cations. The most characteristic property is their ability to adsorb water between the layers, resulting in strong repulsive forces and clay expansion... chemicals used in water fracturing such as friction reducers, fluid-loss additives, and surfactants (Black and Hower 1965). The samples used in this study had significant clay-like content. To prevent swelling, a 2% KCl solution was used throughout...

  4. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  5. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

  6. Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity...

  7. Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Grigsby...

    Open Energy Info (EERE)

    Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area...

  8. NNSA implements nondestructive gas sampling technique for nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    implements ... NNSA implements nondestructive gas sampling technique for nuclear weapon components Posted: June 12, 2012 - 1:34pm The National Nuclear Security Administration...

  9. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki...

    Open Energy Info (EERE)

    Lewicki, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Long Valley Caldera Geothermal Area (Lewicki, Et Al.,...

  10. Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration...

  11. Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure

    E-Print Network [OSTI]

    Liu, Weiqun; Li, Yushou; Wang, Bo

    2010-01-01T23:59:59.000Z

    argillite under con?nement: gas and water testing. Phys.Gascoyne, M. , Wuschke, D.M. : Gas migration through water-fractured rock: results of a gas injection test. J.

  12. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  13. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11T23:59:59.000Z

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  14. Apparatus and method for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-11T23:59:59.000Z

    A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.

  15. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    NONE

    1999-11-01T23:59:59.000Z

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

  16. Analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle, southern Alaska

    SciTech Connect (OSTI)

    Madden, D.J.; Arbogast, B.F.; O'Leary, R.M.; Van Trump, G. Jr.; Silberman, M.L.

    1989-01-01T23:59:59.000Z

    A U.S. Geological Survey report give the analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle in southern Alaska is presented.

  17. Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines

    E-Print Network [OSTI]

    Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

  18. Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 Jump to:Garnet Wind Jump2006)Gas

  19. Category:Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed informationGas

  20. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by either burying a similar plastic...

  1. Z .Earth and Planetary Science Letters 139 1996 509519 Rock-magnetic signature of gas hydrates in accretionary prism

    E-Print Network [OSTI]

    Housen, Bernie

    Z .Earth and Planetary Science Letters 139 1996 509­519 Rock-magnetic signature of gas hydrates with the presence of gas hydrates. Two indices Z Ä 4 Ä 4. Z Ä 4 .combining coercivity, remanence, and susceptibility that a `fossil gas hydrate zone' extended downwards to about 295 mbsf during the last glacial. The observed

  2. Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil the geomechanics of oil and gas reservoirs. The fragile microstructure of some rocks makes it difficult to predict. The results could be used in similar geomechanical and structural damage problems such as failure and rupture

  3. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

  4. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Poztman, A.K.

    1986-02-25T23:59:59.000Z

    A method is described for separating aerosol particles from a gas sample being withdrawn from a contained atmosphere, comprising the following steps: placing within the contained atmosphere a covering gas impermeable enclosure have an interior chamber partly defined by a bottom metal plate that is permeable to gas; fixing the position of the enclosure with the plate facing downwardly and directly exposed to the contained atmosphere; heating the metal plate to a temperature greater than that of the contained atmosphere, whereby aerosol particles are repelled to the resulting thermophoretic forces applied to them by the temperature gradient produced in the atmosphere immediately under the plate; and sampling gas within the interior chamber of the enclosure.

  5. Self-contained cryogenic gas sampling apparatus and method

    DOE Patents [OSTI]

    McManus, G.J.; Motes, B.G.; Bird, S.K.; Kotter, D.K.

    1996-03-26T23:59:59.000Z

    Apparatus for obtaining a whole gas sample, is composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method is described for obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant. 3 figs.

  6. Self-contained cryogenic gas sampling apparatus and method

    DOE Patents [OSTI]

    McManus, Gary J. (Idaho Falls, ID); Motes, Billy G. (Idaho Falls, ID); Bird, Susan K. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID)

    1996-01-01T23:59:59.000Z

    Apparatus for obtaining a whole gas sample, composed of: a sample vessel having an inlet for receiving a gas sample; a controllable valve mounted for controllably opening and closing the inlet; a valve control coupled to the valve for opening and closing the valve at selected times; a portable power source connected for supplying operating power to the valve control; and a cryogenic coolant in thermal communication with the vessel for cooling the interior of the vessel to cryogenic temperatures. A method of obtaining an air sample using the apparatus described above, by: placing the apparatus at a location at which the sample is to be obtained; operating the valve control to open the valve at a selected time and close the valve at a selected subsequent time; and between the selected times maintaining the vessel at a cryogenic temperature by heat exchange with the coolant.

  7. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Postma, Arlin K. (Halfway, OR)

    1986-01-01T23:59:59.000Z

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  8. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER SAMPLE

    SciTech Connect (OSTI)

    Newell, J.

    2011-11-14T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) recently received a deposit sample from the Melter Primary Off Gas System (POG) of the Defense Waste Processing Facility (DWPF). This sample was composed of material that had been collected while the quencher was in operation January 27, 2011 through March 31, 2011. DWPF requested, through a technical assistance request, characterization of the melter off-gas deposits by x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The purpose of the Melter Off-Gas System is to reduce the amount of radioactive particles and mercury in the gases vented to the atmosphere. Gases emitted from the melter pass through the primary film cooler, quencher, Off-Gas Condensate Tank (OGCT), Steam Atomized Scrubbers (SAS), a condenser, a high efficiency mist eliminator, and a high efficiency particulate air filter, before being vented to the Process Vessel Vent System. The film coolers cool the gases leaving the melter vapor space from {approx}750 C to {approx}375 C, by introducing air and steam to the flow. In the next step, the quencher cools the gas to about 60 C by bringing the condensate from the OGCT in contact with the effluent (Figure 1). Most of the steam in the effluent is then condensed and the melter vapor space pressure is reduced. The purpose of the OGCT is to collect and store the condensate formed during the melter operation. Condensate from the OGCT is circulated to the SAS and atomized with steam. This atomized condensate is mixed with the off-gas to wet and join the particulate which is then removed in the cyclone. The next stage incorporates a chilled water condenser which separates the vapors and elemental mercury from the off-gas steam. Primary off-gas deposit samples from the DWPF melter have previously been analyzed. In 2003, samples from just past the film cooler, from the inlet of the quencher and inside the quencher were analyzed at SRNL. It was determined that the samples were a mixture of sludge and glass frit. The major component was Si along with Fe, Al, and other elements in the radioactive waste being processed. The deposits analyzed also contained U-235 fission products and actinide elements. Prior to that, deposits in the off-gas system in the DWPF nonradioactive half scale melter and the one-tenth scale integrated DWPF melter system were analyzed and determined to be mixtures of alkali rich chlorides, sulfates, borates, and fluorides entrained with iron oxides, spinels and frit particles formed by vapor-phase transport and condensation. Additional work was performed in 2007 in which researchers similarly found the deposits to be a combination of sludge and frit particles.

  9. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect (OSTI)

    None

    2011-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  10. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect (OSTI)

    Ronald C. Surdam

    2003-12-29T23:59:59.000Z

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

  11. Thermophoretic separation of aerosol particles from a sampled gas stream

    SciTech Connect (OSTI)

    Postma, A.K.

    1984-09-07T23:59:59.000Z

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  12. Strontium-85 and plutonium-239 sorption in rock samples from the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Mason, C.F.V.; Lu, N.; Marusak, N.L.; Scheber, B.; Chipera, S. [Los Alamos National Lab., NM (United States); Daukeyev, D.; Khromushin, I. [National Nuclear Center of the Republic of Kazakhstan, Almaty (Kazakhstan)

    1999-03-01T23:59:59.000Z

    The adsorption and desorption of strontium and plutonium were studied as a function of rock type and simulated ground waters from the Semipalatinsk Test Site (STS). Seven different rock types were obtained from the Balapan Region of the STS and were subjected to x-ray diffraction analyses. Two different ground waters were simulated using data supplied by the National Nuclear Center. The results indicate the sorption of strontium is strongly dependent on the minerals present in the rock species and on the total ionic strength of the ground water whereas, in all cases, plutonium was strongly irreversibly sorbed.

  13. Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...

    Open Energy Info (EERE)

    Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

  14. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect (OSTI)

    None

    2012-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  15. Organic matter characteristics of CenomanianTuronian source rocks: implications for petroleum and gas

    E-Print Network [OSTI]

    Boyer, Edmond

    Organic matter characteristics of Cenomanian­Turonian source rocks: implications for petroleum from the Senegal margin basin, believed to be the main source rocks in the area, have been matter sources; Depositional environment; Petroleum source rock #12;1. Introduction Fig. 1. (a) Map

  16. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2010

    SciTech Connect (OSTI)

    None

    2010-12-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on July 6 and 7, 2010. Additionally, a water sample was obtained at one well known as the 29-6 Water Hole, several miles west of the Gasbuggy site. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. The one water well sample was analyzed for gamma-emitting radionuclides and tritium. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  17. On White's model of attenuation in rocks with partial gas saturation

    E-Print Network [OSTI]

    Dutta, N. C.; Seriff, A. J.

    approximate theory for the calculation of attenuation and dispersion of compressional seismic waves in porous rocks filled mostly with brine but containing ...

  18. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  19. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin2012)

  20. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab ActivityEnergy

  1. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  2. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward, Et Al., 1978)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open Energy

  3. Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open

  4. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|

  5. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|Energy

  6. Rock Sampling At U.S. West Region (Krohn, Et Al., 1993) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock

  7. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRockInformation

  8. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    None

    2009-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

  9. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    E-Print Network [OSTI]

    Takeda, M.

    2011-01-01T23:59:59.000Z

    to evaluate whether reservoir concentration data collectedmeasured reservoir concentration data. If the isotropicdata. However, in the experiments with solution sampling, the reservoir

  10. Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada

    SciTech Connect (OSTI)

    David B. Wood

    2009-10-08T23:59:59.000Z

    Between 1951 and 1992, underground nuclear weapons testing was conducted at 828 sites on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  11. Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

  12. Surface Gas Sampling At International Geothermal Area Mexico...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Norman (2002) shows that the Cerro Prieto gas analyses collected by Cathy Janik and Alfred Truesdell from1977 to 1998...

  13. Gas and Particulate Sampling of Airborne Polycyclic Aromatic Compounds

    SciTech Connect (OSTI)

    Lane, D.A.; Gundel, L.A.

    1995-10-01T23:59:59.000Z

    The denuder surfaces of the gas and particle (GAP) sampler (developed at the Atmospheric Environment Service of Environment Canada) have been modified by coating with XAD-4 resin, using techniques developed at Lawrence Berkeley National Laboratory (LBNL) for the lower capacity integrated organic vapor/particle sampler (IOVPS). The resulting high capacity integrated organic gas and particle sampler (IOGAPS) has been operated in ambient air at 16.7 L min{sup -1} for a 24-hour period in Berkeley, California, USA. Simultaneous measurements were made at the same collection rate with a conventional sampler that used a filter followed by two sorbent beds. Gas and particle partition measurements were determined for 13 polycyclic aromatic hydrocarbons (PAH) ranging from 2-ring to 6-ring species. The IOGAPS indicated a higher particle fraction of these compounds than did the conventional sampler, suggesting that the conventional sampler suffered from 'blow-off' losses from the particles collected on the filter.

  14. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    None

    2011-10-01T23:59:59.000Z

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  15. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  16. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision Gas

  17. Category:Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformationSolarallSurface Gas

  18. Gas Flux Sampling (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma:Laney, 2005)Gas Flux

  19. Gas Flux Sampling (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma:Laney, 2005)Gas

  20. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas NaturalColrado Area

  1. Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas NaturalColrado

  2. Gas Sampling At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui Area (DOE GTP)

  3. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui Area

  4. Gas Sampling At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui AreaExploration

  5. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  6. Feasibility of an alpha particle gas densimeter for stack sampling applications

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    FEASIBILITY OF AN ALPHA PARTICLE GAS DENSIMETER FOR STACK SAMPLING APPLICATIONS A Thesis by RANDALL ~ JOHNSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May l983 Major Subject: Nuclear Engineering FEASIBILITY OF AN ALPHA PARTICLE GAS DENSIMETER FOR STACK SAMPLING APPLICATIONS A Thesis by RANDALL MARK JO HN SON Approved as to style and content by: Ro ert A. F3e d (Ch irman of Committee...

  7. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect (OSTI)

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15T23:59:59.000Z

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic behaviors of injected CO{sub 2}, identifying and characterizing potential storage sites, and managing injection performance and reducing costs.

  8. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect (OSTI)

    Goles, R.W.

    1996-03-01T23:59:59.000Z

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  9. Surface blistering and flaking of sintered uranium dioxide samples under high dose gas implantation and annealing

    E-Print Network [OSTI]

    Boyer, Edmond

    Surface blistering and flaking of sintered uranium dioxide samples under high dose gas implantation, flaking Abstract. High helium contents will be generated within minor actinide doped uranium dioxide blankets which could be used in fourth generation reactors. In this framework, it is essential to improve

  10. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    DOE Patents [OSTI]

    Eckels, David E. (Ankeny, IA); Hass, William J. (Ames, IA)

    1989-05-30T23:59:59.000Z

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  11. The Effect of Acid Additives on Carbonate Rock Wettability and Spent Acid Recovery in Low Permeability Gas Carbonates

    E-Print Network [OSTI]

    Saneifar, Mehrnoosh

    2012-10-19T23:59:59.000Z

    Spent acid retention in the near-wellbore region causes reduction of relative permeability to gas and eventually curtailed gas production. In low-permeability gas carbonate reservoirs, capillary forces are the key parameters that affect the trapping...

  12. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01T23:59:59.000Z

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  13. TH{_}PULSE: Program for Calculating Infiltration of Episodic Liquid Fingers in Superheated Rock Fractures - Theory, User's Manual and Sample Applications

    SciTech Connect (OSTI)

    Birkholzer, Jens T.

    2002-07-10T23:59:59.000Z

    This report describes the code TH{_}PULSE developed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab). The code handles gravity-driven flow of episodic infiltration events entering above-boiling rock-temperature regions. Such temperature conditions are expected, for example, after emplacement of heat-generating nuclear waste in underground repositories. Complex fluid-flow and heat-transfer phenomena occur, as the infiltrating water is subject to vigorous boiling from the hot rock. A new efficient semi-analytical method is presented herein that simulates such phenomena. It is assumed that flow forms in localized preferential flow paths (referred to as ''fingers''). The first section of this report gives the conceptual and mathematical background for the solution scheme. The second section is a user's manual for TH{_}PULSE, providing all information required to run the code, including a detailed description of the input and output files. In the third section, the new solution scheme is applied to several test cases. Sample simulations are performed for conditions representative of the potential nuclear waste repository at Yucca Mountain, Nevada. A brief summary is given in Section 4.

  14. THE SMALL ISOLATED GAS-RICH IRREGULAR DWARF (SIGRID) GALAXY SAMPLE: DESCRIPTION AND FIRST RESULTS

    SciTech Connect (OSTI)

    Nicholls, David C.; Dopita, Michael A.; Jerjen, Helmut [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Meurer, Gerhardt R., E-mail: david@mso.anu.edu.au [International Centre for Radio Astronomy Research, University of Western Australia, M468, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2011-09-15T23:59:59.000Z

    Using an optically unbiased selection process based on the HIPASS neutral hydrogen survey, we have selected a sample of 83 spatially isolated, gas-rich dwarf galaxies in the southern hemisphere with cz between 350 and 1650 km s{sup -1}, and with R-band luminosities and H I masses less than that of the Small Magellanic Cloud. The sample is an important population of dwarf galaxies in the local universe, all with ongoing star formation, and most of which have no existing spectroscopic data. We are measuring the chemical abundances of these galaxies, using the integral-field spectrograph on the Australian National University 2.3 m telescope, the Wide-Field Spectrograph. This paper describes our survey criteria and procedures, lists the survey sample, and reports on initial observations.

  15. The stability of low levels of ethylene oxide in gas sampling bags

    E-Print Network [OSTI]

    Swerzenski, Peter

    1986-01-01T23:59:59.000Z

    to be no interactive effect between initial EtO concentration and bag type but high relative humidities may adversely affect the stability of EtO in gas sampling bags especially at EtO levels around 10-15 ppm. ACKNOWLEDGMENTS I wish to thank Dr. Richard B. Konzen... exposure, medical surveillance. signs and labels, regulated areas, training, record keeping and emergency response were also included within the EtO standard. Even though a reference to a short term exposure limit (STEL) of 10 ppm over a 15 minute period...

  16. Process and apparatus for obtaining samples of liquid and gas from soil

    DOE Patents [OSTI]

    Rossabi, J.; May, C.P.; Pemberton, B.E.; Shinn, J.; Sprague, K.

    1999-03-30T23:59:59.000Z

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus. 8 figs.

  17. Process and apparatus for obtaining samples of liquid and gas from soil

    DOE Patents [OSTI]

    Rossabi, Joseph (105 Michael Ct., Aiken, SC 29801); May, Christopher P. (5002 Hesperus Dr., Columbia, MD 21044); Pemberton, Bradley E. (131 Glencarin Dr., Aiken, SC 29803); Shinn, Jim (Box 65, RFD. #1, South Royalton, VT 05068); Sprague, Keith (Box 234 Rte. 14, Brookfield, VT 05036)

    1999-01-01T23:59:59.000Z

    An apparatus and process for obtaining samples of liquid and gas from subsurface soil is provided having filter zone adjacent an external expander ring. The expander ring creates a void within the soil substrate which encourages the accumulation of soil-borne fluids. The fluids migrate along a pressure gradient through a plurality of filters before entering a first chamber. A one-way valve regulates the flow of fluid into a second chamber in further communication with a collection tube through which samples are collected at the surface. A second one-way valve having a reverse flow provides additional communication between the chambers for the pressurized cleaning and back-flushing of the apparatus.

  18. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  19. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  20. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  1. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  2. A sampling-based Bayesian model for gas saturation estimationusing seismic AVA and marine CSEM data

    SciTech Connect (OSTI)

    Chen, Jinsong; Hoversten, Michael; Vasco, Don; Rubin, Yoram; Hou,Zhangshuan

    2006-04-04T23:59:59.000Z

    We develop a sampling-based Bayesian model to jointly invertseismic amplitude versus angles (AVA) and marine controlled-sourceelectromagnetic (CSEM) data for layered reservoir models. The porosityand fluid saturation in each layer of the reservoir, the seismic P- andS-wave velocity and density in the layers below and above the reservoir,and the electrical conductivity of the overburden are considered asrandom variables. Pre-stack seismic AVA data in a selected time windowand real and quadrature components of the recorded electrical field areconsidered as data. We use Markov chain Monte Carlo (MCMC) samplingmethods to obtain a large number of samples from the joint posteriordistribution function. Using those samples, we obtain not only estimatesof each unknown variable, but also its uncertainty information. Thedeveloped method is applied to both synthetic and field data to explorethe combined use of seismic AVA and EM data for gas saturationestimation. Results show that the developed method is effective for jointinversion, and the incorporation of CSEM data reduces uncertainty influid saturation estimation, when compared to results from inversion ofAVA data only.

  3. E-Print Network 3.0 - advanced flue gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flue gas losses and minimized in... generated from flue gas condensation for district heating. Twence is another example, where a high degree... into a reusable ash and that...

  4. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation, search

  5. Sampling and Analysis of the Headspace Gas in 3013 Type Plutonium Storage Containers at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Jackson, Jay M. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Hill, Dallas D. [Los Alamos National Laboratory; Worl, Laura A. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

    2012-07-11T23:59:59.000Z

    Department of Energy (DOE) sites have packaged approximately 5200 3013 containers to date. One of the requirements specified in DOESTD-3013, which specifies requirements for packaging plutonium bearing materials, is that the material be no greater than 0.5 weight percent moisture. The containers are robust, nested, welded vessels. A shelf life surveillance program was established to monitor these cans over their 50 year design life. In the event pressurization is detected by radiography, it will be necessary to obtain a head space gas sample from the pressurized container. This technique is also useful to study the head space gas in cans selected for random destructive evaluation. The atmosphere is sampled and the hydrogen to oxygen ratio is measured to determine the effects of radiolysis on the moisture in the container. A system capable of penetrating all layers of a 3013 container assembly and obtaining a viable sample of the enclosed gas and an estimate of internal pressure was designed.

  6. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  7. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    SciTech Connect (OSTI)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09T23:59:59.000Z

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of the crimp using the electro-spark deposition (ESD) process followed by laser mixing, drilling and rewelding. Results of a study of the ESD parameters on deposition rate and efficiency will be discussed along with mass balance calculations for determining the desired Cr content to eliminate cracking. The study also required purchase of new pulsed Nd:YAG laser welders. Evaluation of the performance of the new lasers, including beam profiling results, will also be presented. Development of a mixing, drilling and re-welding process at atmospheric pressure with inert gas shielding demonstrated the efficacy of the Cr-augmentation approach. However, extending the process to vacuum conditions proved more challenging owing to loss of laser transmission through the window from spatter and condensation of metal vapors. Solutions developed to circumvent hese issues will be reviewed. Weld microstructures found with various Cr levels will be presented and discussed.

  8. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  9. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  10. LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO

    SciTech Connect (OSTI)

    Rawn, Claudia J [ORNL; Sassen, Roger [Texas A& M University; Ulrich, Shannon M [ORNL; Phelps, Tommy Joe [ORNL; Chakoumakos, Bryan C [ORNL; Payzant, E Andrew [ORNL

    2008-01-01T23:59:59.000Z

    Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

  11. A safety assessment of rotary mode core sampling in flammable gas single shell tanks: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Raymond, R.E.

    1996-04-15T23:59:59.000Z

    This safety assessment (SA) addresses each of the required elements associated with the installation, operation, and removal of a rotary-mode core sampling (RMCS) device in flammable-gas single-shell tanks (SSTs). The RMCS operations are needed in order to retrieve waste samples from SSTs with hard layers of waste for which push-mode sampling is not adequate for sampling. In this SA, potential hazards associated with the proposed action were identified and evaluated systematically. Several potential accident cases that could result in radiological or toxicological gas releases were identified and analyzed and their consequences assessed. Administrative controls, procedures and design changes required to eliminate or reduce the potential of hazards were identified. The accidents were analyzed under nine categories, four of which were burn scenarios. In SSTS, burn accidents result in unacceptable consequences because of a potential dome collapse. The accidents in which an aboveground burn propagates into the dome space were shown to be in the ``beyond extremely unlikely`` frequency category. Given the unknown nature of the gas-release behavior in the SSTS, a number of design changes and administrative controls were implemented to achieve these low frequencies. Likewise, drill string fires and dome space fires were shown to be very low frequency accidents by taking credit for the design changes, controls, and available experimental and analytical data. However, a number of Bureau of Mines (BOM) tests must be completed before some of the burn accidents can be dismissed with high confidence. Under the category of waste fires, the possibility of igniting the entrapped gases and the waste itself were analyzed. Experiments are being conducted at the BOM to demonstrate that the drill bit is not capable of igniting the trapped gas in the waste. Laboratory testing and thermal analysis demonstrated that, under normal operating conditions, the drill bit will not create high enough temperatures to initiate a propagating reaction in the waste. However, system failure that coincides in a waste layer with high organic content and low moisture may initiate an exothermic reaction in the waste. Consequently, a conservative approach based on the current state of the knowledge resulted in limiting the drilling process to a subset of the flammable-gas tanks. Accidents from the chemical reactions and criticality category are shown to result in acceptable risk. A number of accidents are shown to potentially result in containment (tank liner) breach below the waste level. Mitigative features are provided for these accidents. Gas-release events without burn also are analyzed, and radiological and toxicological consequences are shown to be within risk guidelines. Finally, the consequences of potential spills are shown to be within the risk guidelines.

  12. Determination of tritium activity in environmental water samples using gas analyzer techniques

    E-Print Network [OSTI]

    Salsman, John Matthew

    1983-01-01T23:59:59.000Z

    undesirable when looking for low levels of tritium activity in water. In general, gas analyzer techniques consist of dispersing the radioactive material in some type of gaseous medium and then pressurizing the system with this gas. The analyzer then uses... by reaction with gaseous hydrogen. The vapor HTO is formed readily, as shown by. Equation 2, and is the most commonly encountered form of tritium in the environment. HT + 820 H2 + HTO (2) The accumulation of tritium on the Earth occurs both naturally...

  13. A study on the effect of inlet turbulence on gas mixing for single point aerosol sampling

    E-Print Network [OSTI]

    Mohan, Anand

    2001-01-01T23:59:59.000Z

    like DEPOSITION. Experiments with the commercial static gas mixer show that, unlike the bi-plane grids, the turbulence downstream of the mixer is not homogenous. The results showed enhanced mixing that attained the specified ANSI N13.1 1999 criteria...

  14. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  15. Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°,Socorro County, NewInformation Soil Gas

  16. Gas Sampling At Black Warrior Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas Natural

  17. Gas Sampling At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas NaturalColradoGabbs

  18. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGas

  19. Gas Sampling At Rye Patch Area (DOE GTP, 2011) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui Area (DOE

  20. Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Janik &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County,| OpenAtGasMaui Area (DOEGoff,

  1. Low Pore Connectivity in Natural Rock

    SciTech Connect (OSTI)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15T23:59:59.000Z

    As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  2. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01T23:59:59.000Z

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  3. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  4. Cosmic ray exposure histories of Apollo 14, Apollo 15, and Apollo 16 rocks

    SciTech Connect (OSTI)

    Eugster, O.; Eberhardt, P.

    1984-02-15T23:59:59.000Z

    The regolith exposure history of six rocks returned by the Apollo 14, 15, and 16 missions is studied based on the cosmogenic noble gas isotopes. For each sample, the complete set of all stable noble gas isotopes and the radiaoctive isotope Kr-81 were measured. Kr-81-Kr exposure ages are calculated for rocks for which a single-stage exposure can be demonstrated. A two-stage model exposure history is derived for multistage-exposure basalt 14310 based on the amounts and isotopic ratios of the cosmogenic noble gases. The apparent Kr-81-Kr age, the depth-sensitive isostopic ratios, and fission Xe-136 results lead to the conclusion that this sample was preexposed 1.75 AE ago to cosmic rays for a duration of 350 m.y. Basalt 15058 and anorthosite 15415 also reveal multistage exposures. 44 references.

  5. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  6. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  7. Evaluation of a gas chromatograph with a novel surface acoustic wave detector (SAW GC) for screening of volatile organic compounds in Hanford waste tank samples

    SciTech Connect (OSTI)

    Lockrem, L.L.

    1998-01-12T23:59:59.000Z

    A novel instrument, a gas chromatograph with a Surface Acoustic Wave Detector (SAW GC), was evaluated for the screening of organic compounds in Hanford tank headspace vapors. Calibration data were developed for the most common organic compounds, and the accuracy and precision were measured with a certified standard. The instrument was tested with headspace samples collected from seven Hanford waste tanks.

  8. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  9. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  10. A study of diesel combustion process under the condition of EGR and high-pressure fuel injection with gas sampling method

    SciTech Connect (OSTI)

    Shimazaki, Naoki; Hatanaka, Hirokazu; Yokota, Katsuhiko; Nakahira, Toshio

    1996-09-01T23:59:59.000Z

    It is well known that a high-pressure fuel injection is effective for the reduction in particulates and smoke emissions. Exhaust gas recirculation (EGR) is effective for the reduction in NO{sub x} emission. In this study an experiment aiming to understand more comprehensive combustion under the condition of EGR and high-pressure fuel injection was carried out by using gas sampling method for the purpose of understanding what occurred inside the spray before and after combustion. The number of combustion cycles in this engine can be controlled in order to change EGR conditions by adjusting the residual gas concentration in the cylinder. Main results were: (1) close to the nozzle tip, the sampling gas data showed little reaction which implies that combustion never occurs in this area during the injection period; (2) in the case of high-pressure fuel injection O{sub 2} concentration decreased faster and air dilution was more active and earlier, this may cause the decrease of smoke emissions due to accelerated soot oxidation; (3) in the case of EGR, combustion was poor since oxygen concentration was insufficient, thus, inactivity of oxidation reaction caused reduction in NO{sub x} emission; (4) in the case of increasing the amounts of N{sub 2} gas while keeping the O{sub 2} content constant (same amount as without EGR), NO{sub x} emission decreased without deterioration of smoke emission and Pmi.

  11. Source rock study of Smackover Formation from east Texas to Florida

    SciTech Connect (OSTI)

    Sassen, R.; Moore, C.H.

    1987-05-01T23:59:59.000Z

    Analyses of core and crude oil samples indicate that the laminated lime mudstone facies of the lower Smackover Formation is a significant source rock across the trend. The source facies was deposited in an anoxic and hypersaline environment that permitted preservation of algal kerogen. Moreover, source potential also occurs in undifferentiated Gilmer-Smackover rocks of east Texas deposited in a carbonate slope environment. Thermal maturity is the key factor that controls the generation of crude oil by the carbonate source facies and the eventual destruction of hydrocarbons in upper Smackover and Norphlet reservoirs. Once the regional thermal maturity framework is understood, it is possible to construct a source rock model that explains the distribution of crude oil, gas condensate, and methane across the trend. Calculated thermal maturity histories provide insight to the timing of hydrocarbon generation and migration and to the timing of hydrocarbon destruction and sulfate reduction in deep reservoirs. Basic geochemical strategies for exploration are suggested. One strategy is to focus exploration effort on traps formed prior to the time of crude oil migration that were nearest to effective source rocks. Another strategy is to avoid drilling reservoir rocks that are thermally overmature for preservation of hydrocarbons.

  12. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

    1994-01-01T23:59:59.000Z

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  13. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOE Patents [OSTI]

    Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

    1994-08-23T23:59:59.000Z

    A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

  14. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  15. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01T23:59:59.000Z

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  16. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01T23:59:59.000Z

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  17. Belgirate, Italy, 28-30 September 2005 RAREFIED GAS HEAT TRANSFER BETWEEN A NANOMETRIC TIP AND A SAMPLE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AND A SAMPLE Pierre-Olivier Chapuis1 , Jean-Jacques Greffet1 , Karl Joulain2 et Sebastian Volz1 1 Laboratoire d'Energetique flux on the sample surface: this problem has to be solved in the intermediate regime. 3D effects have and time dependent problems. Figure 1. A skip of the tip. Typical lengths used are l=40 nm and h=20 nm

  18. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  19. URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid through strain and stress. As the temperature diffuses from hydraulic fracture into reservoir the rock matrix beyond hydraulic fracturing stimulation by cooling down the rock. The physics

  20. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  1. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  2. Surfactant based imbibition and induced solution gas drive process: investigation by nuclear magnetic resonance

    E-Print Network [OSTI]

    Cox, James Calvin

    1993-01-01T23:59:59.000Z

    drive mechanism. This imbibition and induced solution gas drive study employed nuclear magnetic resonance (NMR) spectroscopy techniques to monitor and characterize the progress of oil recovery inside the rock sample core. A specially designed core...SURFACTANT BASED IMBIBITION AND INDUCED SOLUTION GAS DRIVE PROCESS: INVESTIGATION BY NUCLEAR MAGNETIC RESONANCE A Thesis by JAMES CALVIN COX Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  3. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    E-Print Network [OSTI]

    Collett, T.J. Kneafsey, T.J., H. Liu, W. Winters, R. Boswell, R. Hunter, and T.S.

    2012-01-01T23:59:59.000Z

    and handling of natural gas hydrate. GSC Bulletin, 544: 263-naturally occurring gas hydrates: the structures of methanefrom the Mount Elbert Gas Hydrate Stratigraphic Test Well,

  4. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    E-Print Network [OSTI]

    Kneafsey, Timothy J.

    2010-01-01T23:59:59.000Z

    and handling of natural gas hydrate. GSC Bulletin, 544: 263-naturally occurring gas hydrates: the structures of methaneDOE-USGS Mount Elbert gas hydrate stratigraphic test well:

  5. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  6. IN VITRO GAS PRODUCTION OF CALIFORNIA FEEDSTUFFS Nov-03 (terminology explained at the bottom) (new samples in italics )

    E-Print Network [OSTI]

    Delany, Mary E.

    IN VITRO GAS PRODUCTION OF CALIFORNIA FEEDSTUFFS Nov-03 (terminology explained at the bottom) (new.6 226.0 114.4 11.34 Mean 109.3 199.4 90.2 215.6 106.3 11.90 Alfalfa Pellets 87.0 189.6 102.5 217.9 130.41 Cottonseed (fuzzy pellet) 37.9 54.6 16.7 85.0 47.1 8.53 Cottonseed (pima) 23.5 54.4 30.9 65.8 42.3 7.42 #12

  7. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2003-12-01T23:59:59.000Z

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  8. Glass flask air sample analysis through Gas Chromatography in India: Implications for constraining CO2 surface fluxes

    E-Print Network [OSTI]

    for an air inlet (equipped with a 7µm filter), a pump and a battery placed below the ON/OFF button, a flow to the site measurements, they are prepared and evacuated. We pump and heat the flasks. During pumping the temperature is +60 dc. Flasks are pumped for 72 hours. Outlook Air sampling started at two new stations, Cape

  9. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01T23:59:59.000Z

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  10. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  11. Soil and soil gas sampling in Old Ellenton, the SRL test site, the fire training area and the miscellaneous chemicals basin. Final report

    SciTech Connect (OSTI)

    Jackson, D.G. [Univ. of Pittsburgh Applied Research Center, PA (United States)

    1986-12-01T23:59:59.000Z

    Soil and gas analytical results are presented which were carried out at the SRL site. Gas chromatography was utilized.

  12. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01T23:59:59.000Z

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  13. Source rock evaluation, oil-source rock correlation, and kinetic modeling - San Juan Sag, CO

    SciTech Connect (OSTI)

    Clayton, J.L. (Geological survey, Denver, CO (USA)); Gries, R.R.

    1990-05-01T23:59:59.000Z

    Recently, oil and gas shows have been reported in Cretaceous and Tertiary rocks of the San Juan sag, and minor oil production was established from volcanic rocks (Kirby Petroleum 1 Jynnifer well, Sec. 9, T40N, R5E.). Potential source rocks present in the San Juan sag are the upper and lower (including the Niobrara Member) Mancos Shale (Upper Cretaceous). The combined upper and lower Mancos Shale is about 666 m thick and contains between about 0.5 and 5.5% organic carbon, although most values are between about 1.5 and 2.0%. The Niobrara Member of the lower Mancos Shale has the highest overall organic matter content in the section (organic carbon averages <2.0%). Pyrolysis and solvent extraction data (typically 2,000-6,000 and 1,000-4,000 ppm, respectively) indicate that the upper and lower Mancos Shale and the Niobrara Member are all good potential source rocks for oil and gas. Oil-source rock correlations using gas chromatography, mass spectrometry, and stable carbon isotope ratios indicate that the upper Mancos Shale is the most likely source for the oil produced from the 1 Jynnifer discovery well. The source of the oil produced from the nearby Gramps field is less certain, but may be the lower Mancos Shale or Niobrara Member. The hydrocarbon generation history of the San Juan sag is complex because of highly variable heat flow in the area caused by Oligocene volcanism. Sills have caused thermal alteration of organic matter in shales on a local scale, and larger volcanic bodies may have produced proportionality larger thermal effects. More regional heating by larger volcanic bodies is an important factor in the oil generation history of the area. The authors have constructed kinetic models at several locations in the area to estimate the timing and amount of hydrocarbon products generated from the source rocks. The main phase of oil and gas generation and expulsion occurred during the Oligocene.

  14. Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

    SciTech Connect (OSTI)

    Wawersik, W.R.; Zimmerer, D.J.

    1994-05-01T23:59:59.000Z

    Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

  15. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  16. Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy

    E-Print Network [OSTI]

    Hamilton, Victoria E.

    Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission, Tempe Abstract. The modal mineralogies of 20 mafic and ultramafic igneous rocks were determined from mineralogical information from thermal infrared emission spectra of bulk rock samples. Furthermore, convolution

  17. RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS

    E-Print Network [OSTI]

    Knight, Rosemary

    CMWRXVI 1 RELATING GEOPHYSICAL AND HYDROLOGIC PROPERTIES USING FIELD-SCALE ROCK PHYSICS STEPHEN has been made by rock physics investigations that define how pore-scale variations in properties like in pore-scale rock properties with an understanding of geophysical sampling at the field

  18. Geochemistry of selected oils and rocks from the central portion of the West Siberian basin, Russia

    SciTech Connect (OSTI)

    Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (United States)); Kontorovich, A.Eh.; Andrusevich, V.E. (Inst. of Geology, Novosibirsk (Russian Federation)); Moldowan, J.M. (Chevron Petroleum Technology Co., Richmond, CA (United States)); Demaison, G.J. (Petroscience Inc., Walnut Creek, CA (United States)); Stasova, O.F. (NPO SIBGEO, Novosibirsk (Russian Federation))

    1993-05-01T23:59:59.000Z

    Six analyzed oils, produced from Middle jurassic to Upper Cretaceous strata in the Middle Ob region of the West Siberian basin, show biomarker and stable carbon isotope compositions indicating an origin from the Upper Jurassic Bazhenov Formation. The chemical compositions of these oils are representative of more than 85% of the reserves in West Siberia (Kontorovich et al., 1975). Bazhenov-sourced oil in Cenomanian strata in the Van-Egan field underwent biodegradation in the reservoir, resulting in a low API gravity, an altered homohopane distribution, and the appearance of 25-norhopanes without alteration of the steranes. High API gravity oil from the Salym field has surpassed the peak of the oil window, consistent with abnormally high temperatures and pressures in the Bazhenov source rock from which it is produced. The remaining oils are very similar, including samples from Valanginian and Bathonian-Callovian intervals in a sequence of stacked reservoirs in the Fedorov field. Bazhenov rock samples from the study area contain abundant oil-prone, marine organic matter preserved under anoxic conditions. While the Upper Jurassic Vasyugan Formation shows lower oil-regenerative potential than the Bazhenov Formation, it cannot be excluded as a source rock because insufficient sample was available for biomarker analysis. Core from the Lower to Middle Jurassic Tyumen Formation in the YemYegov 15 well was compared with the oils because it is thermally mature and shows TOC and HI values, indicating slightly more favorable oil-generative characteristics than the average for the formation (2.75 wt. % for 270 samples; 95 mg HC/g TOC for 25 samples). The core contains terrigenous, gas-prone organic matter that shows no relationship with the analyzed oils. 59 refs., 15 figs., 8 tabs.

  19. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  20. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  1. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  2. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16T23:59:59.000Z

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  3. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  4. Petrology of the Devonian gas-bearing shale along Lake Erie helps explain gas shows

    SciTech Connect (OSTI)

    Broadhead, R.F.; Potter, P.E.

    1980-11-01T23:59:59.000Z

    Comprehensive petrologic study of 136 thin sections of the Ohio Shale along Lake Erie, when combined with detailed stratigraphic study, helps explain the occurrence of its gas shows, most of which occur in the silty, greenish-gray, organic poor Chagrin Shale and Three Lick Bed. Both have thicker siltstone laminae and more siltstone beds than other members of the Ohio Shale and both units also contain more clayshales. The source of the gas in the Chagrin Shale and Three Lick Bed of the Ohio Shale is believed to be the bituminous-rich shales of the middle and lower parts of the underlying Huron Member of the Ohio Shale. Eleven petrographic types were recognized and extended descriptions are provided of the major ones - claystones, clayshales, mudshales, and bituminous shales plus laminated and unlaminated siltstones and very minor marlstones and sandstones. In addition three major types of lamination were identified and studied. Thirty-two shale samples were analyzed for organic carbon, whole rock hydrogen and whole rock nitrogen with a Perkin-Elmer 240 Elemental Analyzer and provided the data base for source rock evaluation of the Ohio Shale.

  5. Accidental Gas Emission From Shallow Pressurized Aquifers At...

    Open Energy Info (EERE)

    gas pressurized aquifers confined underneath impermeable layers, within both the volcanic rock pile and the underlying Pleistocene loose sediments. Degassing mostly occurs in...

  6. Adsorption of water vapor on reservoir rocks

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  7. Rock Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation, searchRochester Gas &JumpRock

  8. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  9. Porosity and permeability of Eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1988-03-01T23:59:59.000Z

    High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

  10. The influence of crenulation cleavage development on the bulk elastic and seismic properties of phyllosilicate-rich rocks

    E-Print Network [OSTI]

    Vel, Senthil

    -rich, crustal rocks. We calculated the bulk elastic properties and resulting wave velocities for rock samplesThe influence of crenulation cleavage development on the bulk elastic and seismic properties of phyllosilicate-rich rocks Félice M.J. Naus-Thijssen a, , Andrew J. Goupee b , Scott E. Johnson a , Senthil S. Vel

  11. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17T23:59:59.000Z

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  12. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L. (Idaho Falls, ID)

    1987-01-01T23:59:59.000Z

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  13. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  14. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  15. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  16. A Phased Array Approach to Rock Blasting

    SciTech Connect (OSTI)

    Leslie Gertsch; Jason Baird

    2006-07-01T23:59:59.000Z

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  17. Laser rock drilling by a super-pulsed CO{sub 2} laser beam.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Parker, R. A.; Gahan, B. C.; Graves, R. M.; Figueroa, H.

    2002-08-12T23:59:59.000Z

    High power carbon dioxide lasers have successfully been used in drilling or cutting engineering materials such as metals, polymers and ceramics over the years. Can a carbon dioxide laser be used to efficiently drill different rocks in a deep gas well? Research sponsored by US Department of Energy has been carried out to answer this question. This paper will report the study results of using a super-pulsed CO{sub 2} laser beam to drill rocks. A 6 kW CO{sub 2} laser operated at superpulse mode was used to carry out the tests. Both linear tracks and deep holes were produced on the rocks. The energy required to remove a unit volume of rock, specific energy, was determined. Test results show that superpulsed CO{sub 2} laser beam can be efficiently used to drill deep, large diameter holes in petroleum rocks with the assistance of purging gas.

  18. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  19. Porosity and permeability of eastern Devonian gas shale

    SciTech Connect (OSTI)

    Soeder, D.J.

    1986-01-01T23:59:59.000Z

    High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

  20. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    E-Print Network [OSTI]

    Boswell, R.D.

    2010-01-01T23:59:59.000Z

    Advances in the Study of Gas Hydrates. Kluwer, New York, pp.and quantification of gas hydrates using rock physics andand Salt Inhibition of Gas Hydrate Formation in the Northern

  1. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    E-Print Network [OSTI]

    Boswell, R.D.

    2010-01-01T23:59:59.000Z

    and quantification of gas hydrates using rock physics andAdvances in the Study of Gas Hydrates. Kluwer, New York, pp.and Salt Inhibition of Gas Hydrate Formation in the Northern

  2. Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project

    SciTech Connect (OSTI)

    Olsen, K.B.; Pool, K.H.; Evans, J.C. [and others

    1997-06-01T23:59:59.000Z

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

  3. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  4. Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

    SciTech Connect (OSTI)

    Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others] [and others

    1997-09-01T23:59:59.000Z

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

  5. LABORATORY INVESTIGATIONS ON THE HYDRAULIC AND THERMOMECHANICAL PROPERTIES OF FRACTURED CRYSTALLINE ROCKS

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    of in s i t u j o i n t e d granite." I n t . J . Rock Mech.1979. "Waste disposal i n granite: Preliminary r e s u l t sintact samples of basalt, granite, marble, and other rocks.

  6. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  7. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  8. Acid Fracture and Fracture Conductivity Study of Field Rock Samples 

    E-Print Network [OSTI]

    Underwood, Jarrod

    2013-11-15T23:59:59.000Z

    carbonate reservoir were labeled A through F to protect proprietary information included in this research. A 2% potassium chloride solution was used for the acid system and fracture conductivity measurements to prevent clay swelling. Injection temperature...

  9. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    1996-01-01T23:59:59.000Z

    A microminiature gas chromatograph (.mu.GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode.

  10. Microminiature gas chromatograph

    DOE Patents [OSTI]

    Yu, C.M.

    1996-12-10T23:59:59.000Z

    A microminiature gas chromatograph ({mu}GC) comprising a least one silicon wafer, a gas injector, a column, and a detector. The gas injector has a normally closed valve for introducing a mobile phase including a sample gas in a carrier gas. The valve is fully disposed in the silicon wafer(s). The column is a microcapillary in silicon crystal with a stationary phase and is mechanically connected to receive the mobile phase from the gas injector for the molecular separation of compounds in the sample gas. The detector is mechanically connected to the column for the analysis of the separated compounds of sample gas with electronic means, e.g., ion cell, field emitter and PIN diode. 7 figs.

  11. Gilmer Co. Rock

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14 Jan-15Gas Reserve Class No

  12. Tank vapor characterization project: Tank 241-BX-104 fifth temporal study: Headspace gas and vapor characterization results from samples collected on June 10, 1997

    SciTech Connect (OSTI)

    Hayes, J.C.; Pool, K.H.; Evans, J.C.; Olsen, K.B. [and others

    1997-07-01T23:59:59.000Z

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-BX-104 (Tank BX-104) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurisys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by SESC. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank BX-104 headspace, determined to be present at approximately 0.270% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <0.675% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  13. Tank vapor characterization project: Tank 241-S-102 temporal study headspace gas and vapor characterization results from samples collected on September 19, 1996

    SciTech Connect (OSTI)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Sklarew, D.S. [and others

    1997-08-01T23:59:59.000Z

    This report presents the results from analysis of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. Ammonia was determined to be above the immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 2.948% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <3.659% of the LFL. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Tables S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0.

  14. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    SciTech Connect (OSTI)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24T23:59:59.000Z

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  15. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  16. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10T23:59:59.000Z

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  17. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10T23:59:59.000Z

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  18. Detection of chlorpyrifos-ethyl (Dursban) and its metabolites in urine samples using immunoassays with confirmation by gas chromatography/mass spectrometry

    E-Print Network [OSTI]

    Clewis, Suenda Beth

    1995-01-01T23:59:59.000Z

    O"""&(RO)sP-OH + HX S (0) S (0) (RO)tP - X + HtO ""--~ (RO) (HO) P -X + ROH F1GURE 1. Hydrolysis of Organophosphates. Organophosphate Toxicology Pesticide exposures vary widely, especially when considering the different stages of pesticide manufacture and use.... Evaporator needles were cleaned with chloroform between samples. 8. Diluted samples to 5ml with HtO. Sonicated test tubes in rack for 30 seconds to redissolve all potential solids formed during evaporation. Vortexed test tubes to guarantee uniform...

  19. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    . In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis....

  20. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas

    SciTech Connect (OSTI)

    Goebel, E.D.; Coveney, R.M. Jr.; Angino, E.E.; Zeller, E.

    1983-08-01T23:59:59.000Z

    Since August 1982, the CFA 1 Scott well in Sec. 20, T14S, R6E, Morris County, Kansas, located about 14 mi (23 km) south of Junction City, has yielded a gas composed of 50 +/- 10% free hydrogen, 50 +/- 10% nitrogen, and only traces of hydrocarbons. This analysis has been ascertained by gas chromatography and mass spectrography of samples taken over a period of 6 months. The reservoir rock is a Kinderhook sand from 2176 to 2196 ft (663 to 669m) depth. The gas samples analyzed are accumulating in the head space above a fluid level (salt water) of 1805 ft (550m) from a botton-hole depth of 2197 ft (670m). The Scott well is located on the western flank of the complexly faulted Nemaha anticline, updip from the central North American rift system and 30 mi (48 km) south of Riley County where serpentinized kimberlites occur. The geothermal gradient is 30/sup 0/C/km (87/sup 0/F/mi). Basement rock beneath the well is granite, probably overlying deeply buried magnetic rocks. No single mechanism is responsible solely for generating this H/sub 2/-rich gas from the Scott well; rather, a combination of fortuitous geologic and possibly biologic processes are contributing in various proportions to the production of the H/sub 2/ and N/sub 2/. Conceivably, the local geologic setting merely is circumstantial and unrelated to the genesis of the gases. However, in view of its spatial association with the central North American rift Zone, a major geologic feature with similarity to the East Pacific Rise, the Kansas gas occurrence warrants additional study.

  1. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01T23:59:59.000Z

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  2. Synthesis of organic geochemical data from the Eastern Gas Shales

    SciTech Connect (OSTI)

    Zielinski, R.E.; McIver, R.D.

    1982-01-01T23:59:59.000Z

    Over 2400 core and cuttings samples of Upper Devonian shales from wells in the Appalachian, Illinois, and Michigan Basins have been characterized by organic geochemical methods to provide a basis for accelerating the exploitation of this unconventional, gas-rich resource. This work was part of a program initiated to provide industry with criteria for locating the best areas for future drilling and for the development of stimulation methods that will make recovery of the resource economically attractive. The geochemical assessment shows that the shale, in much of the Appalachian, Illinois, and Michigan Basins is source rock that is capable of generating enormous quantities of gas. In some areas the shales are also capable of generating large quantities of oil as well. The limiting factors preventing these sources from realizing most of their potential are their very low permeabilities and the paucity of potential reservoir rocks. This geochemical data synthesis gives direction to future selection of sites for stimulation research projects in the Appalachian Basin by pinpointing those areas where the greatest volumes of gas are contained in the shale matrix. Another accomplishment of the geochemical data synthesis is a new estimate of the total resource of the Appalachian Basin. The new estimate of 2500 TCF is 25 percent greater than the highest previous estimates. This gives greater incentive to government and industry to continue the search for improved stimulation methods, as well as for improved methods for locating the sites where those improved stimulation methods can be most effectively applied.

  3. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  4. Residual gas analysis device

    DOE Patents [OSTI]

    Thornberg, Steven M. (Peralta, NM)

    2012-07-31T23:59:59.000Z

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  5. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  6. AN OSIRIS STUDY OF THE GAS KINEMATICS IN A SAMPLE OF UV-SELECTED GALAXIES: EVIDENCE OF 'HOT AND BOTHERED' STARBURSTS IN THE LOCAL UNIVERSE

    SciTech Connect (OSTI)

    Basu-Zych, Antara R.; Schiminovich, David; O'Dowd, Matt [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Goncalves, Thiago S.; Martin, Chris; Wyder, Ted [California Institute of Technology, MC 405-47, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Overzier, Roderik [Max-Planck-Institut fuer Astrophysik, D-85748 Garching (Germany); Law, David R. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Heckman, Tim [Center for Astrophysical Sciences, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)], E-mail: antara@astro.columbia.edu, E-mail: ds@astro.columbia.edu, E-mail: matto@astro.columbia.edu, E-mail: tsg@astro.caltech.edu, E-mail: cmartin@srl.caltech.edu, E-mail: wyder@srl.caltech.edu, E-mail: overzier@MPA-Garching.MPG.DE, E-mail: heckman@pha.jhu.edu, E-mail: drlaw@astro.ucla.edu

    2009-07-10T23:59:59.000Z

    We present data from Integral Field Spectroscopy for three supercompact UV-Luminous Galaxies (ScUVLGs). As nearby (z {approx} 0.2) compact (R {sub 50} {approx} 1-2 kpc) bright Paschen-{alpha} sources, with unusually high star formation rates (SFR = 3-100 M {sub sun} yr{sup -1}), ScUVLGs are an ideal population for studying detailed kinematics and dynamics in actively star-forming galaxies. In addition, ScUVLGs appear to be excellent analogs to high-redshift Lyman Break Galaxies (LBGs), and our results may offer additional insight into the dynamics of LBGs. Previous work by our team has shown that the morphologies of these galaxies exhibit tidal features and companions, and in this study we find that the dynamics of ScUVLGs are dominated by disturbed kinematics of the emission line gas-suggesting that these galaxies have undergone recent feedback, interactions, or mergers. While two of the three galaxies do display rotation, v/{sigma}<1-suggesting dispersion-dominated kinematics rather than smooth rotation. We also simulate how these observations would appear at z {approx} 2. Lower resolution and loss of low surface brightness features cause some apparent discrepancies between the low-z (observed) and high-z (simulated) interpretations and quantitatively gives different values for v/{sigma}, yet simulations of these low-z analogs manage to detect the brightest regions well and resemble actual high-z observations of LBGs.

  7. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  8. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2004-08-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  9. Gravimeter yields rock density for cavern during operations

    SciTech Connect (OSTI)

    Folle, S.; Rolfs, O. [Kavernen Bau- and Betriebs-GmbH, Hannover (Germany)

    1996-01-22T23:59:59.000Z

    Designing underground cavities and especially planning for caverns in salt formations for storage require investigations of several questions that are posed in this paper. A downhole gravimeter can determine rock density in a natural gas storage cavern while it is in operation or still being solution mined. Operating conditions or solution mining in progress precludes use of a standard density tool during conventional well-logging procedures. Rock density is one of the principal input parameters for rock mechanical investigations in specifying optimum pressure levels in storage caverns. The advantages and disadvantages of the system, as well as of the technical logging procedures, follow. The gravimeter tool: measures rock densities up to approximately 20 m into the formation; logs through casing (independent of a drilling rig); is unaffected by drilling mud; is unaffected by size and variation of caliber. But it also: does not measure continuously; makes logging time-consuming and requires a certain mobilization time; delivers data whose accuracy depends o the homogeneity of the formation or level of information available on the structure in question.

  10. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    SciTech Connect (OSTI)

    Nakagawa, S.

    2011-04-01T23:59:59.000Z

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  11. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  12. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  13. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  14. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  15. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  16. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  17. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  18. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  19. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  20. Study of gas flow dynamics in porous and granular media with laser-polarized ¹²?Xe NMR

    E-Print Network [OSTI]

    Wang, Ruopeng, 1972-

    2005-01-01T23:59:59.000Z

    This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous and granular media by using laser-polarized ¹²?Xe . Two different physical processes, the gas transport in porous rock cores and ...

  1. THE GAS CHROMATOGRAPH MASS SPECTROMETER FOR THE HUYGENS PROBE

    E-Print Network [OSTI]

    Atreya, Sushil

    sampling and ACP gas sampling re- spectively. The instrument is also equipped with a chemical scrubber cell

  2. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    SciTech Connect (OSTI)

    Michael Goodwin

    2008-12-31T23:59:59.000Z

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in Chapter 4: use of diesel-fuel to raise the rock temperature by a combustion process in the well. The requirements for such a Gas-Vapor Generator are laid out, and the development of a prototype machine is explained. This is backed up with laboratory experiments showing that the fuel-water mixture used does significantly increase the viscosity of the oil samples. The prototype Gas-Vapor Generator is shown to be able to operate at temperatures of 240 C and pressures of 200 atm. Unfortunately, geopolitical and economic factors outside of our control led to the cancellation of the project before the field testing phase of the generator could be commenced. Nevertheless, it is to be hoped that this report demonstrates both the feasibility and desirability of the Gas-Vapor Generator approach to the application of TDGF technology in both existing and new wells, and provides a foundation for further research in the future.

  3. Sandia National Laboratories: Crystalline Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  4. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24T23:59:59.000Z

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  5. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2006-09-01T23:59:59.000Z

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination.

  6. Experimental Control of Transport and Current Reversals in a Deterministic Optical Rocking Ratchet

    E-Print Network [OSTI]

    Alejandro V. Arzola; Karen Volke-Sepúlveda; José L. Mateos

    2011-04-27T23:59:59.000Z

    We present an experimental demonstration of a deterministic optical rocking ratchet. A periodic and asymmetric light pattern is created to interact with dielectric microparticles in water, giving rise to a ratchet potential. The sample is moved with respect to the pattern with an unbiased time-periodic rocking function, which tilts the potential in alternating opposite directions. We obtain a current of particles whose direction can be controlled in real time and show that particles of different sizes may experience opposite currents. Moreover, we observed current reversals as a function of the magnitude and period of the rocking force.

  7. Shale Gas and Climate Targets: Can They Be Reconciled?

    E-Print Network [OSTI]

    Pedersen, Tom

    deposits flows poorly and requires new advances in hori- zontal drilling and rock fracturing to improve gas extraction rates. Hydraulic fracturing uses a water, sand, and chemical mixture pumped under high pressure

  8. Interaction between CO2-rich solutions and reservoir-seal rocks. Experimentation

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    coal systems 5.Use of CO2 in enhanced coal bed methane recovery 6.Other suggested options (basalts, oilInteraction between CO2-rich solutions and reservoir-seal rocks. Experimentation María García formations (after Cook, 1999). Geological Storage Options for CO2 1.Depleted oil and gas reservoirs 2.Use

  9. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, with Errata Sheet, Rev. No.: 1

    SciTech Connect (OSTI)

    Wickline, Alfred

    2007-01-01T23:59:59.000Z

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination. Field activities were conducted under the Addendum to the CR to collect sufficient data to determine the rate of biodegradation for TPH contamination at CAU 329 to support closure requirements. Reconstruction of the monitoring system at the site and quarterly soil-gas sampling were conducted to collect the required data. Because existing Wells DRA-0 and DRA-3 were determined to be insufficient to provide adequate data, soil-gas monitoring Wells DRA-10 and DRA-11 were installed. Two soil-gas sampling events were conducted to establish a baseline for the site, and subsequent quarterly sampling was conducted as part of the quarterly soil-gas sampling program. In addition, soil samples were collected during well drilling activities so comparisons might be made between the initial soil contamination levels in 2000 and the concentrations present at the time of the well installation.

  10. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  11. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  12. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    E-Print Network [OSTI]

    Kneafsey, T.J.

    2012-01-01T23:59:59.000Z

    Methods: Trying to Create Representative Samples Timothy J.Methods: Trying to Create Representative Samples Timothy J.Introduction Forming representative gas hydrate-bearing

  13. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  14. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  15. SamplingProbe Ex,^aust@Gas

    E-Print Network [OSTI]

    Ishii, Hitoshi

    [b]flouranthene 5.22 5.83 6.29 6.79 7.69 8.41,Naphthalene 8.87,acenaphthene 9.92,Pyrene10.15 10.57 11.34 11.76 12

  16. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,Area (Wood,Wall Turbine Jump

  17. Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSoda Springs, Idaho: Energy

  18. Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods Inc Jump to:SuperiorEnergy

  19. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  20. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  1. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  2. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Estimating the amount of gas hydrate and free gas from marine seismic data

    SciTech Connect (OSTI)

    Ecker, C.; Dvorkin, J.; Nur, A.M.

    2000-04-01T23:59:59.000Z

    Marine seismic data and well-log measurements at the Blake Ridge offshore South Carolina show that prominent seismic bottom-simulating reflectors (BSRs) are caused by sediment layers with gas hydrate overlying sediments with free gas. The authors apply a theoretical rock-physics model to 2-D Blake Ridge marine seismic data to determine gas-hydrate and free-gas saturation. High-porosity marine sediment is modeled as a granular system where the elastic wave velocities are linked to porosity; effective pressure; mineralogy; elastic properties of the pore-filling material; and water, gas, and gas-hydrate saturation of the pore space. To apply this model to seismic data, the authors first obtain interval velocity using stacking velocity analysis. Next, all input parameters to the rock-physics model, except porosity and water, gas and gas hydrate saturation, are estimated from geologic information. To estimate porosity and saturation from interval velocity, they first assume that the entire sediment does not contain gas hydrate or free gas. Then they use the rock-physics model to calculate porosity directly from the interval velocity. Such porosity profiles appear to have anomalies where gas hydrate and free gas are present (as compared to typical profiles expected and obtained in sediment without gas hydrate of gas). Porosity is underestimated in the hydrate region and is overestimated in the free-gas region. The authors calculate the porosity residuals by subtracting a typical porosity profile (without gas hydrate and gas) from that with anomalies. Next they use the rock-physics model to eliminate these anomalies by introducing gas-hydrate of gas saturation. As a result, they obtain the desired 2-D saturation map. The maximum gas-hydrate saturation thus obtained is between 13% and 18% of the pore space (depending on the version of the model used). These saturation values are consistent with those measured in the Blake Ridge wells (away from the seismic line), which are about 12%. Free-gas saturation varies between 1% and 2%. The saturation estimates are extremely sensitive to the input velocity values. Therefore, accurate velocity determination is crucial for correct reservoir characterization.

  4. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05T23:59:59.000Z

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  5. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  6. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  7. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  8. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  9. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  10. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  11. Sampling box

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

    2000-01-01T23:59:59.000Z

    An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

  12. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B. (ed.)

    1999-02-01T23:59:59.000Z

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  13. Viscous sludge sample collector

    DOE Patents [OSTI]

    Beitel, George A [Richland, WA

    1983-01-01T23:59:59.000Z

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  14. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  15. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  16. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  17. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  18. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  19. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  20. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  1. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  2. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  3. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  4. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  5. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  6. Maerz, N. H., and Palangio, T. C. WipFrag System II -Online fragmentation analysis. FRAGBLAST 6, Sixth International Symposium For Rock Fragmentation By Blasting, Johannesburg, South Africa,

    E-Print Network [OSTI]

    Maerz, Norbert H.

    , Sixth International Symposium For Rock Fragmentation By Blasting, Johannesburg, South Africa, Aug. 8 Professor, Rock Mechanics and Explosives Research Center, University of Missouri-Rolla, MO, USA, (573) 341 . By far the most significant source of error is sampling, whether the source is a result of: 1. Poor

  7. Soil Sample Questionnaire --Field Crops Sample No. Field Identification Field Size acres

    E-Print Network [OSTI]

    Norton, Jay B.

    . Subsoil: (if known) sand gravel clay hardpan lime solid rock 7. Water penetration: rapid moderate slow soil questionnaire on the back of this sheet. Have soil tested at least once every rotation. 2. Sample of the hole and put it in a clean container. Repeat this procedure at 10 or 12 locations in the field. Mix

  8. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  9. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  10. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  11. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31T23:59:59.000Z

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  12. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18T23:59:59.000Z

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop and refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.

  13. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  14. SmNd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks

    E-Print Network [OSTI]

    Nicolas, Chamot-Rooke

    disequilibrium in high-pressure, low-temperature rocks, Sm­Nd isotopic analyses were carried out on minerals from contamination processes. In the case of a magmatic protolith, contamination can be achieved through crustal sedimentary protolith contains components from an old contaminant crust. In the Himalayan samples, the inverse

  15. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities sands.We model the viscoelastic properties of a heavy- oil-saturated rock sample using CPA and a measured frequency- dependent complex shear modulus of the heavy oil. Comparison of modeled results

  16. Brazilian uranium mine decommissioning-chemical and radiological study of waste rock piles

    SciTech Connect (OSTI)

    Wiikmann, L. O. [Industrias Nucleares do Brasil, Pocos de Caldas (Brazil)

    1996-12-31T23:59:59.000Z

    The Pocos de Caldas plateau is a high-natural-radioactivity area in the state of Minas Gerais, southeast Brazil. Uranium occurrence in the plateau was first observed in 1948. Mining started in 1977 with mine scouring, and the first ore pile was constructed in 1981. Waste rocks are derived from the mine material. The analysis of core samples is discussed.

  17. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  18. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  19. Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Systems

    E-Print Network [OSTI]

    Lieth, J. Heinrich

    299 Gas Composition and Oxygen Supply in the Root Environment of Substrates in Closed Hydroponic Abstract The objective of this study was to get more information about the root zone, mainly the gas and ethylene, a gas sampling system was used to get gas samples from the root zone. CO2 gas samples of 20 ml

  20. Rock Island Dam Smolt Monitoring; 1996 Annual Report.

    SciTech Connect (OSTI)

    McDonald, Robert (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

    1996-10-01T23:59:59.000Z

    Downstream migrating salmon and steelhead (Oncoryhnchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1--August 31, 1996. This was the twelfth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish collected by species, (2) number of fin clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) total number of fish showing signs of gas bubble trauma (GBT), (4) percent of descaled fish, and (5) daily average river flow, powerhouse {number_sign}1 flow, powerhouse {number_sign}2 flow and daily average spill. These data were transmitted to the Fish Passage Center (FPC), which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the water budget, releasing upstream reservoir water storage allocated to supplement river flows during the downstream migration of juvenile salmonids.

  1. EIS-0471: Department of Energy Loan Guarantee to Support Proposed Eagle Rock Enrichment Facility in Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the proposed Eagle Rock Enrichment Facility (EREF), a gas centrifuge uranium enrichment facility to be located in a rural area in western Bonneville County, Idaho. (DOE adopted this EIS issued by NRC on 04/13/2007.)

  2. 3D multi-scale imaging of experimental fracture generation in shale gas reservoirs.

    E-Print Network [OSTI]

    Henderson, Gideon

    in research and shale unconventional reservoirs that will provide you with the skills to enter the oil and gas3D multi-scale imaging of experimental fracture generation in shale gas reservoirs. Supervisory-grained organic carbon-rich rocks (shales) are increasingly being targeted as shale gas "reservoirs". Due

  3. Potential for producing oil and gas from the Woodford Shale (Devonian-Mississippian) in the southern mid-continent, USA

    SciTech Connect (OSTI)

    Comer, J.B. (Indiana Geological Survey, Bloomington, IN (United States))

    1992-04-01T23:59:59.000Z

    The Woodford Shale is a prolific oil source rock throughout the southern mid-continent of the United States. Extrapolation of thickness and organic geochemical data based on the analysis of 614 samples from the region indicate that on the order of 100 {times} 10{sup 9} bbl of oil (300 {times} 10{sup 12} ft{sup 3} of natural gas equivalent) reside in the Woodford in Oklahoma and northwestern Arkansas. The Woodford in west Texas and southeastern New Mexico contains on the order of 80 {times} 10{sup 9} bbl of oil (240 {times} 10{sup 12} ft{sup 3} of natural gas equivalent). Tapping this resource is most feasible in areas where the Woodford subcrop contains competent lithofacies (e.g., chert, sandstone, siltstone, dolostone) and is highly fractured. Horizontal drilling may provide the optimum exploitation technique. Areas with the greatest potential and the most prospective lithologies include (1) the Nemaha uplift (chert, sandstone, dolostone), (2) Marietta-Ardmore basin (chert), (3) southern flank of the Anadarko basin along the Wichita Mountain uplift (chert), (4) frontal zone of the Ouachita tectonic belt in Oklahoma (chert), and (5) the Central Basin platform in west Texas and New Mexico (chert and siltstone). In virtually all of these areas, the Woodford is in the oil or gas window. Thus, fracture porosity would be continuously fed by hydrocarbons generated in the enclosing source rocks. Reservoir systems such as these typically have produced at low to moderate flow rates for many decades.

  4. Abstract--Data collected during fish-ery-independent sampling programs

    E-Print Network [OSTI]

    of Fisheries (Western Australia) Western Australian Marine Research Laboratories 39 Northside Drive Hillarys, Western Australia 6025, Australia Western rock lobster (Panulirus cygnus) are found only off Western output of female western rock lobster (Panu- lirus cygnus). Most of the damaged females sampled had one

  5. Alkali gabbronorite, ultra-KREEPy melt rock and the diverse suite of clasts in North Ray crater feldspathic fragmental breccia 67975

    SciTech Connect (OSTI)

    Lindstrom, M.M.

    1984-11-15T23:59:59.000Z

    Lunar breccia 67975 is a feldspathic fragmental breccia from North Ray crater, Apollo 16. It contains clasts of alkali gabbronorite and ultra-KREEPy mafic fragment-laden melt breccias, which are unique among Apollo 16 samples. Both are alkali- and iron-rich rocks with moderate to high REE concentrations. They more strongly resemble Apollo 14 gabbronorites and alkali anorthosites and KREEP-rich rocks than they do other Apollo 16 samples. The other clasts in 67975 are the ferroan anorthosites, feldspathic melt rocks, and magnesian granulites, which are typical of other feldspathic fragmental breccias. Examination of bulk and mineral compositions of other breccias and melt rocks suggests that alkali gabbronorite may be a minor component in other North Ray crater breccias and feldspathic melt rocks. This implies that alkali gabbronorite was a fairly early (4.0 b.y.) crustal component in the North Ray crater region.

  6. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  7. Altering Wettability in Gas Condensate Sandstone Reservoirs for Gas Mobillity Improvement

    E-Print Network [OSTI]

    Fernandez Martinez, Ruth Gabriela

    2012-07-16T23:59:59.000Z

    ). ...................................................................... 7 Fig. 6-Productivity Index (PI) vs. reservoir pressure of the Arun Field, showing a sharp drop with decreasing pressure. (Afidick et al. 1994). ................................... 8 Fig. 7-BX1 pressure drop vs. time in Britannia Field, where... for untreated Berea sandstone cores. ................................... 30 Fig. 16-Gas relative permeability of untreated rocks at the endpoints. ............................ 31 Fig. 17-BR1 Liquid Imbibitions...

  8. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    SciTech Connect (OSTI)

    Gries, R.R. [Priority Oil & Gas, Denver, CO (United States); Clayton, J.L. [Geological Survey, Denver, CO (United States); Leonard, C. [Platte River Associates, Denver, CO (United States)

    1997-07-01T23:59:59.000Z

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the southwest and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S{sub 1} + S{sub 2} = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay.

  9. Potential petroleum source rock deposition in the middle Cretaceous Wasia Formation, Rub'Al Khali, Saudi Arabia

    SciTech Connect (OSTI)

    Newell, K.D.; Hennington, R.D.

    1983-03-01T23:59:59.000Z

    Stratigraphic correlation and regional geochemical sampling in the Rub'Al Khali (The Empty Quarter) of Saudi Arabia indicate at least two potential petroleum source rock units occur in the middle Cretaceous Wasia Formation. These two sequences, informally named the Safaniya ''source rock'' and the lower Mishrif, are dominated by oil-prone amorphous (Type II) organic matter, in places in excess of 10 weight percent organic carbon. Both units are fine-grained pelagic lime mudstones which were probably deposited in relatively quiet anoxic waters of large intraplatform embayments or basins. The Safaniya ''source rock'' and the lower Mishrif reflect strong marine transgressions on the Arabian craton in Albian to Cenomanian and Cenomanian to Turonian time, respectively. Regressive-phase sedimentary rocks overlying these two transgressive organic-rock phases are generally poor in organic carbon despite being deposited, in part, in similar forereef open-marine depositional settings. The sealevel high-stands associated with the Safaniya ''source rock'' and the lower Mishrif are partly synchronous with two recently described ''oceanic anoxic events'' respectively occurring in late Barremian to late Albian time and late Cenomanian to early Turonian time. Although there is a credible time correlation of these organic-rock units with oceanic anoxic events, their connection to oceanic anoxic events could be strengthened if they could be traced out to the vicinity of the middle Cretaceous continental margin.

  10. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  11. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  12. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  13. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  14. Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Birmingham, Alabama on October 21, 1992. Topical report

    SciTech Connect (OSTI)

    Schraufnagel, R.

    1992-10-01T23:59:59.000Z

    The presentation slides from the October 21, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Improving Gas Production: Techniques of Operations.

  15. Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures Experimental studies and Thermodynamic Modelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures ­ Experimental studies and Thermodynamic of experimental data on the phase equilibrium of gas hydrates in the presence of binary gas mixtures comprising CO of the gas phase as well as the hydrate phase without the need to sample the hydrate. The experimental

  16. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  17. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    systems  and  rock  fall  source  and  impact  areas,  it  meters  from  a  rock  fall  source  area.   The   success  possible  to  the  rock  fall  source  areas,   spacing  

  18. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    INSTRUMENTATION NEEDS FOR DETERMINING ROCK PROPERTIES..Acknowledgements • ROCK PROPERTIES Participant Listing.OF MODELING IN ROCK PROPERTIES EVALUATION AND APPLICATION. •

  19. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2009-01-01T23:59:59.000Z

    have assumed the same rock properties for the entire packed-earlier, among the rock properties (permeability, porosity,However, these are not rock properties and are constrained

  20. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01T23:59:59.000Z

    Kamaishi mine. Laboratory rock property tests. Power reactor5.2 Near field rock properties and fiactire geometand hydraulic rock properties, and hydraulic conditions

  1. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    because large contrasts in rock properties exist across thetransitional changes in rock properties argues that lateralthe distribution of rock properties within different units.

  2. On the relationship between stress and elastic strain for porous and fractured rock

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2009-01-01T23:59:59.000Z

    the other associated rock properties. Important examples ofand/or hydraulic rock properties. We show that theand other rock mechanical/hydraulic properties, and these

  3. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01T23:59:59.000Z

    to complie and correlate rock properties and preliminaryProject Table 1. Rock properties and project characteristicsof Information Rock properties - Bad Creek area Exhibit 1.

  4. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  5. Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1

    SciTech Connect (OSTI)

    Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

    1990-12-01T23:59:59.000Z

    Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

  6. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  7. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  8. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  9. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  10. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  11. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  12. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  13. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  14. In situ measurements of rock salt permeability changes due to nearby excavation

    SciTech Connect (OSTI)

    Stormont, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Howard, C.L. (RE/SPEC, Inc., Carlsbad, NM (United States)); Daemen, J.J.K. (Nevada Univ., Reno, NV (United States). Mackay School of Mines)

    1991-07-01T23:59:59.000Z

    The Small-Scale Mine-By was an in situ experiment to measure changes in brine and gas permeability of rock salt as a result of nearby excavation. A series of small-volume pressurized brine- and gas-filled test intervals were established 8 m beneath the floor of Room L1 in the WIPP underground. The test intervals were isolated in the bottom of the 4.8-cm diameter monitoring boreholes with inflatable rubber packers, and are initially pressurized to about 2 MPa. Both brine- and gas-filled test intervals were located 1.25, 1.5, 2, 3, and 4 r from the center of a planned large-diameter hole, where r is the radius of the large-diameter hole. Prior to the drilling of the large-diameter borehole, the responses of both the brine- and gas-filled test intervals were consistent with the formation modeled as a very low permeability, low porosity porous medium with a significant pore (brine) pressure and no measurable gas permeability. The drilling of the mine-by borehole created a zone of dilated, partially saturated rock out to about 1.5 r. The formation pressure increases from near zero at 1.5 r to the pre-excavation value at 4 r. Injection tests reveal a gradient of brine permeabilities from 5 {times} 10{sup {minus}18} m{sup 2} at 1.25 r to about the pre-excavation value (10{sup {minus}21} m{sup 2}) by 3 r. Gas-injection tests reveal measurable gas permeability is limited to within 1.5 r. 17 refs., 24 figs., 6 tabs.

  15. Analysis of a geopressured gas reservoir using solution plot method

    E-Print Network [OSTI]

    Hussain, Syed Muqeedul

    1992-01-01T23:59:59.000Z

    reservoir to estimate OGIP, c~ and W~. The only input parameters required are the pressure-production data. 2. It is important to recognize that all the energy sources i. e. expansion of gas, rock and water, and water influx may be active at any time... geopressured gas reservoir has been observed to deviate from the theoretical straight line of the Solution plot. These deviations have been designated as Tail 1 and Tail 2. Tail 1, exhibiting increasing effective compressibility is a response to rock...

  16. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05T23:59:59.000Z

    classification method was then applied to the field examples from the Haynesville shale and Woodford shales for rock classification. The estimates of porosity, TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were obtained...

  17. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    2009 PolyGram advertisement Coca-cola and MTV contest PepsiNokia, Pepsi, Seagrams, and Coca Cola sponsored rock showsGroup and Brigade Group, Coca-Cola, and the biotechnology

  18. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01T23:59:59.000Z

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  19. Overview of conservation treatments applied to rock glyph archaeological sites

    E-Print Network [OSTI]

    Dandridge, Debra E

    2000-01-01T23:59:59.000Z

    Rock glyphs, ubiquitously referred to as rock art, are often the most highly visible components of archaeological sites. Such artifacts, therefore, are most prone to deterioration and degradation from human caused and natural elements...

  20. Study of Acid Response of Qatar Carbonate Rocks

    E-Print Network [OSTI]

    Wang, Zhaohong

    2012-02-14T23:59:59.000Z

    of understanding of Qatar carbonate especially Middle East carbonates and the abundance of Middle East carbonate reservoirs is the main motivation behind this study. This work is an experimental study to understand the acid response to Qatar rocks in rocks...

  1. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  2. Inversion of seismic attributes for petrophysical parameters and rock facies 

    E-Print Network [OSTI]

    Shahraeeni, Mohammad Sadegh

    2011-01-01T23:59:59.000Z

    Prediction of rock and fluid properties such as porosity, clay content, and water saturation is essential for exploration and development of hydrocarbon reservoirs. Rock and fluid property maps obtained from such predictions ...

  3. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  4. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  5. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  6. A CONSTITUTIVE MODEL TO PREDICT THE HYDROMECHANICAL BEHAVIOUR OF ROCK

    E-Print Network [OSTI]

    Aubertin, Michel

    in the presence of water to better assess the stability of rock structures under many situations. The accurate conditions. A rock mass behaviour can also be influenced by the water flow and ensuing pore pressure. For example, a previously stable rock structure can become unstable with an increase of water pressure inside

  7. Sigma Xi, The Scientific Research Society Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    Sigma Xi, The Scientific Research Society Rock Varnish Author(s): Ronald I. Dorn Source: American;Rock Varnish Over thousandsofyears,a thincoatingofclay,cementedtorocksbymanganese and iron that appeared "smooth, black, and as ifcoated with plumbago." Indian legends explained that these rocks had been

  8. Technical Note Evaluation of mechanical rock properties using a Schmidt

    E-Print Network [OSTI]

    Ze'ev, Reches

    Technical Note Evaluation of mechanical rock properties using a Schmidt Hammer O. Katza, b, c, *, Z, 91904, Israel b Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem, 95501, Israel c Rock of concrete hardness [1], and was later used to estimate rock strength [2,3]. It con- sists of a spring

  9. A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.

    E-Print Network [OSTI]

    TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate on data collected in the field and is merely a regression between machine parameters, rock properties is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting

  10. Apollo Rock Reveals Moon Had Molten Core | Universe Additional Resources

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Apollo Rock Reveals Moon Had Molten Core | Universe Today Subscribe Podcast Home Additional Apollo Rock Reveals Moon Had Molten Core Written by Nancy Atkinson If you're new here, you may want to subscribe to my RSS feed. Thanks for visiting! Apollo Rock Reveals Moon Had Molten Core | Universe Today

  11. ROCK PROPERTIES AND THEIR EFFECT ON THERMALLY-INDUCED DISPLACEMENTS AND STRESSES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    of laboratory rock property measurements. ACKNOWLEDGEMENT10517 u>ve-'zz&\\--lo ROCK PROPERTIES AND THEIR EFFECT OHin values i for the rock properties for an 1n-s1tu rock mass

  12. GEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form? Include the source of the material and the rock-forming

    E-Print Network [OSTI]

    Kirby, Carl S.

    ? Include the source of the material and the rock-forming process. · Igneous rocks form from the hiGEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form-temperature (650-1200 °C) melting of other rocks (ign. mmorphic, or sed), following by cooling, possibly

  13. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  14. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  15. Potential for producing oil and gas from Woodford Shale (Devonian-Mississippian) in the southern Mid-Continent, USA

    SciTech Connect (OSTI)

    Comer, J.B. (Indiana Geological Survey, Bloomington (United States))

    1991-03-01T23:59:59.000Z

    Woodford Shale is a prolific oil source rock throughout the southern Mid-Continent of the US. Extrapolation of thickness and organic geochemical data based on the analysis of 614 samples from the region indicate that on the order of 100 {times} 10{sup 9} bbl of oil (300 {times} 10{sup 12} ft {sup 3} of natural gas equivalent). Tapping this resource is most feasible in areas where the Woodford subcrop contains competent lithofacies (e.g., chert, sandstone, siltstone, dolostone) and is high fractured. Horizontal drilling may provide the optimum exploitation technique. Areas with the greatest potential and the most prospective lithologies include (1) the Nemaha uplift (chert, sandstone, dolostone), (2) Marietta-Ardmore basin (chert), (3) southern flank of the Anadarko basin along the Wichita Mountain uplift (chert), (4) frontal zone of the Ouachita tectonic belt in Oklahoma (chert), and (5) the Central Basin platform in west Texas and New Mexico (chert and siltstone). In virtually all of these areas the Woodford is in the oil or gas window. Thus, fracture porosity would be continuously fed by hydrocarbons generated in the enclosing source rocks. Reservoir systems such as these have typically produced at low to moderate flow rates for many decades.

  16. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Characterization of Rock Masses Structural GeologicalCharacterization of Rock Masses . • • • • • • • • 5.2.1 Structural Geological

  17. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    Happy  Isles  and  the  1999  Glacier  Point  rock  falls,  there   was   an   attempt   to   monitor   rock   fall   in   Yosemite   Valley  

  18. Chemical and petrological characteristics of the intrusive rocks of the Quitman Mountains, Texas

    E-Print Network [OSTI]

    Seay, Christopher Sidney

    1973-01-01T23:59:59.000Z

    is advantaqeous in that it yields pellets not only chemically homo- geneous but physically stable. One disadvantage is 16 that the loss of volatiles during heating is unavoid- able. To test the analytical precision and that of sample preparation technique... CHEMICAL AND PETROLOGICAL CHARACTERISTICS OF THE INTRUSIVE ROCKS OF THE QUITMAN MOUNTAINS, TEXAS A Thesis by CHRISTOPHER SIDNEY SEAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement...

  19. Rock Chalk Report, May 7, 2014

    E-Print Network [OSTI]

    2014-05-07T23:59:59.000Z

    Trouble seeing something? view it online or To unsubscribe, click here or send an email to: unsubscribe- 87@pacmail.em.marketinghq.net. May 7, 2014 Rock Chalk Report The Official Newsletter of Kansas Athletics... an email to: unsubscribe-87@pacmail.em.marketinghq.net. © 2014, University of Kansas. The team names, logos and uniform designs are registered trademarks of the teams indicated. No logos, photographs or graphics in this email may be reproduced without...

  20. Choosing a sample rate for prime mover digital control systems

    SciTech Connect (OSTI)

    Schade, J.

    1995-09-01T23:59:59.000Z

    This paper explains the reasons and consequences of sample rate selection for gas turbine and steam turbine controls. Sample rate theory is important because there is often confusion about how to select the sample rate for different applications. Full-load rejection offspeeds, a common prime mover performance issue, will be used as an example. The effect of different sample rates will be shown.

  1. Sandia National Laboratories: Crystalline Rock Repository Developments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  2. International Journal of Greenhouse Gas Control 9 (2012) 1023 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    strata other than depleted hydrocarbon reservoirs (e.g. in saline aquifers), relatively little indefinitely in the pore space of the rock. Potential storage sites include saline brine reservoirs, depleted oil and gas reservoirs, and coal seams. The technology

  3. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  4. Squirt flow in fully saturated rocks

    SciTech Connect (OSTI)

    Dvorkin, J.; Mavko, G.; Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics

    1995-01-01T23:59:59.000Z

    The authors estimate velocity/frequency dispersion and attenuation in fully saturated rocks by employing the squirt-flow mechanism of solid-fluid interaction. In this model, pore fluid is squeezed from thin soft cracks into the surrounding large pores. Information about the compliance of these soft cracks at low confining pressures is extracted from high-pressure velocity data. The frequency dependence of squirt-induced pressure in the soft cracks is linked with the porosity and permeability of the soft pore space, and the characteristic squirt-flow length. These unknown parameters are combined into one expression that is assumed to be a fundamental rock property that does not depend on frequency. The appropriate value of this expression for a given rock can be found by matching the authors theoretical predictions with the experimental measurements of attenuation or velocity. The low-frequency velocity limits, as given by their model, are identical to those predicted by Gassmann`s formula. The high-frequency limits may significant exceed those given by the Biot theory: the high-frequency frame bulk modulus is close to that measured at high confining pressure. They have applied their model to D`Euville Limestone, Navajo Sandstone, and Westerly Granite. The model realistically predicts the observed velocity/frequency dispersion, and attenuation.

  5. Automated soil gas monitoring chamber

    DOE Patents [OSTI]

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29T23:59:59.000Z

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  6. Geochemical evaluation of oils and source rocks from the Western Siberian basin, U. S. S. R

    SciTech Connect (OSTI)

    Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)); Moldowan, J.M. (Chevron Oil Field Research Co., Richmond, CA (United States)); Kontorovich, A.E.; Stasova, O. (Siberian Scientific Research Institute for Geology, Geophysics and Mineral Resources, Novobsibirsk (Russian Federation)); Demaison, G.J.

    1991-03-01T23:59:59.000Z

    Although the Western Siberian basin is among the most prolific in the world, there has been disagreement among Soviet geoscientists on the origin of the petroleum within this basin. Screening geochemical analyses were used to select several oils and potential source rocks for a preliminary study using detailed biomarker and supporting geochemistry. Possible sources for this petroleum include rocks of Middle Jurassic, Upper Jurassic, and Lower Cretaceous age. Results indicate that most of the analyzed Western Siberian oils, occurring in reservoirs from Middle Jurassic to Late Cretaceous in age, are derived from the Upper Jurassic Bazhenov Formation. The locations of the samples in the study generally correspond to the distribution of the most effective oil-generative parts of the Bazhenov Formation. Analyses show that the Bazhenov rock samples contain abundant marine algal and bacterial organic matter, preserved under anoxic depositional conditions. Biomarkers show that thermal maturities of the samples range from the early to late oil-generative window and that some are biodegraded. For example, the Salym No. 114 oil, which flowed directly from the Bazhenov Formation, shows a maturity equivalent to the late oil window. The Van-Egan no. 110 oil shows maturity equivalent to the early oil window and is biodegraded. This oil shows preferential microbial conversion of lower homologs of the 17{alpha}, 21{beta}(H)-hopanes to 25-nor-17{alpha}(H)-hopanes.

  7. Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3, Stage 2: p.

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles; and Ozdemir, Levent, 2003, Rock Mass Properties and Hard Rock TBM Penetration Properties and Hard Rock TBM Penetration Rate Investigations, Queens Tunnel Complex, NYC Water Tunnel #3 quantification that the rock mass exhibited an unusually high degree of toughness and rock directional properties

  8. Sampling diffusive transition paths

    E-Print Network [OSTI]

    F. Miller III, Thomas

    2009-01-01T23:59:59.000Z

    Sampling di?usive transition paths Thomas F. Miller III ?the algorithm to sample the transition path ensemble for thedynamics I. INTRODUCTION Transition path sampling (TPS) is a

  9. Explosion in the Granite Field: Hardening and Softening Behavior in Rocks

    SciTech Connect (OSTI)

    Lomov, I N; Antoun, T H; Glenn, L A

    2001-07-12T23:59:59.000Z

    Properties of rock materials under quasistatic conditions are well characterized in laboratory experiments. Unfortunately, quasistatic data alone are not sufficient to calibrate models for use to describe inelastic wave propagation associated with conventional and nuclear explosions, or with impact. First, rock properties are size-dependent. properties measured using laboratory samples on the order of a few centimeters in size need to be modified to adequately describe wave propagation in a problem on the order of a few hundred meters in size. Second, there is lack of data about the damage (softening) behavior of rock because most laboratory tests focus on the pre-peak hardening region with very little emphasis on the post-peak softening region. This paper presents a model for granite that accounts for both the hardening and softening of geologic materials, and also provides a simple description of rubblized rock. The model is shown to reproduce results of quasistatic triaxial experiments as well as peak velocity and peak displacement attenuation from a compendium of dynamic wave propagation experiments that includes US and French nuclear tests in granite.

  10. Explosion in the Granite Field: Hardening and Softening Behavior in Rocks

    SciTech Connect (OSTI)

    Lomov, I N; Antoun, T H; Glenn, L A

    2001-06-25T23:59:59.000Z

    Properties of rock materials under quasistatic conditions are well characterized in laboratory experiments. Unfortunately, quasistatic data alone are not sufficient to calibrate models for use to describe inelastic wave propagation associated with conventional and nuclear explosions, or with impact. First, rock properties are size-dependent. properties measured using laboratory samples on the order of a few centimeters in size need to be modified to adequately describe wave propagation in a problem on the order of a few hundred meters in size. Second, there is lack of data about the damage (softening) behavior of rock because most laboratory tests focus on the pre-peak hardening region with very little emphasis on the post-peak softening region. This paper presents a model for granite that accounts for both the hardening and softening of geologic materials, and also provides a simple description of rubblized rock. The model is shown to reproduce results of quasistatic triaxial experiments as well as peak velocity and peak displacement attenuation from a compendium of dynamic wave propagation experiments that includes US and French nuclear tests in granite.

  11. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect (OSTI)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01T23:59:59.000Z

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  12. Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

  13. Getting the Best Out of Fluid Samples John M. Williams, SPE, Science Support Services

    E-Print Network [OSTI]

    Williams, John M.

    essentially involves collecting surface samples of the oil and gas from the production test separator, bottomhole samples from the wellbore, or both types of samples. For separator gas samples, the quality checks are (1) determination of opening pressure; (2) compositional analysis, including air content; and (3

  14. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Lock, D.E. [Mackay School of Mines, Reno, NV (United States)

    1996-08-01T23:59:59.000Z

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  15. Apparatus and method for monitoring of gas having stable isotopes

    DOE Patents [OSTI]

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05T23:59:59.000Z

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  16. Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  17. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    Petroleum System (TPS), including hydrocarbon source rocks (source-rock type and maturation and hydrocarbon generation

  18. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  19. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | RoadmapRenewableGeothermalsourceOhio:RigbyRim Rock Wind

  20. ArchRock Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),Arborview CapitalArchRock Corporation

  1. DOE - Office of Legacy Management -- Slick Rock

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSantaWyomingSlick Rock Slick

  2. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis Jump

  3. Rock, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy Jump to: navigation, searchRock,

  4. Eagle Rock Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI) |Rock Geothermal Facility

  5. Sensitivity analysis of GSI based mechanical characterization of rock mass

    E-Print Network [OSTI]

    Ván, P

    2012-01-01T23:59:59.000Z

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  6. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  7. Characterization of rock for constraining reservoir scale tomography at the Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.; Bonner, B.P.

    1994-01-20T23:59:59.000Z

    A suite of laboratory measurements are being conducted on Geysers graywacke recovered from a drilled depth of 2599 meters in NEGU-17. The tests are being conducted to characterize the effect of pressure and fluid saturation on the seismic properties of the graywacke matrix. The measurements indicate that the graywacke is an unusual rock in many respects. Both compressional and shear velocities exhibit relatively little change with pressure. Water saturation causes a slight increase in the compressional velocity, quantitatively consistent with predictions from the Biot-Gassmann equations. Shear velocity decreases with water saturation by an amount greater than that predicted by the Biot-Gassmann equations. This decrease is attributed to chemomechanical weakening caused by the presence of water. Measurements of Q, from torsion experiments on room dry samples at seismic frequencies indicate unusually high Q, (~500). Water saturation decreases the shear modulus by 12 percent, again indicative of chemomechanical weakening. Q, is lower for the water saturated condition, but still relatively high for rock at low stress. Results of ultrasonic pulse propagation experiments on partially saturated samples are typical of low porosity rocks, being characterized by a monotonic decrease in compressional and shear velocity with decrease in saturation. An increase in shear velocity and low frequency shear modulus after vacuum drying indicates the presence of chemo-mechanical weakening resulting from the presence of small amounts of water.

  8. Velocity and attenuation in partially molten rocks

    SciTech Connect (OSTI)

    Mavko, G.M.

    1980-10-10T23:59:59.000Z

    Interpretation of seismic velocity and attenuation in partially molten rocks has been limited, with few exceptions, to models that assume the melt to be distributed either as spheres or as thin films. However, other melt phase geometries, such as interconnected tubes along grain edges, might equally well account for seismic observations if there is a much larger fraction of melt. Seismic velocity and attenuation are estimated in rocks in which the melt phase has the tube geometry, and the results are compared with results expected for the more familiar film model under similar conditions. For a given melt fraction, tubes are found to give moduli intermediate between moduli for rigid spherical inclusions and compliant films. For example, in polycrystalline olivine at 20 kbar the model predicts a decrease in V/sub s/ of 10% and a decrease in V/sub p/ of 5% at 0.05 melt fraction, without considering inelastic relaxation. Shear attenuation appears to be dominated by viscous flow of melt between the tubes and/or films. For olivine the tube model predicts the increment of relaxation due to melt, ..delta mu../..mu.., to be 0.01 at 0.05 melt fraction. Relaxation of the bulk modulus is dominated by flow between melt pockets of different shape, heat flow, and solid-melt phase change. If melt is present, considerable bulk attenuation is expected, although the relaxation may be observable only at long periods, outside the seismic body wave band.

  9. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  10. archaean sedimentary rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    situations, much more dependent on the properties of joints Aubertin, Michel 302 Rock Mining Operation Effects on Water Quality in the Everglades Biology and Medicine Websites...

  11. artificial rock fractures: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drainage. ISRM 2003Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, 2 Environmental Sciences and Ecology Websites Summary: subsidence...

  12. archean supracrustal rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 164 ELASTIC ROCK PROPERTIES OF...

  13. archean metavolcanic rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 156 ELASTIC ROCK PROPERTIES OF...

  14. acid rock discharges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 226 ELASTIC ROCK PROPERTIES OF...

  15. alkalic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting than whales's research interests include sustainable transportation, life-cycle assessment, and the national security Zhang, Junshan 120 ELASTIC ROCK PROPERTIES OF...

  16. Elastic properties of saturated porous rocks with aligned fractures

    E-Print Network [OSTI]

    2003-12-02T23:59:59.000Z

    This unexpected result is caused by the wave-induced flow of fluids between pores and fractures. ..... For non-fractured rock setting fracture weaknesses. DN and ...

  17. average sedimentary rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers Multidisciplinary Databases and Resources Websites Summary: are reported to...

  18. alum rock sulfur: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -resolution carbon and sulfur isotope profiles from Early to Middle Ordovician carbonate rocks from the Argentine Investigation of isotopic compositions recorded in...

  19. altered sedimentary rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers Multidisciplinary Databases and Resources Websites Summary: are reported to...

  20. Poroelastic damage rheology: Dilation, compaction, and failure of rocks

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    Poroelastic damage rheology: Dilation, compaction, and failure of rocks Yariv Hamiel Institute December 2004; Published 26 January 2005. Hamiel, Y., V. Lyakhovsky, and A. Agnon (2005), Poroelastic

  1. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir Investigations on the Hot Dry Rock Geothermal System,...

  2. AltaRock Energy Announces Successful Multiple-Zone Stimulation...

    Office of Environmental Management (EM)

    Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation...

  3. Lithology and Alteration Mineralogy of Reservoir Rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  4. Lithology and alteration mineralogy of reservoir rocks at Coso...

    Open Energy Info (EERE)

    of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the...

  5. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  6. Laboratory measurements on reservoir rocks from The Geysers geothermal field

    SciTech Connect (OSTI)

    Boitnott, G.N.

    1995-01-26T23:59:59.000Z

    A suite of laboratory measurements have been conducted on Geysers metagraywacke and metashale recovered from a drilled depth of 2599 to 2602 meters in NEGU-17. The tests have been designed to constrain the mechanical and water-storage properties of the matrix material. Various measurements have been made at a variety of pressures and at varying degrees of saturation. Both compressional and shear velocities exhibit relatively little change with effective confining pressure. In all of the samples, water saturation causes an increase in the compressional velocity. In some samples, saturation results in a moderate decrease in shear velocity greater in magnitude than would be expected based on the slight increase in bulk density. It is found that the effect of saturation on the velocities can be quantitatively modeled through a modification of Biot-Gassmann theory to include weakening of the shear modulus with saturation. The decrease is attributed to chemo-mechanical weakening caused by the presence of water. The degree of frame weakening of the shear modulus is variable between samples, and appears correlated with petrographic features of the cores. Two related models are presented through which we can study the importance of saturation effects on field-scale velocity variations. The model results indicate that the saturation effects within the matrix are significant and may contribute to previously observed field anomalies. The results help to define ways in which we may be able to separate the effects of variations in rock properties, caused by phenomena such as degree of fracturing, from similar effects caused by variations in matrix saturation. The need for both compressional and shear velocity data in order to interpret field anomalies is illustrated through comparisons of model results with the field observations.

  7. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01T23:59:59.000Z

    sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments...

  8. MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING

    SciTech Connect (OSTI)

    Stephen C. Ruppel

    2003-01-01T23:59:59.000Z

    Excellent progress has been made on all project objectives and goals. All tasks have been completed in the Phase 1 study area, the initial area of project focus. Primary elements of this work include the following: The stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. Finally, a preliminary 3-D model has been constructed that incorporates stratigraphic architecture, rock-fabric data, and petrophysical data. Reservoir volumetrics calculated from the model show that a very large fraction of the original oil in place remains.

  9. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01T23:59:59.000Z

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  10. E-Print Network 3.0 - antarctic rock cod Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMISSION. 85.-THE ARTIFICIAL BAISING OF GOD I N AMERIUA. Summary: at Gloucester in the artificial hatching of cod, and several millions of young fry of the cod have been...

  11. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, searchRobbinsDensityOpen Energy

  12. Rock Sampling At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, searchRobbinsDensityOpen

  13. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, searchRobbinsDensityOpenEnergy

  14. Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy

  15. The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya

    SciTech Connect (OSTI)

    Negoita, V.; Gheorghe, A.

    1995-08-01T23:59:59.000Z

    The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suite including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.

  16. Cesium Sorption Rate on Non-Crushed Rock Measured by a New Apparatus Based on a Micro-Channel-Reactor Concept

    SciTech Connect (OSTI)

    Keita Okuyama; Akira Sasahira; Kenji Noshita [Power and Industrial Systems R and D Laboratory, Hitachi Ltd, 7-2-1 Omika, Hitachi-shi, 319- 1221 (Japan); Toshiaki Ohe [Energy Science and Engineering Department, School of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka-shi, 259-1292 (Japan)

    2007-07-01T23:59:59.000Z

    Since nuclide migration through rock mediums is an extremely slow process, experimental effort to evaluate the barrier performance of geologic disposal such as the diffusion coefficient (D{sub e}) and the distribution coefficient (K{sub d}) requires relatively long testing periods and chemically stable conditions. We have developed a fast method to determine both D{sub e} and K{sub d} by using a non-crushed rock sample. In this method, a fluoro-plastic plate with a micro channel (10- 200-{mu}m depth) is placed just beneath a rock-sample plate, and a radionuclide solution is injected into the channel at constant rate. A part of radionuclide diffuses into the rock matrix and/or adsorbs on the rock surface. The difference between the inlet and outlet radionuclide flux is simply related to the apparent diffusion coefficient (D{sub a}) of the rock sample. In this study, we estimated K{sub d} of Cs for granite by using the equilibrium model, finding that K{sub d} decreased with increasing flow rate. This dependence of K{sub d} on flow rate implies the state of sorption equilibrium. The adsorption and desorption curves of {sup 134}Cs were thus measured, and the rate constants for both processes were obtained by adopting a first-order rate law. The rate constants of sorption (k{sub +}) and desorption (k{sub -}) were obtained as a function of flow velocity; constant values of both were observed. K{sub d} was calculated from k{sub +}/ k{sub -} and then compared with that determined by conventional batch sorption method using a crushed rock sample. The K{sub d} values determined by the present and conventional methods are in good accordance; however, the testing periods for each method are very different; namely, 1 day and 7 days, respectively. (authors)

  17. Reservoir characterization of Mary Lee and Black Creek coals at the Rock Creek field laboratory, Black Warrior basin. Topical report, May-December 1992

    SciTech Connect (OSTI)

    Young, G.B.C.; Paul, G.W.

    1993-08-01T23:59:59.000Z

    A three-dimensional multi-well simulation study was performed for the Rock Creek project site to better understand the relationships between coal reservoir properties, well completion practices, and actual well performance. The reservoir study provided insights on the efficacy of single versus multiple seam completions, the incremental gas recovery resulting from remedial stimulations, and the impact of well spacing on expected long-term gas recovery. The Mary Lee and Black Creek coal groups were characterized by matching production and pressure history for eight Rock Creek producing wells and their surrounding monitor wells. The simulation grid included the Oak Grove mine and degas field located south of the Rock Creek site. Results of well test analyses, corehole-based gas content measurements, and individual coal group gas production from zone isolation packer tests were used to validate the simulation results. Various hydraulic fracture and remedial stimulations were analyzed to compare the effectiveness of different stimulation designs used at the site. Alternative well spacing strategies were examined to assess the effects of interference on long-term gas recovery.

  18. PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133 Rocks and Minerals I. OBJECTIVES One of the many ways to study Earth is by examining the rocks that make up its types of rocks and minerals; · determine the formation and the history of each rock and mineral; · infer

  19. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Effects of pore texture on porosity, permeability, and sonic velocity. We show how a relation can be found between porosity, permeability, and velocity by separating the formations of rocks with similar pore textures.

  20. Fluid Migration During Ice/Rock Planetesimal Differentiation

    E-Print Network [OSTI]

    Raney, Robert 1987-

    2012-12-12T23:59:59.000Z

    /water reaction, which will depend on the rate at which water can be segregated from a melting ice/rock core. For the liquid water phase to migrate toward the surface, the denser rock phase must compact. The primary question that this thesis will answer is how...

  1. Geophysical detection and structural characterization of discontinuities in rock

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Geophysical detection and structural characterization of discontinuities in rock slopes (J. Deparis geophysical methods (seismic, electric and electromagnetic) are available to address this problem, differing and geophysical methods for characterizing the rock mass. Section 2 is dedicated to a review of the main

  2. RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RUPTURE BY DAMAGE ACCUMULATION IN ROCKS David Amitrano LIRIGM, Université J. Fourier, Grenoble of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage as strength and modulus. The damage process can be studied both statically by direct observation of thin

  3. ROCK: A Robust Clustering Algorithm for Categorical Attributes

    E-Print Network [OSTI]

    Pennsylvania, University of

    ROCK: A Robust Clustering Algorithm for Categorical Attributes Sudipto Guha Stanford University/proximity between a pair of data points. We develop a robust hierarchical clustering algorithm ROCK that employs measures that are relevant in situations where a domain expert/similarity table is the only source

  4. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  5. Rock to Regolith Earth's Critical Zone on Volcanic Ocean Islands

    E-Print Network [OSTI]

    Geist, Dennis

    increases monotonically towards surface #12;Frost creep transport Frequency and depth of freezing event (f in a landscape? (the w question) What governs the efficiency of regolith transport? (the Q question) What lens growth #12;Ice lenses in soils Ice lenses in rock Water freezing in soil and rocks Murton et al

  6. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  7. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    E-Print Network [OSTI]

    Liu, H.H.

    2012-01-01T23:59:59.000Z

    hydraulic rock properties 25  a variety of rock properties and their relationships to flowmechanical and/or hydraulic rock properties. The theoretical

  8. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    E-Print Network [OSTI]

    Rutqvist, Jonny

    2008-01-01T23:59:59.000Z

    European countries. The initial rock properties for the twoinduced changes in rock properties. The purpose of the model3. Some basic THM rock properties Parameter Bulk Density, [

  9. RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    and M. Board. 1980. "Rock Properties and Their Effect onerature dependence of rock properties has been taken intomeasurements of the rock properties we need to understand

  10. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01T23:59:59.000Z

    variables and prior rock properties are obtained from theircalibration of rock properties. Zhou et al, CharacterizationLateral variability of rock properties can be seen from the

  11. 1.4 PETROPHYSICS: Combined Rock and Fluid Character Integration of geological and petrophysical data allows development of a rock-fluid model for

    E-Print Network [OSTI]

    Schechter, David S.

    data allows development of a rock-fluid model for upper Spraberry rocks. This study identifies the different rock types that comprise the subject reservoirs, marginal reservoirs and non-reservoir rocks shales, clay rich siltstones and very fine sandstones units uses gamma-ray logs (Fig.1.2-1) and is widely

  12. Estimation of hydrologic properties of an unsaturated, fractured rock mass

    SciTech Connect (OSTI)

    Klavetter, E.A.; Peters, R.R.

    1986-07-01T23:59:59.000Z

    In this document, two distinctly different approaches are used to develop continuum models to evaluate water movement in a fractured rock mass. Both models provide methods for estimating rock-mass hydrologic properties. Comparisons made over a range of different tuff properties show good qualitative and quantitative agreement between estimates of rock-mass hydrologic properties made by the two models. This document presents a general discussion of: (1) the hydrology of Yucca Mountain, and the conceptual hydrological model currently being used for the Yucca Mountain site, (2) the development of two models that may be used to estimate the hydrologic properties of a fractured, porous rock mass, and (3) a comparison of the hydrologic properties estimated by these two models. Although the models were developed in response to hydrologic characterization requirements at Yucca Mountain, they can be applied to water movement in any fractured rock mass that satisfies the given assumptions.

  13. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  14. ESPC IDIQ Contract Sample

    Broader source: Energy.gov [DOE]

    Document displays a sample indefinite delivery, indefinite quantity (IDIQ) energy savings performance contract (ESPC).

  15. Evidence for the incorporation of lead into barite from waste rock pile materials

    E-Print Network [OSTI]

    COURTIN-NOMADE, ALEXANDRA

    2009-01-01T23:59:59.000Z

    into Barite from Waste Rock Pile Materials A L E X A N D R Awithin the waste rock pile resulting from the excavationdeveloped within waste rock pile originated from a former

  16. Full waveform inversion of a 3-D source inside an artificial rock

    E-Print Network [OSTI]

    To, A C; Glaser, Steven D

    2005-01-01T23:59:59.000Z

    of a 3-D Source Inside an Artificial Rock Albert C. To andof a 3-D source inside an artificial rock plate inof a 3-D source inside an artificial rock plate is

  17. Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion

    E-Print Network [OSTI]

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2008-01-01T23:59:59.000Z

    of heterogeneity in rock property (clay content and henceNon-linear) elastic properties of the rock. Biot coefficientNon-linear) elastic properties of the rock including their

  18. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  19. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect (OSTI)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07T23:59:59.000Z

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  20. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    SciTech Connect (OSTI)

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01T23:59:59.000Z

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  1. Thermal Expansion Behavior of Cerro Prieto Sandstones and Other Sedimentary Rocks Under Stress

    SciTech Connect (OSTI)

    Contreras, E.; Bermejo, F.

    1983-12-15T23:59:59.000Z

    This paper describes the experimental work and presents the results of a research program carried out to investigate the thermal expansion behavior of sedimentary rocks under high stress conditions. The aspects that were investigated include the effects of temperature, temperature cycling, and confining pressure. Furthermore, the validity of the usual assumption on thermal expansion isotropy was investigated. On the other hand, the matrix thermal expansion concept is analyzed and its physical meaning and aplications are discussed. The effect of temperature on porosity is also a subject investigated regarding experimental methods for its estimation and comparison of earlier results. The experiments carried out consisted basically of thermal strain versus temperature measurements on jacketed and unjacketed samples subjected to different confining pressures and covering the temperature range from 25 C to 280 C and the pressure range from 3.0 MPa to 34.4 MPa. A review of earlier work is included as a reference frame to discuss and compare the results of this work, as well as to emphasize the limited extent of the research on thermal expansion behavior of sedimentary rocks that had been accomplished. Results are presented by means of thermal strain versus temperature curves and tabular data of thermal expansion coefficients. Several important conclusions for laborarory and field applications are reached from each of the aspects investigated. The wide research scope of considerable amount of data reported may represent an important contribution to the knowledge of thermal expansion behavior of sedimentary rocks.

  2. RADIOACTIVITY DOSAGE OF ORNAMENTAL GRANITIC ROCKS BASED ON CHEMICAL, MINERALOGICAL AND LITHOLOGICAL DATA

    SciTech Connect (OSTI)

    Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.

    2004-10-03T23:59:59.000Z

    One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples with total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.

  3. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15T23:59:59.000Z

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  4. Observation of pressure stimulated voltages in rocks using an electric potential sensor

    SciTech Connect (OSTI)

    Aydin, A.; Prance, R. J.; Prance, H.; Harland, C. J. [Centre for Physical Electronics and Quantum Technology, School of Engineering and Design, University of Sussex, Brighton BN1 9QT (United Kingdom)

    2009-09-21T23:59:59.000Z

    Recent interest in the electrical activity in rock and the use of electric field transients as candidates for earthquake precursors has led to studies of pressure stimulated currents in laboratory samples. In this paper, an electric field sensor is used to measure directly the voltages associated with these currents. Stress was applied as uniaxial compression to marble and granite at an approximately constant rate. In contrast with the small pressure stimulated currents previously measured, large voltage signals are reported. Polarity reversal of the signal was observed immediately before fracture for the marble, in agreement with previous pressure stimulated current studies.

  5. air filter samples: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Filter Ex,aust@Gas Lc(mm) 987 766 545 324 103 R(mm) 0 20 40 60 80100 120 AirAir Fuel Oil NozzleD13 Portable Gas Analyzer O 2 CO 2 NO SO 2 Pump SamplingProbe C.W Outlet C.W...

  6. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  7. Identification of organic-rich lower tertiary shakles as petroleum source rock, southern Louisiana

    SciTech Connect (OSTI)

    McDade, E.C. (Texaco Inc., New orleans, LA (United States)); Sassen, R. (Texas A M Univ., College Station, TX (United States)); Wenger, L. (Exxon Production Research, Houston, TX (United States)); Cole, G.A. (Saudi Aramco Laboratories Department, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    Comprehensive organic geochemical evidence of organic-rich, marine shales in the lower part of the middle eocene Claiborne Group and the lower Eocene-Paleocene Wilcox Group of southern Louisiana is now available. The evidence influences models for Gulf Coast petroleum origin. The shales are the only post-Cretaceous sediments in the northern Gulf of Mexico that meet recognized criteria for oil source rocks. Many of organic-rich Paleogene shales contain terrestrially derived, amorphous kerogen altered by microbial activity, and display pyrolysis results consistent with type II/III kerogen. Shelf-edge depositional environments favored preservation of hydrogen-rich kerogen. Seismic and sedimentologic interpretations suggest that marine character and thickness increase on the Paleogene continental slope to the south. The shales at burial depths in the 3050-4600 m depth range, at present, are thermally immature to late mature with respect to oil generation. Detailed geochemical analyses of extractable organic matter and kerogen isolates suggest an oil-source correlation with Tertiary-reservoired oils in southern Louisiana and offshore in the adjacent Gulf of Mexico. Biomarkers of selected samples display high concentrations of C[sub 28]-bisnorhopane and 18[alpha]-oleanane biomarker is absent or not reported in Gulf crude oils from Cretaceous and Jurassic source rocks. Burial and thermal history models suggest the timing of oil migration from Paleogene source rocks is consistent with emplacement of oils in Tertiary reservoirs. The lower Tertiary source rocks described here could offer new insight to understanding the origin of oil in other Tertiary deltas.

  8. Organic facies and systems tracts: Implications for source rock preservation and prediction

    SciTech Connect (OSTI)

    Kosters, E.C.; Vanderzwaan, F.J.; Gijsbert, J. (Univ. of Utrecht (Netherlands))

    1993-09-01T23:59:59.000Z

    Sequence stratigraphy is concerned with making predictions about reservoirs ahead of the drill, however, little attention has been paid to the configuration of organic-rich facies of source rock quality. We suggest that preservation of source rock type facies in clastic systems is mutually exclusive and time successive. The main database is a collection of cores and other samples through the Holocene Rhone delta. The early Holocene Transgressive Systems Tract (TST) contains five levels of channelization. The most significant peat bed is located immediately landward of the shoreline of maximum transgression (SMT). The Highstand Systems Tract (HST) consists of two parasequences, containing mostly laterally continuous strandplain complexes without peat. In addition to sufficient accommodation space, an important control on formation of fresh-water peats and organic-rich shelf muds is availability of river-induced nutrients. Peat quality, however, is best without riverine clastics. In a delta plain, a balance between these two controls may be reached when river-fed nutrients are trapped there indirectly. The potential for such a condition arises in a TST setting. On the shelf, eutrophication of marine habitats is also controlled by river-fed nutrients, but excess river clastics are detrimental to marine source rock quality. A balance between these two controls may be reached in HST settings where fine-grained riverine clastics are forced onto the shelf rather than in the delta plain. In this case, nutrient supply to the shelf results in large quantities of marine biomass. This biomass becomes sufficiently concentrated due to moderate fine-grained riverine sedimentation which guarantees burial and preservation. Thus, varying river-water and nutrient supply in TST and HST settings seems to control large-scale preservation patterns of both continental and marine organics. This hypothesis suggests further potential for using sequence stratigraphy for source rock occurrence.

  9. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14T23:59:59.000Z

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  10. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01T23:59:59.000Z

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  11. America's Atomic Army: The Historical Archaeology of Camp Desert Rock

    SciTech Connect (OSTI)

    Susan R. Edwards

    2007-11-02T23:59:59.000Z

    Established in 1951, Camp Desert Rock served as the training ground for America's 'Atomic Army'. For the next six years, U.S. ground troops traveled to the Nevada desert to participate in military maneuvers during atmospheric atomic weapons testing. Nearly 60,000 soldiers received physical and psychological training in atomic warfare. Abandoned when atmospheric testing ended, Camp Desert Rock was dismantled and its buildings moved to other locations. Today, the camp appears as a sterile expanse of desert marked by rock-lined tent platforms, concrete foundations, and trash scatters. Although visually unimposing, the site is rich with the history of America's nuclear testing program.

  12. COMPUTER SCIENCE SAMPLE PROGRAM

    E-Print Network [OSTI]

    Gering, Jon C.

    COMPUTER SCIENCE SAMPLE PROGRAM (First Math Course MATH 198) This sample program suggests one way CS 181: Foundations of Computer Science II CS 180: Foundations of Computer Science I CS 191

  13. Noble gases and radiocarbon in natural gas hydrates Gisela Winckler

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    Noble gases and radiocarbon in natural gas hydrates Gisela Winckler Lamont-Doherty Earth 2001; published 24 May 2002. [1] In samples of pure natural gas hydrates from Hydrate Ridge, Cascadia ones preferentially incorporated into the gas hydrate structure. The hydrate methane is devoid of 14 C

  14. Dual liquid and gas chromatograph system

    DOE Patents [OSTI]

    Gay, Don D. (Aiken, SC)

    1985-01-01T23:59:59.000Z

    A chromatographic system that utilizes one detection system for gas chromatographic and micro-liquid chromatographic determinations. The detection system is a direct-current, atmospheric-pressure, helium plasma emission spectrometer. The detector utilizes a non-transparent plasma source unit which contains the plasma region and two side-arms which receive effluents from the micro-liquid chromatograph and the gas chromatograph. The dual nature of this chromatographic system offers: (1) extreme flexibility in the samples to be examined; (2) extremely low sensitivity; (3) element selectivity; (4) long-term stability; (5) direct correlation of data from the liquid and gas samples; (6) simpler operation than with individual liquid and gas chromatographs, each with different detection systems; and (7) cheaper than a commercial liquid chromatograph and a gas chromatograph.

  15. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    E-Print Network [OSTI]

    Singer, Brett C.

    2010-01-01T23:59:59.000Z

    The Horiba PG?250  combustion gas analyzer was used for its 250) were measured by the combustion gas analyzer sampling Analytical  602P combustion gas analyzer (O 2 , CO 2 , CO), 

  16. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect (OSTI)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01T23:59:59.000Z

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  17. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,...

  18. Gas Flux Sampling At Long Valley Caldera Geothermal Area (Bergfeld...

    Open Energy Info (EERE)

    thermal gradient in the center of the areas is around 320C m- 1. We estimate total heat loss from the two areas to be about 6.1 and 2.3 MW. Given current thinking on the...

  19. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    - 2013 Usefulness useful DOE-funding Unknown Exploration Basis the purpose of this project was to gain new geophysical data in order to add onto existing data and develop a better...

  20. NNSA implements nondestructive gas sampling technique for nuclear weapon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAbout Us /Administrationcomponents

  1. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010Campaign

  2. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010CampaignCampaign

  3. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation

  4. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaign

  5. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaignCampaign

  6. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS

  7. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision

  8. Category:Gas Flux Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage? For detailed information on

  9. Category:Soil Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation DemonstrationsSmartSoil

  10. Surface Gas Sampling (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi,EnergyRenewable(Klein, 2007)

  11. Surface Gas Sampling At International Geothermal Area Mexico (Norman, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place: Wuxi,EnergyRenewable(Klein,1983)

  12. Gas Flux Sampling (Evans, Et Al., 2001) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma: EnergyGeothermalEt

  13. Gas Flux Sampling (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma:

  14. Gas Flux Sampling (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma:Laney, 2005)

  15. Gas Flux Sampling (Lewicki & Oldenburg, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: EnergyGarvin County, Oklahoma:Laney,

  16. The Effect of Heterogeneity on Matrix Acidizing of Carbonate Rocks

    E-Print Network [OSTI]

    Keys, Ryan S.

    2010-07-14T23:59:59.000Z

    pressure. A hydrochloric acid solution is used in carbonate reservoirs, which actually dissolves the calcite rock matrix in the form of conductive channels called wormholes. These wormholes propagate from the wellbore out into the reservoir, bypassing...

  17. Characterizing Flow in Oil Reservoir Rock Using Smooth Particle Hydrodynamics

    E-Print Network [OSTI]

    Holmes, David W.

    In this paper, a 3D Smooth Particle Hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow ...

  18. Experimental Study on Rock Deformation and Permeability Variation

    E-Print Network [OSTI]

    Ding, Jihui

    2013-08-01T23:59:59.000Z

    The development of a petroleum reservoir would inevitably induce a rearrangement of the in-situ stress field. The rearrangement of the stress field would then bring about a deformation of the reservoir rock and a change of the permeability...

  19. A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks

    E-Print Network [OSTI]

    Serajian, Vahid

    2011-10-21T23:59:59.000Z

    fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale....

  20. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used ...

  1. The Effect of Heterogeneity on Matrix Acidizing of Carbonate Rocks 

    E-Print Network [OSTI]

    Keys, Ryan S.

    2010-07-14T23:59:59.000Z

    In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore ...

  2. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-01T23:59:59.000Z

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  3. ROCK MASS CHARACTERIZATION FOR STORAGE OF NUCLEAR WASTE IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    of an in-situ jointed granite. Intl. J. Rock Mech. and Min.of Groundwaters in the Stripa Granite: Results and Pre­of water through Westerly Granite at temperatures of 100 -

  4. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  5. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  6. FREE ROCKING OF PRISMATIC BLOCKS By P. R. Lipscombe1

    E-Print Network [OSTI]

    Pellegrino, Sergio

    FREE ROCKING OF PRISMATIC BLOCKS By P. R. Lipscombe1 and S. Pellegrino2 ABSTRACT: This paper. This cycle comes to an end when the block becomes vertical and starts to rotate again about A. Because some

  7. Modeling of Seismic Signatures of Carbonate Rock Types

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  8. Mimbres rock art: a graphic legacy of cultural expression

    E-Print Network [OSTI]

    Tidemann, Kathryn

    2002-01-01T23:59:59.000Z

    Rock art abounds along the Mimbres River banks and drainage tributaries reflecting the rich cultural remains of the ancient Mimbres people. The Mimbres are a well established cultural group who lived in southwest New Mexico and northern Mexico from...

  9. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Zeolitization Of...

  10. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Abstract Quantitative X-ray diffraction analysis of about 80 rhyolite and associated...

  11. DNAPL remediation of fractured rock evaluated via numerical simulation 

    E-Print Network [OSTI]

    Pang, Ti Wee

    2010-01-01T23:59:59.000Z

    Fractured rock formations represent a valuable source of groundwater and can be highly susceptible to contamination by dense, non-aqueous phase liquids (DNAPLs). The goal of this research is to evaluate the effectiveness ...

  12. Figure 2. Stratigraphic Summary of Ages, Names and Rock Types...

    Gasoline and Diesel Fuel Update (EIA)

    2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive Reservoirs and Plays Assessed by...

  13. Drill-back studies examine fractured, heated rock

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Flexser, S.; Myer, L.R.

    1990-01-01T23:59:59.000Z

    To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences in compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.

  14. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  15. Methods developed for detecting hazardous elements in produced gas

    SciTech Connect (OSTI)

    Chao, S.; Attari, A. (Inst. of Gas Technology, Des Plaines, IL (United States))

    1995-01-16T23:59:59.000Z

    The Institute of Gas Technology, Des Plaines, Ill. has been developing sampling and analytical methods to detect in natural gas various trace constituents that may pose health, safety, or operational risks. The constituents of interest include paraffinic and aromatic hydrocarbons, H[sub 2]S, organic sulfur compounds, arsenic, mercury, radon, and others. Better sampling and analytical techniques for produced natural gas, similar to those developed by IGT for processed gas, will enhance producers and processors' abilities to monitor undesirable constituents in raw gas streams and improve their clean-up processes. The methods developed at IGT were modifications of air sampling and analytical methods that are commonly used for air toxic substances. These monitoring methods, when applied to natural gas, present special challenges because gas has a much more complex matrix than the air. Methods for the analysis of the following are discussed: arsenic, mercury, radon, sulfur compounds, hydrocarbons, and aromatics including BTEX and PAHs.

  16. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

  17. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31T23:59:59.000Z

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  18. Rock glacier monitoring with low-cost GPS

    E-Print Network [OSTI]

    moving stations on rock glacier Low-cost L1 GPS receivers (blox) Power source: solar panels Local data Rock glacier GPS antennaGPS antenna Solar panelSolar panel Box incl.Box incl. -GPS receiverData logger Instruments Solar panelSolar panel (24W, 12V, 50x50cm)(24W, 12V, 50x50cm) Costs per station: 2

  19. Reservoir rock-property calculations from thin section measurements

    E-Print Network [OSTI]

    Sneed, David Richard

    1988-01-01T23:59:59.000Z

    RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1988 Major Subject: Geology RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Approved as to style and content by: Robert R. Berg (Chair of Committee) ~ c(. Thomas T. Tieh (Member...

  20. Groundwater chemistry and water-rock interactions at Stripa

    SciTech Connect (OSTI)

    Nordstrom, D.K.; Ball, J.W. (Geological Survey, Menlo Park, CA (USA)); Donahoe, R.J. (Univ. of Alabama, Tuscaloosa (USA)); Whittemore, D. (Univ. of Kansas, Lawrence (USA))

    1989-08-01T23:59:59.000Z

    Ground waters from near surface to a depth of 1,232 m in the Stripa granite have been sampled and analyzed for major and trace constituents. The groundwater composition consists of two general types: a typical recharge water of Ca-HCO{sub 3} type (<300 m depth) and a deeper Na-Ca-Cl type (>700 m depth) of high pH (8-10) that reaches a maximum of 1,250 mg/L in total dissolved solids (TDS). Intermediate depths show mixtures of the two types that are highly fracture-dependent rather than depth-dependent. Any borehole can vary significantly and erratically in TDS for either a horizontal or vertical direction. The general transition from Ca-HCO{sub 3} type to Na-Ca-Cl type correlates with the depth profile for hydraulic conductivity that drops from 10{sup {minus}8} m/s to 10{sup {minus}11} m/s or lower. Thermomechanical stress (from heater experiments) clearly shows an effect on the groundwater composition that could be caused by changing flow paths, leakage of fluid inclusions or both. Dissolution and precipitation of calcite, fluorite and barite, aluminosilicate hydrolysis, and addition of a saline source (possibly fluid inclusion leakage) play the major roles in defining the groundwater composition. The low permeability of the Stripa granite has produced a groundwater composition that appears intermediate between the dilute, shallow ground waters typical of recharge in a crystalline rock terrain and the saline waters and brines typical of cratonic shield areas at depth.

  1. Rock Rapids Municipal Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to: navigation, searchRochester Gas

  2. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks

    SciTech Connect (OSTI)

    Mavko, G.; Nolen-Hoeksema, R. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01T23:59:59.000Z

    Seismic velocities in rocks at ultrasonic frequencies depend not only on the degree of saturation but also on the distribution of the fluid phase at various scales within the pore space. Two scales of saturation heterogeneity are important: (1) saturation differences between thin compliant pores and larger stiffer pores, and (2) differences between saturated patches and undersaturated patches at a scale much larger than any pore. The authors propose a formalism for predicting the range of velocities in partially saturated rocks that avoids assuming idealized pore shapes by using measured dry rock velocity versus pressure and dry rock porosity versus pressure. The pressure dependence contains all of the necessary information about the distribution of pore compliance for estimating effects of saturation at the finest scales where small amounts of fluid in the thinnest, most compliant parts of the pore space stiffen the rock in both compression and shear (increasing both P- and S-wave velocities) in approximately the same way that confining pressure stiffens the rock by closing the compliant pores. Large-scale saturation patches tend to increase only the high-frequency bulk modulus by amounts roughly proportional to the saturation. The pore-scale effects will be most important at laboratory and logging frequencies when pore-scale pore pressure gradients are unrelaxed. The patchy-saturation effects can persist even at seismic field frequencies if the patch sizes are sufficiently large and the diffusivities are sufficiently low for the larger-scale pressure gradients to be unrelaxed.

  3. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    SciTech Connect (OSTI)

    Dutrow, Barbara

    2008-08-13T23:59:59.000Z

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and to quantify the importance of feedback in complex fluid-rock systems and its affects on time and space scales and rates of reaction. We have made significant contributions toward understanding feedback and its impacts by numerical experimentation using 3D computational modeling of fluid-rock systems and by chemical and textural analyses of fluid-infiltrated rocks.

  4. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  5. Fra Mauro Formation,Apollo 14: 11. ^ ~ r -^ ~ rAges of Apollo 14 Rocks F. J. stadennannl, E. Heusser and E. K. Jessbergcr; Max Planck Institut fur Kemphysik, D-6900

    E-Print Network [OSTI]

    Fra Mauro Formation,Apollo 14: 11. ^ ~ r - ^ ~ rAges of Apollo 14 Rocks F. J. stadennannl, E As a contribution to the Cone-Crater-Consortium^Ar-^Ar ages of 21 Apollo-14 samples were determined. Among to 4.11 Ga. The ^Ar-^Ar age of 4.09 Ga is the highest so far found in the Apollo-14 rock

  6. International Journal of Rock Mechanics & Mining Sciences 38 (2001) 9951027 Bayesian estimation of rock mass boundary conditions with

    E-Print Network [OSTI]

    Pan, Ernie

    of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 of the Underground Research Laboratory (URL) of the Atomic Energy of Canada Limited (AECL), Canada. The procedure

  7. USING GEOPHYSICAL METHODS TO IMAGE THE INTERNAL STRUCTURE OF MINE WASTE ROCK PILES

    E-Print Network [OSTI]

    Aubertin, Michel

    USING GEOPHYSICAL METHODS TO IMAGE THE INTERNAL STRUCTURE OF MINE WASTE ROCK PILES Campos, D.1-Noranda, Canada (bruno.bussiere@uqat.uquebec.ca) INTRODUCTION Mine waste rock piles, or rockwaste dumps rock piles. One of the most critical of these is water flow and water distribution in the waste rock

  8. SPE 159255-PP Rock Classification from Conventional Well Logs in Hydrocarbon-Bearing

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    typing method for application in hydrocarbon-bearing shale (specifically source rock) reservoirs using conventional well logs and core data. Source rock reservoirs are known to be highly heterogeneous and often, petrophysical description of source rock reservoirs with well logs has been focused to quantifying rock

  9. 1. INTRODUCTION There are breaks or cracks in every rock mass

    E-Print Network [OSTI]

    Maerz, Norbert H.

    [2]. Discontinuity influences all the engineering properties and behavior of rock [3]. When dealing with discontinuous rock masses, the properties of the discontinuities become a prime importance since that determines. The presence of discontinuities also affects rock properties such as the strength of the rock and the hydraulic

  10. Dynamic measurements of the nonlinear elastic parameter A in rock under varying conditions

    E-Print Network [OSTI]

    saturation. INDEX TERMS: 5102 Physical Properties of Rocks: Acoustic properties; 5112 Physical Properties of Rocks: Microstructure; 5199 Physical Properties of Rocks: General or miscellaneous; 9810 GeneralDynamic measurements of the nonlinear elastic parameter A in rock under varying conditions Paul A

  11. Paleomagnetism of Igenous Rocks from Shatsky Rise

    E-Print Network [OSTI]

    Pueringer, Margaret

    2013-04-24T23:59:59.000Z

    rapid decline in magnetic intensity after moderate temperature steps behavior, a linear decline in magnetic intensity behavior, and some samples displayed a small segment of self-reversal at 300°-350°. Using the Cox and Gordon (1984) method Sites U1346...

  12. Wettability evaluation of a carbonate reservoir rock from core to pore level

    SciTech Connect (OSTI)

    Al-Yousef, H.Y.; Lichaa, P.M.; Al-Kaabi, A.U.; Alpustun, H.

    1995-10-01T23:59:59.000Z

    Wettability evaluation was performed during stags of as received, cleaned, and restored states on core samples form a Saudi Arabian carbonate reservoir. The wettability behavior from the chemistry of brine-oil-carbonate rock interaction was found to be neutral to slightly oil-wet. The pore-size distribution obtained from mercury injection data indicated that about 15--20 percent of the pore volume is not accessible to asphaltene particles in the crude oil. Therefore a mixed-wettability state can exist. These results were confirmed by the evaluation of the wettability of the cores using USBM and Amott techniques. The wettability at the pore level was studied using Cryo-Scanning Electron Microscopy. Rock samples were examined at irreducible water and residual oil saturations during cleaned and restored states. At irreducible water saturation, both oil and brine were present in the intergranular macroporosity and intragranular macropores and micropores. At residual oil saturation,oil was found in the form of isolated globules in the cleaned case. After aging, the oil is more loosely distributed in the porosity and generally contacts the pore walls. This indicates an evolution toward oil wetness with aging. These results are in agreement with the changes of wettability indices obtained using USBM technique.

  13. Microcracks, residual strain, velocity, and elastic properties of igneous rocks from a geothermal test-hole at Fenton Hill, New Mexico

    E-Print Network [OSTI]

    Ciampa, John David

    1980-01-01T23:59:59.000Z

    - Comparison of Young's modulus determined by . static and dynamic methods for two cores from sample 2714. 2 Figure 42 - Comparison of Poisson's ratio determined by static and dynamic methods for two cores from sample 2714. 2 95 xiv Page Figure 41... cracked rock. Young's modulus and Poisson's ratio were investigated by static and dynamic methods. These values increase with confining pressure. In addition, the static values increase with the differential-stress level. These results are also a...

  14. Chemical and petrological characteristics of the intrusive rocks of the Quitman Mountains, Texas 

    E-Print Network [OSTI]

    Seay, Christopher Sidney

    1973-01-01T23:59:59.000Z

    differentiated rock types from the diorite (1) to the last emplaced granite (9). 42 7. Calcium concentration and fluorine concentration vs. the various differentiated rock types from the diorite (1) to the last emplaced granite (9) 8. Ca percentage plotted... concentration for the various rock types from the diorite (1) to the final granite (9). . . . . . . ~ 53 13. Rb/Sr ratios for the intrusive rock types 56 14. Uranium concentrations for the intrusive rock types for the initially emplaced diorite (1...

  15. MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK

    SciTech Connect (OSTI)

    M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

    2006-02-27T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

  16. Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir

    E-Print Network [OSTI]

    Santiago Molina, Cesar Alfonso

    1991-01-01T23:59:59.000Z

    the possibility of replacing average reservoir pressures for short-term pressure data to evaluate gas reserves. Petrophysical properties derived from logs (shale content and porosity) were found to correlate very well. A correlation between average porosity..., Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties...

  17. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  18. IDENTIFICATION Your Sample Box

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    to Virginia Tech Soil Testing Lab, 145 Smyth Hall (MC 0465), 185 Ag Quad Ln, Blacksburg VA 24061, in sturdy, K, Ca, Mg, Zn, Mn, Cu, Fe, B, and soluble salts) NoCharge $16.00 Organic Matter $4.00 $6.00 Fax with soil sample and form; make check or money order payable to "Treasurer, Virginia Tech." COST PER SAMPLE

  19. Sampling system and method

    DOE Patents [OSTI]

    Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

    2013-04-16T23:59:59.000Z

    The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

  20. Rehabilitation Services Sample Occupations

    E-Print Network [OSTI]

    Ronquist, Fredrik

    /Industries Correction Agencies Drug Treatment Centers Addiction Counselor Advocacy Occupations Art Therapist BehavioralRehabilitation Services Sample Occupations Sample Work Settings Child & Day Care Centers Clinics................................ IIB 29-1000 E4 Careers in Counseling and Human Services .........IIB 21-1010 C7 Careers in Health Care