National Library of Energy BETA

Sample records for gas rigs drilling

  1. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  2. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOE Patents [OSTI]

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  3. Odessa fabricator builds rig specifically for geothermal drilling

    Broader source: Energy.gov [DOE]

    For 35 years, MD Cowan has built drilling rigs, developing a market for its Super Single® rig for use in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy.

  4. Jack-up rig for marine drilling

    SciTech Connect (OSTI)

    Mueller, S. R.

    1981-05-26

    This invention relates to a mobile drilling platform of the jack -up type equipped with a special system which allows the said drilling platform to work as a drilling derrick and alternatively as a hoisting crane rig for marine service.

  5. Rig scarcity prompts innovative drilling solution

    SciTech Connect (OSTI)

    Lattimore, G.M.; Gott, T.; Feagin, J.

    1997-11-01

    Unable to locate a shallow-water offshore rig for its program in Indonesia, British Gas International developed an innovative pad/ballasted barge configuration to utilize a land rig, which was available. Many non-typical problems were encountered and solved to establish the drilling location 600 m (2,000 ft) from the shore in Bintuni Bay in Irian Jaya, eastern Indonesia. The final hybrid configuration has sparked interesting debate as to whether the operation should be designated as onshore or offshore. The paper discusses the project overview, concept development, construction, and operations.

  6. New wave drilling rigs offer automation, ergonomics and economy

    SciTech Connect (OSTI)

    Von Flatern, R.

    1996-05-01

    The drilling industry is being pressured to do its job not just faster and cheaper, but also safer and cleaner. The latest land and offshore platform drilling rig designs incorporate modularization, mechanization, computers and environmental protection in an attempt to meet those demands. This paper reviews the technology of these new designs and how they can operate to ensure safety and environmental protection for lower costs.

  7. Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator

    Energy Savers [EERE]

    Injury at the Fermi National Accelerator Laboratory, August 2001 | Department of Energy June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 August 8, 2001 On June 21, 2001, at approximately 9:40 A.M., a construction sub-tier contractor employee (the "Operator") at the Fermi National Accelerator

  8. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 24, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect ...

  9. Los Alamos computer simulation improves offshore drill rig safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 1, 2015 A simulation of vortex induced motion shows how ocean currents affect offshore oil rigs. A simulation of vortex induced motion shows how ocean currents affect offshore ...

  10. Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms

    SciTech Connect (OSTI)

    Dougherty, L.F., Westinghouse Hanford

    1996-09-10

    The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig`s percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized.

  11. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  12. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    SciTech Connect (OSTI)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

  13. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  14. Columbia Gas preserves wetlands with directional drilling

    SciTech Connect (OSTI)

    Luginbuhl, K.K.; Gartman, D.K.

    1995-10-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future.

  15. Drilling Productivity Report

    Reports and Publications (EIA)

    2016-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  16. Oil and Gas Well Drilling | Open Energy Information

    Open Energy Info (EERE)

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  17. Costs of Crude Oil and Natural Gas Wells Drilled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

  18. Crude Oil and Natural Gas Drilling Activity

    Gasoline and Diesel Fuel Update (EIA)

    Drilling Activity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Oct-14 Nov-14 Dec-14...

  19. CONTENTS Preliminary Results of China's Third Gas Hydrate Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Results of China's Third Gas Hydrate Drilling Expedition: A Critical Step From Discovery to Development in the South China Sea ............................1 Gas Hydrate Occurrences in the Black Sea - New Observations from the German SUGAR Project ...............................................6 Methane Hydrate Dynamics on the Northern US Atlantic Margin ............................................ 10 Gas Hydrate, Carbonate Crusts, and Chemosynthetic Organisms on A Vestnesa Ridge

  20. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  1. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  2. Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling

    Broader source: Energy.gov [DOE]

    A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energy’s National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

  3. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  5. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Gasoline and Diesel Fuel Update (EIA)

    Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  6. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  7. Crude Oil and Natural Gas Drilling Activity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,872 1,824 1,629 1,296 1,066 1973-2015 Offshore 58 53 59 53 52 43 1973-2015 By Type Crude Oil 1,596 1,573 1,539 1,362 1,050 857 1973-2015 Natural Gas 328 351 342 320 296 250...

  8. Rotary blasthole drilling update

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  9. Small drill-hole, gas mini-permeameter probe

    DOE Patents [OSTI]

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-01-01

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  10. Small drill-hole, gas mini-permeameter probe

    DOE Patents [OSTI]

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-12-03

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  11. Type A Accident Investigation of the June 21, 2001, Drilling...

    Broader source: Energy.gov (indexed) [DOE]

    struck by part of the drilling rig (a "tong") that he was operating. PDF icon Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi ...

  12. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

  13. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2...

  14. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

  17. U.S. Footage Drilled for Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect (OSTI)

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  19. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

  20. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

  1. U.S. oil production forecast update reflects lower rig count

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in ...

  2. Chapter 10 - RIGGING HARDWARE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 6 DOERL-92-36, Hanford Site Hoisting and Rigging Manual Chapter 10.0 - RIGGING HARDWARE March 21, 2013 Rev 1 Page 2 This page left...

  3. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect (OSTI)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

  4. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  5. Tax credits stimulate gas drilling without decreasing federal tax revenue: A win-win situation

    SciTech Connect (OSTI)

    Cline, S.B.

    1995-12-31

    The long-term U.S. natural gas resource base (1300 + TCF) exists. The challenge is the timely conversion of that resource base to proved, deliverable reserves. Tax credits stimulate the transfer of the natural gas resource base to deliverable proved reserves by effective price enhancement and through the discovery, application, and dissemination of technology. Tax incentives act as net price increases to gas producers as long as all companies have roughly the same tax rate and all are able to utilize the credit. Tax incentives can thus be merged with gas price for statistical purposes. This paper demonstrates how the existence of the 29 credits stimulated drilling, increased relatively clean burning gas reserves, resulted in new technological advances and possibly increased federal tax receipts with no upward pressure on gas prices. New tax-stimulus mechanisms are introduced that will help ensure that tax credits both stimulate drilling and increase tax revenue.

  6. OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS

    SciTech Connect (OSTI)

    Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

    2004-05-01

    A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

  7. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    SciTech Connect (OSTI)

    Jones, E.; Latham, T.; McConnell, D.; Frye, M.; Hunt, J.; Shedd, W.; Shelander, D.; Boswell, R.M.; Rose, K.K.; Ruppel, C.; Hutchinson, D.; Collett, T.; Dugan, B.; Wood, W.

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate. Copyright 2008, Offshore Technology Conference

  8. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  9. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  10. Hoisting and Rigging

    Energy Savers [EERE]

    7 August 2007 Change Notice No. 1 December 2007 Superseding DOE-STD-1090-2004 June 2004 DOE STANDARD HOISTING AND RIGGING

  11. Hoisting & Rigging Assessment Form

    Broader source: Energy.gov [DOE]

      Assess the institutional and department/division hoisting and rigging (including forklift, overhead cranes small hoists, and mobile cranes) requirements, policies, procedures, and work practices...

  12. Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir

    SciTech Connect (OSTI)

    1997-06-01

    The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

  13. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  14. Somebody better find some rigs

    SciTech Connect (OSTI)

    1997-08-01

    The paper discusses the outlook for the gas and oil industries of the Middle East. Field development projects abound, as the larger exporting nations pursue ambitious policies of production expansion. However, their plans may be hampered by the growing worldwide shortage of rigs. Separate evaluations are given for Saudi Arabia, Kuwait, Neutral Zone, Abu Dhabi, Iran, Iraq, Qatar, Yemen, Syria, Dubai, Turkey, Sharjah, and briefly for Bahrain, Israel, Jordan, UAE-Ajman, and UAE-Ras al-Khaimah.

  15. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect (OSTI)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  16. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  17. Hoisting and Rigging

    Energy Savers [EERE]

    13-i CHAPTER 13 LOAD HOOKS This chapter provides safety standards for the inspection, testing, and maintenance of load hooks installed on cranes or hoists and implements the requirements of ASME B30.10, Chapter 10-1, "Hooks." See Chapter 12, "Rigging Accessories," for rigging hook requirements (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). 13.1 GENERAL

  18. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  19. U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per

    Gasoline and Diesel Fuel Update (EIA)

    Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,412 1950's 3,766 3,837 4,015 4,373 4,365 4,339 4,734 4,950 4,801 5,120 1960's 5,321 5,145 5,186 5,198 5,171 5,337 5,474 5,629 5,716 5,531 1970's 5,644 5,670 5,259 5,286 5,173 5,238 4,960 5,053 5,066 5,082 1980's 5,093 5,149 5,453 5,187 5,158 5,193 5,080 5,112 5,155 5,038 1990's

  20. U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,682 1950's 5,466 5,497 6,071 5,654 6,059 5,964 6,301 6,898 6,657 6,613 1960's 6,298 6,457 6,728 6,370 7,547 7,295 8,321 7,478 7,697 8,092 1970's 7,695 7,649 7,400 6,596 6,456 6,748 6,777 6,625 6,662 6,630 1980's 6,604 6,772 6,921 6,395 6,502 6,787 6,777 6,698 6,683 6,606 1990's 7,100 7,122 6,907 6,482 6,564

  1. Coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  2. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect (OSTI)

    Scott Reome; Dan Davies

    2004-01-01

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program initiated this quarter, provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principle activity during this first reporting period were preparing for and conducting a project kick-off meeting, working through plans for the project implementation, and beginning the conceptual design of the test section.

  3. Field Testing of Environmentally Friendly Drilling System

    SciTech Connect (OSTI)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    since January 2001 when offshore rigs last peaked at 181. Meanwhile, the number of land-based rigs more than offset the offshore drilling declines in 2003, increasing by 271...

  5. Hoisting and Rigging

    Energy Savers [EERE]

    1-i CHAPTER 11 WIRE ROPE AND SLINGS This chapter provides requirements for the fabrication and use of wire rope and slings used in hoisting and rigging and implements the requirements of ASME B30.9, Slings (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). . 11.1 GENERAL ...............................................................................................................................11-1 11.2 WIRE ROPE

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the same time. According to the latest report, the number of rigs drilling in the Gulf of Mexico during the week was 69, the lowest number since the 68 rigs drilling in mid-1993....

  7. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: define a rational approach for inhibitor design, using the most probable molecular mechanism; improve the performance of inhibitors; test inhibitors on Colorado School of Mines apparatuses and the Exxon flow loop; and promote sharing field and flow loop results. This report presents the results of the progress on these four goals.

  8. Simultaneous wireline operations from a floating rig with a subsea lubricator

    SciTech Connect (OSTI)

    Hopper, C.T. )

    1990-08-01

    In 1987, and extensive wireline program was completed on two subsea wells in the highlander field in the central North Sea with a subsea lubricator deployed from a drilling rig that was drilling and working over adjacent wells. This paper reports how working on two wells concurrently is a way to reduce the operating costs of a subsea development significantly.

  9. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    despite reductions in overall rig counts compared with this time last year, likely in part because of greater efficiencies in the drilling process and the large initial...

  10. Hoisting and Rigging

    Energy Savers [EERE]

    4 BELOW-THE-HOOK LIFTING DEVICES 14-i This chapter provides the requirements for below-the-hook lifting devices used in hoisting and rigging, such as spreader bars, lifting yokes, and lift fixtures. This section implements the requirements of ASME B30.20, "Below-the-Hook Lifting Devices" (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). NOTE: Special lifting devices for shipping containers weighing 10,000 lb or more that are used for radioactive materials

  11. Los Alamos Drills to Record-breaking Depths

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of a chromium remediation project.

  12. Subsea BOP stack built for Caspian drilling

    SciTech Connect (OSTI)

    Not Available

    1991-12-16

    This paper reports that Shaffer Inc. completed construction of a multi-million dollar subsea drilling system for Caspmorneftegas, an operating company in the Republic of Azerbaijan. The subsea stack will be installed on the semisubmersible drilling rig Shelf 7 currently under construction in Astrakan in the Soviet Union. Shelf 7 will drill wells in the Caspian Sea, one of the most prolific production areas in the Soviet Union.

  13. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993

    SciTech Connect (OSTI)

    1993-12-31

    Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.

  14. Rig Efficiency Paper

    U.S. Energy Information Administration (EIA) Indexed Site

    Author: John Cochener, john.cochener@eia.doe.gov, (202) 586-9882 Disclaimer: Views not necessarily those of the U.S. Energy Information Administration Quantifying Drilling Efficiency John Cochener Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Initial Release: June 28, 2010 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the author and not necessarily those of the U. S. Energy

  15. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Collett, T.S.; Riedel, M.; Cochran, J.R.; Boswell, R.M.; Kumar, Pushpendra; Sathe, A.V.

    2008-07-01

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  16. Empirical test of the effects of Internal Revenue Code Section 465 on risk-taking by investors in oil and gas drilling programs

    SciTech Connect (OSTI)

    Christian, C.W.

    1985-01-01

    Taxation affects the cash flows generated by financial investments, and, under some conditions, it also affects the degree of risk investors are willing to bear. This study investigates the effects of the Internal Revenue Code Section 465 on risk-taking by financial investors in oil and gas drilling programs. Section 465 added new rules limiting loss deductions from certain activities, explicitly including oil and gas drilling. Prior research reached varying conclusions analytically, but most research concurs that investor risk-taking is reduced when a tax structure reduces loss-offsetting, i.e., reduces the deductibility of investment losses against other income. Section 465 does that under certain circumstances, so it presents an opportunity to empirically reexamine the question. This study presents null hypotheses that state that the percentage of limited-partner investment in drilling programs with different drilling objectives and deal term structures (and different levels of risk) was unchanged between the time periods before and after the enactment of Section 465. The study concludes that the loss deduction limitations of I.R.C. Section 465 did play a role in the reduction of risk-taking by limited partners in oil and gas drilling programs.

  17. Relating horsepower to drilling productivity

    SciTech Connect (OSTI)

    Givens, R.; Williams, G.; Wingfield, B.

    1996-12-31

    Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    since January 2001 when offshore rigs last peaked at 181. Meanwhile, the number of land-based rigs more than offset the offshore drilling declines in 2003, increasing by 271...

  19. A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)

    SciTech Connect (OSTI)

    Bart Patton

    2007-09-30

    This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

  20. PNNL Hoisting and Rigging Manual

    SciTech Connect (OSTI)

    Haynie, Todd O.; Fullmer, Michael W.

    2008-12-29

    This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

  1. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.

  2. Hoisting and rigging manual: Uncontrolled document

    SciTech Connect (OSTI)

    1991-05-01

    This document is a draft copy of a Hoisting and Rigging Manual for the Department of Energy. The manual is divided into ten chapters. The chapter titles follow: terminology and definitions; operator training and qualification; overhead and gantry cranes; mobile cranes; forklift trucks; hoists; hooks; wire rope, slings, and rigging accessories; construction hoisting and rigging equipment requirements; references.

  3. Independent Statistics & Analysis Drilling Productivity Report

    Gasoline and Diesel Fuel Update (EIA)

    with +- signs and color-coded arrows to highlight the growth or decline in oil (brown) or natural gas (blue). New-well oilgas production per rig Charts present historical...

  4. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  5. Hoisting & Rigging Lift Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoisting & Rigging Lift Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 1 of 3 General Information Lift Plan Document # Plan prepared by: Describe the load or items to be lifted: Could the load, if dropped, release hazardous materials or radioactivity? No Yes (describe) Is the load irreplaceable or would it be very costly to replace if damaged? No Yes (describe) Brief description of lift activities (specify if rolling or flipping involved) Equipment

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    despite reductions in overall rig counts compared with this time last year, likely in part because of greater efficiencies in the drilling process and the large initial...

  7. Fundamental Research on Percussion Drilling: Improved rock mechanics

    Office of Scientific and Technical Information (OSTI)

    full-scale laboratory investigations Michael S. Bruno 58 GEOSCIENCES; 02 PETROLEUM; 03 NATURAL GAS; ROCK DRILLING; PRESSURE DEPENDENCE; ROCK MECHANICS; ROTARY DRILLING; WELL...

  8. The Iea'S Role In Advanced Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production...

  9. Batch drilling program cuts time, costs for Liuhua development

    SciTech Connect (OSTI)

    Gray, G.E.; Hall, K.H.; Mu, H.C.

    1996-08-12

    The efficiency of batch drilling operations and the appropriate use of technology, teamwork, and thorough planning helped cut several days off the time to drill each of 10 subsea wells for the Liuhua 11-1 development project in the South China Sea. The overall development program calls for drilling and completing 20 subsea horizontal wells. The rig-of-opportunity phase was the initial phase of this development and used a contract rig to establish the subsea wellhead array and initiate drilling of the development wells. The wellhead array was the first critical step. It was the foundation for the building block construction process used to create Liuhua`s subsea production system on the seabed. The paper discusses conductor operations, batch drilling operations, surface hole section, intermediate and production hole sections, the ten wells, application of technology, and overall results.

  10. Hoisting and Rigging Technical Advisory Committee | Department...

    Energy Savers [EERE]

    of hoisting and rigging safety-related issues; or 3.7.3 Research available literature and develop recommended solutions for DOE unique situations where little or no...

  11. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect (OSTI)

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  12. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.

  13. DOE Hoisting and Rigging Technical Advisory Committee - Membership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hoisting and Rigging Technical Advisory Committee - Membership Roster DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster April 7, 2016 This is the membership ...

  14. HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility...

    Energy Savers [EERE]

    HOISTING & RIGGING Assessment Plan--NNSANevada Site Office Facility Representative Division HOISTING & RIGGING Assessment Plan--NNSANevada Site Office Facility Representative...

  15. New generation Arctic Drilling System: Overview of first year's performance

    SciTech Connect (OSTI)

    Loh, J.K.S.; Cusack, K.P.; Stamberg, J.C.

    1984-05-01

    This paper is a follow-up to OTC 4481: - Kulluk - An Arctic Exploratory Drilling Unit, presented at the 1983 OTC. A comparison between the original design basis of the rig and the first year's operational results is presented. The items compared are the towing performance, mooring system performance, the hull structure, and the drilling system. The towing and mooring system comparisons cover both open water and ice conditions. Ice management by icebreakers and logistics problems are reviewed.

  16. Roster-DOE Hoisting & Rigging Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roster-DOE Hoisting & Rigging Committee Date: April 7, 2016 NAME ORGANIZATION E-MAIL PHONE McCabe, Larry DOE-HQ Larry.McCabe@hq.doe.gov (301) 903-6732 Aponte, Xavier NNSA, Nevada ...

  17. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    kept up significant downward pressure on both cash and futures prices. Lower prices may eventually lead to fewer rigs exploring for gas, thereby stemming the growth in production....

  18. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  19. DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting and Rigging Manual)

    Energy Savers [EERE]

    5 CONSTRUCTION HOISTING AND RIGGING EQUIPMENT REQUIREMENTS 15-i This chapter outlines the requirements for the safe use of hoisting and rigging equipment on construction projects at DOE installations. 15.1 GENERAL ...............................................................................................................................15-1 15.2 PERSONNEL QUALIFICATIONS.........................................................................................15-2 15.2.1 Qualified Operators of

  20. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  1. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  2. Subterranean drilling and in situ treatment of wastes using a contamination control system and methods relating thereto

    DOE Patents [OSTI]

    Jessmore, James J.; Loomis, Guy G.; Pettet, Mark C.; Flyckt, Melissa C.

    2004-09-28

    Systems and methods relating to subterranean drilling while maintaining containment of any contaminants released during the drilling. A thrust block installed over a zone of interest provides an overflow space for retaining any contaminants and excess sealant returns. Negative air pressure may be maintained in the overflow space by a ventilation system. Access ports in the thrust block seal the overflow space from the surrounding environment with a membrane seal. A flexible sack seal in the access port may be connected to a drill shroud prior to drilling, providing containment during drilling after the drill bit penetrates the membrane seal. The drill shroud may be adapted to any industry standard drilling rig and includes a connection conduit for connecting to the flexible sack seal and a flexible enclosure surrounding the drill shaft and of a length to accommodate full extension thereof. Upon withdrawal, the sack seal may be closed off and separated, maintaining containment of the overflow space and the drill shroud.

  3. Proper bit selection improves ROP in coiled tubing drilling

    SciTech Connect (OSTI)

    King, W.W. )

    1994-04-18

    Using the correct type of bit can improve the rate of penetration (ROP) and therefore the economics of coiled tubing drilling operations. Key factors, based on studies of the coiled tubing jobs to date, are that the drilling system must be analyzed as a whole system and that both the drill bit type and the formation compressive strength are critical components in this analysis. Once a candidate job has been qualified technically for drilling with coiled tubing, the job will have to be justified economically compared to conventional drilling. A key part of the economic analysis is predicting the ROP in each formation to be drilled to establish a drilling time curve. This prediction should be based on the key components of the system, including the following: hydraulics, motor capabilities, weight on bit (WOB), rock compressive strength, and bit type. This analysis should not base expected ROPs and offset wells drilled with conventional rigs and equipment. Furthermore, a small-diameter bit should not be selected simply by using the International Association of Drilling Contractor (IADC) codes of large-diameter bits used in offset wells. Coiled tubing drilling is described, then key factors in the selection are discussed.

  4. The Future of U.S. Natural Gas: Supply, Demand & Infrastructure Developments

    Broader source: Energy.gov [DOE]

    This analysis forecasts natural gas supply, demand, and infrastructure developments through 2030 using an inventory and cell model. After introduction of methodology and market approach, the analysis describes expectations of production and supply and demand. This includes how production shifts in North America have shifted Midstream needs, trends in drilling that are leading to more wells with fewer rigs, and processing capacity considerations. Finally, the analysis describing the regionally driven infrastructure requirements and the impact on natural gas price forecasts and regional basis and volatility is presented.

  5. Hoisting and Rigging Technical Advisory Committee | Department of Energy

    Energy Savers [EERE]

    Hoisting and Rigging Technical Advisory Committee Hoisting and Rigging Technical Advisory Committee 1.0 PURPOSE This charter describes the function and role of the Department of Energy (DOE) Hoisting and Rigging Technical Advisory Committee (HRTAC). The HRTAC serves as an advisory body to the Office of Health, Safety and Security (EHSS) by providing support to their policy efforts aimed at ensuring the safe performance of hoisting and rigging activities at DOE facilities and in the review and

  6. DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hoisting and Rigging Technical Advisory Committee - Membership Roster DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster April 7, 2016 This is the membership roster of the DOE Hoisting and Rigging Technical Advisory Committee. PDF icon DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster More Documents & Publications Construction Safety Advisory Committee - Membership Roster FTCP Members Fire Safety Committee Membership

  7. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  8. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  9. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  10. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.

    1995-05-01

    The use of coiled tubing (CT) to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefits of being able to drill at balance, safely and in a controlled manner, with nitrogen to reduce downhole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing formation damage. This paper describes such a horizontal re-entry drilled in the shallow depleted waterflooded reservoir Barenburg in northern Germany. The scope of work for this project included (1) cutting windows through 6 5/8- and 9 5/8-in. casing, (2) drilling a 5 7/8-in.-medium-radius curve, (3) running a 5-in. liner and a 5 1/2-in. parasitic string for nitrogen injection, (4) drilling a 4 3/8-in. horizontal with nitrogen to maintain a balanced condition, (5) running openhole logs, and (6) running 3 1/2-in. slotted liner. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the CT injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting pipe and downhole tools was placed on the substructure. The development of a surface-controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8-in. CT. This program represents a significant extension of the capabilities of drilling with CT.

  11. Sidetracking technology for coiled tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  12. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  13. Investigation of the feasibility of deep microborehole drilling

    SciTech Connect (OSTI)

    Dreesen, D.S.; Cohen, J.H.

    1997-01-01

    Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

  14. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect (OSTI)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  15. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    SciTech Connect (OSTI)

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  16. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992

    SciTech Connect (OSTI)

    1992-12-31

    Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

  17. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.217 per MMBtu on Wednesday. The natural gas rotary rig...

  18. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.315 per MMBtu on Wednesday. The natural gas rotary rig...

  19. Optimizing drilling performance using a selected drilling fluid

    DOE Patents [OSTI]

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  20. Property:EnvReviewDrilling | Open Energy Information

    Open Energy Info (EERE)

    undergoing projects in California. California Department of Conservation, Division of Oil, Gas, and Geothermal Resources will be the lead agency for exploration and drilling...

  1. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  2. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  3. International Oil and Gas Exploration and Development

    Reports and Publications (EIA)

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  4. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  5. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  6. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect (OSTI)

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  7. Potter Drilling | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94063 Product: Potter Drilling was founded in 2004 to develop and commercialize novel drilling technology. References: Potter Drilling1 This article is a stub. You can...

  8. Well drilling apparatus and method

    DOE Patents [OSTI]

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  9. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  10. Evolution of coiled tubing drilling technology accelerates

    SciTech Connect (OSTI)

    Simmons, J.; Adam, B.

    1993-09-01

    This paper reviews the status of coiled tubing technology in oil and gas drilling operations. The paper starts with a description of current coiled tubing technology and provides a cost comparison between conventional and coiled tubing drilling. The results show that offshore operations are already competitive while onshore operations will still lag behind conventional drilling methods. A list of known coiled tubing drilling operations is provided which gives the current borehole diameters and depths associated with this technology. The paper then goes on to provide the advantages and disadvantages of the technology. The advantages include improved well control, a continuous drillstring, reduced mobilization costs, simplified logging and measurement-while drilling measurements, and less tripping required. The disadvantages include high friction with the borehole wall, downhole motors required, limited drillhole size, and fatigued or damaged sections of the tubing cannot be removed. Finally, a review of the reliability of this technology is provided.

  11. U.S. Energy Information Administration (EIA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outlook Drilling Total North Dakota Texas Colorado Baker Hughes oil and natural gas drilling rig counts Total U.S. proved associated-dissolved natural gas reserves 2000 -...

  12. Hydromechanical drilling device

    DOE Patents [OSTI]

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  13. HydroPulse Drilling

    SciTech Connect (OSTI)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  14. Exploration Drilling and Technology Demonstration At Fort Bliss

    SciTech Connect (OSTI)

    Barker, Ben; Moore, Joe; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before the well was cased.

  15. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  16. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect (OSTI)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  17. DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 June 2004 Superseding DOE-STD-1090-01 April 2001 DOE STANDARD HOISTING AND RIGGING (Formerly Hoisting and Rigging Manual)

  18. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

  19. Ignitability testing for core drilling system. Final report

    SciTech Connect (OSTI)

    Cashdollar, K.L.; Furno, A.; Green, G.M.; Thomas, R.A.; Witwer, K.S.

    1995-06-15

    As part of a study of the hazards of the inspection of nuclear waste material stored at the Hanford, WA site, the Department of Energy (DOE) and Westinghouse Hanford Company (WHC) have developed a core drilling system to sample the material in large waste storage tanks. In support of this work, the US Bureau of Mines has studied the probability of ignition while core drilling into simulated salt cake that was permeated with a flammable gas mixture. No ignitions were observed while core drilling into the saltcake with or without a purge gas and no ignitions were observed while drilling into a steel plate.

  20. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  1. Where is the coiled tubing wave headed. [The increased use of coiled tube drilling equipment in the oil and gas industry

    SciTech Connect (OSTI)

    Newman, K. )

    1994-09-01

    In the late 1980s, the coiled tubing (CT) service market began a wave of growth and expansion unparalleled by other oil field services. In 1989, market growth was so rapid it was referred to as a ''CT revolution.'' The trend has continued through the early 1990s with annual growth rates of 20%--30%, while other oil field service markets have been stagnant or even shrinking. With the recent advent of open-hole CT drilling (CTD) and CT completions (CTC), the wave's momentum is increasing with no end in sight. Advances in CT manufacturing, fatigue prediction, larger-diameter tubing, CT logging and other CT equipment made in the late 1980s improved the reliability and effectiveness of CT services, triggering this wave of activity. The status of this technology is discussed along with the performance and reliability of coiled tubing drills.

  2. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  3. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, James A. (Idaho Falls, ID)

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  4. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  5. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    rig count suggests the development of unconventional shale gas plays remains stable. On a State level, Texas and Louisiana recorded the largest weekly declines in their combined,...

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    kept up significant downward pressure on both cash and futures prices. Lower prices may eventually lead to fewer rigs exploring for gas, thereby stemming the growth in production....

  7. Hoisting and Rigging Technical Advisory Committee, Meeting Minutes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the DOE-STD-1090-2011, "Hoisting and Rigging." Change ASME PALD in the manual. Mr. ... on DOE-STD-1090: DOE-STD-1090 references ASME NQA-1, 'Quality Assurance Program ...

  8. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect (OSTI)

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  9. Guiding drilling operations

    SciTech Connect (OSTI)

    Not Available

    1985-06-01

    Artificial intelligence (AI) was the overriding theme at this year's Offshore Technology Conference (OTC) exhibition and conference, with the emphasis more on drilling rather than production methods. A wide range of electronic aids to improve accuracy and speed in drilling operations - from calculators to computers - is described.

  10. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect (OSTI)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  11. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  12. Drill drive mechanism

    DOE Patents [OSTI]

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  13. Corrosion-resistant alloy products for oil and gas industries by the HIP clad process

    SciTech Connect (OSTI)

    Bishop, M.

    1984-10-01

    Sour gas wells, which have extremely corrosive environments, are occurring more and more frequently as oil companies are forced to drill deeper wells to find new reserves. This places a premium on tubular goods and wellhead components that can withstand the hydrogen sulfide (H/sub 2/S), brine, and sulphur found in sour gas. The oil industry is currently injecting water or oil-base inhibitors into the bottom of the wells to prevent corrosion of the tubulars and wellhead components. The inhibitor coats the steel, as it flows upward with the oil or gas, protecting it from corrosion. Unfortunately, it is often uneconomical to transport inhibitors to offshore rigs, and high temperature wells can cause the inhibitors to break down and render them useless. Because of these problems, products made from corrosion-resistant alloys are being developed and tested. One of the most important developments in this area is the use of cladding.

  14. Method for laser drilling subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  15. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect (OSTI)

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  16. Petroleum Development Oman gas exploration unlocks major new reserves

    SciTech Connect (OSTI)

    Wood, A.; Mozetic, A.

    1995-08-01

    Since 1985, Petroleum Development Oman (PDO) has been exploring for gas on behalf of the Government of Oman under a ten-year agreement signed in June 1984. The aim of the one-rig programme was to find additional non-associated gas reserves (3 TCF) to meet domestic energy requirements for a minimum of 40 years, for which the available reserves at that time (5.6 TCF) were insufficient. Initial results of the campaign, which principally targeted the Permian Khuff Formation, were disappointing, analogues to the major accumulations of the Arabian Gulf failing to materialise. During the second half of the programme, therefore, the strategy was revised to address the prospectivity of higher risk/higher reward plays recognised at greater depths. Well Saih Nihayda-24, drilled in 1989, found gas/condensate-bearing reservoirs in Cambro/Ordovician sandstones of the Andam Formation below 4000 metres. This discovery, in a seismically poorly defined anticline, sparked an intensive effort of 2D, and later 3D, long cable seismic acquisition. This led in 1991 to additional major gas/condensate finds in Saih Rawl and Barik, and a dedicated two-year two-rig appraisal campaign has since proven up sufficient reserves to support an LNG gas export scheme. The ten-year programme has more than tripled Oman`s non-associated gas expectation reserves to some 22 TCF, exceeding-the target more than five-fold. Significant potential for further gas discoveries identified in both North and South Oman provides encouragement for continued successful gas exploration in the future.

  17. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    . . . . . . . 6 4. FIRST BILLET DRILLING TEST . .. .. . . . . . . . 10 4.1 Feedstock . . ... . . . . . . . 13 5. SECOND BILLET DRILLING TEST .. . . . . . . . . . 13 5.1 Feedstock . . ...

  18. Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    of drilling for the purpose of determining the physical properties and boundaries of a reservoir. Other definitions:Wikipedia Reegle Introduction Exploration drilling is an...

  19. Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  20. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  1. Subsurface drill string

    DOE Patents [OSTI]

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  2. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect (OSTI)

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

  3. Drilling Productivity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Drilling Productivity Report Report Background and Methodological Overview August 2014 Updated March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Drilling Productivity Report: Report Background and Methodological Overview i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  4. MACHINERY RESONANCE AND DRILLING

    SciTech Connect (OSTI)

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  5. Coiled tubing drilling (CTD) moves to commercial viability

    SciTech Connect (OSTI)

    Romagno, R. ); Walker, R. )

    1994-12-01

    Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

  6. While drilling system and method

    DOE Patents [OSTI]

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  7. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Haynesville Region +86 -150 -64 0 50 100 150 200 250 300 0 200 400 600 800 1,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count ...

  8. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Eagle Ford Region +127 -322 -195 0 50 100 150 200 250 300 350 0 200 400 600 800 1000 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 new-well oil production per rig rig count ...

  9. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  10. Mixed Stream Test Rig Winter FY-2011 Report

    SciTech Connect (OSTI)

    Chalres Park; Tedd Lister; Kevin DeWall

    2011-04-01

    This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

  11. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  12. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    Open Energy Info (EERE)

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  13. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  14. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  15. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  16. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  17. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  18. Use of coiled tubing during the Wytch Farm extended-reach drilling project

    SciTech Connect (OSTI)

    Summers, T.; Larsen, H.A.; Redway, M.; Hill, G.

    1995-05-01

    The largest onshore oil field in western Europe is in an environmentally sensitive coastal area in southern England. Initial development of the field in the late 1970`s focused on accessing reserves underlying the onshore section of the reservoir. In 1989, various development options were screened to access the offshore section of the reservoir, containing {approx} 80 million bbl of recoverable oil. In 1991, the decision was made to access these reserves through extended-reach drilling (ERD) from an existing onshore wellsite. This development is currently under way, with 3 of 11 planned wells already drilled and producing. This paper describes the application of coiled tubing (CT) in the logging and completion phases of the ERD wells drilled to date. Conclusions are made as to the value of coiled tubing in ERD wells to minimize rig time and the current limits of technology.

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.315 per MMBtu on Wednesday. The natural gas rotary rig...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    York Mercantile Exchange (NYMEX), the August 2011 natural gas contract price also lost ground over the week, closing at 4.217 per MMBtu on Wednesday. The natural gas rotary rig...

  1. Pros and cons of hydraulic drilling

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    The advantages and disadvantages of using hydraulic drilling are discussed. The low maintenance, energy efficiency, drilling speeds, and operating costs are the main advantages of the hydraulic drills. The economics and maintenance of air drills are also compared.

  2. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect (OSTI)

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  3. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  4. Drilling subsurface wellbores with cutting structures

    DOE Patents [OSTI]

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  5. Drill bit assembly for releasably retaining a drill bit cutter

    DOE Patents [OSTI]

    Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  6. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  7. Apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R.; Dahlgren, Scott; Hall, Jr., Tracy H.; Fox, Joe; Pixton, David S.

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  8. Development Drilling | Open Energy Information

    Open Energy Info (EERE)

    Iceland.1 Best Practices Developmental drilling should only begin once a dependable reservoir model has been established and there is a good amount of certainty that the...

  9. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  10. Drilling Methods | Open Energy Information

    Open Energy Info (EERE)

    Information Provided by Technique Lithology: StratigraphicStructural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term....

  11. DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .........15-7 15.5 STEEL ERECTION ......DOE-STD-1090-2007 15.5 STEEL ERECTION Chapter 15 15-8 Construction Hoisting and Rigging ...

  12. Hoisting and Rigging Technical Advisory Committee, Meeting Minutes- June 17, 2015

    Broader source: Energy.gov [DOE]

    Agenda description of committee business conducted by membership during 2015 Hoisting and Rigging Technical Advisory Committee meeting. Meeting was held in Washington, DC on June 17, 2015.

  13. DOE-STD-1090-2004; Hoisting and Rigging (Formerly Hoisting and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of lift apart from traditional hoisting and rigging ... Determine the type, class, and minimum capacity of lifting ... within the crew's organizational structure. c. ...

  14. HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division

    Broader source: Energy.gov [DOE]

    :  To determine that hoisting and rigging operations areconducted according to “industry best standards” for increasing equipment reliabilitywhile assuring worker safety, and to verify issues being...

  15. Design, construction, and use of a coiled tubing drilling structure for onshore and offshore operations

    SciTech Connect (OSTI)

    Frishmuth, R.E.; Pursell, J.C.; Middleton, R.J.; Parker, C.O.

    1996-12-31

    This paper discusses the design, construction, and initial application of a structure for supporting a coiled tubing injector head, bottom hole drilling assembly and pressurized lubricator. The paper includes a discussion of the features desired for the structure and how these were addressed during the design. The manufacturing of the support tower and its support platform are then discussed. On site assembly procedures for the movable structure are presented along with photographs of the deployed rig in service. The versatility and usefulness of the structure are discussed from the end users point of view.

  16. Activity plan: Directional drilling and environmental measurements while drilling

    SciTech Connect (OSTI)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  17. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect (OSTI)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  18. The drilling of a horizontal well in a mature oil field

    SciTech Connect (OSTI)

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  19. Subsea well template for directional drilling

    SciTech Connect (OSTI)

    Goldsmith, R.G.

    1988-07-05

    A method is described for drilling widely spaced boreholes into a hydrocarbon producing subsea formation comprising the steps of: positioning a subsea drilling template on the bottom of a body of water, the subsea drilling template including laterally disposed, substantially cylindrical drilling guides having a longitudinal axis wherein at least one of the drilling guides has its longitudinal axis disposed at an angle of less than 90/sup 0/ relative to a horizontal plane passing through the subsea drilling template; mooring a drilling vessel floating on the surface of the body of water in a first position relative to the subsea drilling template using a plurality of mooring catenaries; extending a drill string from the floating vessel to the subsea template, the drill string passing into the one of the drilling guides along its longitudinal axis which is disposed at an angle of less than 90/sup 0/; drilling a borehole below the template into the hydrocarbon producing subsea formation; repositioning the drilling vessel to another position relative to the subsea template by adjusting the mooring catenaries; extending the drill string from the vessel into another of the drilling guides; drilling another borehole below the template; and repeating the steps of repositioning the drilling vessel, extending the drill string and drilling the widely spaced boreholes.

  20. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  1. Percussive Hammer Enables Geothermal Drilling | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percussive Hammer Enables Geothermal Drilling Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National ...

  2. Category:Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Exploration Drilling page? For detailed information on...

  3. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  4. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  5. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  6. EIA Corrects Errors in Its Drilling Activity Estimates Series

    Reports and Publications (EIA)

    1998-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  7. EIA Completes Corrections to Drilling Activity Estimates Series

    Reports and Publications (EIA)

    1999-01-01

    The Energy Information Administration (EIA) has published monthly and annual estimates of oil and gas drilling activity since 1978. These data are key information for many industry analysts, serving as a leading indicator of trends in the industry and a barometer of general industry status.

  8. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  9. DOE Selects Projects Aimed at Reducing Drilling Risks in Ultra-Deepwater

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Fossil Energy has selected six new natural gas and oil research projects aimed at reducing risks and enhancing the environmental performance of drilling in ultra-deepwater settings.

  10. DOE Project Leads to New Alliance to Promote Low-Impact Drilling

    Broader source: Energy.gov [DOE]

    A project supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling.

  11. This Week In Petroleum Summary Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low and flat as drilling activity in those regions is largely directed toward natural gas extraction. In response to months of falling crude prices, rig counts decreased recently...

  12. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect (OSTI)

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  13. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  14. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  15. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  16. Illinois DNR oil and gas division | Open Energy Information

    Open Energy Info (EERE)

    is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and...

  17. West Virginia Office of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    monitoring and regulating all actions related to the exploration, drilling, storage and production of oil and natural gas. References "West Virginia Office of Oil and Gas"...

  18. Alaska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    The AOGCC website has Alaska state oil and gas data related to monthly drilling and production reports, oil and gas databases, well history, and well information, along with...

  19. Microsoft Word - 3Q2011_Gas_Samp

    Office of Legacy Management (LM)

    September 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison...

  20. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  1. CPS 8.1 Hoisting and Rigging, 2/25/2000

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to examine hoisting and rigging operations to ensure that safe equipment and work practices are being used.  The surveillance includes verification that...

  2. DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 9 DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual Chapter 20.0 - H & R COMMITTEE CHARTER November 15, 2012 Rev 1 Page 2 This page...

  3. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect (OSTI)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  4. DOE/Fossil Energy`s drilling, completion, and stimulation RD&D: A technologies/products overview

    SciTech Connect (OSTI)

    Duda, J.R.; Yost, A.B. II

    1995-12-31

    An overview of natural gas drilling, completion, and stimulation RD&D sponsored by the US Department of Energy is reported in this paper. Development of high rate-of-penetration drilling systems and underbalanced drilling technologies are detailed among other RD&D activities. The overview serves as a technology transfer medium and is intended to accelerate the deployment of the products and technologies described.

  5. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

  6. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...

    Gasoline and Diesel Fuel Update (EIA)

    Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

  7. Black Warrior: Sub-soil gas and fluid inclusion exploration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling DOE Geothermal ...

  8. Natural Gas from Shale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices ...

  9. Natural Gas from Shale | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental ...

  10. STEO September 2012 - natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    in production was driven in large part by production in Pennsylvania's Marcellus shale formation where drilling companies are using hydraulic fracturing to free the trapped gas." ...

  11. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  12. Advanced Drilling Systems for EGS

    Broader source: Energy.gov [DOE]

    Project objectives: Apply Novateks Stinger® and JackBit® technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

  13. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  14. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... PEMEX has announced also drilled and produced gas from the Arbolero-1 well (3.2 million ft 3 day), the first test of the Jurassic shale in this basin. 12 PEMEX plans to drill up ...

  16. Procedures control total mud losses while drilling in deep water

    SciTech Connect (OSTI)

    Dewar, J. ); Halkett, D. )

    1993-11-01

    In the deepwater (830-1,000 m) drilling program offshore Philippines, reefal limestones were encountered in which total mud losses could be expected because of the presence of large fractures. The danger was that a sudden drop in hydrostatic head (resulting from the losses) could allow any natural gas to enter the well bore quickly. The gas could then migrate up the well bore and form hydrates in the blowout preventers (BOPs). Once hydrates form, they are difficult to remove and can make a BOP stack inoperable. To combat this potential problem, containment procedures were developed to cope with these fluid losses. The philosophy behind the procedures was to prevent hydrocarbons from entering the well bore and, if they did enter, to ensure that they did not move up the well bore and into the riser. Additionally, procedures were developed to allow drilling to continue during the losses and the curing of losses.

  17. Revenue surge to sustain drilling in U.S. and Canada

    SciTech Connect (OSTI)

    Beck, R.J.; Petzet, G.A.

    1997-01-27

    Drilling activity in the US and Canada will remain strong in 1997 after increasing in 1996. Oil and Gas Journal figures indicate that rising oil and gas prices provided operators during 1996 with their highest wellhead revenues since 1985. This portends robust capital and exploration spending as long as operators follow through with plans revealed in recent weeks. Also encouraging operators to boost drilling programs are economically juicy plays in the Gulf of Mexico, Gulf Coast, and several other onshore areas. A group of major oil companies indicated plans to increase US exploratory drilling this year against a slight dip in total US drilling. And Canada is matching or exceeding forecasters` expectations, with no letup in view from its last few years` pace of 11,000--12,000 wells/year. The paper discusses US economics, year to year performance, activities of the major oil companies, and Canadian activities.

  18. Optical coherence tomography guided dental drill

    DOE Patents [OSTI]

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  19. Shale gas is natural gas trapped inside

    Energy Savers [EERE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of this resource was considered uneconomical to produce. But Office of Fossil Energy (FE) research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where

  20. Filter for a drill string

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James

    2007-12-04

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  1. Conformable apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Fox, Joe

    2007-08-28

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  2. Natural gas monthly, March 1998

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

  3. Conoco's new approach to drill site construction in difficult, remote, swamp and jungle terrain Irian Jaya, Indonesia

    SciTech Connect (OSTI)

    Roodriguez, F.H.

    1984-02-01

    In October 1982, Conoco Irian Jaya as operator: and partners: Pertamina, Inpex Bintuni Limited, and Moeco Irian Jaya Company, mobilized construction equipment from Singapore to the KBS ''A'' contract area in Irian Jaya, Indonesia for the purpose of constructing a base camp and drill three exploratory sites. What made this construction effort different from others previously used in Irian Jaya; was that it incorporated several new and unique features, namely: a turnkey approach to construction; that is Conoco providing complete set of specifications and conditions with contractor assuming risks for a lump sum payment; special equipment designed by contractor for Irian Jaya operations; an incentive to co pensate or penalize contractor for helicopter hours flown below or above a predetermined number; structural steel pile platform designs for two swamp locations (Ayot and Aum), as opposed to the more conventional corduroy timber log-plank arrangement; and drilling rig pads designed for specific heli-rig with limited extra space. All work was successfully completed within the time frame stipulated in the contract, that is five months from the time the contractor was notified to begin mobilization of equipment, materials and personnel.

  4. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOE Patents [OSTI]

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  5. DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual ATTACHMENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATTACHMENTS February 28, 2012 Rev 1 Page 31 ATTACHMENT 2 Lifting Requirements for Concrete Blocks DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual ATTACHMENTS February 28, 2012 Rev 1 Page 32 This page intentionally left blank. DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual ATTACHMENTS May 2, 2013 Rev 1 Page 33 Lifting Requirements for Concrete Blocks Concrete Blocks (i.e., Ecology, Landscaping Blocks) stacked more than two high shall be evaluated for structural stability. Lifting

  6. Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011

    Office of Legacy Management (LM)

    23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison...

  7. CFPL installs products pipeline with directional drilling

    SciTech Connect (OSTI)

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland {number_sign}70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line.

  8. The Oil and Gas Journal databook, 1986 edition

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

  9. Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado

    SciTech Connect (OSTI)

    Carter, T.E.; Wayland, T.E.

    1981-09-01

    The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

  10. Vale exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  11. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  12. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  13. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  14. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect (OSTI)

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  15. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  16. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  17. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  18. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  19. Electric motor for laser-mechanical drilling

    SciTech Connect (OSTI)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  20. Balanced pressure techniques applied to geothermal drilling

    SciTech Connect (OSTI)

    Dareing, D.W.

    1981-08-01

    The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

  1. Status Report A Review of Slimhole Drilling

    SciTech Connect (OSTI)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  2. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  3. EM Telemetry Tool for Deep Well Drilling Applications

    SciTech Connect (OSTI)

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  4. Communication adapter for use with a drilling component

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Hall; Jr.; H. Tracy; Bradford, Kline; Rawle, Michael

    2007-04-03

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  5. Technology Development and Field Trials of EGS Drilling Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS ...

  6. European Geothermal Drilling Experience-Problem Areas and Case...

    Office of Scientific and Technical Information (OSTI)

    Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. 15 GEOTHERMAL ENERGY; BOREHOLES; DRILLING; EVALUATION; EXPLORATION; GEOTHERMAL RESOURCES; ITALY;...

  7. Property:ExplorationPermit-PreDrilling | Open Energy Information

    Open Energy Info (EERE)

    not involving drilling (pre-drilling exploration). RAPIDGeothermalExplorationNew Mexico + No permit required if the activity does not significantly damage or alter the land....

  8. Geotechnical Drilling in New-Zealand | Open Energy Information

    Open Energy Info (EERE)

    2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geotechnical Drilling in New-Zealand Citation SonicSampDrill. Geotechnical...

  9. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of ...

  10. The oil and gas journal databook, 1991 edition

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

  11. DOE-RL-92-36, Hanford Site Hoisting and Rigging Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22.0 Appendix A, Definitions and Acronyms January 4, 2016 Rev 1 Page 1 DEFINITIONS AND ACRONYMS The following specialized terms and acronyms are used regarding hoisting and rigging operations and equipment. Not all of these terms are used in this manual but have been included for general information. AC--Alternating current. Acceleration Stress--Additional stress imposed by an increase in the load velocity. ACI--American Concrete Institute. Assembly/Disassembly (A/D) Director--An individual who

  12. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  13. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect (OSTI)

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  14. Final Technical Report for “A Heliportable Sonic Drilling Platform for Microhole Drilling and Exploration”

    SciTech Connect (OSTI)

    Lucon, Peter

    2008-05-05

    The Phase I objectives were fully achieved the execution of a program that included the: • Development of a comprehensive model of the sonic drill technology and interaction of the dynamic drilling parameters with the impedance of the earth. • Operation and measurement of the sonic drilling process in the field at full scale. • Comparison of the analytical and experimental results to form an objective and quantified approach to describe the fundamental phenomena and to develop a methodology for automated control of the sonic drilling process. • Conceptual design of a modular sonic drilling system that can be transported to remote sites by helicopter. As a result, the feasibility of a commercially viable sonic drilling technology that can produce microholes up to 1,500 feet in depth, and that is field deployable to remote, environmentally sensitive sites via a helicopter, has been demonstrated.

  15. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  16. drilling-tools | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drilling-tools Tally II: Pipe Tally Sheet for Pocket PC allows users to conveniently build an inventory or tally sheet for tubular products and downhole tools. It is designed to ...

  17. Sidetracking technology for coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  18. Handbook of Best Practices for Geothermal Drilling

    Broader source: Energy.gov [DOE]

    This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

  19. Drills and Classes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drills and Classes Drills and Classes As part of the continuing effort to provide a safer workplace, the Headquarters Occupant Emergency Planning Team is pleased to announce that continuous training sessions will be held on various topics. First Aid, CPR, and AED Training Warden, Monitor, and Assistant Training Occupant Emergency Training Videos First Aid, CPR, and AED Training The Office of Administration (MA-40) is sponsoring First Aid, Cardiopulmonary Resuscitation (CPR) and Automated

  20. Geomechanical Modeling for Thermal Spallation Drilling (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Geomechanical Modeling for Thermal Spallation Drilling Citation Details In-Document Search Title: Geomechanical Modeling for Thermal Spallation Drilling Authors: Walsh, S D ; Lomov, I ; Roberts, J J Publication Date: 2011-05-05 OSTI Identifier: 1113520 Report Number(s): LLNL-PROC-483098 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Geothermal Resources Council 35th Annual Meeting, San Diego, CA, United

  1. South America: everybody is drilling almost everywhere

    SciTech Connect (OSTI)

    Not Available

    1980-08-15

    A group of studies describes accomplishments in 1980 in South America drilling and producing. There may be 3285 wells drilled during 1980, with the majority in Venezuela, Argentina and Peru, compared with a 2934 total for all countries on the continent in 1979. Reserves at the end of 1979 in South America exceeded 27 billion bbl, and production averaged 3.8 million bpd. Individual country reports are given for Venezuela, Argentina, Brazil, Trinidad, Peru, Ecuador, Colombia, Chile, Bolivia, Paraguay, Urauguay, and Guyana.

  2. Drilling site on a national seashore required extra environmental precautions

    SciTech Connect (OSTI)

    Hunt, M.

    1995-11-06

    The comprehensive planning required for a well drilled on a national seashore resulted in a trouble-free operation that minimized effects on a very sensitive environmental area. The procedure for obtaining approval from the National Park Service for this exploration well was very detailed and time consuming. Bright and Co., San Antonio, drilled the Dunn-McCampbell No. 1 on the Padre Island National Seashore in Kleberg County in South Texas earlier this year. Although the federal government owns all surface lands in the National Seashore, the majority of the subsurface oil and gas rights are owned by the Dunn-McCampbell heirs. Development of the private oil and gas rights may occur in the National Seashore area as long as operators comply with National Park Service regulations of Title 36, Code of federal Regulations Part 9, Subpart B. Precautions to contain and collect any discharge of liquids were required because Padre Island has a shallow freshwater aquifer approximately 4 ft below the ground surface. The water from the aquifer collects in shallow ponds on the island and is the main source of drinking water for wildlife there. Therefore, the National Park Service requires groundwater monitoring wells at the production facility site to determine if any contaminants enter the groundwater.

  3. April 25, 1997: Yucca Mountain exploratory drilling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers complete drilling of the five-mile long, horseshoe-shaped exploratory tunnel through Yucca Mountain at the proposed high-level nuclear waste repository in Nevada

  4. Drilling Fluids Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Drilling Fluids Market Analysis Home There are currently no posts in this category. Syndicate content...

  5. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    eight times more valuable than natural gas on an energy-equivalent basis. Rig data from Smith Bits reflect how the crude oil-to-natural gas price ratio may be influencing drilling:...

  6. 28. annual offshore technology conference: Proceedings. Volume 4: Field drilling and development systems

    SciTech Connect (OSTI)

    1996-12-31

    The 88 papers in this volume cover the following topics: Small operator implementation of subsea technology; Control system umbilicals, components and ROV interfacing; DeepStar--Results and plans; Deepwater subsea manifold systems; Drilling technology; Limit state design criteria for pipelines; Liuhua project; Mobile offshore drilling units; Offshore coiled tubing operations; Oman-India gas pipeline; Paraffin and hydrate control; Pompano--A deepwater subsea development; Severe operating conditions; Subsea production systems; and Well completions technology. Papers have been processed separately for inclusion on the data base.

  7. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  8. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  9. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  10. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Fox, Joe

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  11. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  12. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.

  13. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    Stocks 9,195 17,987 17,396 17,991 18,525 19,638 1993-2016 PAD District 1 2,995 2,384 2,433 1,901 2,242 2,546 1993-2016 Connecticut 1993-2005 Delaware 1993-2010 Florida 959 847 827 652 926 877 1993-2016 Georgia 257 263 310 220 175 221 1993-2016 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 5 4 4 1993-2016 New Hampshire 1993-2006 New Jersey 785 225 168 384 534 804 1993-2016 New York 17 20 24 11 14 23 1993-2016 North Carolina 380 369 417 167 170 191 1993-2016 Pennsylvania 72 94 74 26

  14. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    07/31/2015 Next Release Date: 0

  15. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    Values shown for the current two months are preliminary. Values shown for the previous two months may be revised to account for late submissions and corrections. Final revisions to monthly and annual values are available upon publication of the June Petroleum Marketing Monthly. Annual averages that precede the release of the June Petroleum Marketing Monthly are calculated from monthly data. Data through 2014 are final. Effective January 2009, selected crude streams were discontinued and new

  16. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect (OSTI)

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  17. Gas-recovery system

    DOE Patents [OSTI]

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  18. Gas-Recovery System

    DOE Patents [OSTI]

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  19. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect (OSTI)

    Arnis Judzis

    2004-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication in conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.

  20. Recovery Act Weekly Video: 200 West Drilling

    SciTech Connect (OSTI)

    2010-01-01

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  1. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  2. Impedance-matched drilling telemetry system

    DOE Patents [OSTI]

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  3. Recent Developments in Geothermal Drilling Fluids Kelsey, J....

    Office of Scientific and Technical Information (OSTI)

    M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N. 01 COAL, LIGNITE, AND PEAT; 15 GEOTHERMAL ENERGY; BENTONITE; BROWN COAL; DRILLING; DRILLING...

  4. RECENT DEVELOPMkNTS 1N GEOTHERMAC DRILLING FLUIDS

    Office of Scientific and Technical Information (OSTI)

    logging Trouble-free drilling was experience 7,916 feet where a twist-off occurred. The fish was recovered without difficulty and drilling resumed. Mud circul ed from the bottom of...

  5. Handbook of Best Practices for Geothermal Drilling Released

    Broader source: Energy.gov [DOE]

    The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy’s Geothermal Technologies Program and prepared by Sandia National Laboratories, focuses on the complex process of drilling a geothermal well.

  6. File:05DrillingPermittingOverview.pdf | Open Energy Information

    Open Energy Info (EERE)

    5DrillingPermittingOverview.pdf Jump to: navigation, search File File history File usage Metadata File:05DrillingPermittingOverview.pdf Size of this preview: 463 599 pixels....

  7. Development of a High-Temperature Diagnostics-While-Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the ...

  8. Coiled tubing drilling requires economic and technical analyses

    SciTech Connect (OSTI)

    Gary, S.C. )

    1995-02-20

    Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

  9. RRC - Drilling Permits Online Filing User's Guide webpage | Open...

    Open Energy Info (EERE)

    Drilling Permits Online Filing User's Guide webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Drilling Permits Online Filing User's Guide...

  10. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  11. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  12. Evaluation of Emerging Technology for Geothermal Drilling and Logging

    Broader source: Energy.gov (indexed) [DOE]

    Applications | Department of Energy Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon sandia_evaluation_drilling_tech_peer2013.pdf More Documents & Publications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation … Lauren Boyd

  13. Surface control bent sub for directional drilling of petroleum wells

    DOE Patents [OSTI]

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  14. Downhole control -- The key to coiled tubing drilling efficiency

    SciTech Connect (OSTI)

    1996-10-01

    Coiled tubing drilling has experienced dramatic growth in recent years. Originally a step-child, the technique now claims built-for-purpose equipment and promises cost-effective drilling with little damage to formations. The paper describes a bottom hole assembly and an orienting tool designed to be used to control coiled tubing drilling.

  15. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  16. Computational Approach to Photonic Drilling of Silicon Carbide

    SciTech Connect (OSTI)

    Samant, Anoop N; Daniel, Claus; Chand, Ronald H; Blue, Craig A; Dahotre, Narendra B

    2009-01-01

    The ability of lasers to carry out drilling processes in silicon carbide ceramic was investigated in this study. A JK 701 pulsed Nd:YAG laser was used for drilling through the entire depth of silicon carbide plates of different thicknesses. The laser parameters were varied in different combinations for a well controlled drilling through the entire thickness of the SiC plates. A drilling model incorporating effects of various physical phenomena such as decomposition, evaporation induced recoil pressure, and surface tension was developed. Such comprehensive model was capable of advance prediction of the energy and time required for drilling a hole through any desired depth of material.

  17. Laser Drilling: Drilling with the Power of Light Phase 1: Feasibility Study

    SciTech Connect (OSTI)

    Brian C. Gahan; Richard A. Parker; Ramona Graves; Samih Batarseh; Claude B. Reed; Zhiyue Xu; Humberto Figueroa; Neal Skinner

    2001-09-01

    A laser drilling research team was formed from members of academia, industry and national laboratory to explore the feasibility of using modern high-powered lasers to drill and complete oil and gas wells. The one-year Phase 1 study discussed in this report had the goals of quantifying the amount of pulsed infrared laser energy needed to spall and melt rock of varying lithologies and to investigate the possibility of accomplishing the same task in water under atmospheric conditions. Previous work by some members of this team determined that continuous wave lasers of varying wavelengths have more than enough power to cut, melt and vaporize rock. Samples of sandstone, limestone, and shale were prepared for laser beam interaction with a 1.6 kW pulsed Nd:YAG laser beam to determine how the beam's size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting and vaporization. The purpose of the laser rock interaction experiment was to determine the threshold parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. In addition, it was observed that the rates of heat diffusion in rocks are easily and quickly overrun by absorbed energy transfer rates from the laser beam to the rock. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The current study determined that using pulsed lasers could accomplish removing material from rock more efficiently than continuous wave lasers. The study also determined that reducing the effect of secondary energy absorbing mechanisms resulted in lower energy requirements in shale and, to some extent, in sandstones. These secondary mechanisms are defined as physical processes that divert beam energy from directly removing rock, and may include thermally-induced phase behavior changes of rock minerals (i.e., melting, vaporization, and dissociation) and fractures created by thermal expansion. Limestone is spalled by a different mechanism and does not seem to be as affected by secondary mechanisms. It was also shown that the efficiency of the cutting mechanism improved by saturating porous rock samples with water, and that a laser beam injected directly through a water layer at a sandstone sample was able to spall and melt the sample.

  18. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert; Livesay, Bill

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

  19. Microhole Wireless Steering While Drilling System

    SciTech Connect (OSTI)

    John Macpherson; Thomas Gregg

    2007-12-31

    A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

  20. Middle East: Output expansions boost drilling

    SciTech Connect (OSTI)

    1996-08-01

    Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

  1. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the end of July, reaching 1,025 on July 29. The rig count is an important indicator of exploration and development activity for both oil and natural gas. Historically, drilling...

  2. Test report for drill string seal pressure test

    SciTech Connect (OSTI)

    McCormick, J.F.

    1996-02-06

    A basic question was asked concerning the drill string which is used in rotary Mode coring operations: ``...what is the volume leak rate loss in a drill rod string under varying condiditons of the joint boxes and pins being either dry or coated with lubricant...``. A Variation of this was to either have an o-ring installed or absent on the drill rod that was grooved on the pin. A series of tests were run with both the o-ring grooved Longyear drill rod and the plain pin end rod manufactured by Diamond Drill. Test results show that drill rod leakage of both types is lowered dramatically when thread lubricant is applied to the threaded joints and the joints made up tight. The Diamond Drill rod with no o-ring groove has virtually no leakage when used with thread lubricant and the joints are properly tightened.

  3. International oil and gas exploration and development: 1991

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  4. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    SciTech Connect (OSTI)

    Glova, A F; Lysikov, A Yu

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  5. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  6. Geochemical Mud Logging of geothermal drilling

    SciTech Connect (OSTI)

    Tonani, F.B.; Guidi, M.; Johnson, S.D.

    1988-01-01

    The experience and results described in the present paper were developed over nearly two decades, with a major R&D project around 1980. The expression Geochemical Mud Logging (GML) has ill defined meaning in the geothermal industry, and ought to be specified. We refer here to GML as featuring mud and formation fluid tracer(s) and temperature as the bare essentials and with specified accuracies. Air and water logging are expected to be less demanding with regard to analysis accuracy, but are not discussed in this report. During application of GML to several drill holes with low formation permeabilities and under conditions of high temperature and high mud weight, GML as specified, revealed unexpected influx of formation brine. Such influx was a recurring feature that has been referenced to individual fractures and reflects both fracture size and permeability. As a consequence, continuous or subcontinuous sampling of mud systems appears more cost effective than trying to keep up with cumulative changes of bulk mud composition; although, the latter approach is more sensitive to extremely low rate, steady, inflow of formation fluid into the mud system. It appears, that based on this influx of formation fluid, permeability can be estimated well before mud losses are detected and/or drill strings are stuck. The main advantages of GML are: (1) the capability to assess formation temperature and permeability in nearly real time, resulting in (a) assessments of undisturbed formation and (b) having data in hand for holes lost during drilling operations and (2) being effective under conditions of very high temperatures where electrical logs are very costly and less reliable. Estimated cost for GML is $1500 per day (1982) based on assessments of R&D operations. However, extrapolating to larger scale services and to different operating conditions is indeed difficult. GML cost is probably the only significant point of controversy with regard to GML being a viable evaluation tool.

  7. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg; Ward, Stephen L.; Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  8. Planning and well evaluations improve horizontal drilling results

    SciTech Connect (OSTI)

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  9. Biased insert for installing data transmission components in downhole drilling pipe

    DOE Patents [OSTI]

    Hall, David R.; Briscoe, Michael A.; Garner, Kory K.; Wilde, Tyson J.

    2007-04-10

    An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

  10. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  11. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  12. What is shale gas and why is it important?

    Reports and Publications (EIA)

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  13. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  14. Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications

    Broader source: Energy.gov [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

  15. Development of a Hydrothermal Spallation Drilling System for EGS

    Broader source: Energy.gov [DOE]

    Project objective: Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource.

  16. Geothermal Drilling of New England | Open Energy Information

    Open Energy Info (EERE)

    of New England Jump to: navigation, search Name: Geothermal Drilling of New England Address: 358 Boylston Street Place: Lowell, Massachusetts Zip: 01852 Region: Greater Boston Area...

  17. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd...

  18. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    System for EGS Project Type Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Drilling Systems Project...

  19. Drilling for Geothermal Resources Rules - Idaho | Open Energy...

    Open Energy Info (EERE)

    - Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Drilling for Geothermal Resources Rules - Idaho Published Publisher Not Provided, Date Not...

  20. An Investigation for Disposal of Drill Cuttings into Unconsolidated...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 02 PETROLEUM; DRILLING FLUIDS; MINERAL WASTES; ROCK MECHANICS; SANDSTONES; CLAYS; DISPOSAL WELLS; ABANDONED WELLS; ...

  1. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING (Conference...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY; 58 GEOSCIENCES; 97 MATHEMATICAL METHODS AND COMPUTING; BOREHOLES; CAPITALIZED COST; DRILLING; ...

  2. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  3. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  4. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Technology Development and Field Trials of EGS Drilling Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. Fundamental Research on Percussion Drilling: Improved rock mechanics...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Citation Details In-Document...

  6. Rotary acting shear valve for drilling fluid telemetry systems

    SciTech Connect (OSTI)

    Larronde, M.L.

    1986-12-16

    This patent describes a valve apparatus useful in a borehole drilling fluid telemetry system for transmitting data pulses from one end of a pipe string to another by imparting pressure pulses to a drilling fluid circulating down the pipe string, through a drilling member and up the annulus between the pipe string and borehole wall. The valve is operated in the drilling fluid flow path to modulate the flow of the drilling fluid and thereby impart detectable pressure pulses to the drilling fluid. The apparatus comprises a housing disposable within the drill string, adapted for the flow of drilling fluid therearound and formed with a passage therethrough for selectable flow communication between the drill string and the borehole annulus; a shear valve mounted within the housing across the passage and comprising a valve seat and rotational gate member having alignable seat and gate openings formed therethrough, the gate opening being movable in an arc into and out of axial alignment with the seat opening; and valve actuation means for coupling to the gate for rotationally moving the gate opening through an arc relative to the seat opening to open the passage and generate a pressure pulse. The valve actuation means comprises a first solenoid and cam means coupled thereto for translating the non-linear, axial forces of the solenoid into generally linear, rotational forces for rotating the valve gate.

  7. An overview of McKittrick coiled tubing drilling project

    SciTech Connect (OSTI)

    Ewert, D.P.; Ramagno, R.A.; Hurkmans, R.S.

    1995-12-31

    In an effort to reduce drilling costs on thermal wells, service companies began reducing casing sizes and well pad location sizes in 1993. Based on a successful four-well pilot project completed in early 1994 at the Belridge Field, a 115-well steam injector project was completed in the McKittrick Field in late 1994, of which 68 wells were drilled with coiled tubing. This paper will discuss why slimhole completions and coiled tubing drilling were selected for this project, the operational aspects of drilling 68 wells in 92 working days, and conclusions about the project.

  8. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    7 Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code...

  9. Idaho Water Rights as They Pertain to Drilling Slideshow | Open...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Idaho Water Rights as They Pertain to Drilling SlideshowPermittingRegulatory GuidanceSupplemental...

  10. Safety Measures a hinder for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

  11. Idaho Well Construction and Drilling Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Well Construction and Drilling Forms Webpage Citation Idaho Department...

  12. OASIS System Business Continuity Drill - July 17, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System-Business-Continuity-Drill---July-17,-2015 Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand...

  13. Annex 7 - The Iea'S Role In Advanced Geothermal Drilling | Open...

    Open Energy Info (EERE)

    Geothermal Drilling Abstract No abstract prepared. Authors John Travis Finger and Eddie Ross Hoover Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for...

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... a half-dozen vertical and two horizontal production test wells have been drilled to date. ... World Shale Gas and Shale Oil Resource Assessment May 17, 2013 VIII-4 vertical test wells. ...

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... test wells on its exploration leases, at least three of which are reported to be testing shale gas potential. Starting in 2008, the company drilled the Damme 22A and Damme 3 test ...

  16. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the risks while enhancing the environmental performance of drilling for natural gas and oil in ultra-deepwater settings have been selected by the U.S. Department of Energy (DOE)...

  17. Installation of 2 7/8-in. coiled-tubing tailpipes in live gas wells

    SciTech Connect (OSTI)

    Campbell, J.A.; Bayes, K.P.

    1994-05-01

    This paper describes a technique for installing 2 7/8-in. coiled tubing as tailpipe extensions below existing production packers in live gas wells. It also covers the use of coiled tubing as a way to complete wells. Large savings in rig time and deferred production have been realized with this technique. Fluid losses to the formation do not occur, and no expensive rig time is needed to kill or clean up the wells, as required for conventional workovers below existing production packers. This technique is particularly applicable in depleted reservoirs that could be impaired by traditional workover methods.

  18. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect (OSTI)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  19. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  20. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  1. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  2. DOE and Navy Collaborate on Geothermal Drilling Technology

    Broader source: Energy.gov [DOE]

    The Department of Energy's Sandia National Laboratories has teamed up with U.S. Navy's Geothermal Program Office to revive decades-old polycrystalline diamond compact (PDC) technology. The high performance PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy.

  3. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Energy Savers [EERE]

    Water Key Points: * As with conventional oil and gas development, requirements from eight federal (including the Clean Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing of wells is a process that is highly engineered, controlled and monitored. * Shale gas operations use water for drilling; water is also the primary component of fracturing fluid. * This water is likely to

  4. Flexible shaft and roof drilling system

    DOE Patents [OSTI]

    Blanz, John H.

    1981-01-01

    A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

  5. Technical and economical feasibility of coiled tubing drilling

    SciTech Connect (OSTI)

    Gary, S.C.; Doremus, D.M.

    1995-12-31

    The technique for evaluating coiled tubing (CT) drilling prospects is described. The technical and economic factors involved are discussed using a flowchart to guide the operator in the decision making process. In the technical analysis, the parameters limiting the feasibility of using CT for a given drilling project are reviewed. These parameters include CT tension, helical buckling which limits the weight on bit (WOB) and the horizontal reach, CT collapse pressure when drilling underbalanced, CT fatigue, and the usual hydraulic parameters such as annular velocity and pumping pressure. In today`s business environment, some projects, while technically feasible, may not be economically feasible. In the economic analysis, the competitiveness of each CT drilling application versus conventional solutions is evaluated, and factors such as project duration and equipment use are reviewed. The equipment normally required for a CT drilling job and the costs associated with mobilizing this equipment are discussed.

  6. Word Pro - S5

    U.S. Energy Information Administration (EIA) Indexed Site

    . Crude Oil and Natural Gas Resource Development Figure 5.1 Crude Oil and Natural Gas Resource Development Indicators Rotary Rigs in Operation by Type, 1949-2015 Rotary Rigs in Operation by Type, Monthly Active Well Service Rig Count, Monthly Total Wells Drilled by Type, 1949-2010 . 90 U.S. Energy Information Administration / Monthly Energy Review May 2016 Total 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 1 2 3 4 Thousand Rigs 1950 1955 1960 1965 1970 1975 1980 1985

  7. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  8. Ultra-Deep Drilling Cost Reduction; Design and Fabrication of an Ultra-Deep Drilling Simulator (UDS)

    SciTech Connect (OSTI)

    Lindstrom, Jason

    2010-01-31

    Ultra-deep drilling, below about 20,000 ft (6,096 m), is extremely expensive and limits the recovery of hydrocarbons at these depths. Unfortunately, rock breakage and cuttings removal under these conditions is not understood. To better understand and thus reduce cost at these conditions an ultra-deep single cutter drilling simulator (UDS) capable of drill cutter and mud tests to sustained pressure and temperature of 30,000 psi (207 MPa) and 482 °F (250 °C), respectively, was designed and manufactured at TerraTek, a Schlumberger company, in cooperation with the Department of Energy’s National Energy Technology Laboratory. UDS testing under ultra-deep drilling conditions offers an economical alternative to high day rates and can prove or disprove the viability of a particular drilling technique or fluid to provide opportunity for future domestic energy needs.

  9. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  10. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas production million cubic feetday 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville Marcellus Niobrara Permian Utica June-2015 June-2016 New-well oil production ...

  11. U. S. Energy Information Administration | Drilling Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    The month-over-month change is listed alongside, with +- signs and color-coded arrows to highlight the growth or decline in oil (brown) or natural gas (blue). New-well oilgas ...

  12. The economic impact of proposed regulations on the discharge of drilling muds and cuttings from the offshore facilities on US undiscovered crude oil reserves

    SciTech Connect (OSTI)

    Not Available

    1989-01-13

    This paper presents the results of an assessment of the potential economic impact of proposed regulations. on the discharge of drilling fluids (muds) and cuttings on US offshore undiscovered crude oil resources. These regulations include proposed Best Available Technology economically achievable (BAT) and New Source Performance Standards (NSPS) effluent limitations under the Clean Water Act governing the discharge of drilling fluids and drill cuttings from offshore oil and gas drilling operations. The impact of the proposed RAT/NSPS regulations for the drilling fluids and drill cuttings disposal on the cost of funding, developing, and producing Lower-48 offshore undiscovered crude oil resources will depend significantly on operators perceptions on the chances of failing toxicity or static sheen tests. If operators, in economically justifying their projects, assume that the fluids fail one of these tests, thereby prohibiting them from being discharged, up to 11% of the economically recoverable offshore resource would be considered uneconomic to produce. This would amount to 845 million barrels of oil at an oil price around $25 per barrel. On the other hand, if operators are willing co take their chances and see if their fluids fail one of these tests, then, based on EPA`s assumptions concerning forecast fluid use and static sheen and toxicity test failure rates, up to 4% of the offshore undiscovered resource would be impacted, amounting to lost reserves of up to 270 million barrels.

  13. DOE - NNSA/NFO -- Photo Library Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Hole Drilling NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Big Hole Drilling The need to drill large-diameter holes at the Nevada National Security Site resulted from the Limited Test Ban Treaty (LTBT), signed by President John F. Kennedy in Moscow on August 5, 1963. The LTBT prohibited testing nuclear weapons in the atmosphere, underwater and in outer space. As a result, scientists from the U.S. Department of Energy weapons laboratories had to relocate all

  14. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  15. NMOCD - Form G-101 - Application for Permit to Drill, Deepen...

    Open Energy Info (EERE)

    NMOCD - Form G-101 - Application for Permit to Drill, Deepen, or Plug Back Geothermal Resources Well Jump to: navigation, search OpenEI Reference LibraryAdd to library General:...

  16. Bureau of Land Management - Geothermal Drilling Permit | Open...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling Permit Abstract This page links to the BLM application for...

  17. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  18. Method and apparatus for water jet drilling of rock

    DOE Patents [OSTI]

    Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James

    1978-01-01

    Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

  19. Title 43 CFR 3264 Reports - Drilling Operations | Open Energy...

    Open Energy Info (EERE)

    Title 43 CFR 3264 Reports - Drilling Operations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43...

  20. Drilling and coring methods that minimize the disturbance of...

    Office of Scientific and Technical Information (OSTI)

    Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada Hammermeister, D.P.; Blout, D.O.;...

  1. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOE Patents [OSTI]

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  2. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  3. Title 43 CFR 3261 Drilling Operations: Getting a Permit | Open...

    Open Energy Info (EERE)

    61 Drilling Operations: Getting a Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 3261...

  4. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  5. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  6. Initial results from VC-1, First Continental Scientific Drilling...

    Open Energy Info (EERE)

    from VC-1, First Continental Scientific Drilling Program Core Hole in Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  7. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Property:ExplorationPermit-Drilling | Open Energy Information

    Open Energy Info (EERE)

    ExplorationAlaska + All wells drilled in support or in search of the recovery or production of geothermal resources must comply with 20 AAC 25.705-.740. The developer...

  9. RRC - Online Drilling Permit System Login webpage | Open Energy...

    Open Energy Info (EERE)

    System Login webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Online Drilling Permit System Login webpage Abstract This is the login...

  10. Simulation Tools for Modeling Thermal Spallation Drilling on Multiple

    Office of Scientific and Technical Information (OSTI)

    Scales (Conference) | SciTech Connect Conference: Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales Citation Details In-Document Search Title: Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales Authors: Walsh, S C ; Lomov, I ; Kanarska, Y ; Roberts, J J Publication Date: 2012-05-02 OSTI Identifier: 1082416 Report Number(s): LLNL-CONF-555171 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference:

  11. Simulation Tools for Modeling Thermal Spallation Drilling on Multiple

    Office of Scientific and Technical Information (OSTI)

    Scales (Conference) | SciTech Connect Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales Citation Details In-Document Search Title: Simulation Tools for Modeling Thermal Spallation Drilling on Multiple Scales × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  12. An Investigation for Disposal of Drill Cuttings into Unconsolidated

    Office of Scientific and Technical Information (OSTI)

    Sandstones and Clayey Sands (Technical Report) | SciTech Connect Technical Report: An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands Citation Details In-Document Search Title: An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for

  13. EERE Success Story-Percussive Hammer Enables Geothermal Drilling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Percussive Hammer Enables Geothermal Drilling EERE Success Story-Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia In

  14. Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultra-Deepwater: Drilling and Completion Operations Cover images: Photograph of the North Star Imaging M-5000 industrial CT scanner (left) and 3-D renderings of a (10.4 mm) 3 digital subsection of 10% foam quality cement sample (right). Research Portfolio Report Ultra-Deepwater: Drilling and Completion Operations DOE/NETL-2015/1697 Prepared by: Kathy Bruner, Jennifer Funk, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer

  15. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

    2006-09-29

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

  16. Application of water-base mud in deep well drilling

    SciTech Connect (OSTI)

    Li, Y.; Qian, F.; Lo, P.

    1982-01-01

    This paper reports the results of laboratory research and field practice on the application of temperature resistant water-base muds for deep drilling in Sichuan Province, China. The major problems discussed include mud stability; adjustment and control of mud properties under high temperatures and pressures; the effect of pH on the properties of mud systems. Some means of solving these and other problems involved in deep well drilling are proposed.

  17. ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA S A N D I A T E C H N O L O G Y ON THE COVER: Sandia National Laboratories program

  18. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  19. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  20. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1981-08-04

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Preferably the spring means itself is a double acting compression spring means wherein the same spring means is compressed whether the joint is extended or contracted. The damper has a like low spring rate over a considerable range of deflection, both upon extension and contraction of the joint, but a gradually then rapidly increased spring rate upon approaching the travel limits in each direction. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The spring rings make only such line contact with one of the telescoping members as is required for guidance therefrom, and no contact with the other member. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. Magnetic and electrical means are provided to check for the presence and condition of the lubricant. To increase load capacity the spring means is made of a number of components acting in parallel.

  1. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1984-03-06

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller Belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. A prototype includes of this a bellows seal instead of the floating seal at the upper end of the tool, and a bellows in the side of the lubricant chamber provides volume compensation. A second lubricant chamber is provided below the pressure seal, the lower end of the second chamber being closed by a bellows seal and a further bellows in the side of the second chamber providing volume compensation. Modifications provide hydraulic jars.

  2. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  3. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  4. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  5. NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out

    Energy Savers [EERE]

    It Seems Like Shale Gas Came Out of Nowhere - What Happened? Knowledge of gas shale resources and even production techniques has been around a long time (see "Technological Highlights" timeline). But even as recently as a few years ago, very little of the resource was considered economical to produce. Innovative advances - especially in horizontal drilling, hydraulic fracturing and other well stimulation technologies - did much to make hundreds of trillions of cubic feet of shale gas

  6. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect (OSTI)

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.

  7. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, Randy A.; Lockwood, Grant J.; Gonzales, Meliton

    1998-01-01

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

  8. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, R.A.; Lockwood, G.J.; Gonzales, M.

    1998-03-03

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

  9. Unconventional Oil and Gas Projects Help Reduce Environmental Impact of

    Energy Savers [EERE]

    Development | Department of Energy Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, 2014 - 11:30am Addthis Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the nation's oil and natural gas has come from reservoirs from which the resources are

  10. Word Pro - S5

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Crude Oil and Natural Gas Resource Development Indicators Rotary Rigs in Operation by Type, 1949-2015 Rotary Rigs in Operation by Type, Monthly Active Well Service Rig Count, Monthly Total Wells Drilled by Type, 1949-2010 . 90 U.S. Energy Information Administration / Monthly Energy Review May 2016 Total 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 0 1 2 3 4 Thousand Rigs 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 10 20 30 40 50 Thousand Wells

  11. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  12. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    SciTech Connect (OSTI)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.

  13. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  14. Rock drilling bit and a method of producing the same

    SciTech Connect (OSTI)

    Kane, R.F.; Portugal, J.J.; Kuzniar, P.S.

    1989-09-19

    This patent describes a method for forming a drill bit of the type used for drilling rock and including a drill bit body defining a cutting face having a plurality of hard material cutting inserts mounted in openings formed in the cutting face. The method comprising the steps of: providing a drill bit body formed from a steel capable of being carburized, the body having a cutting face surface; identifying on the cutting face surface those locations wherein insert mounting openings are needed; covering each location with a material capable of preventing penetration of carbon into the bit body in the area of the location during carburizing, the area covered at each such location being at least slightly greater that the size of the insert mounting opening needed; with the insert mounting locations covered, carburizing and heat treating the bit body to case harden the cutting face to a hardness above 50 on the Rockwell C scale; and thereafter, drilling an insert receiving opening at each location and press-fitting hard material cutting inserts into each such opening.

  15. Geothermal drilling problems and their impact on cost

    SciTech Connect (OSTI)

    Carson, C.C.

    1982-01-01

    Historical data are presented that demonstrate the significance of unexpected problems. In extreme cases, trouble costs are the largest component of well costs or severe troubles can lead to abandonment of a hole. Drilling experiences from US geothermal areas are used to analyze the frequency and severity of various problems. In addition, average trouble costs are estimated based on this analysis and the relationship between trouble and depth is discussed. The most frequent drilling and completion problem in geothermal wells is lost circulation. This is especially true for resources in underpressured, fractured formations. Serious loss of circulation can occur during drilling - because of this, the producing portions of many wells are drilled with air or aerated drilling fluid and the resulting corrosion/erosion problems are tolerated - but it can also affect the cementing of well casing. Problems in bonding the casing to the formation result from many other causes as well, and are common in geothermal wells. Good bonds are essential because of the possibility of casing collapse due to thermal cycling during the life of the well. Several other problems are identified and their impacts are quantified and discussed.

  16. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  17. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect (OSTI)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.

  18. The oil and gas joint operating agreement

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  19. Repeatable reference for positioning sensors and transducers in drill pipe

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  20. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  1. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  2. Workshop to develop deep-life continental scientific drilling projects

    SciTech Connect (OSTI)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; Kallmeyer, J.; Kiel Reese, B.; Lin, L.-H.; Long, P. E.; Moser, D. P.; Mills, H.; Sar, P.; Schulze-Makuch, D.; Stan-Lotter, H.; Wagner, D.; Wang, P.-L.; Westall, F.; Wilkins, M. J.

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.

  3. Workshop to develop deep-life continental scientific drilling projects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; Aloisi, V.; Colwell, F. S.; Engelen, B.; Fendrihan, S.; Gaidos, E.; Harms, U.; Head, I.; et al

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

  4. Canada is putting teeth into its price fixing and rigging laws

    SciTech Connect (OSTI)

    McWilliams, H.

    1991-12-01

    This paper reports that attendees at the 24th annual Transportation Symposium sponsored by the Propane Gas Association of Canada (PGAC) and held in Calgary, Alberta Oct. 23-24 heard some straight talk about renewed interest in enforcing Canada's Competition Act. Three years ago, a senior official of the Bureau of Competition Policy called certain price-related offenses under the Competition Act the most serious of economic crimes and declared that their enforcement is the cornerstone of Canada's competition laws. With this in mind, the Bureau intends to deal firmly with both business and individuals who engage in such practices.

  5. Innovative website for drilling waste management. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: Innovative website for drilling waste management. Citation Details In-Document Search Title: Innovative website for drilling waste management. No abstract prepared. Authors: Veil, J. A. ; Gasper, J. R. ; Puder, M. G. ; Sullivan, R. G. ; Richmond, P. D. ; Fidler, B. R. ; Fleming, C. N. ; Bernier, R. F. ; Jones, F. V. Publication Date: 2002-12-09 OSTI Identifier: 824581 Report Number(s): ANL/EA/CP-109226 TRN: US200419%%93 DOE Contract Number: W-31-109-ENG-38 Resource Type:

  6. DOE - NNSA/NFO -- News & Views Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Testing Perfected Big-Hole Drilling Technology Photo - Rowan Drilling Company's On July 26, 1957, a safety experiment called "Pascal A" was detonated in an unstemmed hole. Although the test was not spectacular, it does hold the distinction of being the first nuclear test in the world to be detonated underground. From 1957 to 1992, 533 contained tests and nine unstemmed tests were conducted at the Nevada Test Site (NTS). If the depths of all the 36-inch diameter holes

  7. Environmental Measurements in an Emergency: This is not a Drill!

    Office of Environmental Management (EM)

    Measurements in an Emergency: This is not a Drill Stephen V. Musolino Brookhaven National Laboratory Harvey Clark, Wendy Pemberton, Thomas McCullough Remote Sensing Laboratory Drills and Exercises * Data are generated from models - National Atmospheric Release Advisory Center (NARAC) - TurboFRMAC - Calculates a Derived Response Level from a radionuclide mix 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 One Year mR/hr Exposure Rate Derived Response Level (DRL) for Avoidable Dose The

  8. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  9. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2014-03-04

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  10. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2012-08-14

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  11. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison

    2015-02-03

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  12. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2011-08-16

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  13. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2008-05-27

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  14. System and method for damping vibration in a drill string

    DOE Patents [OSTI]

    Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison

    2007-05-22

    A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.

  15. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  16. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2004-11-01

    Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

  17. Sliding pressure control valve for pneumatic hammer drill

    SciTech Connect (OSTI)

    Polsky, Yarom

    2011-08-30

    A pneumatic device control apparatus and method comprising a ported valve slidably fitted over a feed tube of the pneumatic device, and using a compliant biasing device to constrain motion of the valve to provide asymmetric timing for extended pressurization of a power chamber and reduced pressurization of a return chamber of the pneumatic device. The pneumatic device can be a pneumatic hammer drill.

  18. DOE Lab Receives Award for Work on Drilling Technology

    Broader source: Energy.gov [DOE]

    On May 3, 2013 the Department of Energy’s National Energy Technology Laboratory (NETL) received an award for its role in a joint project that helped develop what is now Schlumberger’s Slider product line. The Lab was recognized for the project's contributions to directional drilling.

  19. Method and apparatus for jet-assisted drilling or cutting

    DOE Patents [OSTI]

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  20. Method and apparatus for jet-assisted drilling or cutting

    DOE Patents [OSTI]

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  1. Geology of Ziliujing gas field - The gas field developed earliest in the world

    SciTech Connect (OSTI)

    Ding, Chuanbai )

    1991-03-01

    Ziliujing gas field, located in Zigong municipality, Sichuan, is an asymmetric anticline, and well depth is generally less than 1,300 m. There are eight gas- and brine-producing intervals. Tc-3 of the Lower Triassic is the main gas-producing horizon, which is a carbonate with a combination of fracture and intergranular porosities. As early as 1,500 years ago, the production of brine and natural gas was started; over 13,000 wells were drilled of which over 1,000 wells were gas wells. The total area of different producing zones is about 22 km{sup 2}. The distribution and production of natural gas are controlled by structural faults. The gas sources supplied are beyond the limit of the structure. Tc-3 reservoir is a typical fissured reservoir, and most of the wells have the characteristics of (1) high initial production rate; (2) rapid depletion; and (3) long producing life. Owing to the favorable geological conditions; the great number of wells; outstanding ancient technologies in drilling, production, and transportation; comprehensive utilization; and very long production history, tremendous success is achieved in the development of gas fields. The total cumulative gas production by the end of 1985 was 33 billion cubic meters in which 17.2 billion cubic meters were contributed by Tc-3 reservoir; maximum gas and brine recoveries have been achieve. So far the gas reservoirs have not been depleted and new discoveries have been found in recent years. The brilliant achievements of the ancestors remain.

  2. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  3. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect (OSTI)

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  4. NMAC 19.14.21 Geothermal Power Drilling Permit | Open Energy...

    Open Energy Info (EERE)

    1 Geothermal Power Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.21 Geothermal Power Drilling...

  5. WAC 332-17 Geothermal Drilling Rules and Regulations | Open Energy...

    Open Energy Info (EERE)

    17 Geothermal Drilling Rules and Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 332-17 Geothermal Drilling...

  6. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. File:05-FD-b - DrillingApplicationProcess.pdf | Open Energy Informatio...

    Open Energy Info (EERE)

    5-FD-b - DrillingApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-b - DrillingApplicationProcess.pdf Size of this preview: 463 ...

  10. File:05-FD-a - DrillingPreApplicationProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    -FD-a - DrillingPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-a - DrillingPreApplicationProcess.pdf Size of this preview:...

  11. RRC - Application for Permit to Drill, Recomplete or Re-enter...

    Open Energy Info (EERE)

    Application for Permit to Drill, Recomplete or Re-enter Form W-1 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RRC - Application for Permit to Drill,...

  12. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities. Preliminary results identified few differences at low habitat disturbance levels but highlight the need for continued monitoring with increasing disturbance. file:

  13. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  14. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits

    Broader source: Energy.gov [DOE]

    Fact Sheet About Synthesis, Characterization, and Application of Nanostructured Diamond/Silicon Carbide Composites for Improved Drill Bit Performance

  15. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING Citation Details In-Document Search Title: GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a

  16. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  17. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  18. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    has been out of service since November 14. The pipeline reported that it continues to test the pipeline prior to placing it back into service. The total number of rotary rigs...

  20. DEVELOPMENT OF ADVANCED DRILL COMPONENTS FOR BHA USING MICROWAVE TECHNOLOGY INCORPORATING CARBIDE, DIAMOND COMPOSITES AND FUNCTIONALLY GRADED MATERIALS

    SciTech Connect (OSTI)

    Dinesh Agrawal; Rustum Roy

    2000-11-01

    The main objective of this program was to develop an efficient and economically viable microwave processing technique to process cobalt cemented tungsten carbide with improved properties for drill-bits for advanced drilling operations for oil, gas, geothermal and excavation industries. The program was completed in three years and successfully accomplished all the states goals in the original proposal. In three years of the program, we designed and built several laboratory scale microwave sintering systems for conducting experiments on Tungsten carbide (WC) based composites in controlled atmosphere. The processing conditions were optimized and various properties were measured. The design of the system was then modified to enable it to process large commercial parts of WC/Co and in large quantities. Two high power (3-6 kW) microwave systems of 2.45 GHz were built for multi samples runs in a batch process. Once the process was optimized for best results, the technology was successfully transferred to our industrial partner, Dennis Tool Co. We helped them to built couple of prototype microwave sintering systems for carbide tool manufacturing. It was found that the microwave processed WC/Co tools are not only cost effective but also exhibited much better overall performance than the standard tools. The results of the field tests performed by Dennis Tool Co. showed remarkable advantage and improvement in their overall performance. For example: wear test shows an increase of 20-30%, corrosion test showed much higher resistance to the acid attack, erosion test exhibited about 15% better resistance than standard sinter-HIP parts. This proves the success of microwave technology for WC/Co based drilling tools. While we have successfully transferred the technology to our industrial partner Dennis Tool Co., they have signed an agreement with Valenite, a world leading WC producer of cutting and drilling tools and wear parts, to push aggressively the new microwave technology in to the marketplace.

  1. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    SciTech Connect (OSTI)

    Gordon Tibbitts; Arniz Judzis

    2001-07-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2001 through June 2001. Accomplishments to date include the following: (1) DOE's National Energy Technology Laboratory highlighted the Mud Hammer Project at an exhibit at the Offshore Technology Conference April 30 through May 3. TerraTek assisted NETL personnel with presentation materials appropriate for the project and a demonstration sample of ''hard rock'' drilled in TerraTek's wellbore simulator. (2) TerraTek has completed 13 drilling tests in Carthage Marble and hard Crab Orchard Sandstone with the SDS Digger Tool, Novatek tool, and a conventional rock bit. After some initial mud pump and flow line problems at TerraTek, we completed the testing matrix for the SDS Digger Tool and the Novatek hammer on 27 June 2001. Overall the hammers functioned properly at ''borehole'' pressures up to 3,000 psi with weighted water based mud. The Department of Energy goals to determine hammer benchmark rates of penetration and ability to function at depth are being met. Additionally data on drilling intervals and rates of penetration specific to flow rates, pressure drops, rotary speed, and weights-on-bit have been given to the Industry Partners for detailed analysis. SDS and Novatek have gained considerable experience on the operation of their tools at simulated depth conditions. Some optimization has already started and has been identified as a result of these first tests.

  2. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    SciTech Connect (OSTI)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  3. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect (OSTI)

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  4. Word Pro - S5

    U.S. Energy Information Administration (EIA) Indexed Site

    91 Table 5.1 Crude Oil and Natural Gas Drilling Activity Measurements (Number of Rigs) Rotary Rigs in Operation a Active Well Service Rig Count c By Site By Type Total b Onshore Offshore Crude Oil Natural Gas 1950 Average ........................ NA NA NA NA 2,154 NA 1955 Average ........................ NA NA NA NA 2,686 NA 1960 Average ........................ NA NA NA NA 1,748 NA 1965 Average ........................ NA NA NA NA 1,388 NA 1970 Average ........................ NA NA NA NA 1,028

  5. PETRO-SAFE '91 conference papers: Volume 3 (Drilling and production environment and safety), Volume 4 (Transportation and storage environment and safety) and Volume 5 (Processing and refining environment and safety)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This conference provided a forum for the oil, gas, and petrochemical industries to discuss state of the art knowledge in those fields. The following topics were addressed: drilling and production environment and safety; transportation and storage environment and safety; and processing and refining environment and safety. Separate papers are processed for inclusion in the appropriate data bases.

  6. Composite drill pipe and method for forming same

    DOE Patents [OSTI]

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  7. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M.; Small, James G.

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  8. Drilling jar for use in a downhole network

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; McPherson, James; Pixton, David S.; Briscoe, Michael

    2006-01-31

    Apparatus and methods for integrating transmission cable into the body of selected downhole tools, such as drilling jars, having variable or changing lengths. A wired downhole-drilling tool is disclosed in one embodiment of the invention as including a housing and a mandrel insertable into the housing. A coiled cable is enclosed within the housing and has a first end connected to the housing and a second end connected to the mandrel. The coiled cable is configured to stretch and shorten in accordance with axial movement between the housing and the mandrel. A clamp is used to fix the coiled cable with respect to the housing, the mandrel, or both, to accommodate a change of tension in the coiled cable.

  9. Thrust bearing assembly for a downhole drill motor

    SciTech Connect (OSTI)

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  10. Salton Sea Scientific Drilling Project Archival Reference, Final Draft

    SciTech Connect (OSTI)

    1991-03-13

    This report provides an archival reference to the scientific information and other pertinent documents and materials associated with the Salton Sea Scientific Drilling Project (SSDP). This archiving process ensures that valuable technical data and information obtained during the life of the project can be retrieved, organized and maintained as a historical record for future reference. This paper describes the background of the project and the process used for archiving the materials. [DJE-2005

  11. European Geothermal Drilling Experience-Problem Areas and Case Studies

    SciTech Connect (OSTI)

    Baron, G.; Ungemach, P.

    1981-01-01

    Geothermal drilling has long been restricted in Western Europe to the sole dry steam field of Larderello in Italy. In the last few years, a wider experience is building up as a consequence of intensified exploration and development programs carried out for evaluation and production of both low- and high-enthalpy geothermal resources. A sample of some 40 boreholes indicates the problem areas which are given.

  12. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect (OSTI)

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup 1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  13. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  14. Table 4.9 Uranium Exploration and Development Drilling, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Uranium Exploration and Development Drilling, 1949-2011 Year Exploration 1 Development 2 Total Holes Drilled Footage Drilled Holes Drilled Footage Drilled Holes Drilled Footage Drilled Number Thousand Feet Number Thousand Feet Number Thousand Feet 1949 NA 360 NA 53 NA 413 1950 NA 570 NA 208 NA 778 1951 NA 1,080 NA 348 NA 1,428 1952 NA 1,362 NA 300 NA 1,662 1953 NA 3,648 NA 367 NA 4,015 1954 NA 4,057 NA 553 NA 4,610 1955 NA 5,267 NA 762 NA 6,029 1956 NA 7,287 NA 1,503 NA 8,790 1957 NA 7,352 NA

  15. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  16. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; Jeffrey R. Jean; Hans Neubert; Lee Truong; James T. Heard

    2002-09-29

    This technical report presents the engineering research and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report reiterates the presentation made to DOE/NETL in Morgantown, WV on August 1st, 2002 with the addition of accomplishments made from that time forward until the issue date. The following have been accomplished and are reported in detail herein: {sm_bullet} Specifications for both 5-1/2'' and 1-5/8'' composite drill pipe have been finalized. {sm_bullet} Full scale testing of Short Radius (SR) CDP has been conducted. {sm_bullet} Successful demonstration of metal to composite interface (MCI) connection. {sm_bullet} Preparations for full scale manufacturing of ER/DW CDP have begun. {sm_bullet} Manufacturing facility rearranged to accommodate CDP process flow through plant. {sm_bullet} Arrangements to have the 3 3/8'' CDP used in 4 separate drilling applications in Oman, Oklahoma, and Texas.

  17. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1995-10-24

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. It is prepared in accordance with the Energy Information Administration`s (EIA) legal obligation to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, Section 57(b)(2)). Projected production estimates of U.S. crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects U.S. domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  18. California Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and ... Number of Producing Gas Wells Number of Producing Gas Wells (Summary) California Natural ...

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  20. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  1. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect (OSTI)

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  2. Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines

    SciTech Connect (OSTI)

    Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

    2007-03-01

    Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

  3. Table 4.5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Crude Oil and Natural Gas Exploratory and Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 21,352 3,363 12,597 37,312 66.2 79,428 12,437 43,754 135,619 3,720 3,698 3,473 3,635 1950 23,812 3,439 14,799 42,050 64.8 92,695 13,685 50,977 157,358 3,893 3,979 3,445

  4. Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 1,406 424 7,228 9,058 20.2 5,950 2,409 26,439 34,798 4,232 5,682 3,658 3,842 1950 1,583 431 8,292 10,306 19.5 6,862 2,356 30,957 40,175 4,335 5,466 3,733 3,898 1951 1,763 454 9,539

  5. Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Crude Oil and Natural Gas Development Wells, 1949-2010 Year Wells Drilled Successful Wells Footage Drilled 1 Average Footage Drilled Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Crude Oil 2 Natural Gas 3 Dry Holes 4 Total Number Percent Thousand Feet Feet per Well 1949 19,946 2,939 5,369 28,254 81.0 73,478 10,028 17,315 100,821 3,684 3,412 3,225 3,568 1950 22,229 3,008 6,507 31,744 79.5 85,833 11,329 20,020 117,183 3,861 3,766 3,077 3,691 1951 21,416

  6. Crude Oil and Natural Gas Exploratory and Development Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA...

  7. Crude Oil and Natural Gas Exploratory and Development Wells

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Number) Exploratory and Development NA NA NA NA NA NA 1973-2012 Crude Oil NA NA NA NA NA NA 1973-2012 Natural Gas NA NA NA NA NA NA 1973-2012 Dry Holes NA NA NA...

  8. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  9. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  10. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  11. Montana grizzly bears protest exploratory drilling in wilderness area

    SciTech Connect (OSTI)

    Bieg, J.P.

    1983-04-01

    Grizzly bears require vast areas for their natural ranging habits and thrive best when isolated from humans. The continued encroachment of man, with increased recreation, logging, mining, and energy development, has reduced the bears' natural habitat until it is in danger of extinction. In 1975 Congress recognized the precarious future of the grizzly and listed it as a threatened species under the Endangered Species Act. The Forest Service has indicated that the impact of drilling, along with other uses of wilderness areas, could adversely affect the bears.

  12. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  13. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

    2005-03-18

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

  14. Hoisting and Rigging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ensure the load does not drop suddenly or swing during transportation. 4. Whenever there ... at any time. 10. Not allow the load to swing or roll against support members. 11. Not ...

  15. Hoisting and Rigging

    Energy Savers [EERE]

    ... or standards (e.g., 10 CFR 830, "Nuclear Safety Management") with respect to safety ... underground utilities, clearances to power lines and other structures). 1.3.6 ...

  16. Hoisting and Rigging

    Energy Savers [EERE]

    ... Unusual noises or vibration. e. Loss of operating speed. f. ... 8. Direct operations if an accident or injury occurs. f. ... Aid Radiator Antifreeze & Coolant Cleaners Fan Belts Pumps & ...

  17. Hoisting and Rigging

    Energy Savers [EERE]

    6 MISCELLANEOUS LIFTING DEVICES 16-i This chapter provides requirements for the operation, inspection, testing, and maintenance of miscellaneous lifting devices including portable A frames (sometimes referred to as portable gantries), Truck mounted cranes with a capacity of 1 ton or less not covered in ASME B30.5 (.Mobile and Locomotive Cranes.) and self contained shop cranes as addressed by ASME PALD (.Portable Automotive Lifting Devices) (for latest ASME standards, see

  18. Hoisting and Rigging

    Energy Savers [EERE]

    4 LIFTING PERSONNEL 4-i Chapter 4 Lifting Personnel This chapter specifies the design and inspection requirements for personnel lift platforms as well as the operational requirements for such platforms and appurtenant hoisting equipment. It implements the requirements of ASME B30.23, Personnel Lifting Systems (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). 4.1 GENERAL

  19. Hoisting and Rigging

    Energy Savers [EERE]

    7 OVERHEAD AND GANTRY CRANES 7-i This chapter specifies operation, inspection, maintenance, and testing requirements for the use of overhead and gantry cranes and implements the requirements of ASME B30.2 ["Overhead and Gantry Cranes (Top- Running Bridge, Single or Multiple Girder, Top-Running Trolley Hoist)"], B30.11 ("Monorail Systems and Underhung Cranes"), and B30.17 ["Overhead and Gantry Cranes (Top-Running Bridge, Single Girder, Underhung Hoist")] (for latest

  20. Hoisting and Rigging

    Energy Savers [EERE]

    8 HOISTS 8-i This chapter provides safety standards for inspecting, testing, and operating hoists not permanently mounted on overhead cranes and implements the requirements of ASME B30.11 ("Monorail Systems and Underhung Cranes"), B30.16["Overhead Hoists (Underhung)"], and B30.21 ("Manually Lever Operated Hoists") (for latest ASME standards, see http://catalog.asme.org/home.cfm?Category=CS). 8.1 GENERAL