Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

McCormick, S.H.; Pigott, W.R.

1997-12-30T23:59:59.000Z

2

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, Steve H. (Idaho Falls, ID); Pigott, William R. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

3

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

4

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network [OSTI]

The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics...

Nunn, Andrew Howard

2012-02-14T23:59:59.000Z

5

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

6

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

7

Four rigs refurbished for West Africa drilling  

SciTech Connect (OSTI)

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

8

Drill rig hook  

SciTech Connect (OSTI)

A hook for suspending a pipe string or other load in a well rig, including a tubular outer body supported by a first connector structure which is attachable to a suspending line, a tubular inner body which supports a second connector structure preferably taking the form of a hook, with the inner body being received within the outer body and being yieldingly urged upwardly relative thereto by a resilient unit or assembly located within the inner body, and with a structure within the inner body bearing upwardly against and supporting the resilient assembly and attached to the first connector structure. A cam mechanism between the inner and outer bodies automatically cams the inner body to a predetermined rotary position upon upward movement, with a locking device or devices serving to retain the inner body in fixed rotary position and/or to lock the camming mechanism in a fixed position in a manner determining the rotary setting to which the inner body returns upon upward movement. The mentioned first and/or second connectors may each consist of two parts receivable within one of the tubular bodies and held in operative connecting engagement therewith by a spacer between the two parts. A link suporting member may be formed separately from the load suporting hook, to be detachable therefrom for a repair or replacement.

Zimmermann, A.

1985-02-12T23:59:59.000Z

9

Rotating head for rotary drilling rigs  

SciTech Connect (OSTI)

A rotating head is claimed for a rotary drilling rig which is to be secured to the top of a well pipe having an inner rotating portion with an opening therethrough which permits passage of drill pipe, pipe joints, and Kelly tools; the rotating portion has an annular drive rubber formed integrally with the top portion thereof. A rotating head drive bushing having an opening with a cross-sectional shape generally conforming to the cross-section of the Kelly tool to permit only sliding motion therebetween is provided with helical external ridges which produce a disengagable gripping action with the opening in the drive rubber at the top of the rotating portion of the rotating head. The rotating portion has a conventional stripper rubber at the bottom thereof and is mounted with a double roller bearing to provide low friction motion with respect to the fixed portion of the head. The double roller bearing is lubricated with a viscous lubricating material and paddles are provided between the sets of rollers of the double roller bearing for distributing the viscous lubricating material and in particular propel it onto the upper set of bearings; the upper body portion of the rotating head is readily detachable from the lower sleeve portion which is normally welded to the well conductor pipe.

Adams, J.R.

1983-09-27T23:59:59.000Z

10

Electricity on the rig; part I -- electric applications on drilling and workover rigs  

SciTech Connect (OSTI)

This article points out that not only have electric motors replaced diesel engines and mechanical transmissions, but solid-state equipment is rapidly taking the place of rotary equipment in variable speed drivers and control systems. The SCR (silicon controlled rectifier) type of speed control has replaced other types by a large margin of acceptance on drilling rigs and has begun to be used on workover and service rigs. In most cases, electrical power is generated at the rig site with diesel-AC generators. On mechanically driven rigs, single diesel-generator sets operate to supply power for lighting and electrical motor loads. When high levels of power are required, such as on SCR-powered rigs, multiple generators are operated in electrical-parallel and each contributes to the total power required.

McNair, W.L.

1983-03-01T23:59:59.000Z

11

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect (OSTI)

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

12

Drill Rig Safety Topics of the Presentation  

E-Print Network [OSTI]

;Inspect Cooling System & Fan #12;The Most Injury Related Activity Handling Drill Pipe Tools Casing #12;Automated Loading Arms w/ Radio Remote Controls #12;Automatic Pipe Handling System w/ Tilt Out Top Head #12

13

Odessa fabricator builds rig specifically for geothermal drilling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy. The company recently delivered its first Thermal Single rig, a...

14

Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells  

SciTech Connect (OSTI)

This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

1997-11-01T23:59:59.000Z

15

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network [OSTI]

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

16

A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling  

E-Print Network [OSTI]

A concept for marine shallow drilling Drill test from R/V Håkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

Kristoffersen, Yngve

17

Diverter/bop system and method for a bottom supported offshore drilling rig  

SciTech Connect (OSTI)

This patent describes a system adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for positioning beneath a rotary table of the drilling rig, the system comprising: a fluid flow controller having a controller housing with a lower opening and an upper opening and a vertical flow path therebetween and an outlet passage provided in its housing wall, and at least two bases. A method is described for installing a system adapted for alternative connection as a diverter or a blowout preventer for a bottom supported drilling rig positioned beneath a rotary table of the drilling rig after structural casing has been set in a borehole. The method comprises: positioning a first telescoping spool having a lower end and an upper end below the rotary table, the first spool having a first base disposed at its upper end, the first base having a port disposed in its wall; aligning a fluid flow controller having a controller housing wall outlet passage and adapted for alternative use as a diverter or a blowout preventer so that the controller is substantially vertically aligned between a bore of the rotary table above and the structural casing below; and securing the fluid flow controller beneath the drilling rig rotary table.

Roche, J.R.; Alexander, G.G.

1987-03-03T23:59:59.000Z

18

Developmental test report, assessment of XT-70E percussion drill rig operation in tank farms  

SciTech Connect (OSTI)

The following report documents the testing of the XT-70E percussion drill rig for use in the 241-SX Tank Farm. The test is necessary to support evaluation of the safety and authorization level of the proposed activity of installing up to three new drywells in the 241- SX Tank Farm. The proposed activity plans to install drywells by percussion drilling 7 inch O.D./6 inch I.D. pipe in close proximity of underground storage tanks and associated equipment. The load transmitted from the drill rig`s percussion hammer through the ground to the tank structure and equipment is not known and therefore testing is required to ensure the activity is safe and authorized.

Dougherty, L.F., Westinghouse Hanford

1996-09-10T23:59:59.000Z

19

Semisubmersible rigs attractive for tender-assisted drilling  

SciTech Connect (OSTI)

Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

1994-09-19T23:59:59.000Z

20

Diverter bop system and method for a bottom supported offshore drilling rig  

SciTech Connect (OSTI)

A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, the system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.

Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.

1985-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

42nd Annual Reed rig census  

SciTech Connect (OSTI)

The eleven-year trend of attrition in the US rig fleet slowed significantly this year as only 12 rigs, or less than 1%, left the available fleet. The number of rotary rigs available for drilling in the US now stands at 1,841. but for the 42-year history of the Reed Tool Co. Rotary Rig Census, the 1973 available rig count of 1,767 remains the record low for yet another year. The count of rigs active during the 45-day census period also declined since last year's census. The active count was down 4.5% to 1,221 from 1,279 in 1993. As a consequence, rig utilization fell to 66.3% in 1994, from 69.0% last year. Notably, a strong shift to gas from oil drilling has occurred. Of the 1,221 rigs active in the census period, 540 were drilling for gas on the last well vs. 356 drilling for oil. Compared to last year, this is an increase in gas drilling of 29% and a decrease in oil drilling 22%. (Rigs targeting both oil and gas totaled 325 in 1994.)

Stokes, T.A.; Rodriquez, M.R. (Reed Tool Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

22

44. Annual Reed rig census  

SciTech Connect (OSTI)

Reed Tool Company`s 44th annual rotary rig census found a spirit of increased optimism in the US oil and gas drilling industry. Rig utilization rose to 77% this year, the highest since the boom times of 15 years ago. A combination of a higher number of active rigs and another decline in available units to a historical low, led to this higher-than-average utilization rate. The paper discusses results from the survey.

Stokes, T.A.; Rodriguez, M.R. [Reed Tool Co., Houston, TX (United States)

1996-10-01T23:59:59.000Z

23

Department of Mechanical Engineering Spring 2010 Kenya Water Well Drill Rig Redesign of Engine Drive Train System & Support Tower  

E-Print Network [OSTI]

of Engine Drive Train System & Support Tower Overview The team was presented with the task of redesigning the engine drive train system and support structure for a water drill rig to be used in Kenya. The original engine drive train system was fabricated by a professional machinist and had many intricate components

Demirel, Melik C.

24

Shallow gas well drilling with coiled tubing in the San Juan Basin  

SciTech Connect (OSTI)

Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

1996-12-31T23:59:59.000Z

25

Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology  

SciTech Connect (OSTI)

The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

2006-05-09T23:59:59.000Z

26

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network [OSTI]

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

27

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

28

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

29

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

30

40th annual Reed rig census  

SciTech Connect (OSTI)

This paper reports that declines characterize the 1992 rig census-in the number of available drilling rigs, in the number of active rigs, in rig utilization rate, in the number of rig owners and in industry optimism. The number of rotary rigs available for U.S. drilling fell by 255 units (11.3%) during the past 12 months, an attrition rate almost four times greater than in 1991. But despite the high attrition, only 59.7% of remaining rigs were working during the time the census was taken. Results of the 1992 census bring emphasis to an industry trend that became apparent in early 1991. The major oil companies, and many independents, continued their exodus form the U.S., and the remaining independents, which were hurt by low natural gas prices and unfavorable tax treatment of intangible drilling costs, were not able to pick u the drilling slack. Consequently, the past year has been disastrous for many U.S. drilling contractors, and the outlook for this industry segment remains bleak.

Fitts, R.L.; Stokes, T.A. (Reed Tool Co., Houston, TX (United States))

1992-10-01T23:59:59.000Z

31

39th annual Reed rig census  

SciTech Connect (OSTI)

This paper reports on cutbacks in U.S. exploration and development drilling during the first half of 1991 which squeezed most of the optimism out of the drilling industry. Just how rough the year has been is underscored by the results of this year's rig census. The number of rotary rigs available for U.S. drilling declined by only 69 units (3%) during the past 12 months. But despite those withdrawals from competition, only 66% of the remaining rigs were working at the time the census was taken. Results of the 1991 census contrasted sharply with the stability and optimism that seemed apparent a year ago when 72% of the available rig fleet met the census definition of active. At that time, the mini-boom in horizontal drilling coupled with tax-credit- driven gas drilling led to a relatively high rig utilization rate and suggested that rig supply and demand might be close to an economically acceptable balance. However, it quickly became apparent in early 1991 that industry optimism was unjustified. Horizontal drilling began to drop and the lowest natural gas prices in 12 years triggered rapid declines in gas drilling. Although oil prices have been relatively stable and above $18 per bbl since January 1989, most major operators have concluded that a better return on investment can be had outside the U.S. and have drastically cut their domestic drilling budgets. These factors, combined with softened energy demand from the worldwide recession, further slowed U.S. drilling. The long awaited balance between rig supply and demand has seemingly slipped away. The 1991 Reed rig census describes an industry facing several more rough years. Details of this year's census include: The available U.S. fleet now stands at 2,251 rigs, down by 69 from the 2,320-unit total in 1990, and the lowest since 1976. Rigs meeting the census definition of active numbered 1,485, down 192 (11.4%) from the 1,677 active rigs counted a year earlier.

Crowhurst, M.E.; Fitts, R.L. (Reed Tool Co., Houston, TX (US))

1991-10-01T23:59:59.000Z

32

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by the more than 700 independent drilling contractors throughout the Free World.

Not Available

1984-03-01T23:59:59.000Z

33

International land rig locator  

SciTech Connect (OSTI)

Mechanical specifications, ratings, locations, and status are listed for each of the 5,000 contract rotary drilling rigs operated by more than 700 independent drilling contractors throughout the Free World.

Not Available

1983-09-01T23:59:59.000Z

34

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

35

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

36

New depths with mobile rig  

SciTech Connect (OSTI)

Magee-Poole Drilling Company, a drilling contractor operating out of the south Texas drilling center of Alice, claims it operates the largest mobile drilling rig in the world. That is, it's the only wheel mounted portable rig that drills to 16,000 feet with 4 1/2-inch drill pipe - at least 3000 feet deeper than the previous mobile drilling rig ratings. The unit is designated the Ingersoll-Rand 1500 Series. What's more significant, according to co-owner Don Magee, is that the rig's portability gets the rotary table turning to the right sooner; it drills more footage per year. It rigs up in 1 1/2 days versus 3 to 4 days for a conventional skid type rig normally used at these depths. The unit's compact arrangement, with more components combined into single loads, makes possible its higher mobility. A conventional skid rig might require 25 to 30 truckloads to move the rig components, mud system, fuel and water tank, houses for utilities, storage and crew change, generators, and drill pipe. The new rig moves in anywhere from four to nine loads less. Further, the rig components weigh less without sacrificing durability.

Not Available

1982-03-01T23:59:59.000Z

37

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

38

Evaluation of using cyclocranes to support drilling & production of oil & gas in wetland areas. Sixth quarterly technical progress report, incorporating milestone schedule/status, October 1993--December 1993  

SciTech Connect (OSTI)

This report is a progress report on a planned program falling under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. During this period, task 5, subscale tests, and task 7, environmental impacts, were completed. Work was continued on task 10, technology transfer, and the preparation of the final report as part of task 11.

Eggington, W.J.

1994-04-01T23:59:59.000Z

39

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

40

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

009 "Public Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in Californias

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

42

Comparing rig power transmission systems  

SciTech Connect (OSTI)

Installed power on drilling rigs has increased steadily since the inception of rotary drilling technology as a result of technical advances and the need to penetrate deeper horizons. Higher power levels for the pumps, rotary table and drawworks are also required for drilling deep wells within an economically reasonable period. Power initially available on a rig had been about 35 kW on average, whereas power values on modern rigs drilling ultra-deep wells are on the order of several thousand kW. The installed power values on modern drilling rigs, subdivided with respect to depth range, are shown. After safety, economic factors are of paramount importance to rig operators. Among these, which include low acquisition cost, long service life and ease of maintenance, a particularly decisive factor is high efficiency.

Gutsche, W.; Noevig, T.

1989-04-01T23:59:59.000Z

43

Using Bayesian Network to Develop Drilling Expert Systems  

E-Print Network [OSTI]

in foam UBD ............................................ 82 67 Overall air and gas UBD ........................................................................... 83 68 Rotary and hammer drilling options... .......................................................... 84 69 A list of limits and challenges for air and gas UBD .................................. 85 70 A list of possible gas drilling operations ................................................... 86 71 A list of possible rig equipment...

Alyami, Abdullah

2012-10-19T23:59:59.000Z

44

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

45

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks  

E-Print Network [OSTI]

As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semi-analytical model...

Khabibullin, Tagir R.

2010-10-12T23:59:59.000Z

46

Natural Gas Discovery and Development Impacts on Rio Vista and Its Community  

E-Print Network [OSTI]

Modern Rotary Drilling Rig.Equipment Used on Modern Rotary Drilling Rig 142 Figure A2.Used on Modern Rotary Drilling Rig Source: California

Gbedema, Tometi Koku

2006-01-01T23:59:59.000Z

47

Design of a diesel exhaust-gas purification system for inert-gas drilling  

SciTech Connect (OSTI)

To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

Caskey, B.C.

1982-01-01T23:59:59.000Z

48

X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin  

E-Print Network [OSTI]

International Conference of Gas Hydrates, Yokohama, Japan.Prospectus, Drilling Gas Hydrates On Hydrate Ridge, CascadiaLeg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia

Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

2002-01-01T23:59:59.000Z

49

Design and Analysis of a Test Rig for Modeling the Bit/Formation Interface in Petroleum Drilling Applications  

E-Print Network [OSTI]

resources as efficiently, and as safely, as possible. The research presented here focuses on minimizing vibrations of the drill string near the bottom-hole assembly (BHA) by identifying the cause of external forcing on the drillstring in vertical...

Wilson, Joshua Kyle

2013-04-11T23:59:59.000Z

50

34th annual reed rotary rig census  

SciTech Connect (OSTI)

This article reports that the number of rigs active according to the 1986 census is 1052, which represents a decline of 1573 rigs from 1985 figures. This 60 percent decrease is the largest decline of active rigs in the 34-year history of the census. The 1986 census takers found 3993 rigs are available with the capacity to drill deeper than 3000 ft. The count has thus declined by 416 rigs (9 percent) from the 1985 total of 4409. Rig availability declined for the fourth consecutive year following nine straight years of fleet expansion (1974-1982). During the past four years, 1651 rigs have been removed from the drilling fleet representing a 29 percent decline from the record high number of rigs available in 1982. The 1986 decline in the available U.S. fleet is considerably less than what many industry observers had been anticipating. A larger decrease in the rig fleet has not been realized for a number of reasons.

Hutchinson, D.L.; Pastusek, P.E.

1986-10-01T23:59:59.000Z

51

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

52

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 Safety first: Oil rigs off the north west shelf will be studied for  

E-Print Network [OSTI]

www.myresources.com.au OIL & GAS BULLETIN VOL. 15, NO. 11 PAGE 9 NEWS Safety first: Oil rigs off that as times and trends change, tight gas and shale gas is being more and more considered as a potentially prices rise, and a shift from coal to gas energy sources is experienced, tight gas and shale gas is now

53

Argentine drilling equipment to go on auction block  

SciTech Connect (OSTI)

Yacimientos Petroliferos Fiscales (YPF) is preparing to sell all state owned drilling rigs and related assets as part of a plan to privatize Argnetina's oil and gas industry. YPF expects to offer the equipment to private companies by summer in a sealed bid auction in Buenos Aires. More than 30 mostly late model U.S. and Romanian rigs rated to 1,800-7,000 m will be included in the sale. Drilling contracts covering all major Argentina exploration areas will be offered with many of the rigs being sold. This paper reports that the YPF sale will include well completion units, drill pipe and collars, large equipment yards, shops, and warehouses, and possibly the largest inventory of fishing tools in South America, says a company helping to organize the sale. YPF will set up a data room in Buenos Aires to provide information about drilling, conditions, rigs and equipment, and other assets.

Not Available

1992-04-27T23:59:59.000Z

54

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

55

The Ecological Society of America www.frontiersinecology.org Natural gas drilling has dramatically expanded with  

E-Print Network [OSTI]

of new gas wells and the use of modern drilling and extraction methods have now been identified to surface waters. Improved drilling and extraction technology used to access low per- meability natural gas503 © The Ecological Society of America www.frontiersinecology.org Natural gas drilling has

Entrekin, Sally

56

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993  

SciTech Connect (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

Eggington, W.J.

1993-09-01T23:59:59.000Z

57

Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993  

SciTech Connect (OSTI)

The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

Eggington, W.J.

1993-12-31T23:59:59.000Z

58

45th annual Reed rig census  

SciTech Connect (OSTI)

Since 1983, Reed Tool Co.`s annual rotary rig census has reported 14 consecutive annual reductions in the U.S. rig fleet. This year, the downward trend has reversed and more rigs have been added to the available fleet than have left. Robust drilling activity has also spurred higher rig utilization in 1997. Utilization climbed to 86.9% this year, more than ten percentage points higher than a year ago and the highest since 1981. Data and trends are discussed.

Stokes, T.A.; Rodriguez, M.R. [Reed Tool Co., Houston, TX (United States)

1997-10-01T23:59:59.000Z

59

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form267,273Jun-14

60

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network [OSTI]

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

Wang, Z. Jane

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas investigation for laser drilling Matthieu Schneidera), Laurent Berthe, Rmy Fabbro, Maryse Muller, and Mariette Nivard  

E-Print Network [OSTI]

Gas investigation for laser drilling Matthieu Schneidera), Laurent Berthe, Rémy Fabbro, Maryse L'Hôpital 75013 Paris, France This article deals with the gas effect on percussion laser drilling and facilitates the deposition of metallic liquid around the front surface holes. Key words: laser drilling

Paris-Sud XI, Université de

62

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

63

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

64

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

65

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

66

36th annual Reed rig census  

SciTech Connect (OSTI)

For the sixth straight year, the number of rigs available in the U.S. declined. Five hundred and seventy-nine rotary rigs dropped out of drilling industry competition during the past 12 months as attrition forced rig supply closer toward balance with demand. Significant highlights of this year's census are: The U.S. rig fleet now stands at 2,752 drilling rigs, a 17.4% reduction from the census count in 1987. This is the largest percentage decline and the third largest absolute decline in available rigs in census history; The 1988 census active count was 1,532 rigs, up 10% over 1987; The 1988 census utilization rate was 55.7%, up from the 41.7% reported last year and a 110% improvement over the all-time low of 26.3% in 1986; Every region in the country reported a reduction in total available rigs. Each region also reported an increase in the active ring count with the exception of Ark-La-Tex; California had the highest utilization rate in the census (63.9%), and all regions reported a utilization rate greater than 50% with the exception of Ark-La-Tex, which reported a 45.5% rate; The number of rig owners declined 12% from 691 to 608. The decline in available rigs would have been greater, but owners brought back 226 rigs that had been dropped from previous census tabulations.

Fitts, R.L.; Crowhurst, M.E. (Reed Tool Co., Houston, TX (US))

1988-10-01T23:59:59.000Z

67

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

68

Drilling/producing depths; Two records and a revision  

SciTech Connect (OSTI)

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available

1992-02-01T23:59:59.000Z

69

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

70

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

71

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations  

E-Print Network [OSTI]

Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations fracturing of wells during oil and gas (O&G) exploration consumes large volumes of fresh water and generates fracturing of oil and gas (O&G) wells are becoming of greater concern in the United States and around

72

Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test  

SciTech Connect (OSTI)

The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

Schweitzer, J. K.; Smith, J. D.

1981-03-01T23:59:59.000Z

73

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

74

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

75

Report of the Offset Drilling Workshop Ocean Drilling Program  

E-Print Network [OSTI]

Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

76

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

77

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

78

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million CubicTotal(Billion

79

U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (MillionElements) Decade

80

Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling  

E-Print Network [OSTI]

Reactive Imbibition of WC-Co Substrate for PDC Cutters Used in Oil and Gas and Mining Drilling O Abstract Cemented carbides are used in rock drilling for mining tools and wear resistant parts the service life of drilling tools. A continuous composition gradient on several millimetres is generated

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Public Heath Implications of Unconventional Gas Drilling For presentation to the  

E-Print Network [OSTI]

is hearing from industry, and from the government, that exciting new technology permits obtaining gas from1 The Public Heath Implications of Unconventional Gas Drilling For presentation to the Energy and Environment Subcommittee, Committee on Science, Space, and Technology Feb 1, 2012 Bernard D. Goldstein, MD

Jiang, Huiqiang

82

Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment  

SciTech Connect (OSTI)

The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

Dosch, M.W.; Hodgson, S.F.

1981-01-01T23:59:59.000Z

83

Rig activity; 1991 is now the worst year on record  

SciTech Connect (OSTI)

This paper reports that U.S. rotary oil well drilling rig activity reached year-end levels above 1,100 rigs and averaged over 1,000 in 1990, the first increase since 1984. In 1991, however, operating rigs dropped once again, this time to an all time recorded low and once again, most forecasters erred on the high side. Rotary rigs running in 1991 averaged 862.8, a 14.4% drop below the 1990 activity level of 1007.8 rigs. The rig count, began at 1,068 in January, but fell steadily for the remainder of the year. A brief upturn at mid-year failed to hold up and the year-end increases in drilling we had come to expect since 1986 never materialized.

Not Available

1992-02-01T23:59:59.000Z

84

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies  

E-Print Network [OSTI]

DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are used at a rig, they are transported to the closest repair and maintenance (MTC) ...

Rahim, Ryan

2010-01-01T23:59:59.000Z

85

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

86

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011. References to popular press and advocacy groups, both of which are numerous and described in detail elsewhere of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners

Manning, Sturt

87

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network [OSTI]

information on the history of Mars. To access the hydrosphere some device must be used to penetrate the surface to depths of 3-5 kilometers. On Earth these depths are routinely achieved in petroleum and natural gas applications by drilling rigs. By far... the most common type of drilling employed on Earth is rotary drilling. Rotary drilling involves the uses of a rotating drill bit, attached to the surface by a long string of steel pipe, that grinds or cuts the rock, and forms a hole in the formation...

McConnell, Joshua B

2000-01-01T23:59:59.000Z

88

Early gas detection system for a drill stem test  

SciTech Connect (OSTI)

A method for testing earth formations informs the operator of the density of the formation fluid being produced before it reaches the surface. In the method, a bypass sub is secured to the drill string. The bypass sub has a bore for receiving a wireline tool that has sensing instruments. The wireline tool also has arms that will shift a sleeve to open and close the bypass sub. The wireline tool has a density measuring device for measuring the density of the formation fluid and providing a concurrent surface indication. A reversing valve is located above the bypass sub and is of a type that provides a port for reverse circulation while the wireline tool is still downhole. Preferably, the reversing valve is shifted by the wireline tool to the open position.

Rankin, E.E.

1983-07-12T23:59:59.000Z

89

Rig activity; 1989 was the worst year on record  

SciTech Connect (OSTI)

This article discusses the quantity of oil rotary rigs running in the United States during 1989. Rotary rigs running in 1989 averaged 870, down 7.1% from 1988 and arguably the worst performance since anyone bothered to count. A quick check into dusty historical records reveals that in 1942 the rotary rig count averaged 761 (this was the result of a deliberate government policy of scaling back drilling). However, the number is misleading, because in the early 1940s cable-tool rigs were around 40% to 45% of the total operating at any given time.

Not Available

1990-02-01T23:59:59.000Z

90

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

91

W. Canada boom to outshine second half U. S. drilling rise  

SciTech Connect (OSTI)

Drilling in the US will pick up slightly during second half 1994, but the first half to second half increase proportionally will not be as large as in Canada. Operators appear likely to drill nearly half as many wells this year in western Canada as they will drill in the US. Oil and Gas Journal estimates that drilling and completion spending will total $9.511 billion in the US this year, up about one third of 1% from spending in 1993. This steady investment is forecast despite a 2.3% drop in expected wellhead revenue to $72.53 billion. Highlights to OGJ's midyear drilling forecast for 1994 include: operators will drill 24,705 wells, compared with the 26,840 OGJ estimated in its early year forecast before the slump in crude oil prices; the active rotary rig count will average 810 rigs, 7% higher than in 1993; operators will drill about 3,684 wildcats, down from the 4,170 that OGJ predicted in January; the surveyed group of major operators will drill 3,091 wells in the US, including 246 exploratory wells; and drilling in western Canada will total a year record 11,531 wells, dwarfing the 4,654 wells drilled in 1992.

Petzet, G.A.; Beck, R.J.

1994-07-25T23:59:59.000Z

92

Hoisting & Rigging Lift Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 3 of 3 Guidelines for Generating a Rigging Sketch The lift plan required a rigging sketch or...

93

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

94

Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota  

SciTech Connect (OSTI)

Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

Murphy, E.C.; Kehew, A.E.

1984-01-01T23:59:59.000Z

95

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

96

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

97

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect (OSTI)

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

98

Becker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 174B  

E-Print Network [OSTI]

(drill-pipe measurement from rig floor, mbrf): 4457.1 Total depth (drill-pipe measurement from rig floor, mbrf): 4526.6 Distance between rig floor and sea level (m): 11.6 Water depth (drill-pipe measurement Program (ODP) Leg 45, and the sediments at the site were not recov- ered well with the rotary core barrel

99

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539PetroleumNatural Gas Usage Form 2003Costs of

100

Costs of Crude Oil and Natural Gas Wells Drilled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCosts of Crude Oil and Natural Gas

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

102

Type A Accident Investigation of the June 21, 2001, Drilling...  

Office of Environmental Management (EM)

A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21,...

103

New ultra-deepwater rig with dual rotaries will reduce costs  

SciTech Connect (OSTI)

The Discoverer Enterprise, a next generation, ultra-deepwater drill ship with a dual rotary system, will decrease drilling and completion costs by reducing bottom hole assembly (BHA) and tubular preparation time. Transocean Offshore received a contract from Amoco Corp. to build the ultra-deep floating rig and is scheduled to spud its first well in July 1998. It will generally work in water deeper than 6,000 ft. The rig design involves a new approach that addresses the overall well-construction process and equipment required to decrease significantly deepwater drilling time. The Discoverer is the first ultra-deepwater rig designed specifically for handling subsea completions and extended well tests. The paper discusses increased deepwater rig demand, rig construction costs, drillship design, well construction, development drilling, and cost justification.

Cole, J.C.; Herrmann, R.P.; Scott, R.J. [Transocean Offshore Inc., Houston, TX (United States); Shaughnessy, J.M. [Amoco Corp., Houston, TX (United States)

1997-05-26T23:59:59.000Z

104

Hoisting & Rigging Assessment Form  

Broader source: Energy.gov [DOE]

Assess the institutional and department/division hoisting and rigging (including forklift, overhead cranes small hoists, and mobile cranes) requirements, policies, procedures, and work practices...

105

Advanced Mud System for Microhole Coiled Tubing Drilling  

SciTech Connect (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

106

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

107

The Shorthorn: Casey Crane Robert Arrowood, Carrizo Oil and Gas, Inc. representative, takes local homeowners' questions about on-campus natural gas drilling in an Arlington office complex Tuesday.  

E-Print Network [OSTI]

homeowners' questions about on-campus natural gas drilling in an Arlington office complex Tuesday. Jenna that plans to drill on university property. Carrizo Oil and Gas, Inc. recently signed a one-year lease with the university and called the meeting to alleviate con- cerns about the drilling. They also strived to get

Chiao, Jung-Chih

108

Method and apparatus for balancing discharge fluid flow in drilling mud treatment units  

SciTech Connect (OSTI)

A method of controlling fluid flow in the drilling mud treatment units of an oil/gas well drilling rig such as, for example, the shale shaker, desander, desilter, and mud cleaner portions thereof provides floating the inlet of an intake conduit at the supernatent liquid layer of the drilling rig reserve pit and providing a common distributor head for routing the supernatent liquid to the various solid control units. A pump is connected to the intake conduit and the header at the intake and discharge respectively. The pump transmits the reserve pit supernatent from the reserve pit to the header by pumping. There is provided one or more branch lines affixed to the header each discharging respectively into the drain of a drilling mud treatment unit associated with the drilling rig with the flow of reserve pit supernatent liquid keeping the various drains open. The drains are positioned to discharge back into the reserve pit. The method saves the use of fresh water for the purpose of keeping drains open by the use of the supernatent liquid.

Gay, C.J.

1983-03-29T23:59:59.000Z

109

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

110

Advanced Hot Section Materials and Coatings Test Rig  

SciTech Connect (OSTI)

Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

Dan Davis

2006-09-30T23:59:59.000Z

111

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

112

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

113

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

114

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

SciTech Connect (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

115

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect (OSTI)

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

116

Design of a bicycle rig  

E-Print Network [OSTI]

A design of a bicycle (bike) rig was conducted. This bike rig is designed to be used for aerodynamics measurement testing of bicycles, cyclists and cycling related items in a wind tunnel. This paper discusses the design ...

Racz, Rastislav

2010-01-01T23:59:59.000Z

117

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

SciTech Connect (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

118

Hoisting & Rigging ISMS Assessment Form  

Broader source: Energy.gov (indexed) [DOE]

that provide a foundation for effectively integrating safety into hoisting and rigging operations. Conduct interviews with managerssupervisors and workers to determine their...

119

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

120

rig_specs.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfryRIG SPECIFICATIONS R

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and  

E-Print Network [OSTI]

used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

Boyer, Elizabeth W.

122

Model methodology and data description of the Production of Onshore Lower 48 Oil and Gas model  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower 48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. Natural gas is modeled by gas category, generally conforming to categories defined by the Natural Gas Policy Act (NGPA) of 1978, as well as a category representing gas priced by way of a spot market (referred to as ''spot'' gas). A linear program is used to select developmental drilling activities for conventional oil and gas and exploratory drilling activities for deep gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using exogenously specified price paths for oil and gas, net present values are computed for fixed amounts of drilling activity for oil and gas development and deep gas exploration in each of six onshore regions. Through maximizing total net present value, the linear program provides forecasts of drilling activities, reserve additions, and production. Oil and shallow gas exploratory drilling activities are forecast on the basis of econometrically derived equations, which are dependent on specified price paths for the two fuels. 10 refs., 3 figs., 10 tabs.

Not Available

1988-09-01T23:59:59.000Z

123

Hoisting and Rigging (Formerly Hoisting and Rigging Manual)  

SciTech Connect (OSTI)

This standard is intended as a reference document to be used by supervisors, line managers, safety personnel, equipment operators, and any other personnel responsible for safety of hoisting and rigging operations at DOE sites. It quotes or paraphrases the US OSHA and ANSI requirements. It also encompasses, under one cover,hoisting and rigging requirements, codes, standards, and regulations, eliminating the need to maintain extensive (and often incomplete) libraries of hoisting and rigging standards throughout DOE. The standard occasionally goes beyond the minimum general industry standards established by OSHA and ANSI, and also delineates the more stringent requirements necessary to accomplish the complex, diversified, critical, and often hazardous hoisting and rigging work found with the DOE complex.

NONE

1995-06-01T23:59:59.000Z

124

GEOLOGIC ASSESSMENT OF DRILLING, COMPLETION, AND STIMULATION METHODS IN SELECTED GAS SHALE PLAYS WORLDWIDE  

E-Print Network [OSTI]

The United States regularly imports majority of the transportation oil, and several TCF of natural gas annually. Nevertheless, there is very large resource of natural gas in unconventional reservoirs, with over 2,200 TCF of natural gas in just...

Patel, Harsh Jay

2014-04-11T23:59:59.000Z

125

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

SciTech Connect (OSTI)

The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also from a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis

2006-02-01T23:59:59.000Z

126

U.S. drilling: Solid reasons for optimism  

SciTech Connect (OSTI)

One year ago, it was apparent that 1996 would be a better year for drilling in the US, primarily because 1995 performance was lower than expected due to low oil and natural gas prices in mid-year during the peak drilling season. Improving energy prices last year did spur more drilling, and a 2.9% increase to a total 23,560 wells is estimated for 1996. This year should show an even stronger increase, as the US gas market remains attractive and industry`s perception is that crude prices are stabilizing at higher levels, i.e., $20--25, instead of $15--20. The US rotary rig count followed the price up, from a low near 700 in January/February to slightly over 850 in December. To drill the expected wells this year will require an average number at the 850 level. Operators are investing more in their established oil producing areas to take advantage of improved cast flows. This will generate higher activity nearly everywhere. Gas drilling activity will be more geographical, depending on transport availability to surging winter markets and Canadian competition. The US, and world, hot spot is the Gulf of Mexico led by renewed activity on the shelf and an exciting new deepwater play. The expected activity surge has already taxed a service industry that has not yet upgraded its capacity from the long downturn. And spot shortages will temper the activity rise, particularly offshore. The following discussion and six statistical presentations detail these basic concepts and other key factors.

NONE

1997-02-01T23:59:59.000Z

127

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

128

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

2008-07-01T23:59:59.000Z

129

U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWells Drilled (Feet per

130

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

131

Closed loop drilling systems can eliminate reserve pit costs  

SciTech Connect (OSTI)

Closed loop systems have become more dependable and efficient, making drilling without a mud pit an economically attractive alternative in many drilling programs. A closed loop system is defined simply as a mechanical and chemical system which will allow an operator to drill a well without using a reserve pit. A closed loop system includes some solids control equipment (such as the shaker, desander, desilter, and proper centrifuge), which may already be on the rig, and a polymer flocculation unit, which is not part of a conventional rig`s solids control system. This paper reviews the various methods of flocculation and the performance of the different units. It then goes on to describe costs and regulations associated with both methods of handling drilling wastes.

Astrella, L.; Wiemers, R. [Environmental Equipment Corp., Denver, CO (United States)

1996-05-27T23:59:59.000Z

132

A Built for Purpose Micro-Hole Coiled Tubing Rig (MCTR)  

SciTech Connect (OSTI)

This report will serve as the final report on the work performed from the contract period October 2005 thru April 2007. The project 'A Built for Purpose Microhole Coiled Tubing Rig (MCTR)' purpose was to upgrade an existing state-of-the-art Coiled Tubing Drilling Rig to a Microhole Coiled Tubing Rig (MCTR) capable of meeting the specifications and tasks of the Department of Energy. The individual tasks outlined to meet the Department of Energy's specifications are: (1) Concept and development of lubricator and tool deployment system; (2) Concept and development of process control and data acquisition; (3) Concept and development of safety and efficiency improvements; and (4) Final unit integration and testing. The end result of the MCTR upgrade has produced a unit capable of meeting the following requirements: (1) Capable of handling 1-inch through 2-3/8-inch coiled tubing (Currently dressed for 2-3/8-inch coiled tubing and capable of running up to 3-1/2-inch coiled tubing); (2) Capable of drilling and casing surface, intermediate, production and liner hole intervals; (3) Capable of drilling with coiled tubing and has all controls and installation piping for a top drive; (4) Rig is capable of running 7-5/8-inch range 2 casing; and (5) Capable of drilling 5,000 ft true vertical depth (TVD) and 6,000 ft true measured depth (TMD).

Bart Patton

2007-09-30T23:59:59.000Z

133

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

134

Ocean Drilling Program Texas A&M University  

E-Print Network [OSTI]

December 2002 Leg 204 Preliminary Report Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental

135

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

136

Rig-site system allows water reuse, cuts cleanup costs  

SciTech Connect (OSTI)

A new well-site treatment system is described which extends the use of solids control equipment to help solve the common drilling problems of water supply and/or wastewater disposal. The new closed-loop system combines water treatment with more conventional solids handling to continuously create clean water. The results include: re-use of water for rig cleaning, mud, and even cement makeup with no need to eject liquid to the environment; greatly reduced water-input requirements; and division of the conventional wastewater pit into an active treatment operations pit and an overflow reserve pit for emergency storage.

Neidhardt, D.

1985-03-04T23:59:59.000Z

137

E-Print Network 3.0 - advanced seal rig Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 41 Heat Transfer Research, 2010, Vol. 41, No. 6 Turbine Aero-Heat Transfer Studies Summary: , rotating turbine research rigs, realistic gas...

138

Drill pipe corrosion control using an inert drilling fluid  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.; Copass, K.S.

1981-01-01T23:59:59.000Z

139

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

140

Rigged Hilbert spaces for chaotic dynamical systems  

SciTech Connect (OSTI)

We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. {copyright} {ital 1996 American Institute of Physics.}

Suchanecki, Z. [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium)] [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium); [Hugo Steinhaus Center and Institute of Mathematics, Wrocl/aw Technical University, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Antoniou, I. [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium)] [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium); [Theoretische Natuurkunde Free University of Brussels; Tasaki, S. [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels, Belgium and] [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels, Belgium and; [Institute for Fundamental Chemistry 34-4 Takano Nishihiraki-cho Kyoto 606 (Japan); Bandtlow, O.F. [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium)] [International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd. du Triomphe, 1050 Brussels (Belgium); [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB30HE (United Kingdom)

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hoisting and rigging manual: Uncontrolled document  

SciTech Connect (OSTI)

This document is a draft copy of a Hoisting and Rigging Manual for the Department of Energy. The manual is divided into ten chapters. The chapter titles follow: terminology and definitions; operator training and qualification; overhead and gantry cranes; mobile cranes; forklift trucks; hoists; hooks; wire rope, slings, and rigging accessories; construction hoisting and rigging equipment requirements; references.

NONE

1991-05-01T23:59:59.000Z

142

PNNL Hoisting and Rigging Manual  

SciTech Connect (OSTI)

This manual describes the safe and cost effective operation, inspection, maintenance, and repair requirements for cranes, hoists, fork trucks, slings, rigging hardware, and hoisting equipment. It is intended to be a user's guide to requirements, codes, laws, regulations, standards, and practices that apply to Pacific Northwest National Laboratory (PNNL) and its subcontractors.

Haynie, Todd O.; Fullmer, Michael W.

2008-12-29T23:59:59.000Z

143

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

144

Los Alamos computer simulation improves offshore drill rig safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund Las Conchas recovery challenge fundCatalyst

145

Odessa fabricator builds rig specifically for geothermal drilling |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober XX, 2009 OctoberDepartment

146

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

147

Production of Onshore Lower-48 Oil and Gas-model methodology and data description. [PROLOG  

SciTech Connect (OSTI)

This report documents the methodology and data used in the Production of Onshore Lower-48 Oil and Gas (PROLOG) model. The model forecasts annual oil and natural gas production on a regional basis. A linear program is used to select drilling activities for conventional oil and gas on the basis of their economic merit, subject to constraints on available rotary rigs and constraints based on historical drilling patterns. Using an exogenously specified price path, net present values are computed for fixed amounts of drilling activity for oil and gas, and for exploration and development in each of six onshore regions. Forecasts of drilling for enhanced gas recovery (EGR) are exogenously determined, and this drilling is included when considering the constraints on drilling rigs. The report is organized as follows. Chapter 2 is a general overview of the model, describing the major characteristics of the methodology and the logical interaction of the various modules. Chapter 3 specifies the structure of the linear program including the equations for the objective function and the constraints. The details of the methodology used to model exploratory, developmental, and deep gas drilling are presented in Chapters 4-6, respectively. Chapter 7 presents a discussion of the economic evaluation which takes place in each discounted cash flow calculation performed by the model. Cost equations are presented, and various user-specified options as to how to incorporate these costs are discussed. Methodological details and equations used to model finding rates and revisions are given in Chapter 8. Possible areas of future enhancements to the PROLOG model are presented in Chapter 9.

Carlson, M.; Kurator, W.; Mariner-Volpe, B.; O'Neill, R.; Trapmann, W.

1982-06-01T23:59:59.000Z

148

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

149

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

150

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List This list is in no way exhaustive. Rather, it attempts to provide a set of primary references that offer key pieces of  

E-Print Network [OSTI]

development Impact Assessment of Natural Gas Production in the New York City Water Supply Watershed (2009). NYCDEP http://home2.nyc.gov/html/dep/html/news/natural_gas_drilling.shtml Review of water related and infiltration events Short Scholarly Features Natural Gas Plays in the Marcellus Shale: Challenges & Potential

Wang, Z. Jane

151

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

152

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

153

Deep gas plays are persuading companies like Getty and Mesa petroleum to invest in lease acquisitions  

SciTech Connect (OSTI)

Much of the big money being spent in the Permian Basin may be going to elaborate tertiary projects for improved oil recovery, but the deep natural gas reserves in the Delaware Basin continue to draw the big drilling and leasing dollars. According to the petroleum information's Rotary Report of late April 1981, Texas Railroad Commission district No. 8 in west Texas had 148 rigs running. Of those, 60 were in a 4-county area of Loving, Pecos, Ward, and Reeves Counties. Thirty-four of those rigs in that area were drilling to objectives below 15,000 ft. In the March University Lands Lease Auction, high dollars were directed to portions of west Texas that include the Delaware Basin.

Mickey, V.

1981-06-01T23:59:59.000Z

154

Scheduling Workover Rigs for Onshore Oil Production  

E-Print Network [OSTI]

Scheduling Workover Rigs for Onshore Oil. Production. Dario J. Aloise, Daniel Aloise, Caroline T.M. Rocha. Universidade Federal do Rio Grande do Norte,.

2003-06-23T23:59:59.000Z

155

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This study details each aspect of the operation - how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbodrilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

156

Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

1990-06-01T23:59:59.000Z

157

Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas  

SciTech Connect (OSTI)

The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

1994-10-01T23:59:59.000Z

158

Comprehensive Ocean Drilling  

E-Print Network [OSTI]

Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

159

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

160

Big-hole drilling - the state of the art  

SciTech Connect (OSTI)

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A leading index of drilling activity: Update and improvements  

SciTech Connect (OSTI)

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

162

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

163

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

164

Crews conduct in-water geotechnical drilling near SR 520 in Seattle August 2012 FOR MORE INFORMATION  

E-Print Network [OSTI]

necessary approvals prior to conducting the work. WSDOT is observing best management practices to avoidCrews conduct in-water geotechnical drilling near SR 520 in Seattle August 2012 FOR MORE as they design foundations for the new bridges. A small crew will use a drill rig mounted on a barge to complete

Otis, Brian

165

Subterranean drilling and in situ treatment of wastes using a contamination control system and methods relating thereto  

DOE Patents [OSTI]

Systems and methods relating to subterranean drilling while maintaining containment of any contaminants released during the drilling. A thrust block installed over a zone of interest provides an overflow space for retaining any contaminants and excess sealant returns. Negative air pressure may be maintained in the overflow space by a ventilation system. Access ports in the thrust block seal the overflow space from the surrounding environment with a membrane seal. A flexible sack seal in the access port may be connected to a drill shroud prior to drilling, providing containment during drilling after the drill bit penetrates the membrane seal. The drill shroud may be adapted to any industry standard drilling rig and includes a connection conduit for connecting to the flexible sack seal and a flexible enclosure surrounding the drill shaft and of a length to accommodate full extension thereof. Upon withdrawal, the sack seal may be closed off and separated, maintaining containment of the overflow space and the drill shroud.

Jessmore, James J.; Loomis, Guy G.; Pettet, Mark C.; Flyckt, Melissa C.

2004-09-28T23:59:59.000Z

166

Slimhole Drilling, Logging, and Completion Technology - An Update  

SciTech Connect (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

167

Recent developments in drill-stem test interpretation useful to explorationists in tight gas sand plays and in identifying reservoirs with linear geometry  

SciTech Connect (OSTI)

Two major areas of recent development in drill-stem testing are of particular interest to geologists. The first is the use of closed chamber DST's to evaluate the very tight gas sands currently under intense exploration in areas such as Alberta's Deep basin and various intermontane basins in the US Rocky Mountain province. Field examples from the Deep basin of Alberta are shown together with results after completion. Other applications are shown. The second development is the use of DST data to identify reservoirs with linear flow geometry. Geologic situations where flow into the well bore during a test can be considered linear rather than truly radial include long narrow reservoirs with parallel boundaries such as channel sands, zones bounded by parallel sealing-fault boundaries, or naturally fractured reservoirs where an open fracture intersects the well bore.

Reid, H.W.; Davis, T.B.; Alexander, L.G.

1981-05-01T23:59:59.000Z

168

Department of Mechanical Engineering Dresser-Rand 1: LNG Test Rig Movable LSD Vanes  

E-Print Network [OSTI]

(LSD) vanes which can easily be incorporated into current test rigs for centrifugal gas compressors diffuser vane system would increase the efficiency of a centrifugal compressor by about 1%. The sponsor to a radial line from the compressor's center. Objectives To develop a system of movable low solidity diffuser

Demirel, Melik C.

169

Use of an inert drilling fluid to control geothermal drill pipe corrosion  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.

1981-04-01T23:59:59.000Z

170

Mixed Stream Test Rig (MISTER) Startup Report  

SciTech Connect (OSTI)

This report describes the work accomplished to date to design, procure, assemble, authorize, and startup the Mixed Stream Test Rig (MISTER) at the Idaho National Laboratory (INL). It describes the reasons for establishing this capability, physical configuration of the test equipment, operations methodology, initial success, and plans for completing the initial 1,000 hour test.

Charles Park

2011-02-01T23:59:59.000Z

171

Rotating mousehole improves top drive/conventional drilling  

SciTech Connect (OSTI)

Top drive speed and efficiency are limited and have not reached full potential because of operation ``bottlenecks`` during makeup or breakout of triple pipe stands and bottomhole assembly (BHA) change out. Operators and contractors analyzed tools to overcome these limitations and found a potential solution from International Tool Co., a supplier of kelly spinners, in a tool that has improved make/break efficiency and rig floor safety. The Phantom Mouse rotating mousehole assembly was developed to improve drilling efficiency on top-drive-equipped rigs. This new device tightens connections so pipe stands can be set back in derricks. Using the system, crews can quickly and efficiently make up and set back DP stands while drilling ahead with top drives. It can also be used to break out and lay down excess DP from the derrick.

NONE

1995-08-01T23:59:59.000Z

172

Improve drilling efficiency with two nozzles and more weight-on-bit  

SciTech Connect (OSTI)

Field tests evaluated the performance of three-cone insert bits using only two nozzles sized from pressure measurements made at the rig to give maximum hydraulic impact. The tests were conducted on two rigs in California and three in Texas. Test techniques entailed finding a suitable formation that required two identical bits to drill through. The first bit was operated with three nozzles while the subsequent bit was operated with two nozzles. During the test the drilling parameters (such as weight-on-bit, rotary speed, nozzle flow area, pump pressure, circulation rate, and mud weight) were kept as constant as possible. Drilling rates of the two bits were then compared and analyzed with the aid of mud-logs, electric-logs, and drilling recorder information. The depth and the relative position of the formation were also carefully compared with offset well bit records.

Tsai, C.R.; Robinson, L.H.

1983-02-01T23:59:59.000Z

173

Drill string enclosure  

DOE Patents [OSTI]

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

174

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

175

RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

Stephen A. Holditch; Emrys Jones

2002-09-01T23:59:59.000Z

176

Ice Drilling Gallonmilkjugs  

E-Print Network [OSTI]

Ice Drilling Materials · Gallonmilkjugs · Syringes,largeand small · Pitchers · Spraybottles · 13x9? ·Isitbettertosquirtthewaterslowlyorasquicklyaspossible? ·Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? ·Doesthetypeof`drill

Saffman, Mark

177

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2000-01-01T23:59:59.000Z

178

Systems Approach and Quantitative Decision Tools for Technology Selection in Environmentally Friendly Drilling  

E-Print Network [OSTI]

. offsite). Step 6: Construct access road. Step 7: Construct pad (site preparation) including mud reserve pits if applicable. Step 8: Place a rig and other required components. Step 9: Drill the hole. 3.2 Pile Foundation Design Use of a raised...

Yu, Ok Y.

2010-01-16T23:59:59.000Z

179

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network [OSTI]

Energy Hydrothermal Cooling 90% saving over Mechanical cooling Coordination With Offshore OTEC Plant to seep in #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND Not BOTH From the SAME Conduit Investment OFFSHORE Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water DRILLED HYDROTHERMAL

180

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

182

Rigs to reefs: a petroleum industry perspective  

E-Print Network [OSTI]

, by implementing an ocean dumping program in conjunction with a rigs-to-reefs program, and through the development of new technology and methods to reduce transportation costs. Zn addition, the overall cost to industry participation can be reduced through... Environmental Enhancement and Fishing in the Seas (REEFS)" Task Force. This task force was comprised of representatives of federal and state government agencies, the oil and ocean industries, and the commercial and recreational fishing communities. Secretary...

Dubose, William Perry

1988-01-01T23:59:59.000Z

183

Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado  

SciTech Connect (OSTI)

The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

Daniels Jeffrey I.,Chapman Jenny B.

2012-01-01T23:59:59.000Z

184

Open Rigging Through XML: Character Setup Utilizing Metadata and Node Based Editing  

E-Print Network [OSTI]

Manager. . . . . 22 7 The Rig Manager interface for an empty scene. . . . . . . . . . . . . . 23 8 The Rig Manager interface and Rig Edit Mode label on the viewport after clicking the Create Rig button. . . . . . . . . . . . . . . . . . . 24 9 The Rig... and replace them with code that performs the desired actions. For example, the node-based interface can be used to replace the task of authoring rig 6 definition files in a text editor so that the user never needs to learn the rig definition format. 7 3...

Kelly, Logan Scott

2014-02-19T23:59:59.000Z

185

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network [OSTI]

the energy events of the 1970s, in whose wake we are still reeling. Julian Darley has done far more than just, as well as a meticulously researched warning about our next potentially catastrophic energy crisis. Did due to the looming NG crisis? HIGH NOON FOR NATURAL GAS The New Energy Crisis JULIAN DARLEY $18

Keeling, Stephen L.

186

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

Gellman, Andrew J.

187

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

188

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

189

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

190

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

191

An advanced geothermal drilling system: Component options and limitations  

SciTech Connect (OSTI)

The historical developments of drilling technology for geothermal resources have followed traditional incremental trends. The local expertise and rigs were adapted from existing drill rigs used for mining, civil, and water well projects. In areas with hydrocarbon resources, petroleum drilling hardware has been adapted; and in other countries, these units were imported as depth requirements increased and more robust derricks and downhole tools were needed. This ad hoc approach has provided adequate exploration and production wells. In contrast to the incremental improvements in petroleum rotary drilling system components this paper reviews a new, purpose-developed system that would solve the known major problems by design. Performance goals of 4 km (12,000 ft.) depth, 400 C, (750 F) and penetration rates greater than 8 m/h (25 ft/h) were selected. This advanced system was reviewed extensively and estimates of perhaps 30 to 60% cost savings were projected, depending on the assumed effectiveness and performance improvements provided. This paper continues the design and feasibility study and presents some of the component and sub-system details developed thus far.

Rowley, J. [Pajarito Enterprises, Los Alamos, NM (United States); Saito, Seiji [JMC Geothermal Division, Tokyo (Japan); Long, R.C. [Department of Energy, Las Vegas, NV (United States). Yucca Mountain Site Characterization Project

1995-12-31T23:59:59.000Z

192

Solidi cation of a high-Reynolds-number ow in laser percussion drilling  

E-Print Network [OSTI]

Solidi#12;cation of a high-Reynolds-number ow in laser percussion drilling W. R. Smith y and R. M laser percussion drilling. 1 Introduction Laser percussion drilling is used to machine gas turbine with conventional mechanical drills. The term percussion refers to the repeated operation of the laser in short

Eindhoven, Technische Universiteit

193

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

drilling problem Oil and gas reserves are found in distinctreserves are typically buried under many layers of rock that do not contain oil or gas.

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

194

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

195

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

Duran, E.L.; Lundin, R.L.

1988-06-20T23:59:59.000Z

196

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

197

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

198

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-  

E-Print Network [OSTI]

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

199

DOE-STD-1090-2007; Hoisting and Rigging Standard (Formerly Hoisting...  

Broader source: Energy.gov (indexed) [DOE]

5 CONSTRUCTION HOISTING AND RIGGING EQUIPMENT REQUIREMENTS 15-i This chapter outlines the requirements for the safe use of hoisting and rigging equipment on construction projects...

200

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

202

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

SciTech Connect (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

203

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility...  

Broader source: Energy.gov (indexed) [DOE]

on a scheduled basis, certifying that safe operations are in compliance with good conduct of operations. DOE-STD-1090-2001 HoistingRiggingPlan.doc More Documents &...

204

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

205

Remote drill bit loader  

SciTech Connect (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

206

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

207

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

208

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

209

a microsoft white paper Drilling for new Business Value  

E-Print Network [OSTI]

a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

Bernstein, Phil

210

Type A Accident Investigation of the June 21, 2001, Drilling Rig Operator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy Storage Safety ReportsVehicle

211

Loads on Tie-Down Systems for Floating Drilling Rigs during Hurricane Conditions  

E-Print Network [OSTI]

-mooring-riser coupled dynamic analysis tool CHARM3D. Based on the simulated motion and acceleration time series, the inertial and gravity loads on derrick and skid base footing are calculated. In addition to the inertial-gravity loads, wind forces exerted on the derrick...

Bae, Yoon Hyeok

2010-01-16T23:59:59.000Z

212

Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

1998-12-31T23:59:59.000Z

213

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

214

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

215

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

216

Rapid deployment of oil-drilling tools utilizing distribution network and inventory strategies .  

E-Print Network [OSTI]

??DTS is an oil and gas services company that delivers drilling tools to six major customer districts in the continental U.S. After the tools are (more)

Rahim, Ryan

2010-01-01T23:59:59.000Z

217

JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM  

SciTech Connect (OSTI)

Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a result, an excessive amount of this polymer mud flowed across the screen with the beads instead of through the screen. At the completion of the Phase I project, it was concluded that the hollow sphere system would not work effectively with the polymer mud tested. ExxonMobil and Shell engineers proposed that additional sphere separation tests needed to be conducted with weighted oilfield waterbase and oilbase muds to determine if the DGD system would work with these muds. The DOE agreed to provide a $200,000 grant for these tests. The DOE-funded tests, described in this report, showed that the spheres could be pumped with conventional oilfield centrifugal and triplex mud pumps and separated effectively from both oilfield waterbase and oilbase muds using conventional oilfield shale shakers and hydrocyclones. As a result of the success of these DOE tests, this DGD system is ready for full-scale field testing, first on land wells and later in the offshore environment. Maurer Technology Inc. is currently proposing a Phase II project to oil companies to further develop this DGD concept. This project would be funded by four to eight operators. If Phase II tests are successful, Noble plans to commercialize this system with a service company partner that will market and operate the DGD system on Noble's and other drilling contractors' rigs.

William C. Maurer; Colin Ruan; Greg Deskins

2003-05-01T23:59:59.000Z

218

Workover well control. Part 3. Conventional rigs, snubbing units handle a variety of workover jobs  

SciTech Connect (OSTI)

The conventional rig, the most widely used rig for workovers, performs several common functions: tripping in and out of the hole, rotating the work string, and circulating fluid. Its primary component groups are the derrick, hoisting systems, rotary tools, circulating systems, and tubular goods. Rig sizing depends on the job requirements; the typical workover rig is a small-capacity, single unit used for concentric work. A workover rig's most important feature is its portability; compartmentalizing the rig permits transporting it offshore in packages smaller than 8000 lb and allows small cranes to replace derrick barges for loading operations.

Adams, N.

1981-08-31T23:59:59.000Z

219

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration  

E-Print Network [OSTI]

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated of a sufficient number of neurosurgeons [3]. The cranial drilling device described in this paper designed to allow

220

Advanced geothermal foam drilling systems (AFS) -- Phase 1 final report, Part 1  

SciTech Connect (OSTI)

An advanced coiled-tubing foam drilling system is being developed where two concentric strings of coiled tubing are used to convey water and air to the hole bottom where they are mixed together to produce foam for underbalanced drilling. This system has the potential to significantly reduce drilling costs by increasing drilling rates (due to the motor being powered by water), and reducing compressor and nitrogen costs (due to lower gas pressures and volumes).

W. C. Maurer

1999-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

222

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

223

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

224

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

225

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

226

January 2003 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

227

December 2001 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

228

Directional drilling sub  

SciTech Connect (OSTI)

A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

Benoit, L.F.

1980-09-02T23:59:59.000Z

229

Inventory management of steel plates at an oil rig construction company .  

E-Print Network [OSTI]

??Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of (more)

Tan, Chien Yung

2006-01-01T23:59:59.000Z

230

Inventory management of steel plates at an oil rig construction company  

E-Print Network [OSTI]

Keppel Fels produces make-to-order oil exploration rigs for the global market. Each rig requires close to 6000 metric tons of steel in the course of its production. Optimal management of this steel is very critical in this ...

Tan, Chien Yung

2006-01-01T23:59:59.000Z

231

Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

1999-10-01T23:59:59.000Z

232

Hoisting and Rigging: Lift Planning and Control for Ordinary Lifts  

E-Print Network [OSTI]

operator Follow specific instructions/procedures for attachment of the rigging gear to the load. Use. Repeat as necessary until the load is evenly balanced. Follow "Conduct of Operator" requirements2 Stop at the work site and follow the plan Assign a designated leader Ensure all personnel involved in the lift

Wechsler, Risa H.

233

Mixed Stream Test Rig Winter FY-2011 Report  

SciTech Connect (OSTI)

This report describes the data and analysis of the initial testing campaign of the Mixed Stream Test Rig (MISTER) at Idaho National Laboratory (INL). It describes the test specimen selection, physical configuration of the test equipment, operations methodology, and data and analysis of specimens exposed in two environments designed to represent those expected for high temperature steam electrolysis (HTSE).

Chalres Park; Tedd Lister; Kevin DeWall

2011-04-01T23:59:59.000Z

234

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

genoa arrrZgg zo gaamWra gHZ. zo ZaaXm axz:gVm VZXgg DRILL WEhR: ITS EFFECT ON THE DlhEETER GF DRILLED HOLES h Thesis Villian Frederick Reiehert, Jr. hpproved as to style and oontent by: a rman o onn ee ea o par nen hugus t 1955 h.... I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat...

Reichert, William Frederick

1955-01-01T23:59:59.000Z

235

Finite Element Modeling of Drilling Using DEFORM  

E-Print Network [OSTI]

Vijayaraghavan, A. (2005), Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool ABSTRACT DEFORM-

Gardner, Joel D.; Dornfeld, David

2006-01-01T23:59:59.000Z

236

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect (OSTI)

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

237

Air drilling operations improved by percussion-bit/hammer-tool tandem  

SciTech Connect (OSTI)

Contractors and operators air drill whenever possible to improve rate of penetration (ROP). This is done with pneumatic hammer tools (HT's) and various bit types used with standard rotary air rigs. The recent application of a ''flat-bottomed'' percussion bit (FPB) combined with a custom-designed HT originally developed for mining operations has significantly improved air drilling operations in the Arkoma basin. The improvements include a large increase in ROP, improved hole geometry, reduced drillstring stresses, and a substantial reduction in cost per foot. This paper describes (1) a discussion of the engineering design and operation of the FPB/HT tandem, (2) applications and limitations of the tools, (3) guidelines for optimization of performance, and (4) documentation of field performance on Arkoma basin wells to demonstrate the improvements in air drilling operations.

Whiteley, M.C.; England, W.P.

1986-10-01T23:59:59.000Z

238

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

SciTech Connect (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

239

Pioneering work, economic factors provide insights into Russian drilling technology  

SciTech Connect (OSTI)

In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

Gaddy, D.E.

1998-07-06T23:59:59.000Z

240

Combination drilling and skiving tool  

DOE Patents [OSTI]

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc u.s. DEPARTUEN T OF ENERG EERE PROJECT MANAGEMENT CENT ER NEPA DEIERlIINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS...

242

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

243

Well drilling tool  

SciTech Connect (OSTI)

There is disclosed a turbodrill having an axial thrust bearing section which is contained within a lubricant chamber arranged within an annular space between the case and shaft of the turbodrill above the turbine section, and which is defined between means sealing between the shaft and the case which, in use of the turbodrill, are above the drilling fluid circulating therethrough.

Fox, F.K.

1981-04-07T23:59:59.000Z

244

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

245

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

246

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

247

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

248

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

249

Bailer for top head drive rotary well drills  

SciTech Connect (OSTI)

A bailer mounted to the derrick of a top head drive well drilling rig is described. The bailer includes a winch line drum mounted by a bracket to the derrick. A positive displacement hydraulic motor mounts one end of the drum and receives fluid under pressure from the existing hydraulic pressure supply. Valving is provided to allow reverse operation of the motor so equipment can either be raised or lowered relative to the derrick. The hydraulic delivery line to the motor includes a one way restrictor that will allow relatively free passage of fluid to the motor in a driving or lifting mode but will reverse flow of fluid from the motor, thereby affording a braking effect for lowering a load at a selected rate.

Bartholomew, L.

1980-09-23T23:59:59.000Z

250

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

251

Development of a micro-drilling burr-control chart for PCB drilling  

E-Print Network [OSTI]

single- or double-sided). Drilling provides the holes forstandard conditions. Fig. 4. Drilling experimental setup.a standard procedure in PCB drilling). These were clamped

2014-01-01T23:59:59.000Z

252

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents [OSTI]

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

253

The drilling of a horizontal well in a mature oil field  

SciTech Connect (OSTI)

This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

Rougeot, J.E.; Lauterbach, K.A.

1991-01-01T23:59:59.000Z

254

CPS 8.1 Hoisting and Rigging, 2/25/2000  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to examine hoisting and rigging operations to ensure that safe equipment and work practices are being used. The surveillance includes verification that...

255

The rig of the eleventh-century ship at Serce Liman, Turkey  

E-Print Network [OSTI]

was designed for maximum cargo capacity. The hydrostatic properties of this hull were such that it probably would have retained sufficient righting ability and speed with a double-lateen rig. Thus, the proposed two-masted lateen rig for this ship would have... and Recording Procedures Off-Site Recording Procedures Preliminary Hull Reconstruction Hull Remains Ship's Gear: Anchors Ship's Gear: Rigging Elements Ship's Cargo: Date and Nationality of the Vessel 1 3 8 9 11 16 16 19 CHAPTER II. MEDIEVAL RIGS...

Matthews, Sheila Diane

1983-01-01T23:59:59.000Z

256

Apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

257

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHK Technologies Jump to:Rig < MHK

258

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

259

Transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

Hall, David R; Fox, Joe R

2006-05-30T23:59:59.000Z

260

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect (OSTI)

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Drilling Productivity Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9Drilling

262

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with  

E-Print Network [OSTI]

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

Demouchy, Sylvie

263

Report on ignitability testing of flammable gasses in a core sampling drill string  

SciTech Connect (OSTI)

This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

Witwer, K.S., Westinghouse Hanford

1996-12-01T23:59:59.000Z

264

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

265

Crude Oil and Natural Gas Drilling Activity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding

266

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

267

Structural Basis of Viral RNA Recognition by RIG-I-Like Receptors  

E-Print Network [OSTI]

binding surface also abolished RIG-I signaling in cells. In order to compare the RIG-I/RNA interactions with other RLRs, we also determined the dsRNA binding surface of MDA5 CTD by NMR titration studies. MDA5 CTD has a similar binding surface...

Lu, Cheng

2012-10-19T23:59:59.000Z

268

Effects of Combustor Rig Exposure on a Porous-Matrix Oxide Composite  

E-Print Network [OSTI]

Effects of Combustor Rig Exposure on a Porous-Matrix Oxide Composite Michael A. Mattoni, James Y combustor on microstructural stability and property retention of an all-oxide fiber-reinforced ceramic combustor rig under conditions that simulate the pertinent heat loads and combustion environ- ments.11

Zok, Frank

269

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).

Arnis Judzis; Homer Robertson; Alan Black

2006-06-22T23:59:59.000Z

270

The design of a test rig for the identification of dynamic coefficients of a high temperature magnetic bearing  

E-Print Network [OSTI]

This thesis is a report on the research and Micrographics. development to design a test rig for the identification of the dynamic coefficients of a radial magnetic bearing. The test rig development is intended for dynamic coefficient observation...

Rahtika, I Putu Gede Sopan

1998-01-01T23:59:59.000Z

271

Foam drilling simulator  

E-Print Network [OSTI]

, ...............................................................................................................(2.25) where; =b Pressure drop across the bit Pbh = Bottom-hole pressure nn = Nozzle velocity M = Gas molecular weight mg = Mass of gas ml = Mass of liquid Heat Capacity Like any two-phase mixture, heat capacity of foam is the average... weighted heat capacity of each phase. Heat capacity of liquid-phase which is usually water, is a constant known value, however, heat capacity of gas-phase varies with temperature and pressure. Variation of gas specific heat with pressure...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

272

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

273

DOE Project Leads to New Alliance to Promote Low-Impact Drilling  

Broader source: Energy.gov [DOE]

A project supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling.

274

Distribution network modeling and optimization for rapid and cost-effective deployment of oilfield drilling equipment  

E-Print Network [OSTI]

AAA, a large oil and gas field services company, is in the business of providing drilling services to companies that extract and market hydrocarbons. One of the key success factors in this industry is the ability to provide ...

Martchouk, Alexander

2010-01-01T23:59:59.000Z

275

Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion  

E-Print Network [OSTI]

The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low...

Odunowo, Tioluwanimi Oluwagbemiga

2012-07-16T23:59:59.000Z

276

Numerical studies of gas production from several CH4-hydrate zones at the Mallik Site, Mackenzie Delta, Canada  

E-Print Network [OSTI]

JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenziepermafrost- associated gas hydrate accumulation in theTerritories, Canada. A gas hydrate research well was drilled

Moridis, George J.; Collett, Timothy S.; Dallimore, Scott R.; Satoh, Tohru; Hancock, Steven; Weatherill, Brian

2002-01-01T23:59:59.000Z

277

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

278

Evaluation and comparison of occupational noise exposure among workers on offshore and onshore oil well drilling rigs  

E-Print Network [OSTI]

Engineering Department, for the loan of equipment used for th is research. A special gratitude goes to Ing. Jav ier Mendieta, Safety Manager of Petroleos Mexicanos, for his help for the use of PEMEX facilities in my data collection. I would also like... to thank Ing. Ignacio Torres of PEMEX Safety Engineering Division for assisting in the data collection. DEDICATION This thesis is dedicated to my parents, Estela and Humberto, and also to my little sister Kary. CONTENTS I. INTRODUCTION The Problem...

Suarez Garcia, Humberto

1984-01-01T23:59:59.000Z

279

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

280

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 19 Gien N. Foss Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Bradley D. Julson Ocean Drilling Program Texas A&M University 1000 Discovery Drive

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

282

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

283

HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

284

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

285

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

286

INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)  

E-Print Network [OSTI]

INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

287

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

288

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

289

OCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

designed bare rock guide base and use new drilling technology. The drillship JOIDES Resolution is scheduledOCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS BARE ROCK DRILLING IN THE KANE FRACTURE ZONE Drilling Program Texas A & M University College Station, TX 77843-3469

290

Geothermal drill pipe corrosion test plan  

SciTech Connect (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

291

The Study of Drilling and Countersink Technology in Robot Drilling End-effector  

E-Print Network [OSTI]

The Study of Drilling and Countersink Technology in Robot Drilling End-effector Chengkun Wang--Aiming at the drilling verticality in aircraft assembly, this paper presents a design method of a Double- Eccentricdisc by the interaction of two eccentric discs, and make the drill axis coincide with the normal direction of the drilling

292

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

Boyer, Edmond

293

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

294

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

295

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

296

Framework for a comparative environmental assessment of drilling fluids  

SciTech Connect (OSTI)

During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.

Meinhold, A.F.

1998-11-01T23:59:59.000Z

297

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

298

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2008-06-24T23:59:59.000Z

299

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

Varnado, S.G.; Maish, A.B.

1980-01-01T23:59:59.000Z

300

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE/Fossil Energy`s drilling, completion, and stimulation RD&D: A technologies/products overview  

SciTech Connect (OSTI)

An overview of natural gas drilling, completion, and stimulation RD&D sponsored by the US Department of Energy is reported in this paper. Development of high rate-of-penetration drilling systems and underbalanced drilling technologies are detailed among other RD&D activities. The overview serves as a technology transfer medium and is intended to accelerate the deployment of the products and technologies described.

Duda, J.R.; Yost, A.B. II

1995-12-31T23:59:59.000Z

302

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

releases during drilling, and well integrity issues duringand ? Ensuring well structural integrity with subsidence inat nearby wells, seal integrity loss and associated gas

Moridis, G.J.

2011-01-01T23:59:59.000Z

303

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

304

Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control  

E-Print Network [OSTI]

A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

Castro Galnares, Sebastin (Castro Galnares Wright Paz)

2008-01-01T23:59:59.000Z

305

Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities  

E-Print Network [OSTI]

Cytoplasmic viral RNAs with 5? triphosphates (5?ppp) are detected by the RNA helicase RIG-I, initiating downstream signaling and alpha/beta interferon (IFN-?/?) expression that establish an antiviral state. We demonstrate ...

Urzi, Dina

306

U. S. rig count drops below 600, a post-1940 low  

SciTech Connect (OSTI)

This paper reports that the Baker Hughes Inc. count of active U.S. rotary rigs as of June 12 fell to less than 600 the first time since that tally began in 1940. The previous modern record low was set at 610 the previous week. Baker Hughes reported about 1,400 rigs idle in the U.S. last week. Using a different criteria, the Smith International count of U.S. active rigs fell seven units to 653 the week ended June 12, compared with a count of 910 the previous year. Baker Hughes predecessor Hughes Tool Co. began keeping monthly records of active U.S. rigs in January 1940. The lowest monthly count that year was 857. It changed to a weekly count in January 1949. The milestone was met wit calls for relief for the U.S. upstream sector from industry and government officials in Washington.

Not Available

1992-06-22T23:59:59.000Z

307

Design and analysis of a composite flywheel preload loss test rig  

E-Print Network [OSTI]

INTRODUCTION...................................................................................1 1.1 Overview.............................................................................1 1.2 Literature Review..................................................................2 1.3 Objectives and Novel Contributions...................................4 II PLM FLYWHEEL TEST RIG DESIGN................................................. 6 2.1 Design Process...

Preuss, Jason Lee

2004-09-30T23:59:59.000Z

308

Analytical and experimental investigations of a labyrinth seal test rig and damper seals for turbomachinery  

E-Print Network [OSTI]

applications is discussed. The direct damping coefficients of the shaft seals are determined experimentally by processing measured displacement vibration impact response data with an equivalent single degree of freedom model of the cantilever beam test rig...

Shultz, Richard Raymond

1997-01-01T23:59:59.000Z

309

Natural gas monthly, March 1998  

SciTech Connect (OSTI)

The March 1998 edition of the Natural Gas Monthly highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. This report also features an article on the correction of errors in the drilling activity estimates series, and in-depth drilling activity data. 6 figs., 28 tabs.

NONE

1998-03-01T23:59:59.000Z

310

Design, fabrication and testing of a bearing test rig and preliminary studies on oil mist lubrication  

E-Print Network [OSTI]

DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1990 Major Subject: Mechanical Engineering DESIGN, FABRICATION AND TESTING OF A BEARING TEST RIG AND PRELIMINARY STUDIES ON OIL MIST LUBRICATION A Thesis by ABDUS SHAMIM Approved as to style and content by: C...

Shamim, Abdus

1990-01-01T23:59:59.000Z

311

Design of irradiation rig for reactor testing of prototype bolometers for ITER  

SciTech Connect (OSTI)

We describe the design of an experimental rig, which was developed to allow reactor testing at relevant conditions, i.e. vacuum and {approx}400 deg.C temperature, of prototype resistive bolometers, which will be used in ITER to acquire information on the radiated power distribution from the main plasma and in the diverter region. The main feature of the design is that the rig has no active temperature control. (authors)

Gusarov, A.; Huysmans, S. [SCK.CEN Belgian Nucrear Research Center, 2400 Mol (Belgium); Meister, H. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching b. Muenchen (Germany); Hodgson, E. [Euratom/CIEMAT Fusion Association, Avenida Complutense 22, 28040 Madrid (Spain)

2011-07-01T23:59:59.000Z

312

Steerable BHAs drill storage wells with difficult trajectories. [Bottom Hole Assembly  

SciTech Connect (OSTI)

The use of steerable downhole motor assemblies allows greater variation in well bore trajectory for drilling gas and oil storage wells in salt domes in areas with surface site restrictions. With modern directional drilling tools, the cavern wells are drilled vertically, kicked off in an S turn, and then finished with a vertical section. The last 100 m of a cavern well above the last cemented casing shoe must be vertical because of the technical demands of brining and completion. To date, Kavernen Bauund Betriebs-GmbH has successfully drilled and completed three directional cavern boreholes in Germany. These directional drilling techniques have also been used successfully for vertical boreholes with strict deviation limits. The paper describes this technology.

Gomm, H.; Peters, L. (Kavernen Bau- und Betriebs-GmbH, Hannover (Germany))

1993-07-19T23:59:59.000Z

313

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

314

BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE  

E-Print Network [OSTI]

Drilling Costs and Rates . . . . . . . . . . , . .TABLES I. II. III. Costs of Core Drilling Per Meter. . . . .ABSTRACT . . L vi vi vii INTRODUCTION DRILLING . Surface

Kurfurst, P.J.

2011-01-01T23:59:59.000Z

315

Greening PCB Drilling Process: Burr Minimization and Other Strategies  

E-Print Network [OSTI]

of Analytical Model for Drilling Burr Formation in DuctileJ. and Chen, L. , Drilling Burr Formation in Titaniumfor Burr Minimization in Drilling, PhD dissertation, The

Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

2011-01-01T23:59:59.000Z

316

Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments  

SciTech Connect (OSTI)

Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

Hoover, E.R.; Pope, L.E.

1981-09-01T23:59:59.000Z

317

Remote arctic drilling operations in Russia, case history of Ardalin field operations, Timan Pechora Basin  

SciTech Connect (OSTI)

In developing the Ardalin field, the Polar Lights Company merged Russian and western expertise to conduct drilling operations in a hostile and ecologically sensitive arctic tundra environment. The field is located above the Arctic Circle in northern Russia. The nearest Russian road system is over 60km away and the nearest railhead is 240 km from the field. Three Russian rigs were constructed with selected western upgrades, twelve development wells were drilled, and three existing Russian wells were worked over within a 24 month period. Operations were supported with a snow road in the winter season and Russian helicopter in the summer season. All materials for one year`s worth of drilling had to be transported to the field prior to break-up (end of trucking activities on the snow roads). Services and equipment were sourced from both inside and outside of the Commonwealth of Independent States (CIS). Temperatures in winter reached -45{degrees}C. The field is located in one of the most ecologically sensitive areas in the world, and numerous precautions were taken for the protection of the environment. Russian operating philosophies were successfully merged with western practices. This paper will focus on the operational criteria initiated and infrastructure system that evolved to support this project.

Reyna, E.M.; Nicholson, S.; Brady, S.

1996-12-31T23:59:59.000Z

318

Oil and Gas Conservation (South Dakota)  

Broader source: Energy.gov [DOE]

The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and...

319

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

320

OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TECHNICAL PAPER Design and fabrication of microchannel test rig  

E-Print Network [OSTI]

of the ultra-micro wave rotor (UlWR). 1 Introduction Ultra micro gas turbines (UlGT) is expected to be a next

Müller, Norbert

322

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

323

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

324

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference  

E-Print Network [OSTI]

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid and how to free stuck drill strings. IADC Middle East Drilling Conference, Dubai, Nov. 3 - 4, 1998. P

Aamodt, Agnar

325

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS**, Dr. VASILIS  

E-Print Network [OSTI]

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS, antoniadis@dpem.tuc.gr Abstract: Twist drills are geometrically complex tools, which are used in industry and experimental approaches for drilling simulation. The present paper is based on the ground that the increasing

Aristomenis, Antoniadis

326

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database  

E-Print Network [OSTI]

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

327

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

328

The Oil and Gas Journal databook, 1986 edition  

SciTech Connect (OSTI)

This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

Not Available

1986-01-01T23:59:59.000Z

329

Geothermal drilling in Cerro Prieto  

SciTech Connect (OSTI)

To date, 71 goethermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion - the most important aspect for the success of a well - that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300/sup 0/C (572/sup 0/F), it has been necessary to use an organic polymer to stabilize the mud properties.

Dominguez, B.; Sanchez, G.

1981-01-01T23:59:59.000Z

330

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

331

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

332

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

333

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

334

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

335

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

336

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

337

SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

338

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

339

OCEAN DRILLING PROGRAM LEG 100 REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

340

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

drilling in Tapping Automaker Ingenuity to  

E-Print Network [OSTI]

drilling in detroit Tapping Automaker Ingenuity to Build Safe and Efficient Automobiles DAVID paper #12;iiiDrilling in Detroit Figures v Tables vii Acknowledgements xi Executive Summary xiii 1. Actual Motor Vehicle Crash Statistics 97 #12;vDrilling in Detroit Figures 1. US Oil Product Demand 2 2

Kammen, Daniel M.

342

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

343

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

344

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

Purkis, Sam

345

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

346

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

347

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

348

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

349

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

350

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

351

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

Current research and development in the following areas are presented: geothermal roller cone bits, polycrystalline diamond compact bits, a continuous chain drill, drilling fluids test equipment, mud research, inert fluids, foam fluids, lost circulation control, completion technology, and advanced drilling and completion systems. (MHR)

Varnado, S.G.

1980-01-01T23:59:59.000Z

352

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

353

DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS  

E-Print Network [OSTI]

for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

354

Controls and Measurements of KU Engine Test Cells for Biodiesel, SynGas, and Assisted Biodiesel Combustion  

E-Print Network [OSTI]

the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main...

Cecrle, Eric Daniel

2011-04-06T23:59:59.000Z

355

CONSIDERING SHALE GAS EXTRACTION IN NORTH CAROLINA: LESSONS FROM OTHER  

E-Print Network [OSTI]

hearings on the issues of horizontal drilling and hydraulic fracturing for shale gas extraction. 3 Unlike viable in recent years due to advances in horizontal drilling and hydraulic fracturing techniques, which prohibits both horizontal drilling and the injection of waste (including hydraulic fracturing fluids

Jackson, Robert B.

356

Directional drilling and equipment for hot granite wells  

SciTech Connect (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

357

Horizontal well drill-in fluid utilizing alcohol ethoxylate  

SciTech Connect (OSTI)

The drilling of horizontal wells in the last 6 years has significantly improved the economics of oil and gas production from depleted reservoirs or tight sands. This paper illustrates the application of an alcohol ethoxylate into a drill-in fluid designed to minimize formation damage in low permeability sandstones while drilling horizontal sections as long as 1,617 meters (5,306 ft) at depths approaching 6,580 meters (21,600 ft) and to facilitate formation cleanup. The chemistry of alcohol ethoxylates/alkoxylates are described and the more popular names used within the industry will be discussed. Laboratory results are presented which illustrate colloidal phenomena not previously reported with these systems, the routes taken for successful application into a drill-in fluid and how complex these particular colloidal systems are from a physical chemical viewpoint, along with the inevitable learning curve required to fully optimize these systems. Generalized case histories from the UK Southern North Sea will be described, along with field observations which back up the colloidal phenomena seen in the laboratory.

Jachnik, R.P.; Green, P.

1995-11-01T23:59:59.000Z

358

High-temperature directional drilling turbodrill  

SciTech Connect (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

359

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

360

Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California  

SciTech Connect (OSTI)

This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1) proximity to areas where geophysical surveys had been performed, (2) accessibility of the site for drill rig setup, and (3) favorability for obtaining the maximum information possible concerning the geology and the resources. Necessary landowner permission and permits were secured for these sites, and actual drilling began on December 17, 1980. Drilling was terminated on February 4, 1981, with the completion of three holes that ranged in depth from 205 to 885 feet. Use of a relatively new drilling technique called the Dual Tube Method enabled the collection of precise subsurface data of a level of detail never before obtained in the Calistoga area. As a result, a totally new and unexpected picture of the geothermal reservoir conditions there has been obtained, and is outlined in this addendum report.

Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

362

Conformable apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

363

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

364

Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the  

E-Print Network [OSTI]

12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have triggered by horizontal drilling or hydraulic fracturing. noble gas geochemistry | groundwater contamination and hydraulic fracturing have substantially increased hydrocarbon recovery from black shales and other

Jackson, Robert B.

365

Test rig and particulate deposit and cleaning evaluation processes using the same  

DOE Patents [OSTI]

A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Schenectady, NY); Beadie, Douglas Frank (Greer, SC)

2002-01-01T23:59:59.000Z

366

Mode localization results and laboratory demonstration techniques with a multi-pendulum rig  

E-Print Network [OSTI]

. Perturbed system mode shapes, analytical, for R' = 0. 015. 16 Table III. Perturbed system mode shapes, analytical, for R' = 0. 04 (K, = 0. 908 N-m/rad, 1, = 0, 532 m). 17 Table IV. Perturbed system mode shapes, analytical, for R' = 0. 15 (K, = 3. 90 N.... Pendulum rig schematic Figure 2. Detail of pendulum rig. Figure 3. Graphical depiction of mode shapes given in Table I. 10 Figure 4. Depiction of perturbed mode shapes given in Table's II, III, and IV for: (a) Rs=0. 015; (b) R =0. 04; and (c) R =0. 15...

Bollich, Robert Kenneth Gerard

1992-01-01T23:59:59.000Z

367

Filter for a drill string  

DOE Patents [OSTI]

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

368

Potter Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage,Austin, PennsylvaniaPotter Drilling

369

Geologic report on the Sand Wash Drilling Project, Moffat and Routt Counties, Colorado  

SciTech Connect (OSTI)

The Sand Wash Basin Drilling Project comprises twenty-seven (27) drill holes located in Moffat and Routt Counties, northwest Colorado, having an aggregate depth of 26,107.5 feet (7957.6 m). The holes penetrate the Browns Park Formation of Miocene age, which is a tuffaceous continental sandstone deposited in fluvial, eolian, and lacustrine environments. Partly based on project drilling results, uranium potential resource estimates for this formation in the $50/lb U/sub 3/O/sub 8/ forward-cost category have been increased by 34,476 tons U/sub 3/O/sub 8/ (35,036 metric tons). Three areas between Maybell and Craig, Colorado, considered favorable for uranium occurrences were verified as favorable by project drilling, and a fourth favorable area northwest of Maybell has been expanded. In addition, project drilling results indicate two new favorable areas, one north and northwest and one south of Steamboat Springs, Colorado. Anomalous radioactivity was detected in drill holes in all six study areas of the project. The most important factor in concentrating significant amounts of uranium in the target formation appears to be the availability of gaseous or liquid hydrocarbons and/or hydrogen sulfide gas as reductants. Where subjacent formations supply these reductants to the Browns Park Formation, project drilling encountered 0.05 percent to 0.01 percent uranium concentrations. Potential, though unproven, sources of these reductants are believed to underlie parts of all six project study areas.

Carter, T.E.; Wayland, T.E.

1981-09-01T23:59:59.000Z

370

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications  

E-Print Network [OSTI]

Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

Slatton, Clint

371

Innovative approach for restoring coastal wetlands using treated drill cuttings  

SciTech Connect (OSTI)

The leading environmental problem facing coastal Louisiana regions is the loss of wetlands. Oil and gas exploration and production activities have contributed to wetland damage through erosion at numerous sites where canals have been cut through the marsh to access drilling sites. An independent oil and gas producer, working with Southeastern Louisiana University and two oil field service companies, developed a process to stabilize drill cuttings so that they could be used as a substrate to grow wetlands vegetation. The U.S. Department of Energy (DOE) funded a project under which the process would be validated through laboratory studies and field demonstrations. The laboratory studies demonstrated that treated drill cuttings support the growth of wetlands vegetation. However, neither the Army Corps of Engineers (COE) nor the U.S. Environmental Protection Agency (EPA) would grant regulatory approval for afield trial of the process. Argonne National Laboratory was asked to join the project team to try to find alternative mechanisms for gaining regulatory approval. Argonne worked with EPA's Office of Reinvention and learned that EPA's Project XL would be the only regulatory program under which the proposed field trial could be done. One of the main criteria for an acceptable Project XL proposal is to have a formal project sponsor assume the responsibility and liability for the project. Because the proposed project involved access to private land areas, the team felt that an oil and gas company with coastal Louisiana land holdings would need to serve as sponsor. Despite extensive communication with oil and gas companies and industry associations, the project team was unable to find any organization willing to serve as sponsor. In September 1999, the Project XL proposal was withdrawn and the project was canceled.

Veil, J. A.; Hocking, E. K.

1999-11-02T23:59:59.000Z

372

The oil and gas journal databook, 1991 edition  

SciTech Connect (OSTI)

This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

Not Available

1991-01-01T23:59:59.000Z

373

Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test Rig  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2009 Air Products-Entrained Particle Flow Test are causing catalyst plugging. Objectives Air Products requested that a test rig be constructed to entrain the hydrogen reforming facilities and aid Air Products in understanding the plugging problem. Approach

Demirel, Melik C.

374

AbstractThe red snapper (Lutjanus campechanus) is currently under rig  

E-Print Network [OSTI]

653 Abstract­The red snapper (Lutjanus campechanus) is currently under rig orous federal and state of annuli in otolith thin sections have been used to age many species of fish, including red snapper. However, the utility of this method for aging red snapper has been questioned by those who dispute both

375

Department of Mechanical Engineering Spring 2012 LNG Test Rig Movable LSD Vanes  

E-Print Network [OSTI]

Dresser-Rand is a major company within the centrifugal compressor industry. Gases are compressed in multistage centrifugal compressors to reduce the volume up to 400 times. At the outlet of the impeller test rigs to find the optimized angle and use it in the centrifugal compressors they produce

Demirel, Melik C.

376

Oil and gas journal databook, 1987 edition  

SciTech Connect (OSTI)

This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

Not Available

1987-01-01T23:59:59.000Z

377

Introduction to the Ocean Drilling Program JOIDES RESOLUTION  

E-Print Network [OSTI]

Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

378

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2009 Produced by Integrated Ocean Drilling Program

379

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2008 Produced by Integrated Ocean Drilling Program

380

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2012 Produced by Integrated Ocean Drilling Program

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Silica dust control when drilling concrete Page 1 of 2  

E-Print Network [OSTI]

Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

Knowles, David William

382

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2007 Produced by Integrated Ocean Drilling Program

383

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2011 Produced by Integrated Ocean Drilling Program

384

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

385

Loaded transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

2006-02-21T23:59:59.000Z

386

PDM vs. Turbodrill: A drilling comparison  

SciTech Connect (OSTI)

This study was undertaken to investigate and compare the two most prevalent down-hole motor types, Positive-Displacement and Turbodrill. The intent of this comparison was to evaluate the technical and operational performance characteristics and present them in a manner to aid the drilling contractor or drilling engineer in determining the best down-hole motor for a specific drilling application. Each type of drilling tool utilizing either power source possesses unique characteristics which can be tailored to the overall system to optimize the target objective; increase ROP at less cost.

De Lucia, F.; Herbert, P.

1984-09-01T23:59:59.000Z

387

Driltac (Drilling Time and Cost Evaluation)  

SciTech Connect (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

388

Newberry exploratory slimhole: Drilling and testing  

SciTech Connect (OSTI)

During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1997-11-01T23:59:59.000Z

389

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

390

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

391

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

SciTech Connect (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

392

Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluids  

E-Print Network [OSTI]

Designing a fit-for-purpose drilling fluid for high-pressure, high-temperature (HP/HT) operations is one of the greatest technological challenges facing the oil and gas industry today. Typically, a drilling fluid is subjected to increasing...

Ibeh, Chijioke Stanley

2009-05-15T23:59:59.000Z

393

Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site  

SciTech Connect (OSTI)

The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

1999-06-01T23:59:59.000Z

394

U.S. Offshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb MarRevision DecreasesDecade

395

U.S. Onshore Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb MarRevision

396

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million

397

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (MillionElements) Decade

398

U.S. Crude Oil and Natural Gas Active Well Service Rigs in operation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- Analysis of

399

U.S. Crude Oil and Natural Gas Rotary Rigs in Operation (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- Analysis ofElements)

400

U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Natural Gas Rotary Rigs in Operation (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18

402

Geopressured geothermal drilling and completions technology development needs  

SciTech Connect (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

403

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint Oceanographic Institutions, Inc. Executive Director, Ocean Drilling Programs Joint Oceanographic Institutions.................................... 19 3.3.1. Drilling and Science Services

404

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

Lamb, D.W.

2013-01-01T23:59:59.000Z

405

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

406

Failure Mode and Sensitivity Analysis of Gas Lift Valves  

E-Print Network [OSTI]

Gas-lifted oil wells are susceptible to failure through malfunction of gas lift valves. This is a growing concern as offshore wells are drilled thousands of meters below the ocean floor in extreme temperature and pressure ...

Gilbertson, Eric W.

407

Economic analysis of shale gas wells in the United States  

E-Print Network [OSTI]

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

408

Multi-gradient drilling method and system  

DOE Patents [OSTI]

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

409

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

410

OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

411

Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes  

SciTech Connect (OSTI)

This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

Puder, Markus G.; Bryson, Bill; Veil, John A.

2003-03-03T23:59:59.000Z

412

Measurement-While-Drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

413

Communication adapter for use with a drilling component  

DOE Patents [OSTI]

A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Hall; Jr.; H. Tracy (Provo, UT); Bradford, Kline (Orem, UT); Rawle, Michael (Springville, UT)

2007-04-03T23:59:59.000Z

414

Westinghouse GOCO conduct of casualty drills  

SciTech Connect (OSTI)

Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

Ames, C.P.

1996-02-01T23:59:59.000Z

415

Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE  

E-Print Network [OSTI]

is providing Tiger Bullets to two major exploration and production companies, one in the Fayetteville ShaleBUSINESS Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE Advocate staff process to make wood-plastic composites has found a new application in the oil and gas business

416

Development of a Hydrothermal Spallation Drilling System for...  

Open Energy Info (EERE)

eliminating bit wear and drill string fatigue, hydrothermal spallation drilling can transform the costs of geothermal well construction and enable widespread deployment of...

417

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

418

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

419

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

420

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

422

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

423

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

424

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

425

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

426

Temporary Bridging Agents for Use in Drilling and Completions...  

Broader source: Energy.gov (indexed) [DOE]

Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 -...

427

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

428

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

429

Physics and the Search for Hydrocarbons  

E-Print Network [OSTI]

Integrated Project Management #12;Rig Drill Pipe Drill Bit Drilling Tools Drilling Fluid Drill rig rotates. Drilling Rig Drill Collars #12;Drill String Technology Electromagnetic & Nuclear Direction & Inclination in real time for decisions. Drill bit Rotary Steerable Direction & Inclination of the drill bit

Dai, Pengcheng

430

Rigging skeletal perissodactyl and artiodactyl ungulate limbs using analytic inverse kinematic-based solutions for a feature film production environment  

E-Print Network [OSTI]

The goal of this thesis is to develop and construct a repeatable, scalable, and portable rigging solution for the skeletal limbs of ungulates, maximizing functionality while streamlining intuitive interface controls for a feature film production...

Telford, William Lawrence, Jr

2007-04-25T23:59:59.000Z

431

A test rig for the identification of rotordynamic coefficients of fluid film bearings  

E-Print Network [OSTI]

. The test bearing articles were considered for cryogenic applications where the actual lubrication medium is liquid hydrogen or liquid oxygen. The parameter identification method used an advanced pseudo-random forcing excitation and a technique based...A TEST RIG FOR THE IDENTIFICATION OF ROTORDYNAMIC COEFFICIENTS OF FLUID FILM BEARINGS A Thesis LEWIS MILLER ROBISON III Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Robison, Lewis Miller

1995-01-01T23:59:59.000Z

432

Coal seam natural gas producing areas (Louisiana)  

Broader source: Energy.gov [DOE]

In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

433

Oil, Gas, and Metallic Minerals (Iowa)  

Broader source: Energy.gov [DOE]

Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

434

Black Warrior: Sub-soil gas and fluid inclusion exploration and...  

Broader source: Energy.gov (indexed) [DOE]

Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling John Casteel Nevada Geothermal Power Co. Validation of Innovative Exploration Technologies May...

435

Low natural gas prices may drive up FY 2014-2015 power rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

natural gas prices? Production Much has been written over the past few years about "fracking," the technology of hydraulic fracturing in horizontally drilled wells that has made...

436

Drill stem test method and apparatus  

SciTech Connect (OSTI)

This patent describes an apparatus for causing formation fluid to flow upwardly during a drill stem test of a fluid well. The apparatus consists of: a drill string positioned in the bore of the fluid well and seated with a packer seal; the drill string containing a first opening below the packer through which formation fluid can flow into the drill string; means for creating a second opening in the drill string above the packer through which treatment fluid can flow; and jet pump means including a fluid crossover, the jet pump means being mounted within the drill string for increasing the rate of flow of the treatment fluid near the second opening a substantial amount such that the upward flow of the treatment fluid draws the formation fluid upwardly therewith, the means for creating the second opening including a sleeve initially surrounding and covering the fluid crossover, and means for moving the sleeve in response to fluid pressure from within the drill string to uncover the second opening.

Snider, P.M.

1989-07-11T23:59:59.000Z

437

A study of fatigue in drill collars  

E-Print Network [OSTI]

A STUDY OF FATIGUE IN DRILL COLLARS A Thesis by Joe Robert Feeler Approved as to style and content by: Chairman of Committee Head of Department Member /n/X~l~~ Member Member January 1969 ABSTRACT A Study of Fatigue in Drill Collars.... (January, 1969) Joe R. Fowler, B. S. , Texas A&M University; Directed by: Dr. P. D. Neiner Fatigue failures of drill collar connectors are presently cost- ing the major oil companies enormous sums of money in ruined equipment and lost time...

Fowler, Joe Robert

1969-01-01T23:59:59.000Z

438

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

439

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

440

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY10 Annual Report #12;Crane ball #12;The Integrated Ocean Drilling Program (IODP) is an international marine research program Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs that revolutionized our view

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg  

E-Print Network [OSTI]

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

Bromberg, Kenneth

442

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY13 Annual Report #12;Tripping Integrated Ocean Drilling Program (IODP) monitored subseafloor environments and explored Earth's history Drilling Project (DSDP) and the Ocean Drilling Program (ODP), which revolutionized our view of Earth

443

Acronyms and Abbreviations Used in the Ocean Drilling Program  

E-Print Network [OSTI]

Stone Soup Acronyms and Abbreviations Used in the Ocean Drilling Program Ocean Drilling Program Texas A&M University Technical Note No. 13 Compiled by Elizabeth A. Heise Ocean Drilling Program Texas A orpersonalresearchpurposes; however,republicationof any portion requires the written consent of the Director, Ocean Drilling

444

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

445

OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

446

OCEAN DRILLING PROGRAM LEG 166 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

Director ODP/TAMU _____________________ Jack Baldauf Manager Science Operations ODP Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

447

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

448

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents [OSTI]

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

449

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.14,September2012 ScientificDrilling ISSN: 1816-8957 Exp. 333: Nankai Trough Subduction Input and Records of Slope Instability 4 Lake Drilling In Eastern Turkey 18 Exp. 326 and 332: Nan

Gilli, Adrian

450

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

Paris-Sud XI, Université de

451

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change in the Bering Sea 4 San Andreas Fault Zone Drilling 14 Climate History from Lake El'gygytgyn, Siberia 29 World

Demouchy, Sylvie

452

Dual wall reverse circulation drilling with multi-level groundwater sampling for groundwater contaminant plume delineation at Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

Dual wall reverse circulation (DWRC) drilling was used to drill 48 borings during a groundwater contaminant investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. This method was selected as an alternative to conventional hollow stem auger drilling for a number of reasons, including the expectation of minimizing waste, increasing the drilling rate, and reducing the potential for cross contamination of aquifers. Groundwater samples were collected from several water-bearing zones during drilling of each borehole. The samples were analyzed for volatile organic compounds using a field gas chromatograph. This approach allowed the investigation to be directed using near-real-time data. Use of downhole geophysical logging, in conjunction with lithologic descriptions of borehole cuttings, resulted in excellent correlation of the geology in the vicinity of the contaminant plume. The total volume of cuttings generated using the DWRC drilling method was less than half of what would have been produced by hollow stem augering; however, the cuttings were recovered in slurry form and had to be dewatered prior to disposal. The drilling rate was very rapid, often approaching 10 ft/min; however, frequent breaks to perform groundwater sampling resulted in an average drilling rate of < 1 ft/min. The time required for groundwater sampling could be shortened by changing the sampling methodology. Analytical results indicated that the drilling method successfully isolated the various water bearing zones and no cross contamination resulted from the investigation.

Smuin, D.R.; Morti, E.E.; Zutman, J.L.; Pickering, D.A.

1995-08-01T23:59:59.000Z

453

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect (OSTI)

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

454

A gas kick model for the personal computer  

E-Print Network [OSTI]

differential between a formation and the wellbore that allows gas to flow into the well. This differential, or underbalance, can occur during various drilling or workover activities. This model concentrates on the occurrence of kicks while drilling a well... for their interest and suggestions, and for serving on the author's committee. The individuals at Chevron Services Company's Drilling Technology Center in Houston, Texas, for generously providing information from their Simtran and Digitran simulators. Dr...

Miller, Clayton Lowell

1987-01-01T23:59:59.000Z

455

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

456

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

and Henry Licis, Improving Drilling Performance ThroughJ.F. and K.K. Millheim, The Drilling Performance Curve: AYardstick for Judging Drilling Performance, Society of

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

457

Microsoft Word - summer.doc  

U.S. Energy Information Administration (EIA) Indexed Site

report indicating an almost 20-percent increase since the end of May in the number of drilling rigs searching for natural gas (380 vs. 450) in the United States. The July contract...

458

Tax Treatment of Natural Gas The "landowner" referred to in  

E-Print Network [OSTI]

. There are a number of oil and gas regulations and laws such as the Oil and Gas Act, Coal and Gas Resource Coor OGM, including the Clean Streams Law, the Dam Safety and Encroach- ments Act, the Solid Waste Manage advances in drilling technology and rising natural gas prices have attracted new interest

Boyer, Elizabeth W.

459

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

460

Deep drilling technology for hot crystalline rock  

SciTech Connect (OSTI)

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

462

Fluid dynamics kill Wyoming icicle  

SciTech Connect (OSTI)

Control of a blowout in which a portion of the drill collar string was extending through the rotary table and into the derrick was compounded by ice building up on the derrick and substructure. However, the momentum kill procedure proved successful. Topics considered in this paper include oil wells, natural gas wells, sleeves, rotary drills, drilling rigs, fluid mechanics, occupational safety, blowouts, drill pipes, rotary drilling, ice removal, and freezing.

Grace, R.D.

1987-04-01T23:59:59.000Z

463

Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report  

SciTech Connect (OSTI)

Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called Direct Energy Drilling, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2 diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

2014-12-30T23:59:59.000Z

464

Air drilling has some pluses for horizontal wells  

SciTech Connect (OSTI)

Drilling horizontal wells with air as the circulating medium is not a common practice; however, air has come distinct advantages over drilling mud. They are: Significant increase in rate of penetration which leads to shorter drilling time. Elimination of lost circulation problems, especially in areas of very low bottom hole pressures. Continual drill stem test of potential producing formations. Minimal damage to the formation. Unfortunately, there are some disadvantages to drilling with air. Downhole motor life is shorter and less predictable. No measurement-while-drilling (MWD) system is currently available that will work consistently in air drilling environments. Hole cleaning is a problem at inclinations above 50{degree}. The horizontal section length is reduced because of the increased friction (drag) between the drillstring and borehole. The types of lithologies and targets are limited. Several horizontal wells have been successfully drilled with air or foam since 1986. At a minimum, operators drill the horizontal section with air or foam to eliminate lost circulation problems in low pressure or partially depleted reservoirs and to reduce formation damage due to drilling fluid invasion. However, problems have been encountered in drilling horizontal wells with air. Not all of the problems are unique to air drilling, but some may be exaggerated by the conditions in an air-drilled hole.

Carden, R.S. (Grace, Shursen, Moore and Associates, Inc., Amarillo, TX (US))

1991-04-08T23:59:59.000Z

465

Footage Drilled for Crude Oil and Natural Gas Wells  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.

466

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current861 ANNUALUSFootage

467

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwestInformation GreatersourceOhmsettZipWell

468

Analysis of drill stem test data  

E-Print Network [OSTI]

LI8RARY A s IN CNLLEGE OF TEXAS ANALYSIS OF DRILL STEM TEST DATA A THESIS By ALBIN J. ZAK, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1956 Major Subject: Petroleum Engineering ANALYSIS OF DRILL STEM TEST DATA A THESIS ALBIN J. ZAK, JR. Approved as to style and content by; h irman of Committee Head of Department TABLE OF CONTENTS Page I. ABSTRAC...

Zak, Albin Joseph

1956-01-01T23:59:59.000Z

469

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

470

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

471

International oil and gas exploration and development: 1991  

SciTech Connect (OSTI)

This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

Not Available

1993-12-01T23:59:59.000Z

472

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

473

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network [OSTI]

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

474

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2002-01-01T23:59:59.000Z

475

Adaptive tool selection strategies for drilling in flexible manufacturing systems  

E-Print Network [OSTI]

The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS...

Chander, Karthik Balachandran

2004-09-30T23:59:59.000Z

476

Development of a High-Temperature Diagnostics-While-Drilling...  

Energy Savers [EERE]

Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

477

Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...  

Open Energy Info (EERE)

Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

478

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network [OSTI]

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non

Ullmer, Brygg

479

The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams  

E-Print Network [OSTI]

, and especially oil and gas (O&G) exploration and production wastewaters. High salt concentrations, decentralized generated during exploration and production (E&P) (e.g., drilling muds, hydraulic fracturing flowback water processes, have identified its sweet spot: treatment and desalination of complex industrial streams

480

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

Note: This page contains sample records for the topic "gas rigs drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

482

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

483

Impedance-matched drilling telemetry system  

DOE Patents [OSTI]

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

484

Recovery Act Weekly Video: 200 West Drilling  

ScienceCinema (OSTI)

President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

None

2012-06-14T23:59:59.000Z

485

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie ?cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

486

Deep-hole drilling Fruit Flies & Zebrafish  

E-Print Network [OSTI]

surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

Li, Yi

487

OCEAN DRILLING PROGRAM LEG 136 PRELIMINARY REPORT  

E-Print Network [OSTI]

Operations ODP/TAI Timothy J.G. Francis Deputy Director ODP/TAMU May 1991 #12;This informal report Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Environment Research Council (United Kingdom) Ocean Research Institute of the University of Tokyo (Japan) Any

488

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network [OSTI]

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

489

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS PHILIPPINE SEA Michael A. Storms Supr. of Development Engineering Ocean Drilling Program Texas A & M University College Station, Texas 77840 Philip D. Rabinowitz Director ODP/TAMU- Barry W. Harding Manager of Engineering and Drilling Operations ODP/TAMU Louis

490

FY04 Annual Report Integrated Ocean Drilling Program  

E-Print Network [OSTI]

#12;#12;FY04 Annual Report Integrated Ocean Drilling Program United States Implementing and the Science Community . . . . . . . . . . 34 RESEARCH TOWARD ENHANCED DRILLING CAPABILITY . . . 37 JOI of the goals of scientific ocean drilling for 8 years (ODP: 1997­2003; IODP: 2003­2005), making many invaluable

491

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS EAST PACIFIC RISE Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling Operations Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

492

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY12 Annual Report #12;Handling downhole tool string #12;The Integrated Ocean Drilling Program (IODP) is an international marine research in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP

493

Applications of CBR in oil well drilling "A general overview"  

E-Print Network [OSTI]

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar. In this paper we present the evolving story of CBR applied in petroleum engineering especially in drilling engineering. Drilling engineering contains several potential domains of interest, in which CBR can be employed

Aamodt, Agnar

494

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY11 Annual Report #12;Sunset aboard the JOIDES Resolution #12;The Integrated Ocean Drilling Program (IODP) is an international marine as recorded in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling

495

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS BARBADOS ACCRETIONARY PRISM LOGGING WHILE DRILLING (LWD) Dr. J. Casey Moore Co-Chief Scientist, Leg 171A University of California, Santa Cruz Earth Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

496

A simple model for laser drilling Jeb Collins a,1  

E-Print Network [OSTI]

A simple model for laser drilling Jeb Collins a,1 , Pierre Gremaud b,2, aDepartment of Mathematics drilling is proposed. Assuming axi-symmetry of the process around the axis of the laser beam, a one, implemented and validated for drilling using lasers with intensities in the GW/cm2 range and microsecond

497

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION FISCAL YEAR 2008 ANNUAL REPORT #12;#12;INTEGRATED OCEAN DRILLING PROGRAM UNITED STATES IMPLEMENTING ORGANIZATION CONSORTIUM FOR OCEAN LEADERSHIP FOUNDATION CONTRACT OCE-0352500 1 OCTOBER 2007­30 SEPTEMBER 2008 #12;INTEGRATED OCEAN DRILLING PROGRAM ii

498

CARD No. 33 Consideration of Drilling Events in Performance Assessments  

E-Print Network [OSTI]

CARD No. 33 Consideration of Drilling Events in Performance Assessments 33.A.1 BACKGROUND have an effect on the disposal system (61 FR 5228). Section 194.33, "Consideration of drilling events in performance assessments," sets forth specific requirements for incorporation of human-initiated drilling

499

A Novel Membrane Finite Element with Drilling Rotations  

E-Print Network [OSTI]

A Novel Membrane Finite Element with Drilling Rotations Reijo Kouhia 1 Abstract. A new low order interpolation is used for the drill rotation #12;eld. Both triangular and quadrilateral elements are considered of freedom. 1 INTRODUCTION In-plane rotational degrees of freedom, \\drilling de- grees of freedom

Kouhia, Reijo