Sample records for gas resources europe

  1. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    energy in Vietnam: Resource assessment, development statusWind Resource Assessment in Europe Using Emergy Subodhspeed). Keywords: Wind resource assessment; Emergy Analysis;

  2. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  3. Western Europe's future gas supplies

    SciTech Connect (OSTI)

    Kardaun, G.

    1983-05-01T23:59:59.000Z

    Decline in indigenous natural gas production by 2000 will be compensated by imported natural gas and LNG and gas from unconventional sources. Coal gas will furnish about 10 percent of the demand, more natural gas imports will come from North Africa and the USSR and additional LNG will come from West Africa, the Middle East and the Western Hemisphere.

  4. Characterization of the Wind Power Resource in Europe and its

    E-Print Network [OSTI]

    Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron, C;1 Characterization of the Wind Power Resource in Europe and its Intermittency Alexandra Cosseron* , C. Adam Schlosser , and Udaya Bhaskar Gunturu Abstract Wind power is assessed over Europe, with special attention given

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

    2015-01-01T23:59:59.000Z

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  7. Economics and Politics of Shale Gas in Europe

    E-Print Network [OSTI]

    Chyong, Chi Kong; Reiner, David M.

    2015-01-01T23:59:59.000Z

    suppliers (overseas LNG, Middle East and North Africa etc.) are not very promising in the short to medium term. A more problematic question, which affects both the economics of conventional gas supply options to Europe as well as European shale gas... was expected to be an ever-larger net importer of gas and correspondingly many contracts were signed to build out LNG import infrastructure. As late as 2008, the U.S. Energy Information Administration was predicting continued growth in net imports...

  8. Characterization of the Solar Power Resource in Europe and

    E-Print Network [OSTI]

    Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co to mitigate and adapt to unavoidable global environmental changes. Being data-driven, the Program uses for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR

  9. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  10. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01T23:59:59.000Z

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  11. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic of aEnergy

  12. Characterization of the wind power resource in Europe and its intermittency*

    E-Print Network [OSTI]

    Characterization of the wind power resource in Europe and its intermittency* Alexandra Cosseron Characterization of the wind power resource in Europe and its intermittency Alexandra Cosseron a, *, Udaya Bhaskar-4307, USA Abstract Wind power is assessed over Europe, with a special care given to the quantification

  13. Oil and gas developments in Europe in 1984

    SciTech Connect (OSTI)

    Yarbrough, S.C.

    1985-10-01T23:59:59.000Z

    Western Europe rebounded from the recent recession, recording an increase in most oil- and gas-related activities except development drilling and downstream operations. Exploration and appraisal drilling boomed in the North Sea, where a record 266 wells (182 in the United Kingdom sector alone) were spudded in 1984. Italy and the United Kingdom sector of the North Sea led Europe in discoveries, each reporting 22 successful new-field wildcats. Significant activities in 1984 included Malta's first hydrocarbon discovery. Italy and Yugoslavia shifted focus of exploration activity to the Adriatic Sea from onshore areas. Interest surged in France's Paris basin, where a 60% increase in licensed acreage was reported. Oil production in the Paris basin nearly doubled, threatening to overtake output from the 30-year-old Aquitaine fields. Oil production increased overall in Europe by 8.9%, boosted primarily by North Sea crude. Licensing rounds announced for offshore Norway, United Kingdom, and Ireland in 1984 should ensure a continuing high level of activity in northwest Europe. 19 figures, 6 tables.

  14. Europe

    SciTech Connect (OSTI)

    Kat, C.

    1981-10-01T23:59:59.000Z

    In Europe during 1980, the need to find more oil caused an intensification of exploration activity into producing basins and even into producing zones for existing plays. The high-risk nature of many of the prospects tested is expressed in the low success ratios for several countries. The success rate continued to rise, however, in the North Sea, where many more appraisal wells were drilled and many wells tested fault blocks adjacent to existing oil fields. There were increases in development drilling almost everywhere and further application of fracturing techniques to existing fields. Development drilling began to decline in the North Sea, a trend likely to continue as government-enforced depletion policies are introduced. In the onshore producing areas, many new exploration licenses were awarded. The new exploration areas are likely to increase in importance. There were some encouraging results in these areas during 1980. The offshore zones of the Atlantic and the Mediterranean proved equally exciting. However, the quickest returns will be gained from onshore discoveries; the reexamination of hydrocarbon-bearing areas not so far developed proved highly successful. The Swiss Entlebuch 1 gas discovery opens up a new exploration tract of the deep autochthon of central Europe. It is just this area where oil production has been declining. Gas production continues to decline in nearly all areas except the North Sea. 20 figures, 24 tables.

  15. Resources on Greenhouse Gas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist...

  16. Regulation of Oil and Gas Resources (Florida)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment...

  17. Europe

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenueMay9 70

  18. Europe

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenueMay9

  19. International market integration for natural gas? : a cointegration analysis of priced in Europe, North America and Japan

    E-Print Network [OSTI]

    L'Hegaret, Guillaume

    2004-01-01T23:59:59.000Z

    We examine the degree of natural gas market integration in Europe, North America and Japan, between the mid 1990?s and 2002. Our hypothesis is that there was a certain split of prices between Europe and North America. The ...

  20. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  1. A New Global Unconventional Natural Gas Resource Assessment

    E-Print Network [OSTI]

    Dong, Zhenzhen

    2012-10-19T23:59:59.000Z

    . Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

  2. A New Global Unconventional Natural Gas Resource Assessment 

    E-Print Network [OSTI]

    Dong, Zhenzhen

    2012-10-19T23:59:59.000Z

    . Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

  3. Improved Basin Analog System to Characterize Unconventional Gas Resource

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02T23:59:59.000Z

    , the BASIN software is combined with PRISE in the UGRA system to estimate unconventional resource potential in frontier basins. The PRISE software contains information about the resources (conventional gas, conventional oil, shale gas, coalbed methane...

  4. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  5. Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems

    SciTech Connect (OSTI)

    Komar, C.A. (ed.)

    1980-01-01T23:59:59.000Z

    This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

  6. Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

  7. Assessment of Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30T23:59:59.000Z

    , and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

  8. Development of the Natural Gas Resources in the Marcellus Shale

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    be the most productive areas of the shale. The large amount of industrial activity necessary for shale gasDevelopment of the Natural Gas Resources in the Marcellus Shale New York, Pennsylvania, Virginia for informational purposes only and does not support or oppose development of the Marcellus Shale natural gas

  9. Oil and Gas CDT Structural and depositional controls on shale gas resources in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

  10. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01T23:59:59.000Z

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  11. Trans-Sahara pipe line would deliver Nigeria gas to Europe

    SciTech Connect (OSTI)

    Muenzler, M.H.

    1983-11-01T23:59:59.000Z

    Bechtel has made an in-house study of a natural gas transmission line extending from Nigeria to the Mediterranean and then on into Europe. Based upon the analysis, the pipeline project appears sufficiently viable to warrant further study. Perhaps the single most important element in design of pipelines crossing international borders is the political aspects involved in constructing, owning, and operating the line. These considerations not only effect the location of the pipeline, the manner of financing and ownership, but also whether the line will be constructed. The line crosses several international boundaries, depending upon the route selected. Each route crosses Niger. Case A crosses Algeria and into Tunisia where it ultimately would cross the Strait of Sicily into Italy. Case B crosses the Niger- Algerian border and then traverses Algeria to the Mediterranean where it is planned to connect to the Segamo pipeline and to link with the pipeline network in Spain. Case C crosses the countries of Niger, Mali, Mauritania, and into Morocco, and ultimately crosses the Mediterranean Sea close to the Strait of Gibraltar. Nigeria has proven natural gas reserves estimated to range from 2.5 to 4 trillion cu m (38 to 140 tcf).

  12. Methane hydrate gas production: evaluating and exploiting the solid gas resource

    SciTech Connect (OSTI)

    McGuire, P.L.

    1981-01-01T23:59:59.000Z

    Methane hydrate gas could be a tremendous energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs and a system for coring hydrate reservoirs are also described.

  13. Characterization of the Wind Power Resource in Europe and its Intermittency

    E-Print Network [OSTI]

    Cosseron, A.

    Wind power is assessed over Europe, with special attention given to the quantification of intermittency. Using the methodology developed in Gunturu and Schlosser (2011), the MERRA boundary flux data was used to compute ...

  14. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

    2012-12-15T23:59:59.000Z

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  15. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01T23:59:59.000Z

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  16. Evaluation and Prediction of Unconventional Gas Resources in Underexplored Basins Worldwide

    E-Print Network [OSTI]

    Cheng, Kun

    2012-07-16T23:59:59.000Z

    triangle concept, which implies that all natural resources, including oil and gas, are distributed log-normally. In this work, I describe a methodology to estimate values of technically recoverable resources (TRR) for unconventional gas reservoirs...

  17. Development of an improved methodology to assess potential unconventional gas resources in North America

    E-Print Network [OSTI]

    Salazar Vanegas, Jesus

    2007-09-17T23:59:59.000Z

    ) According to Haskett, resources recoverable from reservoirs of difficult nature have come to be called “unconventional resources.” These include fractured reservoirs, tight gas, gas/oil shale, oil sands and CBM. There are many definitions but most...

  18. Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources

    E-Print Network [OSTI]

    Herndon, J M

    2006-01-01T23:59:59.000Z

    The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observ...

  19. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    Assessment of U.S. Oil and Gas Resources (on CD-ROM) (limited conventional oil and gas resources (Boswell, 2007).for conventional oil and gas resources (Collett, 2004)

  20. Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources

    E-Print Network [OSTI]

    J. Marvin Herndon

    2006-03-26T23:59:59.000Z

    The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observed in the crust, for substantial volcanism, and possibly for earthquake generation as well, also might enhance the prognosis for future abiotic energy supplies by pressurizing and heating the base of the crust, a potential collection point for abiotic mantle methane or other mantle-derived carbon-containing matter.

  1. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    by DOE's Office of Fossil Energy and the National Petroleum Technology Office (NPTO): Key Natural Gas and Petroleum Publications Balancing Natural Gas Policy - Fueling the Demands...

  2. Potential for deep natural gas resources in eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Rice, D.D.; Schenk, C.J.; Schmoker, J.W.; Fox, J.E.; Clayton, J.L.; Dyman, T.S.; Higley, D.K.; Keighin, C.W.; Law, B.E.; Pollastro, R.M.

    1992-01-01T23:59:59.000Z

    The main purpose of the research is to evaluate the geological possibility that significant economically recoverable resources of natural gas exist in sedimentary basins of the United States at depths greater than 150,000 ft. While relatively unexplored, these gas resources may be large. The main objectives of the research are to determine the geologic factors that control deep gas accumulations in addition to the distribution and resource potential of these accumulations.

  3. Potential for deep natural gas resources in eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Rice, D.D.; Schenk, C.J.; Schmoker, J.W.; Fox, J.E.; Clayton, J.L.; Dyman, T.S.; Higley, D.K.; Keighin, C.W.; Law, B.E.; Pollastro, R.M.

    1992-06-01T23:59:59.000Z

    The main purpose of the research is to evaluate the geological possibility that significant economically recoverable resources of natural gas exist in sedimentary basins of the United States at depths greater than 150,000 ft. While relatively unexplored, these gas resources may be large. The main objectives of the research are to determine the geologic factors that control deep gas accumulations in addition to the distribution and resource potential of these accumulations.

  4. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  5. Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder JumpIowa: Energy Resources JumpInformation

  6. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect (OSTI)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01T23:59:59.000Z

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  7. Characterization of the Solar Power Resource in Europe and Assessing Benefits of Co-Location with Wind Power Installations

    E-Print Network [OSTI]

    Bozonnat, C.

    The extent, availability and reliability of solar power generation are assessed over Europe, and—following a previously developed methodology—special attention is given to the intermittency of solar power. Combined with ...

  8. Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and

    E-Print Network [OSTI]

    Garousi, Vahid

    Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource that requires a pipeline to transport pro- duction from all producers at non-discriminatory rates. Compulsory resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

  9. Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Energy Resources provides a variety of rebates to commercial, industrial, institutional and governmental entities.

  10. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Fossil Energy and other organizations: Office of Fossil Energy Office of Energy Efficiency and Renewable Energy International Energy Agency (IEA) IEA Greenhouse Gas R&D Programme...

  11. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    energy sources like hydrogen fuels and fusion technologies. Fossil fuels - coal, oil, and natural gas - currently provide more than 85% of all the energy consumed in the United...

  12. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations American Petroleum Institute The oil and natural gas industry provides the fuel for American life, warming our homes, powering our businesses and giving us...

  13. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01T23:59:59.000Z

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  14. DOE Showcases Websites for Tight Gas Resource Development

    Broader source: Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  15. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Petroleum Geology, Atlas of Oil and Gas Fields, Structuraland logging conventional oil and gas wells. The ability to

  16. World Shale Gas Resources: An Initial Assessment of 14 Regions

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    resources is also reflected in EIA's Annual Energy Outlook 2011 (AEO2011) energy projections www.eia.gov U.S. Department of Energy Washington, DC 20585 #12;The information presented by Advanced Resources International (ARI) for the U.S. Energy Information Administration (EIA

  17. Minnesota Energy Resources (Gas)- Low-Income New Construction Rebates

    Broader source: Energy.gov [DOE]

    Minnesota Energy Resources is now offering rebates for non-profits servicing low-income communities. New construction organizations can take advantage of rebates for efficient technologies if the...

  18. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  19. A Methodology to Determine both the Technically Recoverable Resource and the Economically Recoverable Resource in an Unconventional Gas Play

    E-Print Network [OSTI]

    Almadani, Husameddin Saleh A.

    2010-10-12T23:59:59.000Z

    Ultimate Recovery (EUR) for all the wells in a given gas play, to determine the values of the P10 (10th percentile), P50 (50th percentile), and P90 iv (90th percentile) from the CDF. We then use these probability values to calculate the technically... recoverable resource EUR estimated ultimate recovery F&DC finding and development cost LOE lease operating expenses Mcf million cubic feet Mcfe million cubic feet equivalent OGIP original gas in place P(EUR) cumulative distribution...

  20. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02T23:59:59.000Z

    was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford... and Agua Nueva shales combined resources were estimated to be 27-87 TCF (P90-P10) (PEMEX 2011). An assessment of the Eagle Ford shale oil and gas resources in the US is being done by the Crisman Institute for Petroleum Research at Texas A&M University...

  1. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air, Wellbore

  2. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air,

  3. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air, Subsurface

  4. California Division of Oil, Gas, and Geothermal Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28Transportation

  5. Projects Selected to Boost Unconventional Oil and Gas Resources |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy

  6. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8DecommissioningFuelDeepwater Oil

  7. Projects Selected to Boost Unconventional Oil and Gas Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy National SolarPublications »with theDepartment of

  8. Natural Gas Modernization Clearinghouse Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -Department ofDepartment of<< back to

  9. Deepwater Oil & Gas Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1 DEPARTMENTSeptember 27,SeptemberEnergy 4, 2007:JulyofThe

  10. Technically Recoverable Shale Oil and Shale Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To.T. J.

  11. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    SciTech Connect (OSTI)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31T23:59:59.000Z

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  12. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  13. Seismic technology will be of key importance for evaluat-ing gas-hydrate resources, particularly across the Gulf of

    E-Print Network [OSTI]

    Texas at Austin, University of

    Seismic technology will be of key importance for evaluat- ing gas-hydrate resources, particularly to be acquired. To apply seismic technology to gas-hydrate studies in the gulf in an optimal manner, it is essential to understand the seismic target that has to be analyzed. What is gas hydrate? Gas hydrate

  14. Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources

    Broader source: Energy.gov [DOE]

    The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security.

  15. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02T23:59:59.000Z

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  16. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01T23:59:59.000Z

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  17. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2004-10-28T23:59:59.000Z

    The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

  18. Slumping Economy Reduces Sawlog Prices In Europe And North America to Lowest Levels in Five Years, Reports The Wood Resource Quarterly

    E-Print Network [OSTI]

    Slumping Economy Reduces Sawlog Prices In Europe And North America to Lowest Levels in Five Years Europe. Finnish sawmills currently have some of the highest wood raw-material costs of all countries regular updates of the latest developments in international timber, pulp, lumber and biomass markets

  19. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01T23:59:59.000Z

    M W of geothermal, and 3 M W of landfill gas. The wind powerwind, geothermal, and landfill gas generators, provide theRISK: SUMMARY advance. Landfill gas and geothermal resources

  20. RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-04-16T23:59:59.000Z

    The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

  1. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07T23:59:59.000Z

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  2. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  3. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  4. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-06-30T23:59:59.000Z

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  5. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-05-31T23:59:59.000Z

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  6. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02T23:59:59.000Z

    and for their commitment to our education. I would also like to thank Dr. Yuefeng Sun for being part of my committee and Dr. Juan Carlos Laya for serving as a substitute in my thesis defense. My special thanks to Petr?leos Mexicanos for providing me information... was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford...

  7. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGas Streamsof the

  8. Preliminary evaluation of coal and coalbed gas resource potential of western Clay County, Mississippi

    SciTech Connect (OSTI)

    Henderson, K.S.; Gazzier, C.A.

    1989-01-01T23:59:59.000Z

    After reviewing all previously published data it appeared that if the Mississippi portion of the Black Warrior Basin contained potentially economic seams of coal the thicker downdip section was a more likely place to look. The generosity of several exploration companies in providing an extensive suite of logs that could be correlated with samples contained in the Bureau of Geology Sample Library allowed the authors to correlate and identify these upper Pottsville coal groups previously unknown in Mississippi. The purpose of this study was to identify the potential for coal resources in western Clay County, Mississippi, and to correlate laterally any coal seams identified in order to develop a gross volumetric estimate of in-place resources. It became apparent that many of the shallow coal seams (1,800 feet-3,700 feet) had appreciable quantities of gas, for they exhibited excellent gas shows when drilled. Efforts to determine rank for these coals were made by vitrinite reflectance and thus a preliminary estimate was also made for the potential coalbed methane reserves. 73 refs., 8 figs., 3 tabs.

  9. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01T23:59:59.000Z

    of natural gas prices, renewable resources in general have aSince the use of renewable resources decreases fuel priceof its electricity from renewable resources under long-term

  10. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26T23:59:59.000Z

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  11. A comparison of undiscovered oil and gas resource estimates, Los Padres National Forest in the Ventura Basin Province, California

    SciTech Connect (OSTI)

    Bird, K.J.; Valin, Z.C. [Geological Survey, Menlo Park, CA (United States); Bain, D.M. [Consultant, Daily City, CA (United States); Hopps, T.E. [Consultant, Santa Paula, CA (United States); Friehauf, J.S.F. [Forest Service, San Francisco, CA (United States)

    1995-04-01T23:59:59.000Z

    Two recent assessments of the undiscovered oil and gas resources of Los Padres National Forest lands in the Ventura Basin Province using different methodologies and personnel show remarkable coincidence of estimated resources. The 1989 U.S. Geological Survey assessment was part of a National appraisal. In the Ventura Basin Province, two separate plays were assessed and a percentage of resources from these plays was allocated to Federal lands. By this allocation, the undiscovered oil and gas resources of this part of the Los Padres National Forest are estimated to range from <10-140 MMBO (means probability 60 MMBO, million barrels of oil) and 10-250 BCFG (mean probability 110 BCFG, billion cubic feet of gas). In 1993, the U.S. Forest Service completed an oil and gas assessment of the entire 1.8 million-acre Los Padres National Forest as part of a Reasonably Foreseeable Oil and Gas Development Scenario. In those areas of the forest considered to have high potential for the occurrence of oil and gas deposits, a deposit simulation model was used. This method is based on a fundamental reservoir engineering formula in the USGS computer program, FASPU (Fast Appraisal System for Petroleum-Universal). By this method, the undiscovered oil and gas resource of this part of the Los Padres National Forest are estimated to range from 0-182 MMBO (mean probability 56 MMBO) and 9-233 BCFG (mean probability 103 BCFG). An additional 6 MMBO (mean probability) is allocated to forest lands with medium potential within this province but not to any specific prospects. The remarkable coincidence of estimate resources resulting from such different assessment methods and personnel is noteworthy and appears to provide an increased measure of confidence in the estimates.

  12. Analysis of the effects of section 29 tax credits on reserve additions and production of gas from unconventional resources

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    Federal tax credits for production of natural gas from unconventional resources can stimulate drilling and reserves additions at a relatively low cost to the Treasury. This report presents the results of an analysis of the effects of a proposed extension of the Section 29 alternative fuels production credit specifically for unconventional gas. ICF Resources estimated the net effect of the extension of the credit (the difference between development activity expected with the extension of the credit and that expected if the credit expires in December 1990 as scheduled). The analysis addressed the effect of tax credits on project economics and capital formation, drilling and reserve additions, production, impact on the US and regional economies, and the net public sector costs and incremental revenues. The analysis was based on explicit modeling of the three dominant unconventional gas resources: Tight sands, coalbed methane, and Devonian shales. It incorporated the most current data on resource size, typical well recoveries and economics, and anticipated activity of the major producers. Each resource was further disaggregated for analysis based on distinct resource characteristics, development practices, regional economics, and historical development patterns.

  13. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  14. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-09-30T23:59:59.000Z

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Lewan (2002) concluded that much of the thermogenic gas produced in this basin is the result of cracking of oil to gas in deeply buried reservoirs. The efficiency of expulsion, migration and trapping has been estimated to range from 0.5 to 10 percent for certain basins (Schmoker, 1994: Zimmerman, 1999). The estimate of the total hydrocarbons generated for the Mississippi Interior Salt Basin is 910 billion barrels using the method of Schmoker (1994), and the estimate of the total hydrocarbons generated is 1,540 billion barrels using the Platte River software application. The estimate of gas generated for this basin is 3,130 TCF using the Platte River software application, and 4,050 TCF using the method of Schmoker (1994). Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Claypool and Mancini (1989) report that the conversion of oil to gas in reservoirs is a significant source of thermogenic gas in this basin. The Manila and Conecuh Subbasins are oil-prone. Although these subbasins are thermally mature for oil generation and expulsion, they are not thermally mature for secondary, non-associated gas generation and expulsion. The gas produced from the highly productive gas condensate fields (Big Escambia Creek and Flomaton fields) in these subbasins has been interpreted to be, in part, a product of the cracking of oil to gas and thermochemical reduction of evaporite sulfate in the reservoirs (Claypool and Mancini, 1989). The areas in the North Louisiana and Mississippi Interior Salt Basins with high potential for deeply buried gas reservoirs (>15,000 ft) have been identified. In the North Louisiana Salt Basin, these potential reservoirs include Upper Jurassic and Lower Cretaceous facies, especially the Smackover, Cotton Valley, Hosston, and Sligo units. The estimate of the secondary, non-associated gas generated from cracking of oil in the source rock from depths below 12,000 feet in this basin is 4,800 TCF. Assuming an expul

  15. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12T23:59:59.000Z

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  16. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01T23:59:59.000Z

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  17. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the InorganicResources Resources Policies,

  18. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource ProgramResources

  19. Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4

    SciTech Connect (OSTI)

    Ripple, R.D.; Hagen, R.E.

    1995-09-01T23:59:59.000Z

    This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

  20. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  1. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01T23:59:59.000Z

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  2. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-01-01T23:59:59.000Z

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

  3. U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources...

    Gasoline and Diesel Fuel Update (EIA)

    most shale gas and shale oil wells are only a few years old, their long-term productivity is untested. Consequently, the long-term production profiles of shale wells and...

  4. Statistical issues in the assessment of undiscovered oil and gas resources

    E-Print Network [OSTI]

    Kaufman, Gordon M.

    1992-01-01T23:59:59.000Z

    Prior to his untimely death, my friend Dave Wood gave me wise counsel about how best to organize a paper describing uses of statistics in oil and gas exploration. A preliminary reconnaissance of the literature alerted me ...

  5. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic

  6. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect (OSTI)

    Erdlac, Richard J., Jr.

    2006-10-12T23:59:59.000Z

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

  7. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  8. NPDES permit compliance and enforcement: A resource guide for oil and gas operators

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatment technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.

  9. Atlas of Northern Gulf of Mexico Gas and Oil Reservoirs: Procedures and examples of resource distribution

    SciTech Connect (OSTI)

    Seni, S.J.; Finley, R.J.

    1995-06-01T23:59:59.000Z

    The objective of the program is to produce a reservoir atlas series of the Gulf of Mexico that (1) classifies and groups offshore oil and gas reservoirs into a series of geologically defined reservoir plays, (2) compiles comprehensive reservoir play information that includes descriptive and quantitative summaries of play characteristics, cumulative production, reserves, original oil and gas in place, and various other engineering and geologic data, (3) provides detailed summaries of representative type reservoirs for each play, and (4) organizes computerized tables of reservoir engineering data into a geographic information system (GIS). The primary product of the program will be an oil and gas atlas series of the offshore Northern Gulf of Mexico and a computerized geographical information system of geologic and engineering data linked to reservoir location.

  10. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01T23:59:59.000Z

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  11. Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar

    2008-12-31T23:59:59.000Z

    Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

  12. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30T23:59:59.000Z

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  13. Africa's natural gas: potentialities and letdowns

    SciTech Connect (OSTI)

    Baladian, K.

    1983-11-01T23:59:59.000Z

    Although Africa has experienced 10 times less hydrocarbon exploration than Western Europe, its proved gas reserves already amount to 220-223 trillion CF or 7% of world reserves, while Europe holds 6% or 167 TCF. Yet Africa marketed only 1.3 TCF in 1982 against Europe's 6.5 TCF. Because of the lack of domestic demand for gas, Africa flares up to 21% of its gas output. Algeria is the continent's primary gas consumer, with Egypt, Libya, and Nigeria trying to expand local gas markets. The vast majority of marketed African gas goes to Europe, either as gas sent through the Trans-Med pipeline or as LNG via tanker.

  14. Fair trade and harmonization of climate change policies in Europe

    E-Print Network [OSTI]

    Viguier, Laurent L.

    In March 2000, the European Commission presented a Green Paper on greenhouse gas emissions trading within Europe, supporting implementation of a Community-wide scheme in which the design and regulation of all essential ...

  15. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22T23:59:59.000Z

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  16. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at BettisEMERGENCYTravel 28 ForHydrate

  17. Results from DOE Expedition Confirm Existence of Resource-Quality Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring our Transportation

  18. New Project To Improve Characterization of U.S. Gas Hydrate Resources |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero Campus

  19. Research Portfolio Accomplishment Report Unconventional Oil & Gas Resources: Produced Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading Room Electronic Public

  20. U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic

    SciTech Connect (OSTI)

    Donald Gautier; Timothy Klett

    2008-12-31T23:59:59.000Z

    The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.

  1. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    the second involves gas and hydrate (Class 1G, water-poorpriorities for marine gas hydrates, Fire In The Ice, NETLCollett, T. , 1993, Natural gas hydrates of the Prudhoe Bay

  2. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of an Italian wind farm, Renewable and Sustainable Energyof size on energyy yield, Renewable and Sustainable EnergyPernambuco, Brazil, Renewable Energy, 35, 2705-2713. Lu,

  3. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of wind turbine assessment based on energy, exergy, LCA andLCA and emergy) in the case of sustainability assessment of windLCA does. In emergy analysis, direct and indirect inputs of wind

  4. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    to change in upstream and downstream wind speed from 850 kW,1650 kW and 3000 kW wind turbinesseJ/J) Transformity of Wind Turbine (1650kW) Latitude

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  7. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    potential on Hong Kong islands - an analysis of wind power and wind turbine characteristics, Renewable Energy,

  8. Eurus Energy Europe BV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, search Name: Eurus Energy Europe

  9. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect (OSTI)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy (EG& G Services) [EG& G Services; Kuuskraa, Vello; Billingsley, Randy (Advanced Resources International) [Advanced Resources International

    2003-02-28T23:59:59.000Z

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  10. Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah

    SciTech Connect (OSTI)

    Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

    1994-08-01T23:59:59.000Z

    The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

  11. Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are

    E-Print Network [OSTI]

    Angenent, Lars T.

    of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

  12. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31T23:59:59.000Z

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  13. HIGH DETAIL STATIONARY OPTIMIZATION MODELS FOR GAS ...

    E-Print Network [OSTI]

    2014-11-26T23:59:59.000Z

    linear physics, major gas network operators in Germany and Europe face hard ..... This is a natural approach since our industrial partners rely on the same ...

  14. North America Europe Central &

    E-Print Network [OSTI]

    Johnson, Matthew

    Per capita consumption Population (100 millions) 0 5 10 15 20 25 30 35 North America Western Europe Per capita consumption Population (100 millions) 0 5 10 15 20 25 30 35 #12;2 % of habitat alteration from% of habitat alteration from per capita consumptionper capita consumption #s above bars are m2 per

  15. Staging Europe February 19, 2003

    E-Print Network [OSTI]

    Qian, Ning

    of the stage. The opening musical phrases #12;Staging Europe 3 of Stravinsky's Histoire du Soldat begin, she

  16. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    Carter, Colin A.; Novan, Kevin; Rausser, Gordon; Iho, Antti; Parker, Doug; Zilberman, David

    2013-01-01T23:59:59.000Z

    Border Price) Japan Japan (LNG Import Price) Europe U.S.into liquefied natural gas (LNG) before it can be exportedSecond, with expan­ sions in LNG production capacity, the

  17. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  18. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in

    E-Print Network [OSTI]

    Jackson, Robert B.

    and Hydraulic Fracturing in the United States Avner Vengosh,*, Robert B. Jackson,, Nathaniel Warner,§ Thomas H: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations

  19. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  20. Statkraft is Europe's largest generator of renewable energy and is the leading power company in Norway. The company owns, produces and develops hydropower, wind power, gas-fired power and

    E-Print Network [OSTI]

    Morik, Katharina

    Statkraft is Europe's largest generator of renewable energy and is the leading power company countries. For our office in Düsseldorf we are currently looking to hire a System Manager Renewable Energy. Share our passion for renewable energy and be a part of tomorrow's energy world. Your department

  1. Wood Resources International

    E-Print Network [OSTI]

    .3% Sweden 5.3% Finland 4.1% Russia 13.8% US 37.3% Germany 3.3% France 2.8% Poland 2.1% Other Europe 14 International Wood Fuel Removals in Europe 2002 Turkey 12.2% Poland 3.6% Romania 5.3% Hungary 4.1% Germany 7;Wood Resources International Production of energy from wood fuels in 2000 Source: EUBIONET 0 50 100 150

  2. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    occurrence while drilling a well (Takahashi et al, 2001;logging while drilling (16 wells), wireline logging (2that has led the drilling of 36 wells in gas hydrate-bearing

  3. Infrastructure investments and resource adequacy in the restructured US natural gas market : is supply security at risk?

    E-Print Network [OSTI]

    Hirschhausen, Christian von

    2006-01-01T23:59:59.000Z

    The objective of this paper is to analyze the development of US natural gas infrastructure over the last two decades and to discuss its perspectives. In particular, we focus on the relationship between the regulatory ...

  4. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2005-10-28T23:59:59.000Z

    The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

  5. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01T23:59:59.000Z

    CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

  6. Geological play analysis of the Pacific Federal Offshore Region - A status report on the National Assessment of undiscovered oil and gas resources

    SciTech Connect (OSTI)

    Dunkel, C.A. (Minerals Management Service, Camarillo, CA (United States))

    1994-04-01T23:59:59.000Z

    Geological and geophysical data from the federal offshore areas seaward of California, Oregon, and Washington (Pacific Outer Continental Shelf or OCS) are being used to identify petroleum plays for the Department of the Interior's National Assessment of Undiscovered Oil and Gas Resources project. Analysis of these data by a team of Minerals Management Service geo-scientists have led to the definition, delineation, and qualitative characterization of plays in six Pacific OCS assessment provinces: Pacific Northwest, Central California, Santa-Barbara-Ventura Basin, Los Angeles Basin, inner borderland, and other borderland. Plays are defined on the bases of reservoir rock stratigraphy, trap style, and hydrocarbon type. Each play is classified as established, frontier, or conceptual according to its discovery status and data availability. Preliminary analysis of the plays are complete and have been compiled in map and text formats by province. Plays are being further analyzed to characterize their quantitative attributatives such as numbers and sizes of undiscovered fields and geologic risk. Statistical evaluation to develop volumetric estimates of undiscovered oil and gas resources will be completed in late 1994. A discovery process modeling technique will be used to evaluate established plays in the Santa Maria and Santa Barbara-Ventura basins. Subjective modeling, based on estimated field-size distributions, will be applied to frontier and conceptual plays. Formal reports of the assessment results will be presented in 1995.

  7. Europe's Energy Portal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR) SectorEurel InzeniringEurope's

  8. Natsource Europe Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource Europe Ltd Jump to:

  9. Stand by Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis County,StaceyStallings, NorthEurope Jump to:

  10. Sustainable Europe Research Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods IncEurope Research Institute Jump to:

  11. High Detail Stationary Optimization Models for Gas Networks

    E-Print Network [OSTI]

    Martin Schmidt

    2014-10-15T23:59:59.000Z

    Oct 15, 2014 ... Abstract: Due to strict regulatory rules in combination with complex nonlinear physics, major gas network operators in Germany and Europe ...

  12. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31T23:59:59.000Z

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  13. Global Rebalancing: US Protection versus Europe-led reflation

    E-Print Network [OSTI]

    Irvin, George; Izurieta, Alex

    2006-01-01T23:59:59.000Z

    impact of a Europe-led reflation is re-enforced by the strong income and trade linkages with middle- income and poor regions of the world (eg, Eastern Europe, Latin America and Africa)18. An EU-led reflation supposes a set of demand... switching on the required scale within an acceptable time frame. The central point is that the extra growth cannot come entirely or even chiefly from Asia (where resources are already stretched to the limit), but must come from a combination of renewed EU...

  14. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of United States oil and gas resources on CD-ROM: U.S.of United States Oil and Gas Resources conducted by the U.S.assess conventional oil and gas resources. In order to use

  15. Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulationInformation) Programs (70) Tools

  16. CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA

    E-Print Network [OSTI]

    Genova, Università degli Studi di

    CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA Municipal Department for European affairs (MA 27 PROGRAMME Thematic study: Energy efficiency and renewable energies in the CENTRAL EUROPE Programme Request European regions more competitive, innovative, attractive and accessible. The Central Europe Programme area

  17. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    consequences in California Oil and Gas District 4 from 1991activities, such as oil and gas production, natural gasmade in quantifying oil and gas resource volumes in

  18. The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas industry resources in Special Collections

    E-Print Network [OSTI]

    Levi, Ran

    guide The University of Aberdeen is a charity registered in Scotland, No SC013683 Oil and gas.abdn.ac.uk/library/about/special/ Introduction Special Collections have established an Oil and Gas Archive to hold collections relating to the oil and gas industry, spanning 40 years. All areas are represented in holdings, including major

  19. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  20. Natural Gas Rules (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

  1. PIXE pollution studies across Europe

    SciTech Connect (OSTI)

    Innegraeve, O.; Blanchet, X.; Muntele, C. I.; Muntele, I. C.; Zimmerman, R. L.; Popa-Simil, L. (Liviu); Voiculescu, D.; Racolta, P. M.; Ila, D.

    2002-01-01T23:59:59.000Z

    We collected vegetation and soil samples from various locations along a route covering Eastern and Western Europe. We measured the level of elemental pollution in different places uniformly spread across the continent to determine which of them may have common sources. To achieve these objectives, samples were collected along the main roads from Romania to Portugal and analyzed using in-air PEE (Particle-Induced X-ray Emission).

  2. Computer resources Computer resources

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

  3. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    E-Print Network [OSTI]

    Jordan, Preston D.

    2008-01-01T23:59:59.000Z

    Gas and Geothermal Resources (2006) Oil ?eld data ?le datedDivision of Oil, Gas and Geothermal Resources (2007),Division of Oil, Gas, and Geothermal Resources, Sacramento

  4. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for...

  5. Unconventional Resources Technology Advisory Committee | Department...

    Energy Savers [EERE]

    and environmental mitigation (including reduction of greenhouse gas emissions and sequestration of carbon). The Department's Unconventional Resources Technology Advisory...

  6. Long-term vs. Short-term Contracts; A European perspective on natural gas

    E-Print Network [OSTI]

    Neuhoff, Karsten; von Hirschhausen, Christian

    2006-03-14T23:59:59.000Z

    This paper analyses the economics of long-term gas contracts under changing institutional conditions, mainly gas sector liberalisation. The paper is motivated by the increasingly tense debate in continental Europe, UK and the US on the security...

  7. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01T23:59:59.000Z

    gas-fired power plants, which will increase California'spower plants, which will presumably increase California'sin California is PG&E's Diablo Canyon nuclear power plant,

  8. Sponsors of CIEEDAC: Natural Resources Canada, Environment Canada, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum

    E-Print Network [OSTI]

    on energy in the industrial sector or publications by NRCan that reflect energy consumption in various des ressources naturelles, Québec. Ministry of Energy Mines and Petroleum Resource, BC. CIEEDAC An Inventory of Industrial Energy and Emissions Databases in Canada, 2007 Prepared for Natural Resources Canada

  9. IMPLEMENTING GREENHOUSE GAS TRADING IN EUROPE: LESSONS FROM ECONOMIC LI-

    E-Print Network [OSTI]

    Boyer, Edmond

    trading, climate change policy, policy-making and implementation 4 #12;Introduction Following the Bonn to the European Climate Change Programme (European Commission, 2001b), there is a gap in the range of 6.6% and 8 the Kyoto Protocol. The Protocol will now enter into force if they are joined by Russia. Compliance

  10. Evaluation of transboundary environmental issues in Central Europe

    SciTech Connect (OSTI)

    Engi, D. [Sandia National Labs., Albuquerque, NM (United States). Corporate Planning and Strategic Business Development Div.; Kapustka, L.A.; Williams, B.A.; Meganck, R.A.; Garrison, J.G. [Ecological Planning and Toxicology, Inc., Corvallis, OR (United States); Glicken, J. [Ecological Planning and Toxicology, Inc., Albuquerque, NM (United States); Hostetler, C.J.; Lawrence, S. [Columbia Environmental Services, Inc., Kennewick, WA (United States)

    1997-05-01T23:59:59.000Z

    Central Europe has experienced environmental degradation for hundreds of years. The proximity of countries, their shared resources, and transboundary movement of environmental pollution, create the potential for regional environmental strife. The goal of this project was to identify the sources and sinks of environmental pollution in Central Europe and evaluate the possible impact of transboundary movement of pollution on the countries of Central Europe. In meeting the objectives of identifying sources of contaminants, determining transboundary movement of contaminants, and assessing socio-economic implications, large quantities of disparate data were examined. To facilitate use of the data, the authors refined mapping procedures that enable processing information from virtually any map or spreadsheet data that can be geo-referenced. Because the procedure is freed from a priori constraints of scale that confound most Geographical Information Systems, they have the capacity to generate new projections and apply sophisticated statistical analyses to the data. The analysis indicates substantial environmental problems. While transboundary pollution issues may spawn conflict among the Central European countries and their neighbors, it appears that common environmental problems facing the entire region have had the effect of bringing the countries together, even though opportunities for deteriorating relationships may still arise.

  11. Dow Corning Europe S A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDow Corning Europe S A

  12. Dynetek Europe GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbH Jump to:

  13. United Nations Economic Commission for Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEurope Jump to: navigation,

  14. The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System

    E-Print Network [OSTI]

    Greer, Mark R

    2012-01-01T23:59:59.000Z

    Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

  15. THE COLLEGE OF NATURAL RESOURCES By the Numbers . . .

    E-Print Network [OSTI]

    Buckel, Jeffrey A.

    in the areas of bio-energy and natural resource sciences & policy to businesses, nonprofits and governmental Europe, south and east Asia, Australia, sub-Saharan Africa, and throughout Latin American

  16. Unconventional Energy Resources: 2013 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30T23:59:59.000Z

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  17. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource

    E-Print Network [OSTI]

    The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over on Wind Energy Resource over Europe and its Intermittency Pascal Kriesche* and Adam Schlosser* Abstract

  18. “Friday off”: Reducing Working Hours in Europe

    E-Print Network [OSTI]

    Kallis, Giorgos

    This article explores the pros and cons for reducing working hours in Europe. To arrive to an informed judgment we review critically the theoretical and empirical literature, mostly from economics, concerning the relation ...

  19. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect (OSTI)

    NONE

    2009-06-15T23:59:59.000Z

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  20. Solubility trapping in formation water as dominant CO2 sink in natural gas fields

    E-Print Network [OSTI]

    Haszeldine, Stuart

    LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

  1. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources For Teachers Teachers Visit the Museum We Visit You Teacher Resources Home Schoolers Plan Your School Visit invisible utility element Teacher Resources Scavenger...

  2. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    the gas flux from shallow gas hydrate deposits: InteractionK.A. , Potential effects of gas hydrate on human welfare,Emerging US gas resources; 4, Hydrates contain vast store of

  3. The impacts of technology on global unconventional gas supply

    E-Print Network [OSTI]

    Yanty, Evi

    2009-06-02T23:59:59.000Z

    As energy supplies from known resources are declining, the development of new energy sources is mandatory. One reasonable source is natural gas from unconventional resources. This study focus on three types of unconventional gas resources: coalbeds...

  4. Unconventional Energy Resources: 2011 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists

    2011-12-15T23:59:59.000Z

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  5. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01T23:59:59.000Z

    rich in such resources, like oil and gas, have encounteredDivision of Oil and Gas, Geothermal Resources, Sacramento,and natural resource commission on oil and gas activity

  6. Using dissolved noble gas and isotopic tracers to evaluate the vulnerability of groundwater resources in a small, high elevation catchment to predicted climate changes

    SciTech Connect (OSTI)

    Singleton, M J; Moran, J E

    2009-10-02T23:59:59.000Z

    We use noble gas concentrations and multiple isotopic tracers in groundwater and stream water in a small high elevation catchment to provide a snapshot of temperature, altitude, and physical processes at the time of recharge; and to determine subsurface residence times of different groundwater components. They identify three sources that contribute to groundwater flow: (1) seasonal groundwater recharge with short travel times, (2) water from bedrock aquifers that have elevated radiogenic {sup 4}He, and (3) upwelling of deep fluids that have 'mantle' helium and hydrothermal carbon isotope signatures. Although a bimodal distribution in apparent groundwater age indicates that groundwater storage times range from less than a year to several decades, water that recharges seasonally is the largest likely contributor to stream baseflow. Under climate change scnearios with earlier snowmelt, the groundwater that moves through the alluvial aquifer seasonally will be depleted earlier, providing less baseflow and possible extreme low flows in the creek during summer and fall. Dissolved noble gas measurements indciate recharge temperatures are 5 to 11 degrees higher than would be expected for direct influx of snowmelt, and that excess air concentrations are lower than would be expected for recharge through bedrock fractures. Instead, recharge likely occurs over diffuse vegetated areas, as indicated by {delta}{sup 13}C-DIC values that are consistent with incorporation of CO{sub 2} from soil respiration. Recharge temperatures are close to or slightly higher than mean annual air temperature, and are consistent with recharge during May and June, when snowpack melting occurs.

  7. Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers

    E-Print Network [OSTI]

    Inoue, Masayuki

    1994-01-01T23:59:59.000Z

    In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

  8. Linkpoint Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTNLianyungangLighting

  9. Sinatis Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SA JumpProjectProblemSinaeSinatis

  10. Geysir Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation, search Name: GetecGeysers Jump

  11. Thermilate Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book JumpTimken

  12. What can transmission do for a fully renewable Europe?

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Greiner, Martin O W; Schramm, Stefan

    2014-01-01T23:59:59.000Z

    Our research is centred around the question how to best integrate the variable renewable energy sources (VRES), wind power and solar photovoltaics, into the European electricity grid. The future electricity supply will be based to a large extend on these fluctuating resources. We have conducted a study, extrapolating national historical and targeted wind and solar power penetrations in Europe up to 100% VRES (R.A. Rodriguez et al, Renewable Energy 63, p. 467, Mar 2014 and S. Becker et al, Energy 64, p. 404, Jan 2014). A high share of VRES means large fluctuations in the generation, causing overproduction and deficits. One way to reduce such mismatches is power transmission spatially smoothing out the fluctuations. This has the potential to reduce the remaining shortages by sharing the surplus production of others. We find that shortages can at maximum be reduced by 40% in the hypothetical case of unlimited transmission capacities across all of Europe. A more realistic extension of the transmission grid, rough...

  13. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  14. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  15. Resource Adequacy Advisory Committeey

    E-Print Network [OSTI]

    ) Total Resources Reported Net Gas-Fired Plants (2017) Import Assumption* "Surplus" Average Min B=D*1 in winter loads (summer didn't matter because we assumed no marketmatter because we assumed no market Report (April 2011) S. to N. Transfer (AC + DC) A B C D E F G 2010 Demand 1:2 Adequacy Requirement (AR

  16. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee February 27, 2014 Steven Simmons and Gillian Charles Upcoming Symposium 9:15 am Natural Gas Peaking Technologies Technology Trends Proposed reference plant Costing, Economies of Scale, Normalizations Reference Plants 12:30 pm Discussion of Next GRAC Meetings

  17. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01T23:59:59.000Z

    www.epa.gov/cleanenergy/energy-resources/egrid. [24] Wang,Gas-Fired Distributed Energy Resource Characterizations.CO: National Renewable Energy Resource Laboratory Report TP-

  18. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    2003), “Distributed Energy Resources Customer AdoptionGas-Fired Distributed Energy Resource Characterizations,”National Renewable Energy Resource Laboratory, Golden, CO,

  19. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01T23:59:59.000Z

    Gas-Fired Distributed Energy Resource Characterizations”,National Renewable Energy Resource Laboratory, Golden, CO,Edwards, “Distributed Energy Resources Customer Adoption

  20. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01T23:59:59.000Z

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  1. Interstate Oil and Gas Conservation Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Interstate Oil and Gas Compact Commission assists member states efficiently maximize oil and natural gas resources through sound regulatory practices while protecting the nation's health,...

  2. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  3. 5, 90039038, 2005 Ozone in Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the at- mospheric boundary layer, a low total ozone column and a reduced cloud cover, all favouring ozone 2003. In this paper we5 argue that a number of positive feedback effects between the weather conditions as the increased temperature and solar radiation indicate that biogenic emissions in Europe were increased during

  4. International negotiations on acid rains in Northern Europe

    E-Print Network [OSTI]

    Toint, Philippe

    International negotiations on acid rains in Northern Europe: a discrete time iterative process by M on acid rains in Northern Europe: a discrete time iterative process \\Lambda Marc Germain y Philippe L is provided by Kaitala et al. (1995) in the context of the ``acid rain game'' in Northern Europe, that is

  5. Modeling and valuing make-up clauses in gas swing Enrico Edoli1,2,3

    E-Print Network [OSTI]

    Vargiolu, Tiziano

    , the long term trend of natural gas demand has been historically upward sloping. The economic crisis of 2008 to the worldwile energy liberalization process, the birth of competitive gas markets and the recent financial@math.unipd.it. 1 #12;1 Introduction to long term supply contracts in European gas markets Europe is among

  6. Virginia Gas and Oil Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing,...

  7. Oil and Gas on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

  8. Resource Management Services: Mineral Resources, Parts 550-559 (New York)

    Broader source: Energy.gov [DOE]

    This section establishes a Bureau of Mineral Resources within the Department of Environmental Conservation, which has the authority to regulate the exploration and mining for oil and gas resources...

  9. Unconventional gas: truly a game changer?

    SciTech Connect (OSTI)

    NONE

    2009-08-15T23:59:59.000Z

    If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

  10. Fire Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive Jump to:Finnish

  11. Speaker to Address Impact of Natural Gas Production on Greenhouse Gas Emissions When used for power generation, Marcellus Shale natural gas can significantly reduce carbon

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    generation, Marcellus Shale natural gas can significantly reduce carbon dioxide emissions, but questions have been raised whether development of shale gas resources results in an overall lower greenhouse gas, "Life Cycle Greenhouse Gas Emissions of Marcellus Shale Gas," appeared in Environmental Research Letters

  12. Oil and Gas General Provisions (Montana)

    Broader source: Energy.gov [DOE]

    This chapter describes general provisions for the exploration and development of oil and gas resources in Montana. The chapter addresses royalty interests, regulations for the lease of local...

  13. Canada Oil and Gas Operations Act (Canada)

    Broader source: Energy.gov [DOE]

    The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

  14. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

  15. Shale gas is natural gas trapped inside

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus Group HSS/UnionGlossary Shale GasShale gas

  16. Oil and Gas Conservation (Nebraska)

    Broader source: Energy.gov [DOE]

    This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the...

  17. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  18. army europe 409th: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Websites Summary: ECONOMIC COMMISSION FOR EUROPE Timber Committee 2009 UNECE Timber Committee Statement on Forest Products Markets in 2009 and 2010 Adopted on 16...

  19. africa southern europe: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Websites Summary: ECONOMIC COMMISSION FOR EUROPE Timber Committee 2009 UNECE Timber Committee Statement on Forest Products Markets in 2009 and 2010 Adopted on 16...

  20. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  1. Germany Inspires Innovation --Welcome to Europe's Leader in Science

    E-Print Network [OSTI]

    Kersting, Kristian

    Germany Inspires Innovation -- Welcome to Europe's Leader in Science #12;Welcome to the Land of Ideas Excellence in research and development Germany is the number one location for research in Europe. Germany's unique scientific tradi- tion and great variety of research offer ideal conditions--not only

  2. Master of Communication Studies New Media and Society in Europe

    E-Print Network [OSTI]

    Einmahl, Uwe

    Master of Communication Studies New Media and Society in Europe A one-year programme in English-year (60 ECTS) academic master with a focus on New Media and Society in Europe. This English language/or user aspects of new media. Digitisation of media, the emergence of the Internet and the mobile

  3. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  4. North American Natural Gas Markets. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    This report sunnnarizes the research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  5. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01T23:59:59.000Z

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  6. Fernley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV JumpFederal HighwayFernley, Nevada: Energy Resources

  7. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  8. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergyWestern Europe | Department of|

  9. Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartment ofof EnergyNewto Western Europe

  10. Economical analysis of a new gas to ethylene technology 

    E-Print Network [OSTI]

    Abedi, Ali Abdulhamid

    2007-09-17T23:59:59.000Z

    . In Europe and Japan, where natural gas is not abundant, thermal cracking of naphtha using a fired heater is the most common process. In addition to these processes; ethylene could also be produced from crude oil by autothermic and fluidized bed techniques...

  11. Employee, Retiree Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging Threats and

  12. Fermilab | Resources for ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophotoReleases Subscribe

  13. Fermilab | Resources | Industrial Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall A This photophotoReleases

  14. Comprises over of Energy Resources

    E-Print Network [OSTI]

    into fuels including gasoline. Like coal, it can be burned in power plants, but its high sulfur and heavy to 1% of the region's energy resources. Hydro- power 46% Coal 18% Energy Efficiency 16% Natural Gas 11) Energy Efficiency (4,633 MW) Coal (5,396 MW) Hydropower (13,401.8 MW) Dispatched Average Megawatts

  15. Renewable Energy Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas...

  16. 343. Document entitled "Develop "Frontier" Resources to Ensure...

    Broader source: Energy.gov (indexed) [DOE]

    3. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Natural Gas Supply," dated March 8, 2001. B-5 Exemption - Information withheld (under Exemption 5)...

  17. ABOUT THE JOURNAL Marine Resource Economics publishes creative and scholarly

    E-Print Network [OSTI]

    Mateo, Jill M.

    biodiversity, marine and coastal recreation, marine pollution, offshore oil and gas, seabed mining, renewable pollution, coastal and marine recreation, ocean energy resources, coastal climate adaptation, ecosystem

  18. Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES

    E-Print Network [OSTI]

    Elby, Andy

    Epistemological resources 1 Running Head: EPISTEMOLOGICAL RESOURCES Epistemological resources University Maryland, College Park Trisha Kagey Montgomery County Public Schools #12;Epistemological resources are better understood as made up of finer-grained cognitive resources whose activation depends sensitively

  19. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  20. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  1. Resource Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource Program

  2. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11T23:59:59.000Z

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology section of future revisions of the ''Yucca Mountain Site Description'' (CRWMS M&O 2000c).

  3. Energy Transitions: A Systems Approach Including Marcellus Shale Gas Development

    E-Print Network [OSTI]

    Angenent, Lars T.

    hydrocarbons such as natural gas. Whereas an over- all goal for the century is to achieve a sustainable system to increased use of unconventional gas resources as a result of declining supplies of conventional resources case study of energy transitions we focused on the case of un- conventional natural gas recovery from

  4. ECONOMIC COMMISSION FOR EUROPE Timber Committee 2009

    E-Print Network [OSTI]

    and biofuels usage. A carbon tax in Sweden gives incentives for the mobilization of wood as a renewable energy exception: wood energy which was buoyed by Governments' policies for renewable energy sources for a green, the percentage of greenhouse gas emissions by 20%, to increase the share of renewable energy to 20% and increase

  5. High intensity neutrino oscillation facilities in Europe

    E-Print Network [OSTI]

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01T23:59:59.000Z

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  6. Annual bulletin of coal statistics for Europe-1983. [Europe, Canada, USA, USSR

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This is a series of statistical tables documenting the production, trade, and consumption of coal in Europe, Canada, the United States, and the Soviet Union. Balance sheets of solid forms of energy are provided for hard coal, patent fuel, and coke; and for brown coal, brown coal briquettes, and brown coal coke. Data are provided on hard coal mines and on brown coal mines for production, employment and productivity of labor. Other tables list imports of solid fuels by country, exports of solid fuels by country, and world production of solid fuels.

  7. Steam Turbine Performance in Europe | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Turbine Performance in Europe Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to...

  8. SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE

    E-Print Network [OSTI]

    Minnesota, University of

    #12;SCANNING TOUR SUMMARY REPORT PRICING EXPERIENCE IN NORTHERN EUROPE: LESSONS LEARNED...........................................................................................1 2. PURPOSE OF SCANNING TOUR..........................................................................................................................30 PARTICIPANTS IN SCANNING TOUR SCANNING TOUR HOSTS #12;Scanning Tour Summary Report 1 October 20

  9. Evolution of the financial services industry in Europe and US

    E-Print Network [OSTI]

    Boyar, Pinar

    2009-01-01T23:59:59.000Z

    The thesis aims to address the long lasting phenomena of evolution of financial services industry both in US and Europe. The topic has never been more emphasized since the Great Depression. The dramatic fact of cost cutting ...

  10. Seismic retrofit of precast panel buildings in Eastern Europe

    E-Print Network [OSTI]

    Tzonev, Tzonu

    2013-01-01T23:59:59.000Z

    Many countries in Eastern Europe, particularly ones from the former Soviet Bloc, are facing a potential crisis regarding their deteriorating precast panel apartment buildings. These complexes were built using industrial ...

  11. Cultural Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of

  12. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  13. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01T23:59:59.000Z

    local residents while natural gas energy resource developmentEnergy resource development creates new opportunities for locallocal communities are undermined with existing energy development

  14. Nigeria: after crude, the gas

    SciTech Connect (OSTI)

    Not Available

    1980-11-01T23:59:59.000Z

    Misinterpretation of the laws of the marketplace have already brought Nigeria to the brink of a catastrophe in 1978, when the government had built up heavy stocks expecting a substantial increase in price. When it did not materialize and the production had to be dropped to 50% of the previous rate, in a country where crude constitutes 90% of the export revenues, the system was changed. The new plan is intended to reduce the dependence of Nigeria on oil exports. The production rate is set at between 2.2 and 2.5 million bpd. Due to a significant increase in domestic demand, the 2 existing refineries cannot fill the gap; 2 more refineries are planned. There also are substantial gas reserves; the associated gas, now flared, is to be recovered. A gas liquefaction plant also is in operation, with one-half of the output going to Europe and one-half to the US. Some of the oil and gas is earmarked for local petrochemical plants.

  15. Generating Resources Combined Cycle Combustion Turbine

    E-Print Network [OSTI]

    11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine #12;11/17/2014 4 Combined Cycle Combustion Turbine Background Primary Components Gas-fired combustion

  16. Managing talent flow. 2006 Energy and Resources

    E-Print Network [OSTI]

    and market growth in mining, utilities, oil and gas have been relatively stagnant, prompting many youngManaging talent flow. 2006 Energy and Resources Talent Pulse Survey Report Consulting #12;Executive ................................................................ 13 Contents #12;1 Managing talent flow 2006 Energy and Resources Talent Pulse Survey Report 2006

  17. Specialized Resources: http://library.queensu.ca

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Specialized Resources: http://library.queensu.ca Under `Locations & Hours', choose: MADGIC - Maps by keyword to find these (and many more) resources: Annual Estimates of Employment Earning and Hours-STAT ­ time series for academic, non-profit use - FREE Energy Statistics Handbook ­ statistics on oil, gas

  18. PROCEDURES FOR ALLOCATION AND AGGREGATION OF RESOURCES

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Chapter AA PROCEDURES FOR ALLOCATION AND AGGREGATION OF RESOURCES By Ronald R. Charpentier, T.......................................................................................................AA-7 Appendix 1 Aggregation of Undiscovered Oil, Gas, and NGL Volumes Of Regions to World Total Monte RH. The separate reporting of onshore versus offshore undiscovered resources is important to economic

  19. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    oil in Malaysia, and from rapeseed in Europe. Current biofuel production in Brazil cannot meet domestic demand

  20. New study shows prospects for unconventional natural gas

    SciTech Connect (OSTI)

    Sharer, J.C.; Rasmussen, J.J.

    1981-02-01T23:59:59.000Z

    With reserves of conventional sources of natural gas in the lower 48 expected to decline in coming decades, the potential of various supplemental gas sources is of critical interest to energy planners and decision makers. Substantial quantities of supplemental supplies can be produced domestically from Alaskan and unconventional sources or synthesized through conversion of organic materials. In addition, imports of LNG and pipeline gas from Canada and Mexico can further supplement the supply of gas available. Small quantities of gas already are being produced commercially from unconventional sources: approximately 0.8 tcf annually from western tight gas sands and 0.1 tcf from E. Devonian gas shales. A consensus is beginning to form in the gas industry on a reasonable range for forecasts of unconventional gas resources and potential production. The assessed resources include western tight gas sand, E. Devonian gas shales, coal seam methane, and methane from geopressured zones.

  1. Resilience of natural gas networks during conflicts, crises and disruptions

    E-Print Network [OSTI]

    Carvalho, Rui; Bono, Flavio; Masera, Marcelo; Arrowsmith, David K; Helbing, Dirk

    2013-01-01T23:59:59.000Z

    Human conflict, geopolitical crises, terrorist attacks, and natural disasters can turn large parts of energy distribution networks offline. Europe's current gas supply network is largely dependent on deliveries from Russia and North Africa, creating vulnerabililties to social and political instabilities. During crises, less delivery may mean greater congestion, as the pipeline network is used in ways it has not been designed for. Given the importance of the security of natural gas supply, we develop a model to handle network congestion on various geographical scales. We offer a resilient response strategy to energy shortages and quantify its effectiveness for a variety of relevant scenarios. In essence, Europe's gas supply can be made robust even to major supply disruptions, if a fair distribution strategy is applied.

  2. Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada)

    Broader source: Energy.gov [DOE]

    The province’s offshore contains large natural gas deposits. The Provincial Government has developed an Offshore Natural Gas Royalty Regime that will ensure these resources are developed in the...

  3. Utility Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict SolarJohnpotential-calc Sign InPages

  4. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »Dept

  5. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeeding accessOfficeAdsorptionOnline

  6. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovationComputationalEnergyEvents

  7. Volunteers - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 TheVolker

  8. Business Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPractices Sign In About

  9. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'llMappingMariaHereld Manager,Markdefault

  10. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLab (NewportStudying theSubcontactor

  11. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails TakingRTapeUpdatedTeachers »

  12. Privacy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 Br Bromine 43 cPoints of Contact

  13. Mobile Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,AMission MissionMistakesMoMobile

  14. Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery

    E-Print Network [OSTI]

    Bongartz, Dominik

    2014-01-01T23:59:59.000Z

    Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

  15. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    of the Canadian Natural Gas Vehicles Survey,” SAE 892067,2000. Gushee, David E, “Natural Gas Vehicles Stall on Way toWelfare Costs of Natural Gas Vehicles,” Resources for the

  16. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27T23:59:59.000Z

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  17. GEOLOGIC ASSESSMENT OF DRILLING, COMPLETION, AND STIMULATION METHODS IN SELECTED GAS SHALE PLAYS WORLDWIDE

    E-Print Network [OSTI]

    Patel, Harsh Jay

    2014-04-11T23:59:59.000Z

    The United States regularly imports majority of the transportation oil, and several TCF of natural gas annually. Nevertheless, there is very large resource of natural gas in unconventional reservoirs, with over 2,200 TCF of natural gas in just...

  18. Natural Gas Discovery and Development Impacts on Rio Vista and Its Community

    E-Print Network [OSTI]

    Gbedema, Tometi Koku

    2006-01-01T23:59:59.000Z

    and meditation on “oil and gas industries’ promotion thatrich in such resources, like oil and gas, have encounteredMost conflicts involving oil and gas drilling are rooted in

  19. Trinity Gas to explore for gas in Colombia

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    Trinity Gas Corp. officials signed an agreement on May 20, 1997, with the Cauca Valley Corp. (CVC) allowing Trinity to use CVC data to explore for natural gas in the Cauca Valley of Colombia. CVC, Colombia`s Valle del Cauca water resources and environmental division, is evaluating Colombia`s underground water reserves to protect, control and preserve fresh water aquifers, some of which contain natural gas pockets that cause blowouts in farmers` water wells. Preparations now are underway for drilling Trinity`s first well at the Palmira 1 site on the San Jose Hacienda, the largest privately owned sugar cane plantation in the valley. Trinity also entered into an agreement with the Cauca Valley Natural Gas and Electricity Project to furnish natural gas, generated electricity and energy fuel for the industrial district in the region. According to this contract, many valley residents will have electric service for the first time.

  20. Andrew Ford BWeb for Modeling the Environment 1 Resource Economics

    E-Print Network [OSTI]

    Ford, Andrew

    for clean vehicles. Natural gas was also the most popular fuel for new power generation during of Natural Gas in the USA These exercises provide an opportunity to use system dynamics to study the life cycle of a non- renewable resource. Natural gas may be the most important source of energy in the United

  1. U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

  2. advanced automotive gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the environment and legislation introduced to reduce greenhouse gas emissions and improve resource efficiency, eco product design and manufacturing strategies have to be developed...

  3. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Place: Sacramento, California Coordinates: 38.5815719,...

  4. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy,...

  5. Fiji: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BVEnergy InformationInformationFieldstone

  6. Firebaugh, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive Jump to:FinnishFireball

  7. Flagstaff, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirst Wind (Formerly(Redirected

  8. Natural Resources Canada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy InformationNatsource Europe LtdNatural

  9. Swaziland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpods IncEuropeSustainableSwaziland: Energy

  10. United States: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSCHomeform

  11. Everett, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, search

  12. Exton, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation,Information 7Exton,

  13. Fairfield, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValleyOhio:

  14. Fairfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValleyOhio:1412077°,

  15. Fairlawn, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED TypeFairlawn, Ohio: Energy

  16. Fairview, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED TypeFairlawn, Ohio:

  17. Fairview, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED TypeFairlawn, Ohio:Texas:

  18. Falkland Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED TypeFairlawn,Falkland Islands:

  19. Fallon, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED

  20. Fallon, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump to: navigation, search

  1. Farmersville, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump to:False PassFarmers

  2. Fellows, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV JumpFederal Highway AdministrationFellows Energy

  3. Pipeline Politics: Natural Gas in Eurasia 

    E-Print Network [OSTI]

    Landrum, William W.; Llewellyn, Benjamin B.; Limesand, Craig M.; Miller, Dante J.; Morris, James P.; Nowell, Kathleen S.; Sherman, Charlotte L.

    2010-01-01T23:59:59.000Z

    important to US efforts to reduce its reliance on Middle Eastern energy resources. Presently, pipelines in Eurasia stretch across thousands of miles throughout unstable political regions. Disruptions in gas and oil supplies negatively affect the economies...

  4. Oil, Gas, and Metallic Minerals (Iowa)

    Broader source: Energy.gov [DOE]

    Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

  5. Seeking prospects for enhanced gas recovery

    SciTech Connect (OSTI)

    Doherty, M.G.; Randolph, P.L.

    1982-01-01T23:59:59.000Z

    As part of the Institute of Gas Technology's (IGT) ongoing research on unconventional natural gas sources, a methodology to locate gas wells that had watered-out under over-pressured conditions was developed and implemented. Each year several trillion cubic feet (Tcf) of gas are produced from reservoirs that are basically geopressured aquifers with large gas caps. As the gas is produced, the gas-water interface moves upward in the sandstone body trapping a portion of gas at the producing reservoir pressure. The methodology for identifying such formations consisted of a computer search of a large data base using a series of screening criteria to select or reject wells. The screening criteria consisted of depth cutoff, minimum production volume, minimum pressure gradient, and minimum water production. Wells chosen by the computer search were further screened manually to seek out those wells that exhibited rapid and large increases in water production with an associated quick decline in gas production indicating possible imbibition trapping of gas in the reservoir. The search was performed in an attempt to characterize the watered-out geopressured gas cap resource. Over 475 wells in the Gulf Coast area of Louisiana and Texas were identified as possible candidates representing an estimated potential of up to about 1 Tcf (2.83 x 10/sup 10/ m/sup 3/) of gas production through enhanced recovery operations. A process to determine the suitability of a watered-out geopressured gas cap reservoir for application of enhanced recovery is outlined. This paper addresses the identification of a potential gas source that is considered an unconventional resource. The methodology developed to identify watered-out geopressured gas cap wells can be utilized in seeking other types of watered-out gas reservoirs with the appropriate changes in the screening criteria. 12 references, 2 figures, 5 tables.

  6. Fuel Cell Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreight BestFuel Cell Control Ltd Jump

  7. Itochu Europe Plc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC Jump to:Pty Ltd JumpIskraItochu

  8. T O Green Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shrenik IndustriesState ofSwitchpower

  9. Unit Energy Europe AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shreniksource History ViewFarming IncPanamenaUnit

  10. Vestas Central Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:ShreniksourceVentower IndustriesVestas Central

  11. Jetion Europe Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa:Jerome County,Jerusalem

  12. Clipper Windpower Europe Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergy Offshore Place:Wind EnergyCielo

  13. Solar Wind Europe SL | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sro

  14. Solco Europe Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar EnergySolariaSolarwatt AG JumpSolatecSolco

  15. GE Global Research Europe in Munich, Germany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunitiesTheGAO

  16. Free Energy Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show MapFredericksburg County,

  17. Intelligent Energy Europe (IEE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner MongoliaIntegrys EnergyIntellect Battery CoIEE)

  18. Energie Europe Service | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagneticElmwoodEnerSpectivesolar

  19. Gas Hydrates Research Programs: An International Review

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2009-12-09T23:59:59.000Z

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  20. Top Resources | Commercial Buildings Resource Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Programs & Offices Consumer Information Commercial Buildings Resource Database Resources to support the adoption of energy-saving building technologies Search form Search...

  1. Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

    E-Print Network [OSTI]

    1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation, Technology and Policy Program #12;2 #12;3 Implications of Natural Gas Vehicle Technology in U.S. Private natural gas resources, and the growing international liquefied natural gas (LNG) market, gas prices

  2. Industry: Power fluidics - the state in Europe

    SciTech Connect (OSTI)

    Whetton, C. [Ility Engineering, London (United Kingdom)

    1996-03-01T23:59:59.000Z

    Fluidics is the science of fluid control without moving parts. To many people, fluidics is dead technology, long displaced by electronic logic. In the case of low-power fluidics, this is undoubtedly true except for a few highly specialized cases. Power fluidics, the control of large, industrial-scale flows, is very much alive and well, controlling sewer systems, {open_quotes}deslugging{close_quotes} mixed oil and gas flows, pumping highly corrosive radioactive liquids, and handling various applications in the pharmaceutical industry. The first fluidic device was the vortex diode or vortex throttle, developed in 1936 by Thomas Zobel of the Muenchen Technische Hochschule (Technical University of Munich). This device, the prototype of which still exists in working order, allowed fluid to flow easily in one direction, but offered a high resistance to reverse flow. Typical forward to reverse flow rates were 10:1, with a similar pressure ratio of 100:1. By adding a control port to the vortex diode, a vortex amplifier was achieved so that a large fluid flow could be controlled by a much smaller flow without moving parts. By the mid-1960s, practical vortex amplifiers had been developed and applied to the control of {open_quotes}difficult{close_quotes} fluids. With no moving parts, fluidic devices required minimal maintenance, a definite bonus if the device was located in a hot area. 6 figs.

  3. Europe report discloses biofuels' embarrassing secret

    SciTech Connect (OSTI)

    NONE

    2010-06-15T23:59:59.000Z

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  4. Annual resources report. [Glossary on technical terms

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The report is separated into the following sections: acknowledgments; a table of contents; a list of tables and figures; a glossary; an introduction; an overview of the role of energy resources in New Mexico; separate sections on oil and gas, coal, electrical generation, uranium, and geothermal energy; a section on the geologic setting of oil and gas, coal, and uranium; an appendix of additional tables pertaining to oil and gas development; and a listing of selected references. The glossary is a brief listing of technical terms used in the report with simplified definitions for the reader's use. The overview contains highlights of data found in the report as well as comparisons of New Mexico's resources with those of other states and the nation. In general, each section covering a resource area describes reserves, production, prices, consumption, transportation, employment, and revenue statistics over the past ten or more years and projections to the year 2000.

  5. Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Training & Development Mentoring Safety Program Brochure Postdoctoral Blog Resources The resources in this section have been curated to better support you in your...

  6. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposal process to the completion of the experiment, LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources WNR Resources...

  7. EIA - Natural Gas Publications

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State Glossary HomeCapacityNatural Gas

  8. Oil and Gas

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergy OfficeProjectsResearch in

  9. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARMMeasurementsMethane Gas Outreach Home Room

  10. Natural Gas Transportation Resiliency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural GasImports byTransportation

  11. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & Gas Efficient recovery

  12. Florida Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009 2010 2011 2012

  13. Florida Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009 2010 2011

  14. Georgia Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers48 4.95

  15. Hawaii Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAINCommercialPipeline22.38

  16. Historical Natural Gas Annual

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in6 The

  17. Historical Natural Gas Annual

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in6 The7

  18. Historical Natural Gas Annual

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Year in6 The78

  19. Idaho Natural Gas Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLeaseThousand4.37

  20. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a eviequestionnairesMillionNovember 200061:WaterGas

  1. Washington Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, WetCubicYearYear

  2. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2004 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  3. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    cultural and economic life involved with water resource issues. The oil and gas industry, the chemicalLouisiana Water Resources Research Institute Annual Technical Report FY 2002 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  4. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2003 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  5. Louisiana Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    involved with water resource issues. The oil and gas industry, the chemical industry, port activitiesLouisiana Water Resources Research Institute Annual Technical Report FY 2001 Introduction This report presents a description of the activities of the Louisiana Water Resources Research Institute

  6. Applying Geospatial Semantic Array Programming for a Reproducible Set of Bioclimatic Indices in Europe

    E-Print Network [OSTI]

    Caudullo, Giovanni

    2014-01-01T23:59:59.000Z

    Bioclimate-driven regression analysis is a widely used approach for modelling ecological niches and zonation. Although the bioclimatic complexity of the European continent is high, a particular combination of 12 climatic and topographic covariates was recently found able to reliably reproduce the ecological zoning of the Food and Agriculture Organization of the United Nations (FAO) for forest resources assessment at pan-European scale, generating the first fuzzy similarity map of FAO ecozones in Europe. The reproducible procedure followed to derive this collection of bioclimatic indices is now presented. It required an integration of data-transformation modules (D-TM) using geospatial tools such as Geographic Information System (GIS) software, and array-based mathematical implementation such as semantic array programming (SemAP). Base variables, intermediate and final covariates are described and semantically defined by providing the workflow of D-TMs and the mathematical formulation following the SemAP notat...

  7. AN UPDATE ON REFORM IN EASTERN EUROPE AND RUSSIA

    E-Print Network [OSTI]

    AN UPDATE ON REFORM IN EASTERN EUROPE AND RUSSIA Jeffrey Sachs ABSTRACT: The paper reviews the experience of Poland and Russia with economic reform, with occasional comparison to China's experience. The author argues that macroeconomic chaos in Poland and Russia preceded reform and was allayed by reform

  8. The Future of Democracy in Europe Trends, Analyses and Reforms

    E-Print Network [OSTI]

    Franz, Sven Oliver

    1 The Future of Democracy in Europe Trends, Analyses and Reforms A Green Paper for the Council-level accountability Mechanisms for direct citizen consultation Part III. Recommendations for reform Introduction Guidelines Our "wish list" of recommended reforms 1. Universal citizenship 2. Discretionary voting 3

  9. Thermal and Water Pinch Success Stories in Europe

    E-Print Network [OSTI]

    Eastwood, A.

    "Pinch Analysis™ for energy is now becoming commonplace in Europe with many companies (eg, BP Amoco and Shell) incorporating Pinch Analysis as a routine part of their process designs. In recent years, WaterPinchTM has emerged as an equally important...

  10. Information Science in Europe Fidelia Ibekwe-SanJuan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information Science in Europe Fidelia Ibekwe-SanJuan University of Lyon 3 4, cours Albert Thomas and Information Science Birketinget 6, Copenhagen, Denmark PI@db.dk Tatjana Aparac-Jelusi University of Zadar aims at giving an overview on the situation of information science in a few selected European countries

  11. Three Investment Scenarios for Future Nuclear Reactors in Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Three Investment Scenarios for Future Nuclear Reactors in Europe Bianka SHOAI TEHRANI CEA nuclear reactors within a few decades (2040), several events and drivers could question this possibility or detrimental to future nuclear reactors compared with other technologies and according to four main investment

  12. Actes du 23me colloque de l'Adm-Europe

    E-Print Network [OSTI]

    Brest, Université de

    Actes du 23ème colloque de l'Adméé-Europe Evaluation et enseignement supérieur 1 LES INFIRMIERS infirmiers, didactique professionnelle, évaluation des compétences. Résumé. La réforme de la formation en soins infirmiers par « l'approche compétences » s'applique depuis septembre 2009. L'IFSI de

  13. Visite de la biozone europe et de la serre

    E-Print Network [OSTI]

    reconstituées avec soin : de la plaine Sahel-Soudan à l'Europe, en passant par la Guyane, la Patagonie ou pour la plupart dans une zone d'acclimatation temporaire. Ils sont reçus dans leurs habitats définitifs

  14. Landscape wildfire interactions in Southern Europe: implications for landscape management.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Mediterranean, fire regime, climate change. 1. Introduction Every year about 45000 forest fires occur in southern Europe, causing large ecological and socio-economic impacts. Climate and land use changes, snc - 01100 Viterbo, Italy h National Agricultural Research Foundation, Institute of Mediterranean

  15. Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe

    E-Print Network [OSTI]

    Zimmermann, Niklaus E.

    Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe Luigi Maiorano1 to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing

  16. China and Europe enhance cooperation 09 December 2004

    E-Print Network [OSTI]

    News China and Europe enhance cooperation 09 December 2004 China and the European Union (EU) signed nuclear facilities in China while many in the bloc will be shutting down. The agreement also includes)'. China, along with Russia, is supporting the EU's bid to build Iter in France, while South Korea

  17. MANUFACTURERS: ALERTPRODUCT "MARK" REQUIRED FOR U.S. EXPORTS TO EUROPE!

    E-Print Network [OSTI]

    TO U.S. MANUFACTURERS: ALERTPRODUCT "MARK" REQUIRED FOR U.S. EXPORTS TO EUROPE! U.S. Department we export to Europe fall within the scope of Module A, U.S. manufacturers can readily apply the CE

  18. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  19. Gas power, its promises and problems

    SciTech Connect (OSTI)

    Seay, J.G.

    1980-02-01T23:59:59.000Z

    In spite of the recent decline in natural gas supply, it is still the dominant domestic source of energy supply and the most widely used fuel in the industrial, commercial, and household sectors. The basic problem of the gas industry is that of finding new supplies cost-competitive with other fuels in order to maintain the delivery of adequate gaseous energy to its customers, utilizing the existing and literally irreplaceable underground transmission and distribution system. The decline in gas supplies is traced to regulation of the field price of natural gas at a level too low to insure continuing additions to reserves at a rate sufficient to balance production. As a result, the US is drawing down its inventory of gas supply. The higher prices for gas in the field established by the Natural Gas Policy Act of 1978 provides additional economic incentives for exploration and development of new natural gas, and it is hoped that the higher prices will elicit new supplies. The US has available a large resource base of gas yet to be discovered, natural gas in unconventional sources, and the potential of additional incremental supplies from gasification of coal, the largest remaining fossil fuel resource.

  20. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  1. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  2. The John von Neumann Institute for Computing (NIC): A survey of its supercomputer facilities and its Europe-wide computational science activities

    E-Print Network [OSTI]

    N. Attig

    2005-12-12T23:59:59.000Z

    The John von Neumann Institute for Computing (NIC) at the Research Centre Juelich, Germany, is one of the leading supercomputing centres in Europe. Founded as a national centre in the mid-eighties it now provides more and more resources to European scientists. This happens within EU-funded projects (I3HP, DEISA) or Europe-wide scientific collaborations. Beyond these activities NIC started an initiative towards the new EU member states in summer 2004. Outstanding research groups are offered to exploit the supercomputers at NIC to accelerate their investigations on leading-edge technology. The article gives an overview of the organisational structure of NIC, its current supercomputer systems, and its user support. Transnational Access (TA) within I3HP is described as well as access by the initiative for new EU member states. The volume of these offers and the procedure of how to apply for supercomputer resources is introduced in detail.

  3. Department of Mathematics: Resources

    E-Print Network [OSTI]

    Resources Internal Resources Computing Information Business Office Information for TAs and Limited-Term Lecturers Information for Faculty Information for ...

  4. Effects of large-scale distribution of wind energy in and around Europe

    E-Print Network [OSTI]

    Effects of large-scale distribution of wind energy in and around Europe Gregor Giebel Niels Gylling energy in Europe? · Distribution of wind energy all over Europe leads to smoothing of the wind power energy can easily supply up to ~20% of the European demand. At this stage, · Less than 13% of the wind

  5. An iterative process for international negociations on acid rain in Northern Europe

    E-Print Network [OSTI]

    Toint, Philippe

    An iterative process for international negociations on acid rain in Northern Europe using a general 138.48.4.14) #12; An iterative process for international negotiations on acid rain in Northern Europe transboundary pollution problem related to acid rain in Northern Europe. This simulation shows the need

  6. The knowledge economy in Europe A report prepared for the 2007 EU Spring Council

    E-Print Network [OSTI]

    Chen-Burger, Yun-Heh (Jessica)

    The knowledge economy in Europe A report prepared for the 2007 EU Spring Council Prepared by Ian. Knowledge industry employment in Europe 6 4. Moving towards a knowledge based economy in Europe 7 5 10 8. Investing in knowledge 11 9. Next steps 23 Sponsors for the knowledge economy programme include

  7. Buying a sustainable future? Timber procurement policies in Europe and Japan

    E-Print Network [OSTI]

    March 2009 Buying a sustainable future? Timber procurement policies in Europe and Japan #12;Buying a sustainable future? Timber procurement policies in Europe and Japan2 A report produced by FERN, March 2009 policies in Europe and Japan 3 Abbreviations ATFS American Tree Farm System ATO African Timber Association

  8. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe

    E-Print Network [OSTI]

    Watson, Andrew

    on biomass potential in western Europe; Rotmans A comprehensive set of high-resolution grids of monthly climate for Europe and the globe;1 A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record

  9. Satelliteobservations,AT2 INVERTING GOME FORMALDEHYDE COLUMN FOR BIOGENIC EMISSIONS OVER EUROPE

    E-Print Network [OSTI]

    Curci, Gabriele

    emissions, as opposed to 30% of anthropogenic plus biomass burning contribution.Europe is the only continentSatelliteobservations,AT2 INVERTING GOME FORMALDEHYDE COLUMN FOR BIOGENIC EMISSIONS OVER EUROPE over Europe is generally overestimated by the state-of-the-art chemistry and transport model GEOS

  10. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Europe. It is producing biodiesel from veg- etable oil, fromsuch as Jatropha, for biodiesel. Some industrial forestsfor the production of biodiesel. The econom- ics of algae as

  11. THE EARLY AURIGNACIAN IN CENTRAL EUROPE AND ITS PLACE IN A EUROPEAN PERSPECTIVE The Early Aurignacian in central Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    western Eurasia (e.g. Djindjian, 1993; Mellars, 1989, 2004; Bocquet-Appel and Demars, 2000; Kozl/ owski Aurignacian first appears in the Balkans (Kozl/ owski and Otte, 2000). Through the years, researchers have sug of the Aurignacian in the Balkans or other regions of eastern Europe. #12;TOWARDS A DEFINITION OF THE AURIGNACIAN 242

  12. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  13. Present and future nuclear power generation as a reflection of individual countries' resources and objectives

    SciTech Connect (OSTI)

    Borg, I.Y.

    1987-06-26T23:59:59.000Z

    The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs.

  14. Tradable permits for greenhouse gas emissions : a primer with particular reference to Europe

    E-Print Network [OSTI]

    Ellerman, A. Denny.

    This paper is written as part of a two-year study of climate change policy choices facing Sweden, conducted under the auspices of the Center for Business and Policy Studies in Stockholm. As such, it aims to be a primer on ...

  15. 2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2010 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued August 2011 DIVISION OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2010 Annual Report of the State Oil and Gas

  16. 2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS

    E-Print Network [OSTI]

    2012 PRELIMINARY REPORT OF CALIFORNIA OIL AND GAS PRODUCTION STATISTICS Issued April 2013 OF OIL, GAS, AND GEOTHERMAL RESOURCES Figures in this report are estimates based on ten months of production data. Final figures will be published in the 2012 Annual Report of the State Oil and Gas

  17. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  18. Markets slow to develop for Niger delta gas reserves

    SciTech Connect (OSTI)

    Thomas, D. [Thomas and Associates, Hastings (United Kingdom)

    1995-11-27T23:59:59.000Z

    Nigeria produces a very high quality, light, sweet crude oil but with a large percentage of associated gas derived from a high gas-to-oil ratio. Official proved gas reserves, both associated and nonassociated, are 120 tcf. Proved and probable reserves are estimated as high as 300 tcf. The internal market for gas has only begun to develop since the 1980s, and as a result approximately 77% of associated gas production is flared. Domestic gas consumption is currently approximately 700 MMcfd and is projected to have a medium term potential of 1.450 bcfd. The article discusses resource development, gas markets, gas flaring, gas use programs, the Bonny LNG scheme, the gas reserve base, LNG project status, competition, and energy opportunities.

  19. 1 Environmental Resource Policy ENVIRONMENTAL RESOURCE

    E-Print Network [OSTI]

    Vertes, Akos

    1 Environmental Resource Policy ENVIRONMENTAL RESOURCE POLICY GRADUATE Master's program · Master of Arts in the field of environmental resource policy (http://bulletin.gwu.edu/arts-sciences/environmental CERTIFICATE · Graduate certificate in contexts of environmental policy (http://bulletin.gwu.edu/arts-sciences/environmental

  20. WATER RESOURCES ,'JEBRASKA WATER RESOURCES RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of transportation, urban blight, agricultural practices, land use, etc. Water resources problems often result fromWATER RESOURCES ,'JEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING formulate sound policy without a good deal of knowledge not presently available. Without adequate models

  1. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  2. Advanced power assessment for Czech lignite, Task 3.6, Part 2. The 2nd international conference on energy and environment: Transitions in East Central Europe

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01T23:59:59.000Z

    On November 1-5, 1994, the Energy & Environmental Research Center (EERC) and Power Research Institute of Prague cosponsored their second conference since 1991 in the Czech Republic, entitled ``Energy and Environment: Transitions in East Central Europe.`` This conference was a continuation of the EERC`s joint commitment, initiated in 1190, to facilitate solutions to short- and long-term energy and environmental problems in East Central Europe. Production of energy from coal in an environmentally acceptable manner is a critical issue facing East Central Europe, because the region continues to rely on coal as its primary energy source. The goal of the conference was to develop partnerships between industry, government, and the research community in East Central Europe and the United States to solve energy and environmental issues in a manner that fosters economic development. Among the topics addressed at the conference were: conventional and advanced energy generation systems; economic operation of energy systems; air pollution controls; power system retrofitting and repowering, financing options; regulatory issues; energy resource options; waste utilization and disposal; and long-range environmental issues. Selected papers in the proceedings have been processed separately for inclusion in the Energy Science and Technology database.

  3. Annual bulletin of coal statistics for Europe 1984

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This book contains data on developments and trends involving solid fuels in the countries of Europe and in the United States, Canada, and the Soviet Union. It provides a balance sheet of solid forms of energy and details on the production, employment, and productivity of labor for hard coal mines and for brown coal mines. Also documented are imports and exports of solid fuels by country and the world production of solid fuels.

  4. OpenEI Community - resource

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0

  5. OpenEI Community - resources

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0

  6. Chapter 15 Mineral Resources and the Environment

    E-Print Network [OSTI]

    Pan, Feifei

    Materials produced from natural gas or crude oil, such as plastics Fertilizers for agriculture, phosphate tons per year. Gold and silver have annual consumption rates of 10,000 tons or less. Worldwide consumption of minerals #12; The fundamental problem associated with the availability of mineral resources

  7. Proceedings of the natural gas research and development contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W. (eds.)

    1990-11-01T23:59:59.000Z

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  8. Unconventional gas sources. Executive summary. [Coal seams, Devonian shale, geopressured brines, tight gas reservoirs

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The long lead time required for conversion from oil or gas to coal and for development of a synthetic fuel industry dictates that oil and gas must continue to supply the United States with the majority of its energy requirements over the near term. In the interim period, the nation must seek a resource that can be developed quickly, incrementally, and with as few environmental concerns as possible. One option which could potentially fit these requirements is to explore for, drill, and produce unconventional gas: Devonian Shale gas, coal seam gas, gas dissolved in geopressured brines, and gas from tight reservoirs. This report addresses the significance of these sources and the economic and technical conditions under which they could be developed.

  9. Licensing East Asian Resources

    E-Print Network [OSTI]

    Chu, Victoria; Eggleston, Holly

    2008-01-01T23:59:59.000Z

    our licensing of East Asian Resources here at UCSD. y It isthe history of electronic resources and the use of licensesclick through, or even use a resource with posted terms on a

  10. Natural Resources Districts (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute establishes Natural Resources District, encompassing all of the area of the state, to conserve, protect, develop, and manage Nebraska's natural resources. These districts replace and...

  11. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  12. Sustainable Heat Power Europe GmbH formerly Solar Heat Power Europe GmbH |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren,Sussex,SECPSustainableJump

  13. Final Flue Gas Cleaning (FFGC)

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

  14. Case Study - Liquefied Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State Fire

  15. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  16. Physical Properties of Gas Hydrates: A Review

    SciTech Connect (OSTI)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01T23:59:59.000Z

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  17. 49th Annual international outlook issue. [World oil gas exploration and development trends

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This article represents the World Oil's 49th annual outlook. It discusses oil and gas exploration information, pricing, drilling activity, production, and reserves. It discusses the various reasons for increases or decreases in drilling activity in the various production regions of the earth. The article is broken down into the various geo-political regions and each region is described individually. These regions are described as North America, South America, Western Europe, Eastern Europe, Africa, the Middle East, the Far East (China, Indonesia, Viet Nam, etc.), and the South Pacific (Australia, New Zealand, New Guinea). Information on production, pricing, and drilling is presented in tabular formats along with a narrative discussion.

  18. Pyramid Resource Center-Green Energy Center

    SciTech Connect (OSTI)

    Flory, Paul, D.

    2011-09-02T23:59:59.000Z

    There are currently over 3,500 USA/Canadian landfills listed by the EPA/EC and like numbers in Europe that are producing methane-rich landfill gas (LFG). This gas is typically made up of 50-percent methane (CH4), 35-percent carbon dioxide (CO2), and 2 to 25% nitrogen and oxygen (N2 & O2), plus dozens of dilute contaminants. LFG is classified as a renewable fuel, because it is generated via biological decay of municipal solid waste, a constant byproduct of human activity. To date, most LFG has been allowed to escape into the atmosphere. On account of its high CH4 content, LFG may contribute to climate change, as CH4 is one of the most harmful greenhouse gases with 21 times the global warming potential of CO2. Of the landfills that collect LFG, most simply flare it. In the past decade, some landfills have begun to use LFG for electricity generation or for direct combustion as low Btu gas. Very few landfills upgrade LFG to high Btu gas. A patented CO2 WashTM process developed by Acrion Technologies Inc., and licensed to Firm Green Inc. shows promise as an economically and environmentally sustainable process to recover energy and prevent pollution from landfills. The CO2 WashTM has already been proven at lab-scale. It upgrades LFG, which consists of 50% methane (CH4) + 35% carbon dioxide (CO2) + 2 to 25% nitrogen + oxygen (N2+O2), 1 to 2% water vapor, and dozens of contaminants (which total a few hundred to a few thousand parts per million). CH4, which by itself has an energy content of 1,012 British thermal units (Btu) per standard cubic foot (SCF), is the only component in LFG that contributes to its energy content, which is therefore about 400-550 Btu/SCF. Accordingly, raw LFG is usually referred to as medium-Btu gas. To be salable, it is necessary to remove essentially all the components besides CH4, while keeping the vast majority of the revenue producing CH4. This is high-Btu gas, yielding 850 to 1,000 Btu/SCF. The CO2 WashTM process upgrades LFG to about 930 Btu/SCF, and reduces the contaminants to levels that make it salable as a vehicle fuel in the form of compressed natural gas (CNG).

  19. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01T23:59:59.000Z

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  20. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  1. Writing Assessment: Additional Resources

    E-Print Network [OSTI]

    Schweik, Charles M.

    29 Appendix A Writing Assessment: Additional Resources #12;30 Where can I find out more into the assessment process. On-campus resources give you with a "real person" to contact should you have questions Resources for Higher Education Outcomes Assessment http://www2.acs.ncsu.edu/UPA/survey/resource.htm Ohio

  2. Forest Resources and Management

    E-Print Network [OSTI]

    Forest Resources and Management Centre for The Centre for Forest Resources and Management aims the forest resource. Our aim is that British forests ­ from their creation to maturity and regeneration-energy development, forest resource forecasting, genetic improvement, woodland regeneration and creation, management

  3. 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas will

    E-Print Network [OSTI]

    CHAPTER 1 1.0 INTRODUCTION As the world's demand for energy continues to grow, unconventional gas energy source in the world and plays host to a lot of natural gas resources. Between 3,500 and 9

  4. Interdependency of electricity and natural gas markets in the United States : a dynamic computational model

    E-Print Network [OSTI]

    Jenkins, Sandra Elizabeth

    2014-01-01T23:59:59.000Z

    Due to high storage costs and limited storage availability, natural gas is generally used as a just-in- time resource that needs to be delivered as it is consumed. With the shale gas revolution, coal retirements and ...

  5. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  6. Conventional armed forces in Europe: Technology scenario development

    SciTech Connect (OSTI)

    Houser, G.M.

    1990-07-01T23:59:59.000Z

    In January 1986, the Soviet Union's Mikhail Gorbachev proposed elimination of all nuclear weapons by the year 2000. In April of that year, Mr. Gorbachev proposed substantial reductions of conventional weapons in Europe, from the Atlantic Ocean to the Ural Mountains, including reductions in operational-tactical nuclear weapons. In May 1986, the North Atlantic Treaty Organization (NATO) responded with the Brussels Declaration on Conventional Arms Control,'' which indicated readiness to open East/West discussions on establishing a mandate for negotiating conventional arms control throughout Europe. The Group of 23,'' which met in Vienna beginning in February 1987, concluded the meeting in January 1989 with a mandate for the Conventional Armed Forced in Europe (CFE) negotiations. On 6 March 1989, CFE talks began, and these talks have continued through six rounds (as of April 1990). Although US President George Bush, on 30 May 1989, called for agreement within six months to a year, and the Malta meeting of December 1989 called for completion of a CFE agreement by the end of 1990, much remains to be negotiated. This report provides three types of information. First, treaty provisions brought to the table by both sides are compared. Second, on the basis of these provisions, problem areas for each of the provision elements are postulated and possible scenarios for resolving these problem areas are developed. Third, the scenarios are used as requirements for tasks assigned program elements for possible US implementation of a CFE treaty. As progress is achieved during the negotiations, this report could be updated, as necessary, in each of the areas to provide a continuing systematic basis for program implementation and technology development. 8 refs.

  7. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01T23:59:59.000Z

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  8. IEA Energy conservation in the iron and steel industry. [US and Western Europe

    SciTech Connect (OSTI)

    Tunnah, B.G.

    1981-01-01T23:59:59.000Z

    The NATO Committee on the Challenges of Modern Society research program, under the auspices of the IEA, had the objectives of collecting data on material requirements and energy-consumption patterns in selected energy-intensive industries in the US and Western Europe, of identifying technologies and operating practices with the potential for energy conservation in those industries, and of recommending research projects that could lead to improved energy efficiency. The steel industry was selected for analysis and ideas for an international cooperative program were developed. Representatives from various countries conducted meetings and the form of an implementing agreement for a research and development program was finalized in December, 1980. The program includes three technical areas: hot-surface inspection, heat recovery, and coal gasification. Hot-surface inspection methods to be demonstrated are: optical, induction, electromagnetic ultrasonic, electromagnetic ultrasonic surface testing methods, and eddy current method for hot surface inspection and an infrared system (possibly). Three heat-recovery projects are: ceramic heat wheel development; demonstration of granular bed/heat pipe system for heat recovery; and demonstration of tubular ceramic recuperators. Processes in coal gasification are: converter process, gas treatment, and iron treatment. Each project is described in detail. (MCW)

  9. mineral grains pore spaces Subsurface Geology and Resource Exploration

    E-Print Network [OSTI]

    Li, X. Rong

    mineral grains pore spaces Subsurface Geology and Resource Exploration Locating earth resources deals with the exploration for oil, which is important to Louisiana, the Gulf of Mexico area oil (petroleum) and natural gas, that are refined for use as fuels. When sediments are deposited

  10. The Rise of Europe: Atlantic Trade, Institutioanl Change and Economic Growth

    E-Print Network [OSTI]

    Acemoglu, Daron

    2003-04-14T23:59:59.000Z

    This paper documents that the Rise of (Western) Europe between 1500 and 1850 is largely accounted for by the growth of European nations with access to the Atlantic, ...

  11. A review of "Literacy and Written Culture in Early Modern Central Europe" by Istvan Gyorgy Toth.

    E-Print Network [OSTI]

    Jakub Basista

    2004-01-01T23:59:59.000Z

    in the emergence of a public sphere. Istv?n Gy?rgy T?th. Literacy and Written Culture in Early Modern Central Europe. Central European University Press, 2000. x + 266 pp. Includes b&w illustrations, 31 tables and 2 maps. ?13.95 paper. Review by JAKUB BASISTA... in Central Europe on the base of research carried out in one region of Hungary. I realize that the notions of Central, Eastern, Central Eastern Europe, etc., are far from being precise, but I have problems accepting Central Europe as being limited only...

  12. Gas Storage Act (Illinois)

    Broader source: Energy.gov [DOE]

    Any corporation which is engaged in or desires to engage in, the distribution, transportation or storage of natural gas or manufactured gas, which gas, in whole or in part, is intended for ultimate...

  13. Gas Companies Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Gas Companies program is a set of rules that encourage the development of the natural gas industry in Tennessee. They empower gas companies to lay piped and extend conductors through the...

  14. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  15. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  16. Future of Natural Gas

    Office of Environmental Management (EM)

    of Natural Gas Bill Eisele, CEM SC Electric & Gas Co Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Gas Facts *...

  17. Industrial Gas Turbines

    Broader source: Energy.gov [DOE]

    A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature,...

  18. Supervisory Natural Gas Analyst

    Broader source: Energy.gov [DOE]

    The Department of Energys Office of Fossil Energy, Office of Oil and Natural Gas, Office of Oil and Gas Global Security and Supply (FE) is responsible for regulating natural gas imports and exports...

  19. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  20. Natural Gas Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue...

  1. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  2. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  3. Natural gas dehydration apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G; Ng, Alvin; Mairal, Anurag P

    2006-11-07T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  4. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  5. Historical Natural Gas Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

  6. Generating Resources1 Generating resources available for future development in the Pacific Northwest are described in

    E-Print Network [OSTI]

    energy, solar radiation, energy from processes driven by solar radiation (wind, hydropower, biomass is collection of the primary energy resource. Natural gas wells, hydroelectric dams and solar concentrators be relatively simple, such as chipping of wood for firing a steam-electric power plant or complex

  7. Europe in the 21st Century: Power, Leadership and Crisis Summer School for Secondary School Teachers, 16-18 January 2013

    E-Print Network [OSTI]

    , Power and Leadership Day 2: Europe and Crisis Day 3: Europe - Australia relations 8:45 RegistrationEurope in the 21st Century: Power, Leadership and Crisis Summer School for Secondary School in the Middle East Europe & global security Europe & humanitarian assistance `Discovering' Australia European

  8. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    SciTech Connect (OSTI)

    Manilla, R.D. (ed.)

    1980-11-01T23:59:59.000Z

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  9. Conservation Conservation ResourcesConservation Resources

    E-Print Network [OSTI]

    sequestration,, coal gasification, carbon sequestration, energy storage, highenergy storage, highConfirm cost & availability of promising resources ­­ Oil sandsOil sands cogencogen, coal gasification, carbon

  10. Energy Efficient Radio Resource

    E-Print Network [OSTI]

    Yanikomeroglu, Halim

    Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

  11. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01T23:59:59.000Z

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  12. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Imperial College London The Imperial College London provides research into the use and storage of energy by buildings and how energy may be supplied to buildings in the future, and...

  13. Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)

    E-Print Network [OSTI]

    MacDonald, Lee

    production can increase animal productivity, yield renewable energy (CH4 capture from manure storage), and improve air quality. Over the longer term, renewable energy from agricultural biomass offers great within the US and abroad, working with representatives of industries, state and federal agencies, and non

  14. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    upgrades, and savings and effectiveness of energy efficiency measures. DOE Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey...

  15. Department of Natural Resources Division of Oil, Gas and Mining

    E-Print Network [OSTI]

    Tipple, Brett

    . The division will continue to work with companies involved in energy development, government agencies of the population within Utah. Worldwide and regional commodity prices have historically been the most significant of few states with this incentive.) 2. Half-price day-use access for seniors who choose not to purchase

  16. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air,...

  17. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Plant Assessments DOE Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Programmost companies realize a minimum of 1 million...

  18. Landfill Gas Resources and Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and national laboratories to create a balanced portfolio of research in biomass feedstocks and conversion technologies. This program is largely focused on biomass fuels,...

  19. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  20. Cape Verde: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo,Verde: Energy Resources (Redirected

  1. Woodland, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill Gas

  2. Woodland, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill GasUtah: Energy

  3. Woodlawn, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy Resources JumpWood,WoodfordLandfill GasUtah:Woodlawn,

  4. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  5. Process Design and Integration of Shale Gas to Methanol

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  6. Statewide Forest Resource Strategy

    E-Print Network [OSTI]

    Resource Assessment (assessment). The assessment and strategy identify important forest lands and provideColorado Statewide Forest Resource Strategy #12;June 2010 Acknowledgments The Colorado State Forest Forest Resource Strategy. We also offer our thanks and acknowledgement to Greg Sundstrom, assistant staff

  7. Standard Nine: Financial Resources

    E-Print Network [OSTI]

    Snider, Barry B.

    105 Standard Nine: Financial Resources Overview The 1996 NEASC team report was critical of Brandeis's financial management, and focused on the need to increase financial resources, improve faculty and staff displays the University resource profile for FY1995 compared to the FY2005 profile. During this decade

  8. Life Sciences Shared Resources

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Life Sciences Shared Resources Cancer.Dartmouth.eduMarch 2012 201202-19201202-19 #12;SHARED RESOURCES MANAGEMENT MANAGEMENT TEAM: Mark Israel, MD Director, Norris Cotton Cancer Center Bob Gerlach, MPA Associate Director, Norris Cotton Cancer Center CraigTomlinson, PhD Associate Director for Shared Resources

  9. Medical Student Resource Guide

    E-Print Network [OSTI]

    Chapman, Michael S.

    20132014 O.H.S.U. Medical Student Resource Guide #12;2013-2014 Medical Student Resource Guide 1 Oregon Health & Science University School of Medicine - Medical Student Resource Guide Welcome This is an exciting time to be in medicine. Advances in the sciences basic to the study and practice of medicine

  10. Resource Adequacy INTRODUCTION

    E-Print Network [OSTI]

    ) have acquired sufficient resources to satisfy forecasted future loads reliably. This definition whether there are sufficient non-hydro resources available to meet loads when the "fuel" for hydroelectric. For a number of reasons, resource development in the 1990s failed to keep pace with growth in the region and

  11. Eneau, Lameul & Bertrand May 2011 The Proceedings of the International Transformative Learning Conference in Europe

    E-Print Network [OSTI]

    Boyer, Edmond

    Conference in Europe 9th International Conference on Transformative Learning 1" Proceedings of the 9th Transformative Learning Conference in Europe 9th International Conference on Transformative Learning 2Eneau, Lameul & Bertrand May 2011 The Proceedings of the International Transformative Learning

  12. Identity, nationalism and anthropologists in Sant Cassia P. (ed), Between Europe and the Mediterranean, London,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , but not towards the Orient: Turkey is knocking at the door and most Balkan countries remain prospective candidates-Eastern Europe and the Balkans, the divide separates Europe from the Ottoman lands, along the frontier where's Orientalism (1978) the question of Western identity and the definition of the Other ­the Oriental- has been

  13. Journal of Life Sciences 6 (2012) 335-341 The International Research Group in Geophysics Europe

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2012-01-01T23:59:59.000Z

    Journal of Life Sciences 6 (2012) 335-341 The International Research Group in Geophysics Europe to create the IRGGEA (International Group in Geophysics Europe Africa) in order to pursue the scientific: Scientific network, ethical rules, geophysics, sustainable research, Africa. 1. Introduction

  14. CLIMATE CHANGE AND THE ADOPTION OF AGRICULTURE IN NORTH-WEST EUROPE

    E-Print Network [OSTI]

    CLIMATE CHANGE AND THE ADOPTION OF AGRICULTURE IN NORTH-WEST EUROPE Clive Bonsall Department was triggered by a significant change in climate. This finding may also have implications for understanding: agriculture, climate change, Mesolithic, Neolithic, north-west Europe INTRODUCTION Farming was established

  15. United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations

    E-Print Network [OSTI]

    UNECE United Nations Food and Agriculture Organization Economic Commission for Europe of the United Forestry Commission of the Food and Agriculture Organization of the United Nations, to promote sustainable? UNITED NATIONS #12;#12;ECE/TIM/DP/44 United Nations Economic Commission for Europe/ Food and Agriculture

  16. Renewable Energy in Central & Eastern Europe Vienna University of Technology I Energiepark Bruck/Leitha

    E-Print Network [OSTI]

    Szmolyan, Peter

    Renewable Energy in Central & Eastern Europe CONTINUING EDUCATION CENTER Vienna University on the consumption of energy. However, this system is currently not sustainable. Renewable energy sources as well. The objective of the postgraduate MSc Program "Renewable Energy in Central & Eastern Europe" is, to contribute

  17. Cancer incidences in Europe related to mortalities, and ethnohistoric, genetic, and

    E-Print Network [OSTI]

    Rosenberg, Michael S.

    Cancer incidences in Europe related to mortalities, and ethnohistoric, genetic, and geographic We have previously shown that geographic differences in cancer mortalities in Europe are related of 45 male and 47 female cancers. Differences in cancer incidences are correlated moder- ately, first

  18. Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options -New York Times January 22, 2008

    E-Print Network [OSTI]

    Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options - New York Times January 22, 2008 Europe, Cutting Biofuel Subsidies, Redirects Aid to Stress Greenest Options By ELISABETH for biofuels, acknowledging that the environmental benefits of these fuels have often been overstated

  19. THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE; APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE Author ABSTRACT Since Summer 2003, the PREV'AIR system has been delivering through the Internet1 daily air quality forecasts over Europe. This is the visible part of a wider collaborative project

  20. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    E-Print Network [OSTI]

    Rodríguez, Miguel Ángel

    Energy, water and large-scale patterns of reptile and amphibian species richness in Europe Miguel Á and amphibian species richness in Europe and 11 environmental variables related to five hypotheses, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions

  1. United Nations Economic Commission for Europe Note for the Press ECE/TIM/08/N01

    E-Print Network [OSTI]

    United Nations Economic Commission for Europe Note for the Press ECE/TIM/08/N01 Geneva, 29 October combats climate change The Timber Committee of the United Nations Economic Commission for Europe (UNECE and forest biomass; Panel and pulp manufacturers continue to be concerned about the competition for their raw

  2. OPEN DISTANCE INTER-UNIVERSITY SYNERGIES BETWEEN EUROPE, AFRICA AND THE MIDDLE EAST

    E-Print Network [OSTI]

    Boyer, Edmond

    621 OPEN DISTANCE INTER-UNIVERSITY SYNERGIES BETWEEN EUROPE, AFRICA AND THE MIDDLE EAST (ODISEAME and Middle East) is a project related to the fifth sector of application of the EUMEDIS initiative (Euro AND GOALS OF THE PROJECT ODISEAME (Open Distance Inter-university Synergies between Europe, Africa

  3. OPEN DISTANCE INTER-UNIVERSITY SYNERGIES BETWEEN EUROPE, AFRICA AND THE MIDDLE EAST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    621 OPEN DISTANCE INTER-UNIVERSITY SYNERGIES BETWEEN EUROPE, AFRICA AND THE MIDDLE EAST (ODISEAME-university Synergies between Europe, Africa and Middle East) is a project related to the fifth sector of application and the Middle East (ODISEAME). Sixth International Conference on Computer Based Learning in Science, CBLIS 2003

  4. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    fuels (eg diesel, compressed natural gas). Electricity (infossil fuels, such as compressed natural gas and liquefied

  5. Flemington, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirst WindWater Wind Farm

  6. Florida's 11th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorence High

  7. Florida's 15th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorence HighInformation

  8. Florida's 17th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorence

  9. Florida's 18th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorenceInformation 8th

  10. Florida's 19th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirstFlorenceInformation

  11. Florida's 20th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive

  12. Florida's 21st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformation 1st congressional

  13. Florida's 22nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformation 1st

  14. Florida's 23rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformation 1stInformation Atlas

  15. Florida's 24th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformation 1stInformation

  16. Florida's 2nd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformation

  17. Florida's 3rd congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformationInformation 3rd

  18. Florida's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactiveInformationInformation

  19. United States Virgin Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEuropeUnitedUnitedLSC

  20. Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, search Name: EurusEnergy

  1. Ewing, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, searchClean EnergyDeathEwing,

  2. Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to: navigation, searchCleanExcessNevada || Open

  3. Fair Oaks, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValley Of Ten

  4. Fairbanks North Star Borough, Alaska: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValley Of

  5. Fairfax County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValley OfCounty,

  6. Fairfield County, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValley

  7. Fairfield County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFRED Type TermValleyOhio: Energy

  8. Farmingdale, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump to:False

  9. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  10. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15T23:59:59.000Z

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  11. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  12. Geothermal resources of California

    SciTech Connect (OSTI)

    Bezore, S.P.

    1984-06-01T23:59:59.000Z

    Geothermal resources may be classified into two types: high temperature, >150 C, suitable for electrical generation and low- to moderate-temperature, 20-150 C, suitable for direct use. To further the development of geothermal resources in California, a concentrated study of low-temperature and moderate-temperature geothermal resources has been conducted by the California Department of Conservation. As part of that study a map containing technical data on the geothermal resources of California is now available to help planners, local governments, etc. develop their local resources.

  13. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCaliforniaNew England New23,Spring

  14. Natural gas product and strategic analysis

    SciTech Connect (OSTI)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31T23:59:59.000Z

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  15. Natural gas monthly

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The Natural Gas Monthly highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the Natural Gas Monthly features articles designed to assist readers in using and interpreting natural gas information.

  16. An Assessment of Greenhouse Gas Emissions-Weighted

    E-Print Network [OSTI]

    Economic Analysis ­ Greenhouse Gas Emissions Prepared by Hawai`i Natural Energy Institute School of OceanAn Assessment of Greenhouse Gas Emissions-Weighted Clean Energy Standards Prepared for the U Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask 12.3 Second Deliverable

  17. Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel

    E-Print Network [OSTI]

    landfill biomethane to liquefied natural gas for use as transportation fuel. The aim is to develop, and liquefaction of biomethane. The resulting liquefied natural gas will consist of cryogenically liquefied. This project will also serve as a model for similar facilities in California to use native biogas resources

  18. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01T23:59:59.000Z

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  19. Intergas `95: International unconventional gas symposium. Proceedings

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The International Unconventional Gas Symposium was held on May 14--20, 1995 in Tuscaloosa, Alabama where 52 reports were presented. These reports are grouped in this proceedings under: geology and resources; mine degasification and safety; international developments; reservoir characterization/coal science; and environmental/legal and regulatory. Each report has been processed separately for inclusion in the Energy Science and Technology Database.

  20. Abstract--South America has emerged in recent years as one of the most dynamic regions for natural gas and electricity

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    for natural gas and electricity development. The continent boasts natural gas reserves and high- growth energy countries to promote the use of natural gas, especially for power generation. On the other hand, challenges-country natural gas agreements, competition between natural gas and other resources for power generation