Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

2

Deepwater Oil & Gas Resources  

Energy.gov (U.S. Department of Energy (DOE))

The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy’s Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection.

3

Estimation of resources and reserves  

E-Print Network (OSTI)

This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

Massachusetts Institute of Technology. Energy Laboratory.

1982-01-01T23:59:59.000Z

4

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

5

Additional Resources for Estimating Building Energy and Cost Savings to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Resources for Estimating Building Energy and Cost Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases October 7, 2013 - 11:06am Addthis For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type. When deciding what resource to use for developing energy- and cost-savings estimates, a program should consider items detailed in Table 1. Table 1.Resources for Estimating Energy Savings Resource Items to consider Advanced Energy Retrofit Guides Based on representative building models of commercial buildings. Guidance available for a limited number of building types using the most common technologies.

6

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Savings Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy...

7

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

8

Unconventional gas resources in the U.S.A.  

Science Conference Proceedings (OSTI)

Unconventional gas accounts for more than 40% of U.S. domestic gas production and more than 10% of world output. The amount of resources available is still uncertain and estimates vary to a large degree. In this paper

Jon Schumann; Shapour Vossoughi

2012-01-01T23:59:59.000Z

9

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

10

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network (OSTI)

In 1997, Rogner published a paper containing an estimate of the natural gas in place in unconventional reservoirs for 11 world regions. Rogner's work was assessing the unconventional gas resource base, and is now considered to be very conservative. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP) and technically recoverable resource (TRR) in highly uncertain unconventional gas reservoirs, worldwide. We evaluated global unconventional OGIP by (1) developing theoretical statistic relationships between conventional hydrocarbon and unconventional gas; (2) fitting these relationships to North America publically available data; and (3) applying North American theoretical statistical relationships to evaluate the volume of unconventional gas resource of the world. Estimated global unconventional OGIP ranges from 83,300 (P10) to 184,200 (P90) Tcf. To assess global TRR from unconventional gas reservoirs, we developed a computer program that we call Unconventional Gas Resource Assessment System (UGRAS). In the program, we integrated a Monte Carlo technique with an analytical reservoir simulator to estimate the original volume of gas in place and to predict production performance. We used UGRAS to evaluate the probabilistic distribution of OGIP, TRR and recovery factor (RF) for the most productive unconventional gas formations in the North America. The P50 of recovery factor for shale gas, tight sands gas and coalbed methane is 25%, 79% and 41%, respectively. Finally, we applied our global OGIP assessment and these distributions of recovery factor gained from our analyses of plays/formations in the United States to estimate global technically recoverable unconventional gas resource. Global technically recoverable unconventional gas resource is estimated from 43,000 (P10) to 112,000 (P90) Tcf.

Dong, Zhenzhen

2012-08-01T23:59:59.000Z

11

Preliminary petroleum resource estimates for Indonesia  

SciTech Connect

Of about 44 sedimentary basins along the 2900 mi east-west extent of Indonesia, 13 basins are believed to contain practically all of Indonesia's future petroleum resources. Western Indonesia, underlain by the Asian (Sunda) continental block, comprises the Sumatra-Java archipelago, the island of Kalimantan, and the intervening Sunda Shelf. This area contains almost all of the Indonesian petroleum reserves, and its exploration has reached early maturity. The reserves are concentrated in the five larger inner-arc basins of the archipelago and in the three rifted basins of the Kalimantan-Sunda Shelf area. Eastern Indonesia is essentially Irian Jaya (western New Guinea) and the adjoining shelf. The north edge of the Australian-New Guinea continental block has been successively rifted, compressed, and wrenched along its northern boundary with the Pacific plate. Exploration of the three major basins in this tectonic zone is still in an early stage. Preliminary most-likely estimates of the undiscovered recoverable petroleum resources of Indonesia are approximately 7 billion bbl of oil and 70 tcf of gas (in addition to an estimated 70 tcf of discovered gas not yet assigned to reserves). More than 90% of the undiscovered petroleum resources are in western Indonesia, but the best chances for unknown giant discoveries may be in the frontier Irian Jaya of eastern Indonesia.

Kingston, J.

1986-05-01T23:59:59.000Z

12

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

13

Russian gas resource base large, overstated, costly to maintain  

SciTech Connect

The natural gas resources of the Former Soviet Union are immense, with an officially estimated initial recoverable endowment of 250.7 trillion cu m (8,852 trillion cu ft). Of this volume, 85% is located in the Russian Federation, which will be the dominant world supplier of gas through 2015. Although Russia possesses an amazing gas resource base, official figures overstate both the recovery factor for gas in place and appear to systematically overestimate volumes of recoverable gas in undiscovered fields. Production and transportation of gas from the Yamal peninsula and the new discoveries in the Kara and Barents seas will cost many times the current average cost of gas production in Russian. The paper discusses resources and reserves and examines the reliability of Soviet-vintage data.

Grace, J.D. (Troika Energy Services, Dallas, TX (United States))

1995-02-06T23:59:59.000Z

14

Unconventional gas outlook: resources, economics, and technologies  

Science Conference Proceedings (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

15

California Division of Oil, Gas, and Geothermal Resources - GIS...  

Open Energy Info (EERE)

Division of Oil, Gas, and Geothermal Resources - GIS and Well data The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the...

16

Resources on Greenhouse Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Program Areas » Greenhouse Gases » Resources on Greenhouse Gas Resources on Greenhouse Gas October 7, 2013 - 2:30pm Addthis Many helpful resources about greenhouse gases (GHG) are available. Also see Contacts. GHG Reporting and Accounting Tools Annual GHG and Sustainability Data Report: Lists resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist agencies with completing comprehensive GHG inventory reporting requirements under Executive Order (E.O.) 13514. General Services Administration (GSA) Carbon Footprint and Green Procurement Tool: Voluntary tool developed by GSA to assist agencies in managing GHGs as required by E.O. 13514. Also see Greenhouse Gas Mitigation Planning Data and Tools.

17

Estimating the Value of Electricity Storage Resources in Electricity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The...

18

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: Measurement and Estimation of The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: Measurement and Estimation of Uncertainty of GHG Emissions Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: GHG Uncertainty Guide[1] The Greenhouse Gas Protocol Uncertainty Tool is designed to facilitate a quantitative and qualitative estimation of uncertainty associated with a

19

WEB RESOURCE: Gas Welding Magnesium  

Science Conference Proceedings (OSTI)

Sep 20, 2007 ... This webpage offers advice on gas welding of magnesium. Launch Site SOURCE: "Gas Welding Magnesium". Weldwell Corporate Website.

20

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

22

Federal Energy Management Program: Resources on Greenhouse Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources on Greenhouse Gas to someone by E-mail Share Federal Energy Management Program: Resources on Greenhouse Gas on Facebook Tweet about Federal Energy Management Program:...

23

Natural Gas Data Collection and Estimation  

Reports and Publications (EIA)

This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology.

Information Center

2010-06-09T23:59:59.000Z

24

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

proved natural gas reserves (3) 2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR,

25

Accounting for Depletion of Oil and Gas Resources in Malaysia  

Science Conference Proceedings (OSTI)

Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

2012-12-15T23:59:59.000Z

26

,"Pennsylvania Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

27

,"Mississippi Dry Natural Gas Reserves Estimated Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

28

,"Dry Natural Gas Reserves Estimated Production "  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Dry Natural Gas Reserves Estimated Production ",52,"Annual",2011,"6301977" ,"Release Date:","81...

29

How EIA Estimates Natural Gas Production  

Reports and Publications (EIA)

The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing States and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The States and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

Information Center

2004-02-01T23:59:59.000Z

30

Evaluation and Prediction of Unconventional Gas Resources in Underexplored Basins Worldwide  

E-Print Network (OSTI)

As gas production from conventional gas reservoirs in the United States decreases, industry is turning more attention to the exploration and development of unconventional gas resources (UGR). This trend is expanding quickly worldwide. Unlike North America where development of UGRs and technology is now mature and routine, many countries are just beginning to develop unconventional gas resources. Rogner (1996) estimated that the unconventional gas in place, including coalbed methane, shale gas and tight-sand gas, exceeds 30,000 Tcf worldwide. As part of a research team, I helped to develop a software package called Unconventional Gas Resource Advisory (UGRA) System which includes the Formation Analog Selection Tool (FAST) and Basin Analog Investigations (BASIN) to objectively and rapidly identify and rank mature North American formations and basins that may be analogous to nascent international target basins. Based on BASIN and FAST results, the relationship between mature and underexplored basins is easily accessed. To quantify the unconventional resource potential in typical gas basins, I revised and used a computer model called the Petroleum Resources Investigation Summary and Evaluation (PRISE) (Old, 2008). This research is based on the resource triangle concept, which implies that all natural resources, including oil and gas, are distributed log-normally. In this work, I describe a methodology to estimate values of technically recoverable resources (TRR) for unconventional gas reservoirs by combining estimates of production, reserves, reserves growth, and undiscovered resources from a variety of sources into a logical distribution. I have also investigated mature North American unconventional gas resources, and predict unconventional resources in underexplored basins worldwide for case study. Based on the results of testing BASIN and PRISE, we conclude that our evaluation of 24 North American basins supports the premise that basins analysis can be used to estimate UGRs.

Cheng, Kun

2012-05-01T23:59:59.000Z

31

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery Greenblatt November 2013 For decades, California has used groundbreaking tools to collect and analyze emissions data from a variety of sources to establish a scientific basis for policy making. As its scope has expanded to include greenhouse gas (GHG) reductions, it has sought out similar tools to use to achieve the goals of legislation such as the Global Warming Solutions Act of 2006 (AB 32). To support this effort, Lawrence Berkeley National Laboratory developed a California Greenhouse Gas Inventory Spreadsheet (GHGIS) model funded by the California Air Resources Board (ARB), to explore the impact of combinations

32

Charts estimate gas-turbine site performance  

SciTech Connect

Nomographs have been developed to simplify site performance estimates for various types of gas turbine engines used for industrial applications. The nomographs can provide valuable data for engineers to use for an initial appraisal of projects where gas turbines are to be considered. General guidelines for the selection of gas turbines are also discussed. In particular, site conditions that influence the performance of gas turbines are described.

Dharmadhikari, S.

1988-05-09T23:59:59.000Z

33

New Methodology for Natural Gas Production Estimates  

Reports and Publications (EIA)

A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

Information Center

2010-04-26T23:59:59.000Z

34

Shale Natural Gas Estimated Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Data Series: Proved Reserves as of Dec. 31 Adjustments...

35

Table 3. Wet natural gas production and resources (trillion cubic ...  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR, including reserve

36

Federal Energy Management Program: Resources on Greenhouse Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

resources for reporting annual greenhouse gas activities. FedCenter Greenhouse Gas Inventory Reporting Website: Features additional information, training, and tools to assist...

37

World Shale Gas Resources: An Initial Assessment of 14 Regions  

E-Print Network (OSTI)

World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States APRIL 2011 in this overview is based on the report "World Shale Gas Resources: An Initial Assessment," which was prepared | World Shale Gas Resources: An Initial Assessment 1 Background The use of horizontal drilling

Boyer, Elizabeth W.

38

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

39

Adjusted Estimates of Texas Natural Gas Production  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information Administration 1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO 2 ) production. Normally, EIA would wait until publication of the Natural Gas Annual (NGA) before revising the 2004 data, but the adjustments for CO 2 are large enough to warrant making the changes at this time. Prior to 2005, EIA relied exclusively on the voluntary sharing of production data by state and federal government entities to develop its natural gas production estimates. In 2005, EIA began collecting production data directly from operators on the new EIA-914 production

40

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

42

Estimating the Value of Electricity Storage Resources in Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Value of Electricity Storage Resources in Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale and retail level, and 4) identifying areas for future research and development for electricity storage technologies and applications. EAC - Estimating the Value of Electricity Storage Resources in Electricity

43

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

44

Oil and Gas Resources of the Fergana Basin (Uzbekistan ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0575(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration

45

WEB RESOURCE: Platinum Plating of Gas Turbine Components  

Science Conference Proceedings (OSTI)

Feb 25, 2008 ... This web resource describes the process by which gas turbine components are coated at SIFCO's Carrigtwohill plant and the effects of platinum ...

46

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

Germany 51 254 700 ... June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 18

47

Minnesota Energy Resources (Gas)- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Minnesota Energy Resources provides rebates to their residential customers for the purchase of energy efficient natural gas equipment and set-back thermostats. Rebates are available for furnaces,...

48

Natural Gas and Other Petroleum Resources Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

priority challenges associated with safely and prudently developing unconventional shale gas and tight oil resources. Implementation Plan The Program Consortium will...

49

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 29 Appendix A Petroleum Geology The petroleum geology discussion is copied ...

50

EMISSION ESTIMATES FOR MODERN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

, mercury, etc. is homogenized, oxidized with hydrogen peroxide, neutralized with lime, clarified a cocurrent flow on the gases and the material to be burnt. The second or post combustion chamber (6) holds the gases at a tem perature above 950°C for a residence time of about two seconds. A high gas flow rate

Columbia University

51

Integrated resource planning Electric and gas utilities in the USA  

E-Print Network (OSTI)

acquisitions will be the important criteria. Resource planning at gas utilities IRP is just beginning to be applied to the natural gas industry. At gas utilities, called local distribution companies (LDCs and regulated differently. Natural gas is produced, transported, and distributed by three different sets

52

Project Title Economic Modeling & Unconventional Gas Resource Appraisal Program Line Tough Gas  

E-Print Network (OSTI)

support to assess the economic viability of new tough gas plays (tight gas, shale gas, CBM). Project are illustrated using the US shale gas plays as case templates. Discounted cash flow models are applied1 Project Title Economic Modeling & Unconventional Gas Resource Appraisal Program Line Tough Gas

Santos, Juan

53

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

54

Estimate Impact of Strategies on Greenhouse Gas Emissions | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Strategies on Greenhouse Gas Emissions Impact of Strategies on Greenhouse Gas Emissions Estimate Impact of Strategies on Greenhouse Gas Emissions October 7, 2013 - 1:35pm Addthis YOU ARE HERE Step 3 To estimate the GHG impact of a business travel reduction program, a Federal agency or program should quantify the number of trips that could be avoided each year. If an agency has a large proportion of international travel, the agency may estimate changes in domestic and international trips separately because the associated savings in miles can be very different. General Services Administration Resources to Support GHG Mitigation Planning TravelTrax provides agencies with several tools that can help plan for reductions in business travel. This includes a tool to help estimate the impact of videoconferencing and a tool that can help conference and event planners to identify event locations that consider where attendees are coming from in order to reduce air travel GHGs. These tools are embedded in the GSA Travel MIS database, thus enabling agencies to link their actual travel to different planning scenarios and evaluate options.

55

Estimating Gas Concentration of Coal Mines Based on ISGNN  

Science Conference Proceedings (OSTI)

Online detecting failure of gas sensors in mine wells is an important problem. A key step for solution of the problem is estimating sample values of detected gas sensor, according to sample values of other gas sensors. We propose a scheme based on ISGNN ... Keywords: Estimating gas concentration, Gas concentration modeling, Generating Neural Networks, ISGNN

Aiguo Li; Lina Song

2009-11-01T23:59:59.000Z

56

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

57

A Methodology to Determine both the Technically Recoverable Resource and the Economically Recoverable Resource in an Unconventional Gas Play  

E-Print Network (OSTI)

During the past decade, the worldwide demand for energy has continued to increase at a rapid rate. Natural gas has emerged as a primary source of US energy. The technically recoverable natural gas resources in the United States have increased from approximately 1,400 trillion cubic feet (Tcf) to approximately 2,100 trillion cubic feet (Tcf) in 2010. The recent declines in gas prices have created short-term uncertainties and increased the risk of developing natural gas fields, rendering a substantial portion of this resource uneconomical at current gas prices. This research quantifies the impact of changes in finding and development costs (FandDC), lease operating expenses (LOE), and gas prices, in the estimation of the economically recoverable gas for unconventional plays. To develop our methodology, we have performed an extensive economic analysis using data from the Barnett Shale, as a representative case study. We have used the cumulative distribution function (CDF) of the values of the Estimated Ultimate Recovery (EUR) for all the wells in a given gas play, to determine the values of the P10 (10th percentile), P50 (50th percentile), and P90 (90th percentile) from the CDF. We then use these probability values to calculate the technically recoverable resource (TRR) for the play, and determine the economically recoverable resource (ERR) as a function of FandDC, LOE, and gas price. Our selected investment hurdle for a development project is a 20 percent rate of return and a payout of 5 years or less. Using our methodology, we have developed software to solve the problem. For the Barnett Shale data, at a FandDC of 3 Million dollars, we have found that 90 percent of the Barnet shale gas is economically recoverable at a gas price of 46 dollars/Mcf, 50 percent of the Barnet shale gas is economically recoverable at a gas price of 9.2 dollars/Mcf, and 10 percent of the Barnet shale gas is economically recoverable at a gas price of 5.2 dollars/Mcf. The developed methodology and software can be used to analyze other unconventional gas plays to reduce short-term uncertainties and determine the values of FandDC and gas prices that are required to recover economically a certain percentage of TRR.

Almadani, Husameddin Saleh A.

2010-08-01T23:59:59.000Z

58

Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade...

59

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

60

Estimating Externalities of Natural Gas Fuel Cycles, Report 4  

SciTech Connect

This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Minnesota Energy Resources (Gas) - Low-Income New Construction Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Low-Income New Construction Minnesota Energy Resources (Gas) - Low-Income New Construction Rebates Minnesota Energy Resources (Gas) - Low-Income New Construction Rebates < Back Eligibility Low-Income Residential Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Gas Furnace: 500 Integrated Space and Water Heating System: 900 Electronic Programmable Set-Back Thermostat: 100 Water Heater: 100 Drain Water Heat Recovery Device: 300 Provider Minnesota Energy Resources Minnesota Energy Resources is now offering rebates for non-profits servicing low-income communities. New construction organizations can take advantage of rebates for efficient technologies if the low-income homes are

62

Minnesota Energy Resources (Gas) - Energy Star New Homes Program For  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Energy Star New Homes Program Minnesota Energy Resources (Gas) - Energy Star New Homes Program For Builders Minnesota Energy Resources (Gas) - Energy Star New Homes Program For Builders < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount 500, 1,000, or 5/MCF saved Provider Minnesota Energy Resources Minnesota Energy Resources offers the Home Energy Excellence Program to encourage builders to build energy efficient homes. As part of the program, Minnesota Energy Resources will review the home blueprints and make recommendations prior to construction; perform up to three on-site inspections with more recommendations and improvements during construction;

63

Regulation of Oil and Gas Resources (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) Regulation of Oil and Gas Resources (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Program Info State Florida Program Type Safety and Operational Guidelines Provider Florida Department of Environmental Protection It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment of the rights of landowners, producers, and interested parties; and to safeguard the health,

64

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

Because shale gas production is projected to be a large proportion of U.S. and North American gas production, changes in the cost and productivity of U.S. shale gas ...

65

Natural Gas Distributed Resource Fuel Pressure and Delivery Issues  

Science Conference Proceedings (OSTI)

Many emerging distributed resource (DR) technologies will be developed to operate on natural gas. However, increased reliance on natural gas as an energy source raises issues with regard to its availability and delivery capacity. In addition, some DR technologies may require specific pressure levels to operate properly. This report discusses the natural gas distribution infrastructure as well as the availability and suitability of DR gas booster technologies.

2000-10-17T23:59:59.000Z

66

Materials Sustainability: Digital Resource Center - Greenhouse Gas ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... This European Environment Agency webpage includes links to a downloadable report entitled Greenhouse Gas Emission Trends and ...

67

Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.  

DOE Green Energy (OSTI)

Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

Singh, M. K.; Moore, J. S.

2002-03-04T23:59:59.000Z

68

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

IOIP 7758 (1 S w) Bo IGIP 7758 (1 Sw) B g VO IOIP A h 1,000,000 VG IGIP A h 1,000,000 Energy Information Administration Oil and Gas Resources of the West ...

69

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 139 Appendix D Field Summaries Tables 1D and 2D lists the fields of the West

70

Minnesota Energy Resources (Gas) - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

natural gas equipment and set-back thermostats. Rebates are available for furnaces, boilers, integrated space and water heating systems, programmable thermostats, water heaters...

71

Materials Sustainability: Digital Resource Center - Greenhouse Gas ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... This U. S. EPA webpage gives an overview of greenhouse gases and a description of greenhouse gas inventories. It provides emission trends ...

72

WEB RESOURCE: Chromalloy Gas Turbine Corporation - TMS  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... Chromalloy Gas Turbine Corporation is a pioneer in the high temperature coating of jet aircraft engine vanes and blades. Through ...

73

Projected natural gas prices depend on shale gas resource ...  

U.S. Energy Information Administration (EIA)

... Quarterly Coal Report › Monthly Energy Review › Residential Energy ... Solar › Energy in Brief. What's ... to test the influence of shale gas ...

74

Statistical estimation of multiple faults in aircraft gas turbine engines  

E-Print Network (OSTI)

415 Statistical estimation of multiple faults in aircraft gas turbine engines S Sarkar, C Rao of multiple faults in aircraft gas-turbine engines, based on a statistical pattern recognition tool called commercial aircraft engine. Keywords: aircraft propulsion, gas turbine engines, multiple fault estimation

Ray, Asok

75

Development of Alaskan gas hydrate resources  

Science Conference Proceedings (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

76

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Energy Resources (Gas) - Residential Energy Efficiency Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program Minnesota Energy Resources (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Construction Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Water Heating Maximum Rebate Level II Audit (For-profit organizations): $400 Level I Audit (For-profit organizations): $250 Programmable Thermostat: 50% of cost Steam Traps: $250 Boiler Tune Up: $500 Vent Damper: $500 O2 Trim Control: $5,000 Gas boiler 300,000 to 9,999,999 Btu/hr output: $750 - $5,000

77

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

78

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

Task 222.01.01 Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOENETL-20071279 Full Report August 2007 Disclaimer This report was prepared as an account...

79

Development of an improved methodology to assess potential unconventional gas resources in North America  

E-Print Network (OSTI)

Since the 1970s, various private and governmental agencies have conducted studies to assess potential unconventional gas resources, particularly those resources contained in tight sands, fractured shales, and coal beds. The US Geological Survey (USGS) has assessed the amount of unconventional gas resources in North America, and its estimates are used by other government agencies as the basis for their resource estimates. While the USGS employs a probabilistic methodology, it is apparent from the resulting narrow ranges that the methodology underestimates the uncertainty of these undiscovered, untested, potential resources, which in turn limits the reliability and usefulness of the assessments. The objective of this research is to develop an improved methodology to assess potential unconventional gas resources that better accounts for the uncertainty in these resources. This study investigates the causes of the narrow ranges generated by the USGS analyticprobabilistic methodology used to prepare the 1995 national oil and gas assessment and the 2000 NOGA series, and presents an improved methodology to assess potential unconventional gas resources. The new model improves upon the USGS method by using a stochastic approach, which includes correlation between the input variables and Monte Carlo simulation, representing a more versatile and robust methodology than the USGS analytic-probabilistic methodology. The improved methodology is applied to the assessment of potential unconventional gas resources in the Uinta-Piceance province of Utah and Colorado, and compared to results of the evaluation performed by the USGS in 2002. Comparison of the results validates the means and standard deviations produced by the USGS methodology, but shows that the probability distributions generated are rather different and, that the USGS distributions are not skewed to right, as expected for a natural resource. This study indicates that the unrealistic shape and width of the resulting USGS probability distributions are not caused by the analytic equations or lack of correlation between input parameters, but rather the use of narrow triangular probability distributions as input variables. Adoption of the improved methodology, along with a careful examination and revision of input probability distributions, will allow a more realistic assessment of the uncertainty surrounding potential unconventional gas resources.

Salazar Vanegas, Jesus

2003-05-01T23:59:59.000Z

80

,"Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Arkansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

82

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

83

,"Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

84

,"Oklahoma Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

85

,"Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

86

,"Texas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

87

,"Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

88

,"Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

89

,"Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

90

,"Utah Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

91

,"Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

92

,"Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

93

,"Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

94

,"Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

95

,"California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

96

,"Ohio Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

97

The Greenhouse Gas Protocol Initiative: Measurement and Estimation...  

Open Energy Info (EERE)

a quantitative and qualitative estimation of uncertainty associated with a GHG inventory. Overview The Greenhouse Gas Protocol Uncertainty Tool is designed to facilitate a...

98

,"Estimated Production of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production of Natural Gas, Wet After Lease Separation " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

99

,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011...

100

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utah Natural Gas, Wet After Lease Separation Reserves Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

102

California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

103

Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

104

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

105

Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

106

Mississippi Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

107

Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

108

Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

109

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

110

Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

111

Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

112

Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

113

Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

114

Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

115

Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

116

Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

117

Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

118

New Mexico - West Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

119

Texas Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

120

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect

The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

Ernest A. Mancini; Donald A. Goddard

2004-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources  

E-Print Network (OSTI)

According to the 2011 Energy Information Agency (EIA) global assessment, Mexico ranks 4th in shale gas resources. The Eagle Ford shale is the formation with the greatest expectation in Mexico given the success it has had in the US and its liquids-rich zone. Accurate estimation of the resource size and future production, as well as the uncertainties associated with them, is critical for the decision-making process of developing shale oil and gas resources. The complexity of the shale reservoirs and high variability in its properties generate large uncertainties in the long-term production and recovery factors of these plays. Another source of uncertainty is the limited production history. Given all these uncertainties, a probabilistic decline-curve analysis approach was chosen for this study, given that it is relatively simple, it enables performing a play-wide assessment with available production data and, more importantly, it quantifies the uncertainty in the resource size. Analog areas in the US Eagle Ford shale were defined based on available geologic information in both the US and Mexico. The Duong model coupled with a Markov Chain Monte Carlo (MCMC) methodology was used to analyze and forecast production of wells located in the previously defined analog sectors in the US Eagle Ford shale. By combining the results of individual-well analyses, a type curve and estimated ultimate recovery (EUR) distribution for each of the defined analog sectors was obtained. These distributions were combined with well-spacing assumptions and sector areas to generate the prospective-resources estimates. Similar probabilistic decline-curve-analysis methodology was used to estimate the reserves and contingent resources of existing wells. As of March 2013, the total prospective resources (P90-P50-P10) for the Eagle Ford shale in Mexico (MX-EFS) are estimated to be 527-1,139-7,268 MMSTB of oil and 17- 37-217 TSCF of gas. To my knowledge, this is the first oil estimate published for this formation in Mexico. The most attractive sectors based on total estimated resources as well as individual-well type curves are located in the southeast of the Burgos Basin and east-west of the Sabinas basin. Because there has been very little development to date, estimates for reserves and contingent resources are much lower than those for prospective resources. Estimated reserves associated with existing wells and corresponding offset well locations are 18,375-34,722-59,667 MMSCF for gas and zero for oil. Estimated contingent resources are 14-64-228 MSTB of oil and 8,526-13,327- 25,983MMSCF of gas. The results of this work should provide a more reliable assessment of the size and uncertainties of the resources in the Mexican Eagle Ford shale than previous estimates obtained with less objective methodologies.

Morales Velasco, Carlos Armando

2013-08-01T23:59:59.000Z

122

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

123

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Title Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Publication Type Report LBNL Report Number LBNL-6541E Year of Publication 2013 Authors Greenblatt, J. Date Published 10/2013 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHGemitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 μm) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants, targets were less well-defined, but while all three scenarios were able to make significant reductions in ROG, NOx and PM2.5 both statewide and in the two regional air basins, they may nonetheless fall short of what will be required by future federal standards. Specifically, in Scenario 1, regional NOx emissions are approximately three times the estimated targets for both 2023 and 2032, and in Scenarios 2 and 3, NOx emissions are approximately twice the estimated targets. Further work is required in this area, including detailed regional air quality modeling, in order to determine likely pathways for attaining these stringent targets.

124

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)  

Science Conference Proceedings (OSTI)

This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

Porro, C.; Augustine, C.

2012-04-01T23:59:59.000Z

125

Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)  

Science Conference Proceedings (OSTI)

Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

2012-09-01T23:59:59.000Z

126

Estimating Major and Minor Natural Fracture Patterns in Gas  

E-Print Network (OSTI)

Estimating Major and Minor Natural Fracture Patterns in Gas Shales Using Production Data Razi Identification of infill drilling locations has been challenging with mixed results in gas shales. Natural fractures are the main source of permeability in gas shales. Natural fracture patterns in shale has a random

Mohaghegh, Shahab

127

title Estimating Policy Driven Greenhouse Gas Emissions Trajectories  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and

128

ALASKA NORTH SLOPE OIL AND GAS RESOURCES  

NLE Websites -- All DOE Office Websites (Extended Search)

FFf Task 222.01.01 FFf Task 222.01.01 ADDENDUM REPORT Alaska North Slope Oil and Gas A Promising Future or an Area in Decline? DOE/NETL-2009/1385 April 2009 ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe probably owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

129

RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA  

SciTech Connect

Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

2003-06-02T23:59:59.000Z

130

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate and Analyze Greenhouse Gas Mitigation Strategy Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs October 7, 2013 - 10:18am Addthis Analyzing the cost of implementing each greenhouse gas (GHG) mitigation measure provides an important basis for prioritizing different emission reduction strategies. While actual costs should be used when available, this guidance provides cost estimates or considerations for the major emission reduction measures to help agencies estimate costs without perfect information. Cost criteria the agency may consider when prioritizing strategies include: Lifecycle cost Payback Cost effectiveness ($ invested per MTCO2e, metric tonne carbon dioxide equivalent avoided). Implementation costs should be analyzed for each emissions source:

131

Estimate Greenhouse Gas Emissions by Building Type | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type Estimate Greenhouse Gas Emissions by Building Type October 7, 2013 - 10:51am Addthis YOU ARE HERE Step 2 Starting with the programs contributing the greatest proportion of building greenhouse gas (GHG) emissions, the agency should next determine which building types operated by those programs use the most energy (Figure 1). Energy intensity is evaluated instead of emissions in this approach because programs may not have access to emissions data by building type. Figure 1 - An image of an organizational-type chart. A rectangle labeled 'Program 1' has lines pointing to three other rectangles below it labeled 'Building Type 1,' 'Building Type 2,' and 'Building Type 3.' Next to the building types it says, 'Step 2. Estimate emissions by building type.

132

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

133

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Other Resources Other Resources Pew Center on Global Climate Change Pew Center brings together major organizations with critical scientific, economic, and technological expertise focused on global climate change and educates the public on associated risks, challenges, and solutions. Massachusetts Institute of Technology (MIT) The MIT joint program on the science and policy of global change provides research, independent policy analysis, and public education in global environmental change. IEA Greenhouse Gas Programme The IEA greenhouse gas R&D program (IEA GHG) aims to identify and evaluate fossil fuel-based GHG reduction technologies, disseminate results, and identify target technologies for appropriate and practical R&D. Nature Conservancy The Nature Conservancy sponsors projects that protect ecosystems and

134

Natural Gas and Other Petroleum Resources Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Plan Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress August 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 2011 Annual Plan | Page i Message from the Secretary As we take steps to create the clean energy economy of the future, prudent development of domestic oil and natural gas resources will continue to be part of our Nation's overall strategy for energy security for decades to come. These operations have to be conducted responsibly, ensuring that communities are safe and that the environment is protected. As industry tackles the challenge of developing an increasingly difficult reserve base - in ultra-deepwater offshore and unconventional plays onshore - we must ensure through scientific

135

Natural Gas and Other Petroleum Resources Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual Plan 2 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress August 2012 United States Department of Energy Washington, DC 20585 Department of Energy I August 2012 Message from the Secretary Fueling our Nation's economy by making the most of America's natural gas and oil resources continues to be an important part of our Nation's overall strategy for energy security and a clean energy economy. The Department continues its work toward safe and responsible · development of fossil fuels, while giving American families and communities high confidence that air and water quality, and public health and safety will not be compromised. The EPACT Section 999 program (including the NETL Complementary Research program)

136

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA) Indexed Site

Technically Recoverable Shale Oil and Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 June 2013 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources 1 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

137

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

138

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-04-26T23:59:59.000Z

139

Sediment Capping Resource Guide for Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report describes tools and techniques applicable to design and implementation of sediment capping remedies at former manufactured gas plant (MGP) sites. It includes a number of practical case studies describing cap designs and cap construction experience. The report is intended as a sediment capping resource guide to be used with EPRI's 2007 Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments (EPRI report 1012592).

2008-11-18T23:59:59.000Z

140

California Division of Oil, Gas, and Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Geothermal Resources Geothermal Resources Jump to: navigation, search State California Name California Division of Oil, Gas, and Geothermal Resources (CDOGGR) Address 801 K Street, MS 20-20 City, State Sacramento, CA Zip 95814-3530 Website http://www.consrv.ca.gov/dog/O Coordinates 38.580104°, -121.496008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.580104,"lon":-121.496008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION  

E-Print Network (OSTI)

STABILIZATION OF GAS LIFTED WELLS BASED ON STATE ESTIMATION Gisle Otto Eikrem Lars Imsland Bjarne well. Two different controllers are investigated, PI control using the estimated downhole pressure in the well, and nonlinear model based control of the total mass in the system. Both control structures rely

Foss, Bjarne A.

142

Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

September 23, 2013 September 23, 2013 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of revisions - a description of the policy that will be implemented in the event of an out-of-cycle release Revisions to the Historical Database - a description of how revisions will be noted in the Historical database The U.S. Energy Information Administration (EIA) is announcing changes Revisions may be presented for the most recent estimates of working gas in storage under a number of circumstances that occur after release of the estimates. These include: I. A respondent revises previously submitted data (respondents are

143

Revision Policy for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

April 26, 2005 April 26, 2005 This report consists of the following sections: General EIA Weekly Natural Gas Storage Report Revisions Policy - a description of how revisions to the Weekly Natural Gas Storage Report estimates may occur EIA Weekly Natural Gas Storage Report Policy to Allow Unscheduled Release of revisions - a description of the policy that will be implemented in the event of an out-of-cycle release Revisions to the Historical Database - a description of how revisions will be noted in the Historical database Revisions may be presented for the most recent estimates of working gas in storage under a number of circumstances that occur after release of the estimates. These include: I. A respondent revises previously submitted data (respondents are requested to submit revisions if the change is greater than 500 million

144

Methodology for estimating volumes of flared and vented natural gas  

Science Conference Proceedings (OSTI)

The common perception in the United States that natural gas produced with oil is a valuable commodity probably dates from the 1940's. Before that time, most operators regarded natural gas associated with or dissolved in oil as a nuisance. Indeed, most associated/dissolved natural gas produced in the United States before World War II probably was flared or vented to the atmosphere. This situation has changed in the United States, where flaring and venting have decreased dramatically in recent years, in part because of environmental concerns, but also because of the changing view of the value of natural gas. The idea that gas is a nuisance is beginning to change almost everywhere, as markets for gas have developed in Europe, Japan, and elsewhere, and as operators have increasingly utilized or reinjected associated-dissolved gas in their oil-production activities. Nevertheless, in some areas natural gas continues to be flared or vented to the atmosphere. Gas flares in Russia, the Niger Delta, and the Middle East are some of the brightest lights on the nighttime Earth. As we increasingly consider the global availability and utility of natural gas, and the environmental impacts of the consumption of carbon-based fuels, it is important to know how much gas has been flared or vented, how much gas is currently being flared or vented, and the distribution of flaring or venting through time. Unfortunately, estimates of the volumes of flared and vented gas are generally not available. Despite the inconsistency and inavailability of data, the extrapolation method outlined provides a reliable technique for estimating amounts of natural gas flared and vented through time. 36 refs., 7 figs., 6 tabs.

Klett, T.R.; Gautier, D.L. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

145

RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO  

Science Conference Proceedings (OSTI)

The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

Ernest A. Mancini

2004-04-16T23:59:59.000Z

146

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

147

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

1993-02-01T23:59:59.000Z

148

Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Potential and Cost-Effectiveness Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment Estimate Greenhouse Gas Reduction Potential and Cost-Effectiveness of Strategies for Vehicles and Mobile Equipment October 7, 2013 - 11:58am Addthis YOU ARE HERE: Step 3 After identifying petroleum reduction strategies, a Federal agency should estimate the greenhouse gas (GHG) reduction potential and cost effectiveness of these strategies for vehicles and mobile equipment. The table below provides steps for identifying optimal vehicle acquisition strategies. Table 1. Framework for Identifying Optimal Vehicle Acquisition Strategies Step Summary Purpose PLAN and COLLECT 1 Determine vehicle acquisition requirements Establish a structured Vehicle Allocation Matrix (VAM) to determine the numbers and types of vehicles required to accomplish your fleet's mission

149

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Costs to Implement Greenhouse Gas Mitigation Strategies Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:25am Addthis After determining the best greenhouse gas (GHG) reduction strategies using renewable energy, a Federal agency should estimate the cost of implementing them in a building or buildings. There are several cost factors that need to be considered when developing a renewable energy project. Capital costs, fixed and variable operations and maintenance (O&M) costs and in the case of biomass and waste-to-energy projects, fuel costs all contribute to the total cost of operating a renewable energy system. The levelized system cost takes into account these

150

Estimation of the social costs of natural gas  

SciTech Connect

This study determines the extent to which it is possible to develop monetary estimates of the marginal social cost of fuels, using natural gas to test a methodology that could be applied to other fuels. This requires review of previous estimates of both market and nonmarket costs to the extent that such are available. For some components of social cost, calculation of estimates from secondary data is required. The feasibility of using these estimates to develop marginal social-cost estimates for the country and for states or regions must then be evaluated. In order to develop estimates of marginal social cost for use in determining minimum life-cycle costs of building space conditioning, economic theory is used to develop a conceptual model of the market cost of fuel extraction and conversion. Then, estimation methodologies for each component of nonmarket costs are examined to assess the applicability and validity of each methodology. On the basis of this analysis, empirical estimates of both market and nonmarket components of social cost are aggregated to calculate a social-cost estimate for natural gas. 38 references.

Nieves, L.A.; Lemon, J.R.

1979-12-01T23:59:59.000Z

151

Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources  

E-Print Network (OSTI)

The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observ...

Herndon, J M

2006-01-01T23:59:59.000Z

152

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

153

Estimating resource costs of data-intensive workloads in public clouds  

Science Conference Proceedings (OSTI)

The promise of "infinite" resources given by the cloud computing paradigm has led to recent interest in exploiting clouds for large-scale data-intensive computing. In this paper, we present a model to estimate the resource costs for executing data-intensive ... Keywords: cloud computing, cost model, resource provisioning

Rizwan Mian; Patrick Martin; Farhana Zulkernine; Jose Luis Vazquez-Poletti

2012-12-01T23:59:59.000Z

154

Impact of software resource estimation research on practice: a preliminary report on achievements, synergies, and challenges  

Science Conference Proceedings (OSTI)

This paper is a contribution to the Impact Project in the area of software resource estimation. The objective of the Impact Project has been to analyze the impact of software engineering research investments on software engineering practice. The paper ... Keywords: impact project, software resource estimation

Barry Boehm; Ricardo Valerdi

2011-05-01T23:59:59.000Z

155

Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)  

DOE Green Energy (OSTI)

An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

Esposito, A.; Augustine, C.

2011-10-01T23:59:59.000Z

156

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network (OSTI)

Unconventional resources will play an important role in filling the gap between supply and demand for future world energy. In North America, the impact of unconventional resources on energy supplies is growing continuously. However, around the world they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly and consistently identify analogous reference basins for a target basin. My research focused on continuing that work, comprehensively improving the basin analog system in four areas: the basin analog method; the database; the software functionality; and the validation methods. The updated system compares basins in terms of probability distributions of geological parameters. It compensates for data that are sparse or that do not represent basin-level geological parameters, and it expands the system's ability to compare widely varying quantitative parameters. Because the updated BASIN database contains more geologic and petroleum systems information on reference (existing) basins, it identifies analog basins more accurately and efficiently. The updated BASIN software was developed by using component-based design and data visualization techniques that help users better manage large volumes of information to understand various data objects and their complicated relationships among various data objects. Validation of the improved BASIN software confirms its accuracy: if a basin selected as the target basin appears in the reference basin list with other basins, the target basin is 100% analogous only to itself. Furthermore, when a target basin is analyzed by both BASIN and PRISE (Petroleum Resources Investigation and Summary Evaluation) software, results of the improved BASIN closely matched the PRISE results, which provides important support for using BASIN and PRISE together to quantitatively estimate the resource potential in frontier basins.

Wu, Wenyan 1983-

2012-12-01T23:59:59.000Z

157

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Lewan (2002) concluded that much of the thermogenic gas produced in this basin is the result of cracking of oil to gas in deeply buried reservoirs. The efficiency of expulsion, migration and trapping has been estimated to range from 0.5 to 10 percent for certain basins (Schmoker, 1994: Zimmerman, 1999). The estimate of the total hydrocarbons generated for the Mississippi Interior Salt Basin is 910 billion barrels using the method of Schmoker (1994), and the estimate of the total hydrocarbons generated is 1,540 billion barrels using the Platte River software application. The estimate of gas generated for this basin is 3,130 TCF using the Platte River software application, and 4,050 TCF using the method of Schmoker (1994). Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Claypool and Mancini (1989) report that the conversion of oil to gas in reservoirs is a significant source of thermogenic gas in this basin. The Manila and Conecuh Subbasins are oil-prone. Although these subbasins are thermally mature for oil generation and expulsion, they are not thermally mature for secondary, non-associated gas generation and expulsion. The gas produced from the highly productive gas condensate fields (Big Escambia Creek and Flomaton fields) in these subbasins has been interpreted to be, in part, a product of the cracking of oil to gas and thermochemical reduction of evaporite sulfate in the reservoirs (Claypool and Mancini, 1989). The areas in the North Louisiana and Mississippi Interior Salt Basins with high potential for deeply buried gas reservoirs (>15,000 ft) have been identified. In the North Louisiana Salt Basin, these potential reservoirs include Upper Jurassic and Lower Cretaceous facies, especially the Smackover, Cotton Valley, Hosston, and Sligo units. The estimate of the secondary, non-associated gas generated from cracking of oil in the source rock from depths below 12,000 feet in this basin is 4,800 TCF. Assuming an expul

Ernest A. Mancini

2006-09-30T23:59:59.000Z

158

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

159

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

160

World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States  

E-Print Network (OSTI)

Washington, DC 20585The information presented in this overview is based on the report “World Shale Gas Resources: An Initial Assessment, ” which

unknown authors

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Buildings October 7, 2013 - 11:09am Addthis YOU ARE HERE Step 4 When estimating the cost of implementing the greenhouse gas (GHG) mitigation strategies, Federal agencies should consider the life-cycle costs and savings of the efforts. The major cost elements associated with developing and implementing a project are identified in Table 1. Table 1. Major Costs for Project Development and Implementation Cost Element Description Variables Project planning costs Preparatory work by building owners and design team. Benchmarking activities. Building audits. Developing statements of work for subcontractors. Selecting contractors. Integrated design process (for major renovations). Type of project; previous team experience; local markets; number of stakeholders

162

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Commuting Employee Commuting Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Employee Commuting October 7, 2013 - 2:27pm Addthis YOU ARE HERE Step 4 For greenhouse gas (GHG) mitigation, once a Federal agency identifies the employee commute alternatives and supporting strategies that will most effectively reduce trips to the worksite, costs of encouraging adoption of those methods can be estimated. The annual costs of commute trip reduction programs can vary greatly by worksite. This section outlines types of costs that might be incurred by an agency as well as savings and other benefits of commute trip reduction to an agency, its employees, and the communities surrounding its major worksites. It includes: Employer costs and benefits Employee costs and benefits

163

Technically Recoverable Shale Oil and Shale Gas Resources  

U.S. Energy Information Administration (EIA)

gas and billion barrels (Bbbl) of shale oil for each major shale formation. Risked Recoverable Gas and Oil, reported in trillion cubic feet (Tcf) of shale gas and

164

Enhanced Prognosis for Abiotic Natural Gas and Petroleum Resources  

E-Print Network (OSTI)

The prognosis for potential resources of abiotic natural gas and petroleum depends critically upon the nature and circumstances of Earth formation. Until recently, that prognosis has been considered solely within the framework of the so-called "standard model of solar system formation", which is incorrect and leads to the contradiction of terrestrial planets having insufficiently massive cores. By contrast, that prognosis is considerably enhanced (i) by the new vision I have disclosed of Earth formation as a Jupiter-like gas giant; (ii) by core formation contemporaneous with raining out from within a giant gaseous protoplanet rather than through subsequent whole-Earth re-melting after loss of gases; (iii) by the consequences of whole-Earth decompression dynamics, which obviates the unfounded assumption of mantle convection, and; (iv) by the process of mantle decompression thermal-tsunami. The latter, in addition to accounting for much of the heat leaving the Earth's surface, for the geothermal gradient observed in the crust, for substantial volcanism, and possibly for earthquake generation as well, also might enhance the prognosis for future abiotic energy supplies by pressurizing and heating the base of the crust, a potential collection point for abiotic mantle methane or other mantle-derived carbon-containing matter.

J. Marvin Herndon

2006-03-26T23:59:59.000Z

165

Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and  

E-Print Network (OSTI)

Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource regulating well spacing, preventing of flaring or venting of natural gas, regulating production from wells oil/gas and oil/water ratios, and no-flaring and venting rules for natural gas. 1 Introduction

Garousi, Vahid

166

Analysis of the effects of section 29 tax credits on reserve additions and production of gas from unconventional resources  

SciTech Connect

Federal tax credits for production of natural gas from unconventional resources can stimulate drilling and reserves additions at a relatively low cost to the Treasury. This report presents the results of an analysis of the effects of a proposed extension of the Section 29 alternative fuels production credit specifically for unconventional gas. ICF Resources estimated the net effect of the extension of the credit (the difference between development activity expected with the extension of the credit and that expected if the credit expires in December 1990 as scheduled). The analysis addressed the effect of tax credits on project economics and capital formation, drilling and reserve additions, production, impact on the US and regional economies, and the net public sector costs and incremental revenues. The analysis was based on explicit modeling of the three dominant unconventional gas resources: Tight sands, coalbed methane, and Devonian shales. It incorporated the most current data on resource size, typical well recoveries and economics, and anticipated activity of the major producers. Each resource was further disaggregated for analysis based on distinct resource characteristics, development practices, regional economics, and historical development patterns.

Not Available

1990-09-01T23:59:59.000Z

167

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using 'hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well characterized * Known/proven temperature gradients from oil and gas well records * Drilling and reservoir fracturing techniques proven in sedimentary environment - Disadvantages: * Great depths required to encounter high temperatures * Emerging industry Photo by Warren Gretz, NREL/PIX 00450

168

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Reserves estimation in unconventional (low/ultra-low permeability) reservoirs has become a topic of increased interest as more of these resources are being developed, especially in North America. The estimation of reserves in unconventional reservoirs is challenging due to the long transient flow period exhibited by the production data. The use of conventional methods (i.e., Arps' decline curves) to estimate reserves is often times inaccurate and leads to the overestimation of reserves because these models are only (theoretically) applicable for the boundary-dominated flow regime. The premise of this work is to present and demonstrate a methodology which continuously estimates the ultimate recovery during the producing life of a well in order to generate a time-dependent profile of the estimated ultimate recovery (EUR). The "objective" is to estimate the final EUR value(s) from several complimentary analyses. In this work we present the "Continuous EUR Method" to estimate reserves for unconventional gas reservoirs using a rate-time analysis approach. This work offers a coherent process to reduce the uncertainty in reserves estimation for unconventional gas reservoirs by quantifying "upper" and "lower" limits of EUR prior to the onset of boundary-dominated flow. We propose the use of traditional and new rate-time relations to establish the "upper" limit for EUR. We clearly demonstrate that rate-time relations which better represent the transient and transitional flow regimes (in particular the power law exponential rate decline relation) often lead to a more accurate "upper" limit for reserves estimates — earlier in the producing life of a well (as compared to conventional ("Arps") relations). Furthermore, we propose a straight line extrapolation technique to offer a conservative estimate of maximum produced gas which we use as the "lower" limit for EUR. The EUR values estimated using this technique continually increase with time, eventually reaching a maximum value. We successfully demonstrate the methodology by applying the approach to 43 field examples producing from 7 different tight sandstone and shale gas reservoirs. We show that the difference between the "upper" and "lower" limit of reserves decreases with time and converges to the "true" value of reserves during the latter producing life of a well.

Currie, Stephanie M.

2010-08-01T23:59:59.000Z

169

US areal wind resource estimates considering environmental and land-use exclusions  

DOE Green Energy (OSTI)

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

170

US areal wind resource estimates considering environmental and land-use exclusions  

SciTech Connect

In support of the US Department of Energy's National Energy Strategy initiative, estimates of the land area with various levels of wind energy resource have been developed for each state in the contiguous United States. The estimates are based on published wind resource data and account for the exclusion of some land owing to environmental of land-use considerations. These exclusions assume that 100% of the environmentally sensitive land and various percentages of land designated as urban, agricultural or range would be unavailable for wind energy development. Despite these exclusions, the amount of wind resource thus estimated is surprisingly large. For example, estimates of available wind resource and resultant wind electric potential from advanced turbine technology show that a group of 12 states in the midsection of the country could produce more than three times the nation's 1987 electric energy consumption. 1 ref., 7 figs., 1 tab.

Elliott, D.L.; Wendell, L.L.; Gower, G.L.

1990-09-01T23:59:59.000Z

171

Cost Estimating Tools and Resources for Addressing Sites Under  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation’s land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet this mandate, EPA’s research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory is the Agency’s center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory’s research program is on methods for the prevention and control of pollution to air, land, water and subsurface

Sites Under The Brownfields; The Brownfields Initiative

1999-01-01T23:59:59.000Z

172

Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Estimation and Resource Estimation and Mapping at the National Renewable Energy Laboratory April 1999 * NREL/CP-500-26245 M. Schwartz Presented at the ASES Solar '99 Conference Portland, Maine June 12-16, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel

173

Development of an Improved Methodology to Assess Potential Unconventional Gas Resources  

Science Conference Proceedings (OSTI)

Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic assessment of the uncertainty surrounding potential unconventional gas resources.

Salazar, Jesus; McVay, Duane A., E-mail: mcvay@pe.tamu.edu; Lee, W. John [Texas A and M University, Department of Petroleum Engineering, 3116 TAMU (United States)

2010-12-15T23:59:59.000Z

174

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles and Mobile Equipment Vehicles and Mobile Equipment Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Vehicles and Mobile Equipment October 7, 2013 - 1:13pm Addthis YOU ARE HERE: Step 4 Once a Federal agency identifies the various strategic opportunities to reduce greenhouse gas (GHG) emissions for vehicles and mobile equipment, it is necessary to evaluate the associated costs of adopting each strategy. The costs to reduce GHG emissions can vary greatly from cost-free behavior modification to the high-cost of purchasing zero-emission battery electric vehicles and associated fueling infrastructure. This section provides an overview of the costs and savings to consider when planning for mobile source emissions reductions, including efforts to: Reduce vehicle miles traveled

175

Contract No. DE-AC36-99-GO10337Geothermal— The Energy Under Our Feet Geothermal Resource Estimates for the  

E-Print Network (OSTI)

The Earth houses a vast energy supply in the form of geothermal resources. Domestic resources are equivalent to a 30,000-year energy supply at our current rate for the United States! In fact, geothermal energy is used in all 50 U.S. states today. But geothermal energy has not reached its full potential as a clean, secure energy alternative because of issues with resources, technology, historically low natural gas prices, and public policies. These issues affect the economic competitiveness of geothermal energy On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource

United States; Bruce D. Green; R. Gerald Nix; United States; Bruce D. Green; R. Gerald Nix

2006-01-01T23:59:59.000Z

176

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...  

Office of Scientific and Technical Information (OSTI)

of oil and gas related programs with relevance to the Climate VISION program: Deep Trek Water, Air, and Soil Protection Natural Gas Infrastructure Methane Hydrates Hydrogen...

177

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

DOE Green Energy (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

178

Quantifying the Uncertainty in Estimates of World Conventional Oil Resources  

E-Print Network (OSTI)

Since Hubbert proposed the "peak oil" concept to forecast ultimate recovery of crude oil for the U.S. and the world, there have been countless debates over the timing of peak world conventional oil production rate and ultimate recovery. From review of the literature, forecasts were grouped into those that are like Hubbert's with an imminent peak, and those that do not predict an imminent peak. Both groups have bases for their positions. Viewpoints from the two groups are polarized and the rhetoric is pointed and sometimes personal. A big reason for the large divide between the two groups is the failure of both to acknowledge the significant uncertainty in their estimates. Although some authors attempt to quantify uncertainty, most use deterministic methods and present single values, with no ranges. This research proposes that those that do attempt to quantify uncertainty underestimate it significantly. The objective of this thesis is to rigorously quantify the uncertainty in estimates of ultimate world conventional oil production and time to peak rate. Two different methodologies are used. The first is a regression technique based on historical production data using Hubbert's model and the other methodology uses mathematical models. However, I conduct the analysis probabilistically, considering errors in both the data and the model, which results in likelihood probability distributions for world conventional oil production and time to peak rate. In the second method, I use a multiple-experts analysis to combine estimates from the multitude of papers presented in the literature, yielding an overall distribution of estimated world conventional oil production. Giving due consideration to uncertainty, Hubbert-type mathematical modeling results in large uncertainty ranges that encompass both groups of forecasts (imminent peak and no imminent peak). These ranges are consistent with those from the multiple-experts analysis. In short, the industry does not have enough information at this time to say with any reliability what the ultimate world conventional oil production will be. It could peak soon, somewhere in the distant future, or somewhere in between. It would be wise to consider all of these possible outcomes in planning and making decisions regarding capital investment and formulation of energy policy.

Tien, Chih-Ming

2009-12-01T23:59:59.000Z

179

Estimation of Gas Leak Rates Through Very Small Orifices  

Office of Scientific and Technical Information (OSTI)

Estimation of Gas Leak Rates Estimation of Gas Leak Rates Through Very Small Orifices and Channels by Herbert J. Bomelburg February 1977 Prepared for the Nuclear Regulatory Commission -..- Pacific Northwest Laboratories Th% report was preparrd is an accceullt r.84 work spoi.wr~d by the Un~ted States Governmect. Kettker t > ~ United States nor the L'nited states 'rl:clczr 1tcgl;l;:cry Cornmiszion. :or ally c! their e m p i o y e ~ , nor any of chcrr contractors, subcontraao~r, a . tlveir rrn~invct?t-, r.~aies any H r r l a tty, cxpreji o r implied, or ?.;+~nics any !egA liability or rcrpocsibility for iirc accuracy. zcm:lc.~cn~ss 01 ~rscf.~!ccss -,f an). i?fzrxat-on, 3Poar.i:b4. prodiict cr I.m)cess disclosed, or repreen:.; :hi.: i;s i43? wott:rl n.;\ irlfringe pr ivzrc:i*l u w x o :ig.~ts.

180

Direct estimation of gas reserves using production data  

E-Print Network (OSTI)

This thesis presents the development of a semi-analytical technique that can be used to estimate the gas-in-place for volumetric gas reservoirs. This new methodology utilizes plotting functions, plots, extrapolations, etc. - where all analyses are based on the following governing identity. The 'governing identity' is derived and validated by others for pi less than 6000 psia. We have reproduced the derivation of this result and we provide validation using numberical simulation for cases where pi greater than 6000 psia. The relevance of this work is straightforward using a simple governing relation, we provide a series of plotting functions which can be used to extrapolate or interpret an estimate of gas-in-place using only production data (qg and Gp). The proposed methodology does not require a prior knowledge of formation and or fluid compressibility data, nor does it require average reservoir pressure. In fact, no formation or fluid properties are directly required for this analysis and interpretation approach. The new methodology is validated demonstrated using results from numerical simulation (i.e., cases where we know the exact answer), as well as for a number of field cases. Perhaps the most valuable component of this work is our development of a "spreadsheet" approach in which we perform multiple analyses interpretations simultaneously using MS Excel. This allows us to visualize all data plots simultaneously - and to "link" the analyses to a common set of parameters. While this "simultaneous" analysis approach may seem rudimentary (or even obvious), it provides the critical (and necessary) "visualization" that makes the technique functional. The base relation (given above) renders different behavior for different plotting functions, and we must have a "linkage" that forces all analyses to "connect" to one another. The proposed multiplot spreadsheet approach provides just such a connection.

Buba, Ibrahim Muhammad

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedition Discovers the First Gulf of Mexico Resource-Quality Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits May 14, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico. NETL--in collaboration with the U.S. Geological Survey, the U.S. Minerals Management Service, an industry research consortium led by Chevron, and others--recently completed a landmark 21-day gas hydrate drilling expedition that discovered highly saturated hydrate-bearing sands in two of three sites drilled. Gas hydrate is a unique substance comprised of natural gas (almost

182

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

183

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

184

Results from DOE Expedition Confirm Existence of Resource-Quality Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Results from DOE Expedition Confirm Existence of Resource-Quality Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico March 30, 2010 - 1:00pm Addthis Washington, DC - Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL). Initial findings from the May 2009 expedition of the Gulf of Mexico Hydrates Joint Industry Project (JIP) have just been released by NETL. These reports detail the extremely valuable and advanced datasets on the various gas hydrate occurrences that were discovered in the deepwater Gulf

185

Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Travel Business Travel Estimate Costs to Implement Greenhouse Gas Mitigation Strategies for Business Travel October 7, 2013 - 1:37pm Addthis YOU ARE HERE Step 4 Once business travel reduction strategies have been identified, a Federal agency may evaluate the cost of implementing those measures and any potential savings from avoided travel. The annual costs associated with reducing business travel may vary greatly by agency, program, and site depending on the current level of video conferencing and desktop collaboration solutions that are available between the organization's major travel destinations. This will be largely driven by whether the agency has to install or upgrade equipment or just make them more accessible and familiar to users. Strategies focused on policy and

186

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Petroleum Geology, Atlas of Oil and Gas Fields, Structuraland logging conventional oil and gas wells. The ability to

Moridis, George J.

2008-01-01T23:59:59.000Z

187

Comparison of resource assessment methods and geologic controls--deep natural gas plays and zones, United States and Russia  

Science Conference Proceedings (OSTI)

Deep (greater than 4.5 km--15,000 ft) conventional natural gas resources will play an important role in the future energy needs of the United States and Russia. Deep sedimentary basins are widespread in these countries and have formed in a variety of depositional and tectonic settings. Significant volumes of undiscovered deep natural gas are in the Gulf Coast, Anadarko, Permian, and Rocky Mountain basins of the U.S., and in the Timan-Pechora, West Siberia, East Siberia, and North and South Caspian basins of the former Soviet Union. Deep natural gas resources are regularly assessed by the All-Russia Petroleum Research Exploration Institute (VNIGRI) and the U.S. Geological Survey (USGS) as part of their normal research activities. Both VNIGRI and the USGS employ similar assessment methods involving play (or zone) analysis using geological data and based on an analysis of confirmed and hypothetical plays using field-size distributions, discovery-process models, and statistical estimation procedures that yield probabilistic estimates of undiscovered accumulations. Resource estimates for the deep structural and statigraphic plays of the Anadarko basin and deep Paleozoic zones in the Timan-Pechora basin are compared and contrasted using both methods. Differences in results of assessments between VNIGRI and USGS arise due to (1) the way in which plays/zones are defined, (2) different geochemical models for hydrocarbon generation as applied to hypothetical plays, (3) variations in the ways in which statistical estimation procedures are applied to plays and regions, and (4) differences in economic and technologic assumptions, reserve growth calculations, and accumulation size limits and ranges.

Dyman, T.S. (Geological Survey, Denver, CO (United States)); Belonin, M.D. (All-Russia Petroleum Research Exploration Inst., St. Petersburg (Russian Federation)) (and others)

1996-01-01T23:59:59.000Z

188

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...  

Office of Scientific and Technical Information (OSTI)

links provide a listing of recent publications and software by DOE's Office of Fossil Energy and the National Petroleum Technology Office (NPTO): Key Natural Gas and...

189

Thermodynamics Resource for Gas-Phase and Condensed Species  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... They include thermodynamic data (heats of formation, enthalpies, entropies, and heat capacities) for gas and condensed-phase species, ...

190

Development of Alaskan gas hydrate resources. Final report  

Science Conference Proceedings (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

191

Resource planning for gas utilities: Using a model to analyze pivotal issues  

Science Conference Proceedings (OSTI)

With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

Busch, J.F.; Comnes, G.A.

1995-11-01T23:59:59.000Z

192

Development of the Natural Gas Resources in the Marcellus Shale  

E-Print Network (OSTI)

Remove Exotics Manually or Chemically Air Quality X X Speed Limits Water Roads & Pads Flare Gas (Rather with drilling and pipeline compression operations. The main pollutant of concern is nitrogen oxides (NOx), which

Boyer, Elizabeth W.

193

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...  

Office of Scientific and Technical Information (OSTI)

easy to operate, and produce high quality heat that can be used to generate steam for combined heat and power and combined-cycle applications. About 75% of all gas...

194

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update  

Reports and Publications (EIA)

This report provides an update to an estimate for U.S. aggregate natural gas storage capacity that was released in 2006.

Information Center

2007-10-23T23:59:59.000Z

195

Comparison of Historical Satellite Based Estimates of Solar Radiation Resources with Recent Rotating Shadowland Radiometer Measurements  

Science Conference Proceedings (OSTI)

Satellite-based solar radiation estimates have recently been incorporated into the 1990-2005 update to the 1961-1990 U.S. National Solar Radiation Database (NSRDB). The National Aeronautics and Space Administration (NASA) also supplies satellite-based estimates of solar radiation. The usefulness of such data with respect to solar resources for site selection and designing solar energy conversion systems is often questioned. The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates. We compare the most recent shadowband radiometer MMDT with a complement of thermopile 'first class' solar radiometers at one site. Quantitative analysis shows that in most cases, the long-term average MMDT and measured data are comparable, within 10% of each other for global, and 20% for direct-radiation MMDT.

Myers, D.

2009-01-01T23:59:59.000Z

196

Direct measurements improve estimates of dairy greenhouse-gas emissions  

E-Print Network (OSTI)

small quantity of Greenhouse gases measured enteric nitrousSC, Pain BF. 1994. Greenhouse gas emissions from intensiveE, Brose G. 2001. Greenhouse gas emissions from animal house

Mitloehner, Frank M; Sun, Huawei; Karlik, John F

2009-01-01T23:59:59.000Z

197

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations American Petroleum Institute The oil and natural gas industry provides the fuel for American life, warming our homes, powering our businesses and giving us the mobility to enjoy this great land. As the primary trade association of that industry, API represents more than 400 members involved in all aspects of the oil and natural gas industry. Our association draws on the experience and expertise of our members and staff to support a strong and viable oil and natural gas industry. International Petroleum Industry Environmental Conservation Association The International Petroleum Industry Environmental Conservation Association (IPIECA) is comprised of petroleum companies and associations from around the world. Founded in 1974 following the establishment of the United

198

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

199

The Impact of Varying Natural Gas Prices on the Potential Distributed Resources Market  

Science Conference Proceedings (OSTI)

Studies of the potential market for distributed resources (DR) have typically assumed that long-term gas rates will increase in a gradual and uniform fashion; however, natural gas rates can peak at very high rates as they did in late 2000 and early 2001. This project studied the response of the DR market to changes in future gas prices in a range of plausible scenarios. It suggests that relatively high natural gas prices and non-uniform annual price fluctuations may strongly affect the size and character...

2002-11-14T23:59:59.000Z

200

Regulation and Political Costs in the Oil and Gas Industry: An Investigation of Discretion in Reporting Earnings and Oil and Gas Reserves Estimates.  

E-Print Network (OSTI)

??This study investigates the use of discretion by oil and gas companies in reporting financial performance and oil and gas reserve estimates during times of… (more)

Kurdi, Ammr

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources, June 23, 2006, Background  

Gasoline and Diesel Fuel Update (EIA)

Aspects of Anadarko's Acquisition of Kerr-McGee Aspects of Anadarko's Acquisition of Kerr-McGee Corp. and Western Gas Resources Background On June 23, 2006, the Wall Street Journal (WSJ) reported that Anadarko Petroleum Corp had agreed to acquire Kerr-McGee Corp. and Western Gas Resources Inc. for $21.1 billion of cash (see "Anadarko to Buy Kerr-McGee, Western Gas for $21.1 Billion" (June 23, 2006)). Anadarko also will assume $2.2 billion of debt from the two companies. Anadarko will pay $16.4 billion ($70.50 per share) and assume $1.6 billion of debt to acquire Kerr-McGee and pay $4.7 billion ($61 per share) and assume $600 million of debt to acquire Western Gas. Additional information is available on Anadarko's web site. According to the WSJ, Anadarko's president and chief executive officer Jim Hacket noted that the

202

Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint  

DOE Green Energy (OSTI)

The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

Myers, D. R.

2009-03-01T23:59:59.000Z

203

Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate  

DOE Green Energy (OSTI)

Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

1981-04-01T23:59:59.000Z

204

Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research  

DOE Data Explorer (OSTI)

NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

205

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources and  

Office of Scientific and Technical Information (OSTI)

Software Tools Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant, (b) how much energy each individual utility service or energy-consuming equipment consumes, and, (c) where opportunities to realize savings exist. The tool will provide increasingly more detailed estimates of these factors

206

U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources:  

Gasoline and Diesel Fuel Update (EIA)

Shale Gas and Shale Oil Plays Shale Gas and Shale Oil Plays Review of Emerging Resources: July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank The information presented in this overview is based on the report Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays, which was prepared by INTEK, Inc. for the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. The full report is attached. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

207

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)  

Science Conference Proceedings (OSTI)

Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

Esposito, A.; Augustine, C.

2012-04-01T23:59:59.000Z

208

Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)  

Reports and Publications (EIA)

The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 OCS have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

Information Center

2009-03-31T23:59:59.000Z

209

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

210

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

211

A Bootstrap Approach to Computing Uncertainty in Inferred Oil and Gas Reserve Estimates  

Science Conference Proceedings (OSTI)

This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis.

Attanasi, Emil D. [US Geological Survey MS 956 (United States)], E-mail: attanasi@usgs.gov; Coburn, Timothy C. [Abilene Christian University, Department of Management Science (United States)

2004-03-15T23:59:59.000Z

212

MIE 1.0 - Gas Turbine Maintenance Interval Estimator , Version 1.0  

Science Conference Proceedings (OSTI)

The EPRI Gas Turbine Maintenance Interval Estimator Version 1.0 (MIE 1.0) is a spreadsheet application that predicts the remaining hot section life of a General Electric heavy-duty gas turbine using General Electric's standard algorithms described in GER-3620K.

2007-03-29T23:59:59.000Z

213

Comparison of Natural Gas Storage Estimates from the EIA and AGA  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has been publishing monthly storage information for years. In order to address the need for more timely information, in 1994 the American Gas Association (AGA) began publishing weekly storage levels. Both the EIA and the AGA series provide estimates of the total working gas in storage, but use significantly different methodologies.

Information Center

1997-10-01T23:59:59.000Z

214

Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power  

DOE Green Energy (OSTI)

This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

Milbrandt, A.; Mann, M.

2009-02-01T23:59:59.000Z

215

TY RPRT T1 Estimating Policy Driven Greenhouse Gas Emissions Trajectories in  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimating Policy Driven Greenhouse Gas Emissions Trajectories in Estimating Policy Driven Greenhouse Gas Emissions Trajectories in California The California Greenhouse Gas Inventory Spreadsheet GHGIS Model A1 J Greenblatt AB p A California Greenhouse Gas Inventory Spreadsheet GHGIS model was developed to explore the impact of combinations of state policies on state greenhouse gas GHG and regional criteria pollutant emissions The model included representations of all GHGemitting sectors of the California economy including those outside the energy sector such as high global warming potential gases waste treatment agriculture and forestry in varying degrees of detail and was carefully calibrated using available data and projections from multiple state agencies and other sources Starting from basic drivers such as population numbers

216

CONTENTS BOEM Releases Assessment of In-Place Gas Hydrate Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

BOEM Releases Assessment of BOEM Releases Assessment of In-Place Gas Hydrate Resources of the Lower 48 United States Outer Continental Shelf ..............1 Re-examination of Seep Activity at the Blake Ridge Diapir ............6 Field Data from 2011/2012 ConocoPhillips-JOGMEC-DOE Iġnik Sikumi Gas Hydrate Field Trial Now Available .......................9 Announcements .......................11 * Norwegian Center of Excellence to Receive Ten Years of Arctic Research Funding * Release of Mallik 2007-2008 Results * Goldschmidt Conference * 2012 Methane Hydrate Research Fellowship Awarded to Jeffrey James Marlow Spotlight on Research........... 16 Bjørn Kvamme CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

217

Thermodynamics Resource: Gas-Phase Database and the Condensed-Phase Data File  

DOE Data Explorer (OSTI)

The Thermodynamics Resource provides thermochemistry for gas-phase and condensed species relevant to a wide range of high-temperature processes, including chemical vapor deposition (CVD), chemical vapor infiltration (CVI), catalysis, combustion, materials corrosion, and aerosol processing. Thermochemistry is the foundation for understanding chemical reactions and as such is essential to the development of predictive models for many high-temperature processes. The database includes thermodynamic data (heats of formation, enthalpies, entropies, and heat capacities) for gas and condensed-phase species, thermodynamic models for specific condensed-phase material systems that account for non-ideal behavior in those systems, and a wide range of calculated molecular properties for gas-phase species. (Specialized Interface)

Allendorf, Mark D.; Besmann, Theodore M.

218

Long-range assessment of R and D policy for gas-related conversion technologies and unconventional natural gas resources  

Science Conference Proceedings (OSTI)

This study analyzes the energy impacts on the US energy-economy system on a set of successful R and D programs. These programs are presumed to have led to the commercialization of innovative technologies that increase the US gaseous fuels resource base and promote the development of advanced natural gas conversion technologies for residential/commercial uses. The GRI and its principal subcontractor, TRW Incorporated, provided the detailed specifications of the energy conditions for both a Base Case and an R and D Policy Case. These conditions can be broadly categorized in terms of key energy resource price assumptions, energy resource availabilities, technology characterizations and market penetration guidelines for all energy technologies. Dale W. Jorgenson Associates (DJA) developed a set of demographic and economic projections including population, employment, and real GNP growth rates. The GRI and TRW staff provided the technology characterizations for most of the gas-related technologies and a number of other technologies. The data for the remaining technology characterizations were taken, for the most part, from Bhagat et al. This report presents the energy results from the BNL/DJA energy-economy system as executed under GRI specifications. It is intended to serve as a complement to the DJA report on the macro-economic consequences of these specifications. Certain assumption incorporated in the R and D and Base scenarios relating to market penetration were identified as particularly sensitive. In light of the uncertainty inherent in them, an additional set of sensitivity runs were requested by GRI and are presented in Appendix B.

Kydes, A.S.; Rabinowitz, J.

1980-04-25T23:59:59.000Z

219

Estimation of Offshore Wind Resources in Coastal Waters off Shirahama Using ENVISAT ASAR Images  

E-Print Network (OSTI)

Abstract: Offshore wind resource maps for the coastal waters off Shirahama, Japan were made based on 104 images of the Advanced Synthetic Aperture Radar (ASAR) onboard the ENVISAT satellite. Wind speed fields were derived from the SAR images with the geophysical model function CMOD5.N. Mean wind speed and energy density were estimated using the Weibull distribution function. These accuracies were examined in comparison with in situ measurements from the Shirahama offshore platform and the Southwest Wakayama buoy (SW-buoy). Firstly, it was found that the SAR-derived 10 m-height wind speed had a bias of 0.52 m/s and a RMSE of 2.33 m/s at Shirahama. Secondly, it was found that the mean wind speeds estimated from SAR images and the Weibull distribution function were overestimated at both sites. The ratio between SAR-derived and in situ measured mean wind speeds at Shirahama is 1.07, and this value was used for a long-termRemote Sens. 2013, 5 2884

Yuko Takeyama; Teruo Ohsawa; Tomohiro Yamashita; Katsutoshi Kozai; Yasunori Muto; Yasuyuki Baba; Koji Kawaguchi

2013-01-01T23:59:59.000Z

220

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at  

E-Print Network (OSTI)

Q: When planning a wind farm, how are wind resources estimated? And if the average wind speed is known at 10 meters is there a general rule for estimating the wind speed at larger heights above ground level? The wind resource at a wind farm can be estimated in two ways: by measurement or by modeling

222

Estimating the greenhouse gas benefits of forestry projects: A Costa Rican Case Study  

SciTech Connect

If the Clean Development Mechanism proposed under the Kyoto Protocol is to serve as an effective means for combating global climate change, it will depend upon reliable estimates of greenhouse gas benefits. This paper sketches the theoretical basis for estimating the greenhouse gas benefits of forestry projects and suggests lessons learned based on a case study of Costa Rica's Protected Areas Project, which is a 500,000 hectare effort to reduce deforestation and enhance reforestation. The Protected Areas Project in many senses advances the state of the art for Clean Development Mechanism-type forestry projects, as does the third-party verification work of SGS International Certification Services on the project. Nonetheless, sensitivity analysis shows that carbon benefit estimates for the project vary widely based on the imputed deforestation rate in the baseline scenario, e.g. the deforestation rate expected if the project were not implemented. This, along with a newly available national dataset that confirms other research showing a slower rate of deforestation in Costa Rica, suggests that the use of the 1979--1992 forest cover data originally as the basis for estimating carbon savings should be reconsidered. When the newly available data is substituted, carbon savings amount to 8.9 Mt (million tones) of carbon, down from the original estimate of 15.7 Mt. The primary general conclusion is that project developers should give more attention to the forecasting land use and land cover change scenarios underlying estimates of greenhouse gas benefits.

Busch, Christopher; Sathaye, Jayant; Sanchez Azofeifa, G. Arturo

2000-09-01T23:59:59.000Z

223

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

Science Conference Proceedings (OSTI)

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

Russell E. Fray

2007-06-30T23:59:59.000Z

224

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  

SciTech Connect

RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

Russell E. Fray

2007-05-31T23:59:59.000Z

225

Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Gasoline and Diesel Fuel Update (EIA)

5(94) 5(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Information General information regarding preparation of this report may be obtained from Craig H. Cranston at 202/586-6023, in Washington, D.C. Specific information regarding the contents of the report may be obtained from the authors: Jack S.

226

Integrated resource planning for local gas distribution companies: A critical review of regulatory policy issues  

SciTech Connect

According to the report, public utility commissions (PUCs) are increasingly adopting, or considering the adoption of integrated resource planning (IRP) for local gas distribution companies (LDCs). The Energy Policy Act of 1992 (EPAct) requires PUCs to consider IRP for gas LDCs. This study has two major objectives: (1) to help PUCs develop appropriate regulatory approaches with regard to IRP for gas LDCs; and (2) to help PUCs respond to the EPAct directive. The study finds that it is appropriate for PUCs to pursue energy efficiency within the traditional regulatory framework of minimizing private costs of energy production and delivery; and PUCs should play a limited role in addressing environmental externalities. The study also finds that in promoting energy efficiency, PUCs should pursue policies that are incentive-based, procompetitive, and sensitive to rate impacts. The study evaluates a number of traditional and nontraditional ratemaking mechanisms on the basis of cost minimization, energy efficiency, competitiveness, and other criteria. The mechanisms evaluated include direct recovery of DSM expenses, lost revenue adjustments for DSM options, revenue decoupling mechanisms, sharing of DSM cost savings, performance-based rate of return for DSM, provision of DSM as a separate service, deregulation of DSM service, price caps, and deregulation of the noncore gas market. The study concludes with general recommendations for regulatory approaches and ratemaking mechanisms that PUCs may wish to consider in advancing IRP objectives.

Harunuzzaman, M.; Islam, M.

1994-08-01T23:59:59.000Z

227

Comparative Evaluation of Two Methods to Estimate Natural Gas Production in Texas  

Reports and Publications (EIA)

This report describes an evaluation conducted by the Energy Information Administration (EIA) in August 2003 of two methods that estimate natural gas production in Texas. The first method (parametric method) was used by EIA from February through August 2003 and the second method (multinomial method) replaced it starting in September 2003, based on the results of this evaluation.

Information Center

2003-12-23T23:59:59.000Z

228

Estimate of Maximum Underground Working Gas Storage Capacity in the United States  

Reports and Publications (EIA)

This report examines the aggregate maximum capacity for U.S. natural gas storage. Although the concept of maximum capacityseems quite straightforward, there are numerous issues that preclude the determination of a definitive maximum volume. Thereport presents three alternative estimates for maximum capacity, indicating appropriate caveats for each.

Information Center

2006-09-19T23:59:59.000Z

229

Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)  

Reports and Publications (EIA)

This analysis was updated for AEO2009: Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental ShelfThe OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, Federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the States of Alaska and Virginia have asked the Federal Government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

Information Center

2007-02-22T23:59:59.000Z

230

Estimating retained gas volumes in the Hanford tanks using waste level measurements  

SciTech Connect

The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is {open_quotes}soft{close_quotes} enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements.

Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

1997-09-01T23:59:59.000Z

231

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

232

New Wind Energy Resource Potential Estimates for the United States (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the wind energy resource mapping efforts conducted at NREL and by Truepower.

Elliott, D.; Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Brower, M.; Hale, E.; Phelps, B.

2011-01-01T23:59:59.000Z

233

Steady-state model for estimating gas production from underground coal gasification  

Science Conference Proceedings (OSTI)

A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

Greg Perkins; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2008-11-15T23:59:59.000Z

234

A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah  

Science Conference Proceedings (OSTI)

The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

Olea, Ricardo A., E-mail: olea@usgs.gov [U.S. Geological Survey (United States); Cook, Troy A. [Denver Federal Center (United States); Coleman, James L. [U.S. Geological Survey (United States)

2010-12-15T23:59:59.000Z

235

Baseline estimate of the retained gas volume in Tank 241-C-106  

SciTech Connect

This report presents the results of a study of the retained gas volume in Hanford Tank 241-C-106 (C-106) using the barometric pressure effect method. This estimate is required to establish the baseline conditions for sluicing the waste from C-106 into AY-102, scheduled to begin in the fall of 1998. The barometric pressure effect model is described, and the data reduction and detrending techniques are detailed. Based on the response of the waste level to the larger barometric pressure swings that occurred between October 27, 1997, and March 4, 1998, the best estimate and conservative (99% confidence) retained gas volumes in C-106 are 24 scm (840 scf) and 50 scm (1,770 scf), respectively. This is equivalent to average void fractions of 0.025 and 0.053, respectively.

Stewart, C.W.; Chen, G.

1998-06-01T23:59:59.000Z

236

A METHOD FOR ESTIMATING GAS PRESSURE IN 3013 CONTAINERS USING AN ISP DATABASE QUERY  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Integrated Surveillance Program (ISP) is responsible for the storage and surveillance of plutonium-bearing material. During storage, plutonium-bearing material has the potential to generate hydrogen gas from the radiolysis of adsorbed water. The generation of hydrogen gas is a safety concern, especially when a container is breached within a glove box during destructive evaluation. To address this issue, the DOE established a standard (DOE, 2004) that sets the criteria for the stabilization and packaging of material for up to 50 years. The DOE has now packaged most of its excess plutonium for long-term storage in compliance with this standard. As part of this process, it is desirable to know within reasonable certainty the total maximum pressure of hydrogen and other gases within the 3013 container if safety issues and compliance with the DOE standards are to be attained. The principal goal of this investigation is to document the method and query used to estimate total (i.e. hydrogen and other gases) gas pressure within a 3013 container based on the material properties and estimated moisture content contained in the ISP database. Initial attempts to estimate hydrogen gas pressure in 3013 containers was based on G-values (hydrogen gas generation per energy input) derived from small scale samples. These maximum G-values were used to calculate worst case pressures based on container material weight, assay, wattage, moisture content, container age, and container volume. This paper documents a revised hydrogen pressure calculation that incorporates new surveillance results and includes a component for gases other than hydrogen. The calculation is produced by executing a query of the ISP database. An example of manual mathematical computations from the pressure equation is compared and evaluated with results from the query. Based on the destructive evaluation of 17 containers, the estimated mean absolute pressure was significantly higher (P.10) between the mean pressures from DR and the calculation. The mean predicted absolute pressure was consistently higher than GEST by an average difference of 57 kPa (8 psi). The mean difference between the estimated pressure and digital radiography was 11 kPa (2 psi). Based on the initial results of destructive evaluation, the pressure query was found to provide a reasonably conservative estimate of the total pressure in 3013 containers whose material contained minimal moisture content.

Friday, G; L. G. Peppers, L; D. K. Veirs, D

2008-07-31T23:59:59.000Z

237

A METHOD FOR ESTIMATING GAS PRESSURE IN 3013 CONTAINERS USING AN ISP DATABASE QUERY  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Integrated Surveillance Program (ISP) is responsible for the storage and surveillance of plutonium-bearing material. During storage, plutonium-bearing material has the potential to generate hydrogen gas from the radiolysis of adsorbed water. The generation of hydrogen gas is a safety concern, especially when a container is breached within a glove box during destructive evaluation. To address this issue, the DOE established a standard (DOE, 2004) that sets the criteria for the stabilization and packaging of material for up to 50 years. The DOE has now packaged most of its excess plutonium for long-term storage in compliance with this standard. As part of this process, it is desirable to know within reasonable certainty the total maximum pressure of hydrogen and other gases within the 3013 container if safety issues and compliance with the DOE standards are to be attained. The principal goal of this investigation is to document the method and query used to estimate total (i.e. hydrogen and other gases) gas pressure within a 3013 container based on the material properties and estimated moisture content contained in the ISP database. Initial attempts to estimate hydrogen gas pressure in 3013 containers was based on G-values (hydrogen gas generation per energy input) derived from small scale samples. These maximum G-values were used to calculate worst case pressures based on container material weight, assay, wattage, moisture content, container age, and container volume. This paper documents a revised hydrogen pressure calculation that incorporates new surveillance results and includes a component for gases other than hydrogen. The calculation is produced by executing a query of the ISP database. An example of manual mathematical computations from the pressure equation is compared and evaluated with results from the query. Based on the destructive evaluation of 17 containers, the estimated mean absolute pressure was significantly higher (P<.01) than the mean GEST pressure. There was no significant difference (P>.10) between the mean pressures from DR and the calculation. The mean predicted absolute pressure was consistently higher than GEST by an average difference of 57 kPa (8 psi). The mean difference between the estimated pressure and digital radiography was 11 kPa (2 psi). Based on the initial results of destructive evaluation, the pressure query was found to provide a reasonably conservative estimate of the total pressure in 3013 containers whose material contained minimal moisture content.

Friday, G; L. G. Peppers, L; D. K. Veirs, D

2008-07-31T23:59:59.000Z

238

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification  

DOE Green Energy (OSTI)

As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

Nexant Inc.

2006-05-01T23:59:59.000Z

239

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

240

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Human resource needs and development for the gas industry of the future  

SciTech Connect

The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

Klass, D.L.

1991-01-01T23:59:59.000Z

242

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

DOE Green Energy (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

243

Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data  

Science Conference Proceedings (OSTI)

This paper presents a nonlinear Bayesian regression algorithm for the purpose of detecting and estimating gas plume content from hyper-spectral data. Remote sensing data, by its very nature, is collected under less controlled conditions than laboratory data. As a result, the physics-based model that is used to describe the relationship between the observed remotesensing spectra, and the terrestrial (or atmospheric) parameters that we desire to estimate, is typically littered with many unknown "nuisance" parameters (parameters that we are not interested in estimating, but also appear in the model). Bayesian methods are well-suited for this context as they automatically incorporate the uncertainties associated with all nuisance parameters into the error estimates of the parameters of interest. The nonlinear Bayesian regression methodology is illustrated on realistic simulated data from a three-layer model for longwave infrared (LWIR) measurements from a passive instrument. This shows that this approach should permit more accurate estimation as well as a more reasonable description of estimate uncertainty.

Heasler, Patrick G.; Posse, Christian; Hylden, Jeff L.; Anderson, Kevin K.

2007-06-13T23:59:59.000Z

244

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

MW Reciprocating Engine 3 MW Gas Turbine 1 MW ReciprocatingEngine 5 MW Gas Turbine 3MW Gas Turbine 40 MW Gas Turbine 1 MW Reciprocating Engine

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

245

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

246

Wind Resource Estimation and Mapping at the National Renewable Energy Laboratory  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has developed an automated technique for wind resource mapping to aid in the acceleration of wind energy deployment. The new automated mapping system was developed with the following two primary goals: (1) to produce a more consistent and detailed analysis of the wind resource for a variety of physiographic settings, particularly in areas of complex terrain; and (2) to generate high quality map products on a timely basis. Using computer mapping techniques reduces the time it takes to produce a wind map that reflects a consistent analysis of the distribution of the wind resource throughout the region of interest. NREL's mapping system uses commercially available geographic information system software packages. Regional wind resource maps using this new system have been produced for areas of the United States, Mexico, Chile, Indonesia (1), and China. Countrywide wind resource assessments are under way for the Philippines, the Dominican Re public, and Mongolia. Regional assessments in Argentina and Russia are scheduled to begin soon.

Schwartz, M.

1999-04-07T23:59:59.000Z

247

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

248

Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4  

SciTech Connect

This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

Ripple, R.D.; Hagen, R.E.

1995-09-01T23:59:59.000Z

249

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

Science Conference Proceedings (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

250

Wind Energy Resource Estimation of the Upper Atmosphere over Southern Africa  

Science Conference Proceedings (OSTI)

On the basis of daily ECMWF data over the period 1982?89, the mean seasonal and mean annual wind energy resource fields on the isobaric surfaces 1000, 850, 700, 500, 300, 200, and 100 hPa, within the latitude?longitudinal zone 0°?50°S and 0°?45°E,...

Fedor F. Bryukhan; Roseanne D. Diab

1995-11-01T23:59:59.000Z

251

Hydrocarbons in Soil Gas as Pathfinders in Geothermal Resource Surveys in Indonesia  

DOE Green Energy (OSTI)

A surface geochemical technique utilizing normal paraffin (C{sub 7+}) and aromatic (C{sub 8}) hydrocarbons in soil gas has been successfully used as pathfinders in surveys for geothermal resources in Indonesia. The Dieng field was used to test the technique. The result shows the paraffin anomalies to be near and over productive wells. Because productive wells usually lie over upflow zones it reinforces our hypothesis that paraffins define the upflow of geothermal systems. The aromatic hydrocarbon alkylbenzene C{sub 8} was found near and around productive wells in the southeast quadrant of the Dieng field (Sikidang-Merdada area) but they are more spread out and more diffuse than the paraffins. The shape of their anomaly seems to suggest a tendency of spreading into the direction of lower elevations. It is thought that the aromatics, which are much more soluble than their corresponding paraffins, express at the surface as anomalies not only of locations of the upflow but also of the outflow of the geothermal system as well. Therefore the combined paraffin and aromatic anomalies, and topography, may be used as an indicator for the direction of the outflow or the flow of the under ground waters. The scarcity of the aromatics in the northwest quadrant of the Dieng field (Sileri area) is unique. A hypothesis has been proposed which could explain this unique feature.

Pudjianto, R.; Suroto, M.; Higashihara, M.; Fukuda, M.; Ong, Akhadiana and Jan

1995-01-01T23:59:59.000Z

252

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the standard efficiency natural gas power plant case, highand imports Natural gas plants providing power to Californianatural gas and petroleum products as well as the remote power plant

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

253

LP-gas sales gain in estimated 4%; severe winter to boost 1977 sales  

SciTech Connect

The National LP-Gas Association reports that sales of LP-gas rose 4.0% in 1976 to an estimated 15.81 billion gal. Residential and commercial sales accounted for 7.13 billion gal, a 1.6% increase; sales to the chemical industry 4.41 billion, 5.6% more; the engine-fuel market 1.17 billion, up 0.5%; and utility sales 0.45 billion, a 12.0% rise. Industrial sales declined 1.3% to 1.07 billion gal in 1976. The ''other'' category, including agricultural uses and feedstock for the manufacture of synthetic gas, jumped 16.8% to 1.60 billion gal. U.S. production of LPG declined 0.4% to 18.02 billion gal, while imports rose 12.3% to 1.94 billion gal. The difference between production and sales is accounted for by the use of LPG in gasoline blending, inventory additions, and exports.

Hartzell, J.

1977-01-01T23:59:59.000Z

254

Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report  

DOE Green Energy (OSTI)

Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

Not Available

1982-01-01T23:59:59.000Z

255

Key Institutional Design Considerations and Resources Required to Develop a Federal Greenhouse Gas Offsets Program in the United Sta tes  

Science Conference Proceedings (OSTI)

Greenhouse gas (GHG) emissions offsets have emerged as a critical element of evolving U.S. climate policy and a critical factor in determining the future price of CO2 emissions and the economic costs of proposed policies. This report evaluates the governmental institutional requirements and resources needed to develop a large-scale national domestic GHG emissions offset program. It also describes potential institutional barriers that might limit the ability of the evolving carbon market to generate signi...

2011-05-25T23:59:59.000Z

256

Coal resource estimation in the Bayir field, Yatagan-Mugla, SW Turkey  

SciTech Connect

This study focuses on some coal properties and calculation of coal resources with two classical (isopach and polygon) methods in the Bayir field, Yatagan-Mugla, which is located in southwestern Anatolia. This field has not been mined because it is still in the exploration stage. A productive coal seam of Early (?)-Middle Miocene age has a mineable coal thickness of 1.25 m to 18.01 m. Proximate analysis results indicated that this coal seam contains high moisture, ash, volatile matter, total sulphur content, and net calorific values. The weighted average mineable coal thickness calculated from the isopachs is 7.52 m and 7.82 m from polygonal methods. The in situ tonnages with isopach and polygonal methods were calculated to be 122.8 Mt and 130 Mt, respectively. The average value of the two methods shows 126.4 Mt in situ coal tonnages. Total amount of the in situ mineable coal resources is 77.7 Mt, which indicates an important coal potential in the Bayir field. The overburden thickness ranges from 72 m to 493 m in the Bayir field, averaging 257 m, indicating a deep coal mine. The overburden ratio averages 37 m{sup 3}/ton, indicating an underground coal mine to feed a power plant in near future.

Inaner, H.; Nakoman, E.; Karayigit, A.I. [Dokuz Eylul University, Buca Izmir (Turkey). Dept. of Geological Engineering

2008-07-01T23:59:59.000Z

257

Unconventional gas: truly a game changer?  

Science Conference Proceedings (OSTI)

If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

NONE

2009-08-15T23:59:59.000Z

258

Estimating the benefits of greenhouse gas emission reduction from agricultural policy reform  

SciTech Connect

Land use and agricultural activities contribute directly to the increased concentrations of atmospheric greenhouse gases. Economic support in industrialized countries generally increases agriculture's contribution to global greenhouse gas concentrations through fluxes associated with land use change and other sources. Changes in economic support offers opportunities to reduce net emissions, through this so far has gone unaccounted. Estimates are presented here of emissions of methane from livestock in the UK and show that, in monetary terms, when compared to the costs of reducing support, greenhouse gases are a significant factor. As signatory parties to the Climate Change Convection are required to stabilize emissions of all greenhouse gases, options for reduction of emissions of methane and other trace gases from the agricultural sector should form part of these strategies.

Adger, W.N. (Univ. of East Anglia, Norwich (United Kingdom). Centre for Social and Economic Research on the Global Environment); Moran, D.C. (Univ. College, London (United Kingdom). Centre for Social and Economic Research on the Global Environment)

1993-09-01T23:59:59.000Z

259

EIA's Testimony on Natural Gas Supply and Demand Before the Senate Energy and Natural Resources Committee  

Reports and Publications (EIA)

Statement of Mark J. Mazur Acting Administrator Energy Information Administration Department of Energy before the Committee on Energy and Natural Resources U.S. Senate December 12, 2000

Information Center

2000-12-12T23:59:59.000Z

260

Rising Gasoline Prices and the Role of Available Domestic Oil and Natural Gas Resources  

Reports and Publications (EIA)

Presented by: Richard G. Newell, Administrator, U.S. Energy Information Administration, to: Committee on Natural Resources, United States House of Representatives; Washington, DCMarch 17, 2011

2011-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and  

E-Print Network (OSTI)

! Background of Marcellus Shale Gas Play ! Current Events: The Case of PA ! Geography of Fracking in Study

Boyer, Elizabeth W.

262

The geology of natural gas resources - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

263

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

Science Conference Proceedings (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

264

PRISE: petroleum resource investigation summary and evaluation  

E-Print Network (OSTI)

As conventional resources are depleted, unconventional gas (UG: gas from tight sands, coal beds, and shale) resources are becoming increasingly important to U.S and world energy supply. The volume of UG resources is generally unknown in most international basins. However, in 25 mature U.S. basins, UG resources have been produced for decades and are well characterized in the petroleum literature. The objective of this work was to develop a method for estimating recoverable UG resources in target, or exploratory, basins. The method was based on quantitative relations between known conventional and unconventional hydrocarbon resource types in mature U.S. basins. To develop the methodology to estimate resource volumes, we used data from the U.S. Geological Survey, Potential Gas Committee, Energy Information Administration, National Petroleum Council, and Gas Technology Institute to evaluate relations among hydrocarbon resource types in the Appalachian, Black Warrior, Greater Green River, Illinois, San Juan, Uinta-Piceance, and Wind River basins. We chose these seven basins because they are mature basins for both conventional and unconventional oil and gas production. We assumed that a seven basin study would be sufficient for preliminary gas resource analysis and assessment of the new methodology. We developed a methodology we call PRISE, which uses software that investigates relationships among data published for both conventional and unconventional resources in the seven mature U.S. basins. PRISE was used to predict recoverable UG resources for target basins, on the basis of their known conventional resources. Input data for PRISE were cumulative production, proved reserves, growth, and undiscovered resources. We used published data to compare cumulative technically recoverable resources for each basin. For the seven basins studied, we found that 10% of the recoverable hydrocarbon resources are conventional oil and gas, and 90% are from unconventional resources. PRISE may be used to estimate the volume of hydrocarbon resources in any basin worldwide and, hopefully, assist early economic and development planning. PRISE methodology for estimating UG resources should be further tested in diverse sedimentary basin types.

Old, Sara

2008-08-01T23:59:59.000Z

265

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

266

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

the construction costs of natural gas, oil, and petroleumR. “Current pipeline costs. ” Oil & Gas Journal; Nov 21,cost projections for over 20,000 miles of natural gas, oil, and

Parker, Nathan

2004-01-01T23:59:59.000Z

267

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Adjustments in 1991. ” Oil & Gas Journal; Nov 23, 1992; 90,begin 1993 on upbeat. ” Oil & Gas Journal; Nov 22, 1993; 91,Current pipeline costs. ” Oil & Gas Journal; Nov 21, 1994;

Parker, Nathan

2004-01-01T23:59:59.000Z

268

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

in-state and imports Natural gas plants providing power toand Imports 20% RPS 2010, 33% RPS 2020 California Electricity Generation (TWh/a) Natural Gas

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

269

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

270

ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS  

DOE Green Energy (OSTI)

Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing dimensions of the cylinder and decreases with increasing photon energy.

Husain, A.; Lewis, Brent J.

2003-02-27T23:59:59.000Z

271

Arctic oil and natural gas resources - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Natural gas hydrates can pose operational problems for drilling wells in both onshore and offshore ... Finland, Iceland, Norway, Russia, Sweden, and the United ...

272

Estimated Maximum Gas Retention from Uniformly Dispersed Bubbles in K Basin Sludge Stored in Large-Diameter Containers  

DOE Green Energy (OSTI)

This letter report addresses the KE Basin sludge that will be retrieved and stored in large-diameter containers (LDCs.) A fraction of the hydrogen gas bubbles generated from the corrosion of uranium metal and oxides may be retained within the sludge matrix. Those entrapped bubbles will expand the sludge bed volume and, therefore, will affect how much sludge can be loaded into a container. The entrapped gas bubbles will also impact the overall thermal conductivity and heat capacity of the sludge bed. The evaluation summarized here was performed to estimate the maximum gas holdup (volume fraction gas) that could occur sludge stored in large-diameter containers, assuming uniform gas generation (i.e., uniform distribution of metallic uranium particles). This report represents an evaluation of the retention of uniformly distributed bubbles and an estimate of the maximum gas fraction that might be retained in K Basin LDCs based on existing literature data on bubble retention and Basin sludge characterization data. Existing data show that the maximum gas fraction varies, depending on physical properties and the configuration of the material or waste.

Gauglitz, Phillip A.; Terrones, Guillermo

2002-05-15T23:59:59.000Z

273

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems  

SciTech Connect

This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

Nexant Inc.

2006-05-01T23:59:59.000Z

274

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

DOE Green Energy (OSTI)

4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

275

Energy resources of the United States  

DOE Green Energy (OSTI)

Estimates are made of United States resources of coal, petroleum liquids, natural gas, uranium, geothermal energy, and oil from oil shale. Accuracy of the estimates probably ranges from 20 to 50 percent for identified-recoverable resources to about an order of magnitude for undiscovered-submarginal resources. The total cost resource base in the United States is estimated to be about 3,200 billion tons, of which 200 to 390 billion tons can be considered in the category identified and recoverable. It is estimated that the total resource base for petroleum liquids is about 2,900 billion barrels, of which 52 billion barrels is identified and recoverable. Of the total resource base, some 600 billion barrels is in Alaska or offshore from Alaska, 1,500 billion barrels is offshore from the United States, and 1,300 billion barrels is onshore in the conterminous United States. Identified-recoverable resources of petroleum liquids corresponding to these geographic units are 11, 6, and 36 billion barrels, respectively. The total natural gas resource of the United States is estimated to be about 6,600 trillion cubic feet, of which 290 trillion cubic feet is identified and recoverable. Uranium resources in conventional deposits, where uranium is the major product, are estimated at 1,600,000 tons of U/sub 3/O/sub 8/, of which 250,000 tons is identified and recoverable. The resources of heat in potential geothermal energy sources are estimated to be greater than 10/sup 22/ calories, of which only 2.5 x 10/sup 18/ calories can be considered identified and recoverable at present. Oil shale is estimated to contain 26 trillion barrels of oil. None of this resource is economic at present, but if prices increase moderately, 160 to 600 billion barrels of this oil could be shifted into the identified-recoverable category.

Theobald, P.K.; Schweinfurth, S.P.; Duncan, D.C.

1972-01-01T23:59:59.000Z

276

Statistical issues in the assessment of undiscovered oil and gas resources  

E-Print Network (OSTI)

Prior to his untimely death, my friend Dave Wood gave me wise counsel about how best to organize a paper describing uses of statistics in oil and gas exploration. A preliminary reconnaissance of the literature alerted me ...

Kaufman, Gordon M.

1992-01-01T23:59:59.000Z

277

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network (OSTI)

Today everyone seems to agree that ultra-low permeability and shale reservoirs have become the potentials to transform North America's oil and gas industry to a new phase. Unfortunately, transient flow is of long duration (perhaps life of the well) in ultra-low permeability reservoirs, and traditional decline curve analysis (DCA) models can lead to significantly over-optimistic production forecasts without additional safeguards. Stretched Exponential decline model (SEDM) gives considerably more stabilized production forecast than traditional DCA models and in this work it is shown that it produces unchanging EUR forecasts after only two-three years of production data are available in selected reservoirs, notably the Barnett Shale. For an individual well, the SEDM model parameters, can be determined by the method of least squares in various ways, but the inherent nonlinear character of the least squares problem cannot be bypassed. To assure a unique solution to the parameter estimation problem, this work suggests a physics-based regularization approach, based on critical velocity concept. Applied to selected Barnett Shale gas wells, the suggested method leads to reliable and consistent EURs. To further understand the interaction of the different fracture properties on reservoir response and production decline curve behavior, a series of Discrete Fracture Network (DFN) simulations were performed. Results show that at least a 3-layer model is required to reproduce the decline behavior as captured in the published SEDM parameters for Barnett Shale. Further, DFN modeling implies a large number of parameters like fracture density and fracture length are in such a way that their effect can be compensated by the other one. The results of DFN modeling of several Barnett Shale horizontal wells, with numerous fracture stages, showed a very good agreement with the estimated SEDM model for the same wells. Estimation of P90 reserves that meet SEC criteria is required by law for all companies that raise capital in the United States. Estimation of P50 and P10 reserves that meet SPE/WPC/AAPG/SPEE Petroleum Resources Management System (PRMS) criteria is important for internal resource inventories for most companies. In this work a systematic methodology was developed to quantify the range of uncertainty in production forecast using SEDM. This methodology can be used as a probabilistic tool to quantify P90, P50, and P10 reserves and hence might provide one possible way to satisfy the various legal and technical-society-suggested criteria.

Akbarnejad Nesheli, Babak

2012-05-01T23:59:59.000Z

278

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

­510 INTRODUCTION Gas hydrates are naturally occurring solids, nonstoichio- metric clathrates, stable at relatively and in sedimentary strata of continen- tal deep sea areas and are typically composed of natural gas, mainly methane have suggested that methane concentra- tions play an important role in gas hydrate investigations. Very

Lin, Andrew Tien-Shun

279

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

the importance of grid carbon intensity. Natural-gas-fired CHP is GHG preferable to grid power only when supply projection, in-state and imports Natural gas plants providing power to California are a mix ....................................................................................................................... 12 Table 7. 2020 forecasts of California electricity and natural gas prices

280

World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States  

E-Print Network (OSTI)

forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Background The use of horizontal drilling in conjunction with hydraulic fracturing has greatly expanded the ability of producers to profitably produce natural gas from low permeability geologic formations, particularly shale formations. Application of fracturing techniques to stimulate oil and gas production began to grow rapidly in the 1950s, although experimentation dates back to the 19 th century. Starting in the mid-1970s, a partnership of private operators, the U.S. Department of Energy (DOE) and the Gas Research Institute (GRI) endeavored to develop technologies for the commercial production of natural gas from the relatively shallow Devonian (Huron) shale in the Eastern United States. This partnership helped foster technologies that eventually became crucial to producing natural gas from shale rock, including horizontal wells, multi-stage fracturing, and slick-water fracturing. 1 Practical application of horizontal drilling to oil production began in the early 1980s, by which time the advent of improved downhole drilling motors and the invention of other necessary supporting equipment, materials, and technologies, particularly downhole telemetry equipment, had brought some applications within the realm of

unknown authors

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

This latest issues of the Ntrual Gas Montly (March 2004) contains estimates  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Data for 2003 Natural Gas Data for 2003 Preliminary data for 2003 indicate that natural gas total supply and demand were down in 2003 by almost 5 percent compared to 2002. Dry natural gas production in 2003 was 19,068 billion cubic feet (Bcf) compared with 18,964 Bcf in 2002. The increase in the production level reflects the increased drilling for natural gas. However, although natural gas well completions increased by 26 percent in 2003 compared with the previous year, dry natural gas production increased by only 0.5 percent. Net imports went down in 2003 continuing the downward trend of 2002, which was the first decline since 1986. Total net imports were lower in each month of 2003 compared with 2002. Net imports in 2003 were 3,236 Bcf which is a decline of 263 Bcf from 2002 levels. Total pipeline imports

282

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Mallik Gas Hydrate Production Research Program, Northwestof Depressurization for Gas Production from Gas Hydrate5L-38 Gas Hydrate Thermal Production Test Through Numerical

Moridis, George J.

2008-01-01T23:59:59.000Z

283

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

284

NREL: Energy Analysis: Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Assessment Resource Assessment NREL has developed maps and tools to conduct renewable energy resource assessments at the state, national and international level. Around the world, interest is growing in renewable energy as a strategy to mitigate greenhouse gas emissions and increase energy security. The starting point for new renewable energy projects is a characterization of the renewable resources available across a region, a resource assessment. NREL uses geospatial data sets to identify regions that are appropriate for renewable development and those that should be excluded such as water bodies, urban areas, cropland, forests, very steep terrain, and protected areas. Once resource data are available for a region, NREL can estimate the theoretical potential, or upper limit, for renewable energy in an area.

285

NPDES permit compliance and enforcement: A resource guide for oil and gas operators  

SciTech Connect

During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatment technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.

1998-12-01T23:59:59.000Z

286

Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)  

Science Conference Proceedings (OSTI)

This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

Not Available

1995-01-01T23:59:59.000Z

287

Of teapot dome, Wind river and Fort chaffee: Federal oil and gas resources  

Science Conference Proceedings (OSTI)

The move from a location system to a leasing system for the development of federally owned oil and gas was a controversial and hard fought step. Like most programs for commercial use of public lands, the oil and gas leasing system has been the target of criticism for fraud. A review of the decisions of the US DOI disclose that DOI`s role has evolved from one largely developed to resolving disputes between competing applicants for a lease to one more concerned with the requirements of the National Environmental Policy Act. This article presents a review of decisions.

Lindley, L.

1995-12-31T23:59:59.000Z

288

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

to overcome compression and friction at grain contacts, a fracture will form. In a multiphase environment, due to surface tension effects, the gas pressure will not...

289

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network (OSTI)

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

290

Reasons for decision in the matter of Imperial Oil Resources Limited and Boston Gas Company application pursuant to Part VI of the National Energy Board Act for a license to export natural gas: GH-1-99  

Science Conference Proceedings (OSTI)

This document provides the Reasons for Decision in the matter of Hearing Order GH-1-99, heard in Halifax, NS on May 4 and 5, 1999. The proceeding concerns an application for a gas export license from Imperial Oil Resources Ltd. (IORL) and Boston Gas for a proposed export for sale to Boston Gas for the period 1 Nov 1999 to 31 Mar 2007. The natural gas will be produced from the Sable Offshore Energy Project and replace IORL's Alberta natural gas supplies sold to Boston Gas. The document includes a discussion of the market-based procedure used by the Board to assess the merits of an application to obtain a gas export license.

Not Available

1999-01-01T23:59:59.000Z

291

U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic  

SciTech Connect

The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.

Donald Gautier; Timothy Klett

2008-12-31T23:59:59.000Z

292

Shale Gas Production in the United States: Environmental and Economic Resource Challenges and Opportunities  

Science Conference Proceedings (OSTI)

Shale gas production has rapidly expanded in the United States over the past decade, largely as a result of the combination of hydraulic fracturing with horizontal drilling, and is already influencing a dramatic change in fuel supply. Production in the U.S. has increased fifteen-fold between 2000 and 2010 to 4.5 trillion cubic feet, and is expected by the Energy Information Administration to more than triple between 2009 and 2035. Numerous studies point to potential environmental impacts from shale ...

2013-08-22T23:59:59.000Z

293

NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Why is Shale Gas Important? Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic feet (or 25 percent) out of a total U.S. resource of 2,203 trillion cubic feet. 2 U.S. shale gas production has increased 12-fold over the last

294

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Exploration priorities for marine gas hydrates, Fire In Thewww.netl.doe.gov/technologies/oil-gas/publications/Hydrates/

Moridis, George J.

2008-01-01T23:59:59.000Z

295

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network (OSTI)

Warren R. “U.S. interstate pipelines begin 1993 on upbeat. ”66. ? True, Warren R. “Current pipeline costs. ” Oil & GasWarren R. “U.S. interstate pipelines ran more efficiently in

Parker, Nathan

2004-01-01T23:59:59.000Z

296

Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.  

SciTech Connect

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin, Ireland

2013-09-01T23:59:59.000Z

297

Climate VISION: Private Sector Initiatives: Oil and Gas: Resources & Links  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE/Office of Fossil Energy Programs As America's need for energy grows, DOE is meeting the challenge by developing clean fuel initiatives to make the most of traditional fossil fuels and investing in cutting edge research to identify new energy sources like hydrogen fuels and fusion technologies. Fossil fuels - coal, oil, and natural gas - currently provide more than 85% of all the energy consumed in the United States, nearly two-thirds of our electricity, and virtually all of our transportation fuels. Moreover, it is likely that the Nation's reliance on fossil fuels to power an expanding economy will actually increase over at least the next two decades even with aggressive development and deployment of new renewable and nuclear

298

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

gas hydrate concentrations previously unseen in shale-gas hydrate, generally found encased in fine-grained muds and shales.

Moridis, George J.

2008-01-01T23:59:59.000Z

299

Pacific Gas and Electric Company’s Comments on the State Water Resources Control Board’s Proposed Policy Water Quality Control Policy on the Use of  

E-Print Network (OSTI)

Pacific Gas and Electric Company (PG&E) supports the protection of California’s marine resources through development of a consistent statewide policy implementing Section 316(b) of the Clean Water Act. As we have previously stated, we support efforts to transition away from once through cooling and have clearly demonstrated that support through the

Estuarine Waters; Power Plant Cooling

2009-01-01T23:59:59.000Z

300

Launching a Cornell Examination of the Marcellus System The issues related to the development of the Marcellus Shale unconventional gas resource are  

E-Print Network (OSTI)

of the Marcellus Shale unconventional gas resource are emblematic of a whole family of extremely complicated Energy. The development plans for the Marcellus Shale are unfolding immediately in our backyards and require of different ways of developing the Marcellus Shale and the economics of not developing the Marcellus Shale. We

Angenent, Lars T.

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

302

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

303

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

304

Development of a Gas–Liquid Equilibrator for Estimating CO2 Flux at the Ocean Surface  

Science Conference Proceedings (OSTI)

A system for measuring partial pressure of CO2 in seawater (pCO2) has been developed as a part of a missing-sink elucidation study. The most important part of this system is the multistage bubbling gas–liquid equilibrator. This equilibrator has ...

Hiroyuki Katayama; Takashi Karasudani; Koji Ishii; Kenji Marubayashi; Hiromasa Ueda

1999-10-01T23:59:59.000Z

305

Using Decline Curve Analysis, Volumetric Analysis, and Bayesian Methodology to Quantify Uncertainty in Shale Gas Reserve Estimates  

E-Print Network (OSTI)

Probabilistic decline curve analysis (PDCA) methods have been developed to quantify uncertainty in production forecasts and reserves estimates. However, the application of PDCA in shale gas reservoirs is relatively new. Limited work has been done on the performance of PDCA methods when the available production data are limited. In addition, PDCA methods have often been coupled with Arp’s equations, which might not be the optimum decline curve analysis model (DCA) to use, as new DCA models for shale reservoirs have been developed. Also, decline curve methods are based on production data only and do not by themselves incorporate other types of information, such as volumetric data. My research objective was to integrate volumetric information with PDCA methods and DCA models to reliably quantify the uncertainty in production forecasts from hydraulically fractured horizontal shale gas wells, regardless of the stage of depletion. In this work, hindcasts of multiple DCA models coupled to different probabilistic methods were performed to determine the reliability of the probabilistic DCA methods. In a hindcast, only a portion of the historical data is matched; predictions are made for the remainder of the historical period and compared to the actual historical production. Most of the DCA models were well calibrated visually when used with an appropriate probabilistic method, regardless of the amount of production data available to match. Volumetric assessments, used as prior information, were incorporated to further enhance the calibration of production forecasts and reserves estimates when using the Markov Chain Monte Carlo (MCMC) as the PDCA method and the logistic growth DCA model. The proposed combination of the MCMC PDCA method, the logistic growth DCA model, and use of volumetric data provides an integrated procedure to reliably quantify the uncertainty in production forecasts and reserves estimates in shale gas reservoirs. Reliable quantification of uncertainty should yield more reliable expected values of reserves estimates, as well as more reliable assessment of upside and downside potential. This can be particularly valuable early in the development of a play, because decisions regarding continued development are based to a large degree on production forecasts and reserves estimates for early wells in the play.

Gonzalez Jimenez, Raul 1988-

2012-12-01T23:59:59.000Z

306

Unconventional Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Unconventional Natural Gas Los Alamos scientists are committed to the efficient and environmentally-safe development of major U.S. natural gas and oil resources....

307

Economic benefits of R and D on gas supply technologies. [Unconventioal natural gas resources which are tight sands, Devonian shale, coal seam gas, and gas co-produced with water  

SciTech Connect

Advanced natural gas supply technologies, if successful, could lower the average cost of gas to consumers by 18% and increase the expected gas demand by 2 quads/year by the year 2000. Advanced production techniques for unconventional gas will have by far the greatest impact on future gas prices, providing economic benefits of between $200 billion and $320 billion. Advanced SNG from coal will provide only a $9 billion benefit if unconventional gas meets all of its performance targets. However, higher demand and failure of unconventional gas R and D could raise the benefits of SNG research to $107 billion. SNG research provides a hedge value that increases the likelihood of receiving a positive payoff from gas supply R and D. Changing the performance goals for SNG research to emphasize cost reduction rather than acceleration of the date of commercialization would greatly increase the potential benefits of the program. 9 references, 8 figures, 5 tables.

Darrow, K.G.; Ashby, A.B.; Nesbitt, D.M.; Marshalla, R.A.

1985-01-01T23:59:59.000Z

308

Design of experiment and Montecarlo simulation as support for gas turbine power plant availabilty estimation  

Science Conference Proceedings (OSTI)

Maintenance is an important aspect in order to guarantee the efficiency of industrial facilities. For power plants the high availability ratios can be obtained only with preventive maintenance but the result costs increases rapidly. In order to reduce ... Keywords: design of experiment, fuzzy logic, model estimation, montecarlo simulation, reliability

Enrico Briano; Claudia Caballini; Pietro Giribone; Roberto Revetria

2010-05-01T23:59:59.000Z

309

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

2003. “Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

310

Distributed Energy Resources Market Diffusion Model  

E-Print Network (OSTI)

International Journal of Distributed Energy Resources, 1 (Gas-Fired Distributed Energy Resources Characterizations.Firestone, R. (2004) Distributed Energy Resources Customer

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.

2006-01-01T23:59:59.000Z

311

Economic analysis of geopressured resources: site specific consideration of geopressured methane gas at Brazoria. Final report, 1 March 1980-28 February 1981  

DOE Green Energy (OSTI)

The current project is aimed first at narrowing the range of uncertainties in economic information of geopressured resource in light of the recently collected data on the Brazoria Fairway. Secondly, the project has developed a basic analytical framework for determining the investment potential of the geopressured resource at Brazoria. Thirdly, the project quantitatively evaluates the relative effectiveness of a number of financial incentives and other public policy initiatives designed to accelerate the commercialization of geopressured resources. Final results of this project are reported including: (1) a review of current estimates of important resource parameters at the Austin Bayou Project, (2) initial cash flow simulations of development of the Austin Bayou Prospect, (3) sensitivity analysis of these simulations and evaluation of the uncertainties' impact on measures of profitability and investment decision analysis, and (4) a brief review of the well-testing program.

Not Available

1981-04-01T23:59:59.000Z

312

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer  

DOE Green Energy (OSTI)

This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

Nexant Inc.

2006-05-01T23:59:59.000Z

313

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method that uses water jets to dissolve the water-soluble waste and mobilize the water-insoluble waste. Retrieval operations will liberate any waste gases trapped in the wetted solid waste matrix, and these gases will be released into the tank headspaces. Because the trapped gases include the flammable species hydrogen, methane, and ammonia, a concern exists that a flammable mixture could be formed in the tank headspaces. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during modified sluicing waste retrieval operations. Considered here are nine of the 12 tanks from the 241-S tank farm (241-S-107, 241-S-111, and 241-S 112 are not considered) and Tank 241-U-107. This report is intended to support the specification of process controls that ensure flammable conditions do not develop in the tank headspaces. Consequently, the physical scenarios considered, the models developed to estimate retained gas releases and the tank headspace compositions under these scenarios, and the model input data are intended to conservatively assess the potential to reach headspace flammability. The analyses are intended to address worst-case conditions and establish reasonable upper bounds on the achievable flammability of the tank headspaces. Flammable retained gas inventories, for example, are based on the 95th percentile developed by Barker and Hedengren (2003), giving 95% confidence that actual inventories are smaller than those used in the calculations. Gas releases and headspace flammability were evaluated for three general scenarios: a very aggressive dissolution and erosion of saltcake waste by water jets impinging on the waste surface, the drainage of interstitial liquids from saltcake during a shutdown of the retrieval process, and the dissolution of saltcake by unsaturated liquids during a shutdown of the retrieval process. The simple model of waste retrieval using the modified sluicing approach indicated that the flammable gas headspace concentrations can rapidly approach the action level of 25% of the lower flammability limit (LFL) when the tank is passively ventilated. While it is not necessary to use the portable exhauster to maintain the headspace hydrogen concentration below this action level, retrieval rates would probably be limited by the slow removal of flammable gases by passive ventilation. It was determined that using a portable exhauster anywhere in the assumed operating range of 270 to 475 cfm would prevent the headspaces from reaching the 25% of LFL action level even if the water jets are very effective at eroding the saltcake. Specific guidelines are developed to ensure that, in the event of a catastrophic loss of the retrieval pump and portable exhauster, headspace flammability will not reach the LFL. This report is Revision 1 of PNNL-14271. This revision expands the analysis of interstitial liquid drainage-induced gas releases to address a general retrieval scenario (the previous version of this report assumed a center-out retrieval approach and conditions). Tank waste conditions (waste volumes, interstitial liquid levels, temperatures, retained gas void fractions, etc.) have also been updated from the previous version.

Huckaby, James L.; Wells, Beric E.

2004-03-05T23:59:59.000Z

314

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

315

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

history of the Messoyakha field demonstrates that gas hydrates are a readily producible source of natural

Moridis, George J.

2008-01-01T23:59:59.000Z

316

How to estimate worth of minor value oil, gas producing properties at public auction  

Science Conference Proceedings (OSTI)

The purpose of this paper is to evaluate the divestiture of minor value working and royalty interests (worth less than $20,000) in producing oil and gas properties through the transaction medium of no-minimum, English open outcry public auctions. Specifically, the paper seeks to answer the question, What can the seller expect to receive for his minor value properties at a public auction, knowing only how he values those properties to himself To answer this question, a mathematical model that predicts the seller's expected present worth (EPW) as a function of the seller's Securities and Exchange Commission-case book value (X{sub s}), and the winning bid value (X{sub B}) is derived from classical auction theory.

Randall, B.L. (Unit Corp., Tulsa, OK (US))

1990-12-31T23:59:59.000Z

317

Estimation of Critical Flow Velocity for Collapse of Gas Test Loop Booster Fuel Assembly  

Science Conference Proceedings (OSTI)

This paper presents calculations performed to determine the critical flow velocity for plate collapse due to static instability for the Gas Test Loop booster fuel assembly. Long, slender plates arranged in a parallel configuration can experience static divergence and collapse at sufficiently high coolant flow rates. Such collapse was exhibited by the Oak Ridge High Flux Reactor in the 1940s and the Engineering Test Reactor at the Idaho National Laboratory in the 1950s. Theoretical formulas outlined by Miller, based upon wide-beam theory and Bernoulli’s equation, were used for the analysis. Calculations based upon Miller’s theory show that the actual coolant flow velocity is only 6% of the predicted critical flow velocity. Since there is a considerable margin between the theoretically predicted plate collapse velocity and the design velocity, the phenomena of plate collapse due to static instability is unlikely.

Guillen; Mark J. Russell

2006-07-01T23:59:59.000Z

318

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

319

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

320

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of potential domestic fossil-fuel resources for SNG (substitute natural gas) production. Final report, February 1983-August 1984  

Science Conference Proceedings (OSTI)

Quality and availability of naturally occurring resources and industrial by-products which could be gasified and thereby serve as feedstock for SNG plants were studied to identify those resources with the greatest potential for exploitation in this regard. KRSI accumulated information from a large number of literature sources relative to the resources identified by GRI for study. To the extent possible, KRSI then organized this information to highlight for each resource the grades available, typical chemical compositions, quantities and locations of reserves, recovery methods and rates of production and consumption. This information clearly shows that coal is the most practical source of long-term feedstock for SNG in the contiguous USA. Coal resources amount to 84% (by quads) of the energy resources which were studied. In comparison, peat, shale oil and tar sand contain about 11% of the total.

Cover, A.E.; Hubbard, D.A.; Shah, K.V.; Koneru, P.B.

1984-08-01T23:59:59.000Z

322

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Hydrate; V: Vapor (gas phase); I: Ice; Q 1 : Quadruple pointof the solid phases (hydrate and ice) as tantamount to thealong the 3-phase (aqueous + hydrate + gas, or ice + hydrate

Moridis, George J.

2008-01-01T23:59:59.000Z

323

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Department of Energy, Office of Fossil Energy, July 2006 (Assistant Secretary for Fossil Energy, Office of Natural Gas

Moridis, George J.

2008-01-01T23:59:59.000Z

324

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

oil and gas reservoirs, or even to the large (and rapidly increasing) data-base of information on unconventional

Moridis, George J.

2008-01-01T23:59:59.000Z

325

Flammable Gas Release Estimates for Modified Sluicing Retrieval of Waste from Selected Hanford Single-Shell Tanks  

DOE Green Energy (OSTI)

The high-level radioactive wastes in many single-shell tanks (SSTs) at the Hanford Site are to be retrieved by a modified sluicing method. Retrieval operations will hydraulically erode and dissolve the saltcake waste, and the resulting brine will then be pumped to a double-shell tank (DST). Waste gases residing in the solid waste matrix will be released into the tank headspace when the matrix is eroded or dissolved. These retained waste gases include the flammable species hydrogen, methane, and ammonia, and there is a concern that these flammable gases could produce a flammable mixture in the tank headspaces during the retrieval operations. This report combines conservative retained gas inventory estimates and tank data with anticipated waste retrieval rates to estimate the potential headspace flammability of selected SSTs during waste retrieval operations. The SSTs considered here are ten of the twelve 241-S farm tanks (tanks 241-S-107 and 241-S-111 are excluded from consideration here) and tank 241-U-107 (U-107).

Huckaby, James L.; Wells, Beric E.

2003-05-13T23:59:59.000Z

326

"1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "1. Victor J Daniel Jr","Gas","Mississippi Power Co",1992 "2. Grand Gulf","Nuclear","System Energy Resources, Inc",1251 "3. Baxter Wilson","Gas","Entergy Mississippi Inc",1176 "4. Jack Watson","Coal","Mississippi Power Co",998 "5. Magnolia Power Plant","Gas","Magnolia Energy LP",863 "6. Batesville Generation Facility","Gas","LSP Energy Ltd Partnership",858 "7. Reliant Energy Choctaw County","Gas","RRI Energy Wholesale Generation LLC",848 "8. TVA Southaven Combined Cycle","Gas","Tennessee Valley Authority",774

327

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

SciTech Connect

Electricity markets in the United States have witnessed unprecedented instability over the last few years, with substantial volatility in wholesale market prices, significant financial distress among major industry organizations, and unprecedented legal, regulatory and legislative activity. These events demonstrate the considerable risks that exist in the electricity industry. Recent industry instability also illustrates the need for thoughtful resource planning to balance the cost, reliability, and risk of the electricity supplied to end-use customers. In balancing different supply options, utilities, regulators, and other resource planners must consider the unique risk profiles of each generating source. This paper evaluates the relative risk profiles of renewable and natural gas generating plants. The risks that exist in the electricity industry depend in part on the technologies that are used to generate electricity. Natural gas has become the fuel of choice for new power plant additions in the United States. To some, this emphasis on a single fuel source signals the potential for increased risk. Renewable generation sources, on the other hand, are frequently cited as a potent source of socially beneficial risk reduction relative to natural gas-fired generation. Renewable generation is not risk free, however, and also imposes certain costs on the electricity sector. This paper specifically compares the allocation and mitigation of risks in long-term natural gas-fired electricity contracts with the allocation and mitigation of these same risks in long-term renewable energy contracts. This comparison highlights some of the key differences between renewable and natural gas generation that decision makers should consider when making electricity investment and contracting decisions. Our assessment is relevant in both regulated and restructured markets. In still-regulated markets, the audience for this report clearly includes regulators and the utilities they regulate. In restructured markets, the role of regulatory oversight of resource planning is more limited. Nonetheless, even in restructured markets, it is increasingly recognized that regulators have a critical role to play in directing the resource planning of providers of last resort--electric suppliers that provide service to those customers who choose not to switch to a competitive supplier. Our review of electricity contracts may also have educational value for those unfamiliar with the typical contents of these agreements. Details of our findings are provided in the body of the paper, but this summary is written to provide a concise alternative to reading the full report.

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-03-12T23:59:59.000Z

328

PRUDENT DEVELOPMENT Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources National Petroleum Council • 2011PRUDENT DEVELOPMENT Realizing the Potential of North America’s Abundant Natural Gas and Oil Resources  

E-Print Network (OSTI)

The National Petroleum Council is a federal advisory committee to the Secretary of Energy. The sole purpose of the National Petroleum Council is to advise, inform, and make recommendations to the Secretary of Energy on any matter requested by the Secretary relating to oil and natural gas or to the oil and gas industries.

A National; Petroleum Council; Steven Chu Secretary

2011-01-01T23:59:59.000Z

329

Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid  

SciTech Connect

An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

Barker, Alan M [ORNL; Freer, Eva B [ORNL; Omitaomu, Olufemi A [ORNL; Fernandez, Steven J [ORNL; Chinthavali, Supriya [ORNL; Kodysh, Jeffrey B [ORNL

2013-01-01T23:59:59.000Z

330

Natural Resources in China Water resources  

E-Print Network (OSTI)

. Large reserves of coal, but natural gas and oil are becoming scarce. Import approximately the same, petroleum, natural gas, uranium, etc. Metallic mineral resources include iron, copper, tungsten, aluminum in the production of petrochemicals Materials produced from natural gas or crude oil, such as plastics

Pan, Feifei

331

Natural Gas Exports (Summary)  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

332

Unconventional Resources Technology Advisory Committee | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Resources Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology

333

Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico  

SciTech Connect

The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2005-10-28T23:59:59.000Z

334

Infrastructure investments and resource adequacy in the restructured US natural gas market : is supply security at risk?  

E-Print Network (OSTI)

The objective of this paper is to analyze the development of US natural gas infrastructure over the last two decades and to discuss its perspectives. In particular, we focus on the relationship between the regulatory ...

Hirschhausen, Christian von

2006-01-01T23:59:59.000Z

335

SeTES: A self-teaching expert system for the analysis, design, and prediction of gas production from unconventional gas resources  

Science Conference Proceedings (OSTI)

SeTES is a self-teaching expert system that (a) can incorporate evolving databases involving any type and amount of relevant data (geological, geophysical, geomechanical, stimulation, petrophysical, reservoir, production, etc.) originating from unconventional ... Keywords: Bayesian networks, Expert system, Machine learning, Optimization, Simulation, Unconventional gas

George J. Moridis, Matthew T. Reagan, Heidi Anderson Kuzma, Thomas A. Blasingame, Y. Wayne Huang, Ralph Santos, Katie L. Boyle, Craig M. Freeman, Dilhan Ilk, Manuel Cossio, Srimoyee Bhattacharya, Michael Nikolaou

2013-08-01T23:59:59.000Z

336

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology  

DOE Green Energy (OSTI)

This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

Nexant Inc.

2006-05-01T23:59:59.000Z

337

Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource  

DOE Green Energy (OSTI)

A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

Goldsberry, F.L.

1982-03-01T23:59:59.000Z

338

Deterministic and stochastic analyses to quantify the reliability of uncertainty estimates in production decline modeling of shale gas reservoirs.  

E-Print Network (OSTI)

??Decline curve analysis seeks to predict the future performance of oil and gas wells by fitting a mathematical function to historical production data and extrapolating… (more)

Johanson, Brent L.

2013-01-01T23:59:59.000Z

339

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

assessment of United States oil and gas resources on CD-ROM:Assessment of United States Oil and Gas Resources conductedto assess conventional oil and gas resources. In order to

Moridis, G.J.

2011-01-01T23:59:59.000Z

340

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermally Activated Cooling: A Regional Approach for Estimating Building Adoption  

E-Print Network (OSTI)

M. Stadler (2003). Distributed Energy Resources in Practice:and C. Marnay (2004). Distributed Energy Resources at Naval2003). Gas-Fired Distributed Energy Resource Technology

Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

342

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

CEC). 2000. California Natural Gas Analysis and Issues.2002. Average Price of Natural Gas Sold to Electric Utilityfor investments in natural gas and renewables to complement

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

343

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the case of a gas - and petroleum –oriented electricityon natural gas and petroleum-fired combustion turbineon natural gas and petroleum for electricity generation than

Greer, Mark R

2012-01-01T23:59:59.000Z

344

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Against Volatile Natural Gas Prices." Proceedings: ACEEEM W h . Appendix C. California Natural Gas Price ForecastScenarios California Natural Gas Price Forecast Scenarios

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

345

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

346

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Models Help Optimize Development of Bakken Shale Resources Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

347

New Models Help Optimize Development of Bakken Shale Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources New Models Help Optimize Development of Bakken Shale Resources February 7, 2012 - 12:00pm Addthis Washington, DC - Exploration and field development in the largest continuous oil play in the lower 48 states, located in North Dakota and eastern Montana, will be guided by new geo-models developed with funding from the Department of Energy's (DOE) Office of Fossil Energy (FE). The three-year project to develop exploration and reservoir models for the Bakken Shale resource play was conducted by the Colorado School of Mines (CSM), through research funded by FE's Oil and Natural Gas Program. A "play" is a shale formation containing significant accumulations of natural gas or oil. The U.S. Geological Survey estimates the Bakken Shale

348

Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources  

SciTech Connect

Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

2008-10-01T23:59:59.000Z

349

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands...

350

Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology  

Science Conference Proceedings (OSTI)

This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

Canja, S.; Williams, C.R.

1982-04-01T23:59:59.000Z

351

The Intricate Puzzle of Oil and Gas Reserves Growth  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 Energy Information Administration / Natural Gas Monthly July 1997 The Intricate Puzzle of Oil and Gas "Reserves Growth" by David F. Morehouse Developing the Nation's discovered oil and gas resources This article begins with a background discussion of the for production is a complex process that is often methods used to estimate proved oil and gas reserves characterized by initial uncertainty as regards the and ultimate recovery, which is followed by a discussion ultimate size or productive potential of the involved of the factors that affect the ultimate recovery estimates reservoirs and fields. Because the geological and of a field or reservoir. Efforts starting in 1960 to analyze hydrological characteristics of the subsurface cannot - and project ultimate resource appreciation are then

352

State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture  

Science Conference Proceedings (OSTI)

An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.

Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

2012-01-01T23:59:59.000Z

353

DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Utilization and Storage Atlas Estimates at Least 2,400 Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource December 19, 2012 - 12:00pm Addthis Washington, DC - The United States has at least 2,400 billion metric tons of possible carbon dioxide (CO2) storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy (DOE) publication. This resource could potentially store hundreds of years' worth of industrial greenhouse gas emissions, permanently preventing their release into the atmosphere, says the 2012 edition of the Carbon Utilization and Storage Atlas (Atlas IV). Capturing CO2 emissions from large power and

354

DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Utilization and Storage Atlas Estimates at Least 2,400 Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource December 19, 2012 - 12:00pm Addthis Washington, DC - The United States has at least 2,400 billion metric tons of possible carbon dioxide (CO2) storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy (DOE) publication. This resource could potentially store hundreds of years' worth of industrial greenhouse gas emissions, permanently preventing their release into the atmosphere, says the 2012 edition of the Carbon Utilization and Storage Atlas (Atlas IV). Capturing CO2 emissions from large power and

355

Design and Cost Estimating Procedures for SCR and SNCR Retrofits on Gas- and Oil-Fired Boilers  

Science Conference Proceedings (OSTI)

Utility companies have been reevaluating the feasibility of selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) retrofits in order to meet increasingly stringent nitrogen oxides (NOx) emission limits. This report describes two EPRI-developed models for helping utility companies screen the cost effectiveness of SCR and SNCR technologies for application at specific gas- and oil-fired boiler sites.

2002-09-04T23:59:59.000Z

356

NETL: Oil and Natural Gas: Natural Gas Reources  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Research Project Summaries Reference Shelf O&G Document Archive The United States is endowed with an abundance of natural gas resources. Besides its use for...

357

Seeking prospects for enhanced gas recovery  

DOE Green Energy (OSTI)

As part of the Institute of Gas Technology's (IGT) ongoing research on unconventional natural gas sources, a methodology to locate gas wells that had watered-out under over-pressured conditions was developed and implemented. Each year several trillion cubic feet (Tcf) of gas are produced from reservoirs that are basically geopressured aquifers with large gas caps. As the gas is produced, the gas-water interface moves upward in the sandstone body trapping a portion of gas at the producing reservoir pressure. The methodology for identifying such formations consisted of a computer search of a large data base using a series of screening criteria to select or reject wells. The screening criteria consisted of depth cutoff, minimum production volume, minimum pressure gradient, and minimum water production. Wells chosen by the computer search were further screened manually to seek out those wells that exhibited rapid and large increases in water production with an associated quick decline in gas production indicating possible imbibition trapping of gas in the reservoir. The search was performed in an attempt to characterize the watered-out geopressured gas cap resource. Over 475 wells in the Gulf Coast area of Louisiana and Texas were identified as possible candidates representing an estimated potential of up to about 1 Tcf (2.83 x 10/sup 10/ m/sup 3/) of gas production through enhanced recovery operations. A process to determine the suitability of a watered-out geopressured gas cap reservoir for application of enhanced recovery is outlined. This paper addresses the identification of a potential gas source that is considered an unconventional resource. The methodology developed to identify watered-out geopressured gas cap wells can be utilized in seeking other types of watered-out gas reservoirs with the appropriate changes in the screening criteria. 12 references, 2 figures, 5 tables.

Doherty, M.G.; Randolph, P.L.

1982-01-01T23:59:59.000Z

358

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

that reduce air emissions. Emissions & Generation Resource Integrated Database (eGRID) A tool that provides data on the environmental characteristics of almost all electric...

359

Publications & Resources, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

or approved by Brookhaven National Laboratory or the Human Resources Division. Manuals Scientific Staff Manual Supervisors Personnel Manual SBMS Subject Areas Compensation...

360

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assumptions to the Annual Energy Outlook 2000 - Oil and Gas Supply...  

Annual Energy Outlook 2012 (EIA)

Resources Table 46. Natural Gas Technically Recoverable Resources Alaskan Natural Gas The outlook for natural gas production from the North Slope of Alaska is affected...

362

Pore-scale characterization and modeling of two-phase flow in tight gas sandstones.  

E-Print Network (OSTI)

??Unconventional natural gas resources, particularly tight gas sands, constitute a significant percentage of the natural gas resource base and offer abundant potential for future reserves… (more)

Mousavi, Maryam Alsadat

2011-01-01T23:59:59.000Z

363

Shale Gas and the Outlook for U.S. Natural Gas Markets and ...  

U.S. Energy Information Administration (EIA)

Shale Gas and the Outlook for U.S. Natural Gas Markets and Global Gas Resources ... Associated with oil Coalbed methane Net imports Non-associated ...

364

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

term contract for natural gas supply, by agreeing with thethe risk of a "normal" natural gas supply or transportationinterruption of natural gas supply to a power plant (e.g. an

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

365

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

amount of new natural gas power plants, which willconstruction of new natural-gas power plants, and perhapsrisk that a new natural-gas power plant will not be built on

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

366

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

of new natural gas power plants, which will presumablyof new natural-gas power plants, and perhaps notrisk that a new natural-gas power plant will not be built on

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

367

Unconventional Energy Resources: 2007-2008 Review  

Science Conference Proceedings (OSTI)

This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

NONE

2009-06-15T23:59:59.000Z

368

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

369

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Coal prices are also less variable than natural gas prices,coal-fired power plants are more often fixed-price than contracts for natural gas-

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

370

2007 Estimated International Energy Flows  

Science Conference Proceedings (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

371

Predicting and Controlling Resource Usage in a ...  

Science Conference Proceedings (OSTI)

... To lower resource comsumption by AVNMP, we can consider application of the Minimum Data Length (MDL) [8] estimate for Kolmogorov ...

2009-02-03T23:59:59.000Z

372

Protecting against physical resource monitoring  

Science Conference Proceedings (OSTI)

This paper considers the problem of resource monitoring. We consider the scenario where an adversary is physically monitoring on the resource access, such as the electricity line or gas pipeline, of a user in order to learn private information about ... Keywords: differential privacy, resource monitoring, smart grids, smart metering

Gergely Acs; Claude Castelluccia; William Lecat

2011-10-01T23:59:59.000Z

373

Gas hydrates: Technology status report  

Science Conference Proceedings (OSTI)

In 1983, the US Department of Energy (DOE) assumed the responsibility for expanding the knowledge base and for developing methods to recover gas from hydrates. These are ice-like mixtures of gas and water where gas molecules are trapped within a framework of water molecules. This research is part of the Unconventional Gas Recovery (UGR) program, a multidisciplinary effort that focuses on developing the technology to produce natural gas from resources that have been classified as unconventional because of their unique geologies and production mechanisms. Current work on gas hydrates emphasizes geological studies; characterization of the resource; and generic research, including modeling of reservoir conditions, production concepts, and predictive strategies for stimulated wells. Complementing this work is research on in situ detection of hydrates and field tests to verify extraction methods. Thus, current research will provide a comprehensive technology base from which estimates of reserve potential can be made, and from which industry can develop recovery strategies. 7 refs., 3 figs., 6 tabs.

Not Available

1987-01-01T23:59:59.000Z

374

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”of a CO2 Pricing Scheme on Distributed Energy Resources in

Stadler, Michael

2010-01-01T23:59:59.000Z

375

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

376

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

February 2003. “Distributed Energy Resources in Practice: ARyan. January 2004. “Distributed Energy Resources Customer2003. “Gas-Fired Distributed Energy Resource Technology

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

377

Model Documentation Report: International Natural Gas Model 2011  

U.S. Energy Information Administration (EIA)

gas-to-liquid (GTL) plants, ... • Natural gas production for five resource categories, ... while LNG contracts may constrain trade in

378

Expansion of the U.S. Natural Gas Pipeline Network  

U.S. Energy Information Administration (EIA)

unconventional resources. Furthermore, infrastructure additions related to imports of natural gas, including ... Office of Oil and Gas, September 2009 11

379

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

380

Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

Others wanting to learn more about greenhouse gas emissions and their reduction. About the ... based on ensuring the sustainability of finite natural resources.

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

382

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

383

Natural resource prices: will they ever turn up?  

E-Print Network (OSTI)

real price* Resource Aluminum Coal Copper Iron Natural gasprice * Resource Aluminum Coal Copper Iron Natural gasast price* RMS% error Aluminum Coal Copper Iron Natural gas

Berck, Peter; Roberts, Mike

1995-01-01T23:59:59.000Z

384

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings Evaluate Greenhouse Gas Reduction Strategies Using Renewable Energy in Buildings October 7, 2013 - 11:23am Addthis Once Federal sites have been screened for viability of different renewable energy resources to evaluate emissions profile, the next step is to establish what renewable energy resources developed at which particular sites would have the greatest impact on the agency's overall greenhouse gas (GHG) emissions goals. It is important to consider that some types of renewable energy generation could impact not only Scope 1 and 2 GHG goals, but also Scope 3 goals through avoided transmission and distribution losses. Estimate Greenhouse Gas Reduction Potential It is important to note that solar systems can have the greatest reduction

385

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

386

Unconventional Energy Resources: 2011 Review  

Science Conference Proceedings (OSTI)

This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

Collaboration: American Association of Petroleum Geologists

2011-12-15T23:59:59.000Z

387

NETL: Shale Gas and Other Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

388

Hospitality resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

389

Healthcare resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

390

Congregation resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

391

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network (OSTI)

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

392

Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins  

Science Conference Proceedings (OSTI)

Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

2008-06-30T23:59:59.000Z

393

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

394

NETL: Hydrogen & Clean Fuels - Abstract : Gas Adsorption on Single...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources...

395

Natural Gas Exports Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

396

Natural Gas Imports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

397

Natural Gas Exports (Summary) - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

398

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

especially natural gas price risk and the financial risk ofneeds. With natural gas prices expected to remain high forrisk (primarily natural gas price risk) in utility resourc e

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

399

EPA's Natural Gas Extraction -- Hydraulic Fracturing Website...  

NLE Websites -- All DOE Office Websites (Extended Search)

enabling greater access to gas in shale formations. Responsible development of America's shale gas resources offers important economic, energy security, and environmental...

400

Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska  

SciTech Connect

Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

2005-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

402

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

403

NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion cubic feet (tcf). Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain range and contain

404

Unconventional Resources Technology Advisory Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology challenges for small...

405

Wind Resource Maps (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

406

Federal Energy Management Program: Estimate and Analyze Greenhouse...  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimate and Analyze Greenhouse Gas Mitigation Strategy Implementation Costs to someone by E-mail Share Federal Energy Management Program: Estimate and Analyze Greenhouse Gas...

407

Post-2014 Resource Allocations  

NLE Websites -- All DOE Office Websites (Extended Search)

Post-2014 Resource Allocations Post-2014 Resource Allocations On December 17, 2010, Western Area Power Administration's Rocky Mountain Region published its Post-2014 Resource Pool-Loveland Area Projects (LAP), Allocation Procedures and Call for Applications (75 FR 78988). Through the Post-2014 Resource Pool (Resource Pool), Western will allocate up to 1 percent of the LAP long-term firm hydroelectric resource available as of October 1, 2014, that is estimated to be approximately 6.9 megawatts for the summer season and 6.1 megawatts for the winter season. The Resource Pool will be created by reducing existing customers' allocations by up to 1 percent. A public information forum was held on February 2, 2011, prior to the application deadline, which was March 4, 2011. Of the seven applications received, Western determined that six of the applicants met the Resource Pool General Eligibility Criteria. Western published the Resource Pool proposed power allocation and initiated a public comment period in the Federal Register (76 FR 45551, July 29, 2011). A public comment forum on the proposed power allocation was held August 25, 2011, and public comments were due to Western by September 12, 2011. There were no comments received during the public comment period.

408

Shale Natural Gas Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

1,293 2,116 3,110 5,336 7,994 2007-2011 1,293 2,116 3,110 5,336 7,994 2007-2011 Alaska 0 0 0 0 0 2007-2011 Lower 48 States 1,293 2,116 3,110 5,336 7,994 2007-2011 Alabama 0 0 0 0 2007-2010 Arkansas 94 279 527 794 940 2007-2011 California 101 2011-2011 San Joaquin Basin Onshore 101 2011-2011 Colorado 0 0 1 1 3 2007-2011 Kentucky 2 2 5 4 4 2007-2011 Louisiana 1 23 293 1,232 2,084 2007-2011 North 1 23 293 1,232 2,084 2007-2011 South Onshore 0 2011-2011 Michigan 148 122 132 120 106 2007-2011 Montana 12 13 7 13 13 2007-2011 New Mexico 2 0 2 6 9 2007-2011 East 2 0 1 3 5 2007-2011 West 0 0 1 3 4 2007-2011 North Dakota 3 3 25 64 95 2007-2011 Ohio 0 0 0 0 2007-2010 Oklahoma 40 168 249 403 476 2007-2011 Pennsylvania 1 1 65 396 1,068 2007-2011

409

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

410

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

411

Mongolia wind resource assessment project  

DOE Green Energy (OSTI)

The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia.

Elliott, D.; Chadraa, B.; Natsagdorj, L.

1998-09-07T23:59:59.000Z

412

The use of cuttings in shale gas play assessment; The Sbaa basin (Algeria) as case study.  

E-Print Network (OSTI)

??With increasing energy demand, the need for unconventional gas resources has risen. Shale gas is one of these new hydrocarbon resources. Hence, an enhanced workflow… (more)

Koolschijn, M.A.P.

2012-01-01T23:59:59.000Z

413

Gas Exploration Software for Reducing Uncertainty in Gas ...  

... * Improve estimation of reservoir parameters and quantify uncertainty in the estimation when exploring for gas and oil deposits using geophysical data More ...

414

Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts  

E-Print Network (OSTI)

Ways to Switch America to Renewable Electricity. Cambridge,Dioxide, and Mercury and a Renewable Portfolio Standard.associated with the use of renewable and natural gas-fired

Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

2003-01-01T23:59:59.000Z

415

The Geopressured-Geothermal Resource, research and use  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Resource has an estimated accessible resource base of 5700 quads of gas and 11,000 quads of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured- geothermal wells in Texas and Louisiana. Supporting research in the Geopressured Program includes research on rock mechanics, logging, geologic studies, reservoir modeling, and co-location of brine and heavy oil, environmental monitoring, geologic studies, hydrocarbons associated with the geopressured brines and development of a pH monitor for harsh environments, research support in prediction of reservoir behavior, thermal enhanced oil recovery, direct use, hydraulic and thermal conversion, and use of supercritical processes and pyrolysis in detoxification. The on-going research and well operations are preparing the way to commercialization of the Geopressured-Geothermal Resource is covered in this report. 12 refs., 8 figs., 1 tab.

Negus-de Wys, J.

1990-01-01T23:59:59.000Z

416

Technical Resources  

Science Conference Proceedings (OSTI)

AOCS Resource Directory helps members maintain technical excellence in their professions. Technical Resources Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemi

417

The Antrim shale, fractured gas reservoirs with immense potential  

Science Conference Proceedings (OSTI)

Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model's Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim's total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI's research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

Manger, K.C. (DynCorp., Alexandria, VA (United States)); Woods, T.J. (Gas Research Institute., Washington, DC (United States)) Curtis, J.B. (Colorado School of Mines, Golden, CO (United States))

1996-01-01T23:59:59.000Z

418

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

419

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

420

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Kentucky Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,451,1,35,17,,,10,3,0,48...

422

,"Oklahoma Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,13889,36,837,1016,,,1129,181,...

423

,"Florida Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,151,-1,1,6,,,0,0,0,36...

424

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,6305,-3,226,165,,,884,391,10,...

425

,"Ohio Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,495,-3,48,11,,,113,0,31,60...

426

,"Kansas Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,11457,-3,122,171,,,219,21,7,7...

427

,"Utah Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet)","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)" 28306,877,0,37,79,,,93,32,2,62...

428

Oil, Energy Poverty and Resource Dependence in  

E-Print Network (OSTI)

33 Oil, Energy Poverty and Resource Dependence in West Africa Morgan Bazilian, Ijeoma Onyeji, Peri, however, that major oil and gas discoveries have a very mixed record, at best, in terms of societal gains of the recent oil and gas rush in West Africa. Clearly, sound management of the resource revenues

Kammen, Daniel M.

429

100,000 quads of natural gas  

DOE Green Energy (OSTI)

Of the various possible unconventional natural gas resources that have been examined, the most recent, and by far the largest, is that which is dissolved in the hot salt water within the geopressurized zones of the Gulf Coast. Recent assessments have estimated that the amount of gas contained in these waters, underlying about 150,000 sq. mi. of Texas and Louisiana--both onshore and offshore--is between 60,000 and 100,000 quads. In addition to the natural gas, there is a huge potential for producing electric power from the heat content of the fluid, as well as other potential uses for hot water. The net value of this geothermal heat may be about half that of the natural gas. The major problems associated with commercial production of the fluids from these zones and the extraction of energy from the heat and pressure of the fluid are discussed and the long-term potential is estimated. It appears likely that commercial production will depend upon the existence of uncontrolled prices for natural gas and the satisfactory resolution of various legal, environmental, and institutional problems, all of which are likely to require considerable effort. Although the production potential from the Gulf Coast zones might be accurately estimated after a decade or so of active research and development, at present the long-term potential appears to be between 4 percent and 50 percent of the fluid within the reservoirs that are eventually developed. Although the costs of production of gas and electric power from this resource may not be cheap, the principal reservoirs should be relatively easy to locate in the onshore Gulf region because of the existing data available from the vast number of wells that have already been drilled.

Brown, W.M.

1976-10-01T23:59:59.000Z

430

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

the significant battery depletion costs incurred from deep-Consequently, the battery depletion cost per kWh transferredTo estimate the battery depletion cost of peak shaving, we

Greer, Mark R

2012-01-01T23:59:59.000Z

431

Fort Carson Wind Resource Assessment  

DOE Green Energy (OSTI)

This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

Robichaud, R.

2012-10-01T23:59:59.000Z

432

Easing the Natural Gas Crisis: Reducing Natural Gas Prices Through Electricity Supply Diversification -- Testimony  

E-Print Network (OSTI)

Natural Gas Prices Through Electricity Supply Diversification Testimony Prepared for a Hearing on Power Generation Resource Incentives &

Wiser, Ryan

2005-01-01T23:59:59.000Z

433

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

will benefit a wide range of industries, as well as the primary stakeholders within the oil and gas industry. Significant gas resources in the U.S. are in deep, HTHP reservoirs. A...

434

Online Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Online Resources Online Resources Online Resources ... Legislative Documents - US Code - Public and Private Laws - Congressional Bills - Congressional Record - Congressional Hearings - Appropriations Legislation Regulatory Documents - Code of Federal Regulations - Federal Register - Safety and Employee Protection Authorities Compilation of Laws - Communications Law - Consumer Protectxion Law - Environmental Law Volume 1 - Environmental Law Volume 2 - Food, Drug, And Related Law - Health Law - Nuclear Energy And Radioactive Waste - Selected Energy-Related Legislation: Electricity - Selected Energy-Related Legislation: Organization And Miscellaneous - Selected Energy-Related Legislation: Oil, Gas, And Nonnuclear Fuels Presidential Documents - Executive Orders Judicial Resources

435

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Report," and the Historical Weekly Storage Estimates Database. Other Market Trends: FERC Investigates Natural Gas Wash-Trading: The Federal Energy Regulatory Commission (FERC)...

436

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

437

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

438

Geothermal Energy Production from Low Temperature Resources, Coproduced  

Open Energy Info (EERE)

Energy Production from Low Temperature Resources, Coproduced Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

439

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

440

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.

Stadler, Michael

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

and quantification of the methane hydrate resource potential associated with the Barrow Gas Field Characterization and quantification of the methane hydrate resource potential...

442

Safety Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Print LBNLPub-3000: Health and Safety Manual Berkeley Lab safety guide, policies and procedures. Environment, Health, and Safety (EH&S) Staff Contact information for the...

443

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

444

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

445

Synthesis of organic geochemical data from the Eastern Gas Shales  

Science Conference Proceedings (OSTI)

Over 2400 core and cuttings samples of Upper Devonian shales from wells in the Appalachian, Illinois, and Michigan Basins have been characterized by organic geochemical methods to provide a basis for accelerating the exploitation of this unconventional, gas-rich resource. This work was part of a program initiated to provide industry with criteria for locating the best areas for future drilling and for the development of stimulation methods that will make recovery of the resource economically attractive. The geochemical assessment shows that the shale, in much of the Appalachian, Illinois, and Michigan Basins is source rock that is capable of generating enormous quantities of gas. In some areas the shales are also capable of generating large quantities of oil as well. The limiting factors preventing these sources from realizing most of their potential are their very low permeabilities and the paucity of potential reservoir rocks. This geochemical data synthesis gives direction to future selection of sites for stimulation research projects in the Appalachian Basin by pinpointing those areas where the greatest volumes of gas are contained in the shale matrix. Another accomplishment of the geochemical data synthesis is a new estimate of the total resource of the Appalachian Basin. The new estimate of 2500 TCF is 25 percent greater than the highest previous estimates. This gives greater incentive to government and industry to continue the search for improved stimulation methods, as well as for improved methods for locating the sites where those improved stimulation methods can be most effectively applied.

Zielinski, R. E.; McIver, R. D.

1982-01-01T23:59:59.000Z

446

Michigan U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

447

New Hampshire U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

448

Idaho U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

449

Massachusetts U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

450

Maryland U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

451

U.S. U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

452

North Dakota U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

453

Texas U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

454

Washington U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

455

Minnesota U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

456

California U.S. Natural Gas Imports & Exports  

U.S. Energy Information Administration (EIA)

Estimates for Canadian pipeline volumes are derived from the Office of Fossil Energy, Natural Gas Imports and Exports, and EIA estimates of dry natural gas imports.

457

Energy Efficiency Resource Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Resource Standards Energy Efficiency Resource Standards Energy Efficiency Resource Standards < Back Eligibility Investor-Owned Utility Municipal Utility Rural Electric Cooperative Savings Category Other Program Info State Delaware Program Type Energy Efficiency Resource Standard Provider Delaware Department of Natural Resources and Environmental Control In July 2009 the Delaware legislature enacted legislation creating energy savings targets for Delaware's investor-owned, municipal, and cooperative electric utilities, as well the state's natural gas distribution companies. These targets are hereafter referred to collectively as the Delaware Energy Efficiency Resource Standard or EERS. The law requires affected electric utilities to establish programs which save the equivalent

458

Western gas sands: Technology status report  

Science Conference Proceedings (OSTI)

Research on western gas sands is conducted by the US Department of Energy's Morgantown Technology Center to encourage the development of very low permeability gas sands in the western United States. The current search is an outgrowth of earlier Government research on tight sands in which nuclear and massive hydraulics fracturing stimulations were tested without definitive results. Based on input from the gas industry, universities, and geologic and engineering consulting firms, activites were broadened to include fundamental research and development. Consequently, the focus of the research for the last several years has been on improving diagnostic instruments for evaluating reservoir and stimulation performances, interpreting geophysical and engineering data, and stimulation techniques. Intergrated geologic studies of three depositional basins that contain tight lenticular sandstone units have also been pursued as part of this new effort. To date, the following tentative conclusions have been formulated: The permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends have been identified that contain significant volumes of tight gas. Gas resources in the priority geologic basins have been estimated as follows: Piceance Basin, 420 Tcf.; Greater Green River Basin, 4971 Tcf.; and Uinta Basin, 21 Tcf. The critical parameters for successfully developing tight sandstone resources are the presence of natural fractures within a reservoir and the effective propped length of hydraulically induced fractures. Stimulation technology is presently insufficient to efficiently recover gas from lenticular, tight reservoirs. 15 refs., 14 figs., 3 tabs.

Not Available

1988-01-01T23:59:59.000Z

459

Mobile Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Resources Mobile Resources Mobile Resources Have a mobile device? Find tips and information here. Questions? 505-667-5809 Email For information call the Service Desk at (505) 667-5809 or email mobilelibrary@lanl.gov The following resources are optimized for mobile devices or have mobile apps available for download. Resource Available App Mobile Website Available off Yellow Network with Pairing or Login Additional Information AACR Journals Apple Yes, the Journals are optimized for mobile viewing. Not the whole AACR site. Instructional pdf on pairing with voucher ACS Apple Android No American Institute of Physics Apple No American Mathematical Society No Yes Instructions for pairing mobile devices, tablets, laptops, etc. American Physical Society No Annual Reviews No Yes Instructions for pairing with mobile device available on website.

460

Lower bound estimation for low power high-level synthesis  

Science Conference Proceedings (OSTI)

This paper addresses the problem of estimating lower bounds on the power consumption in scheduled data flow graphs with a fixed number of allocated resources prior to binding. The estimated bound takes into account the effects of resource sharing. It ...

Lars Kruse; Eike Schmidt; Gerd Jochens; Ansgar Stammermann; Wolfgang Nebel

2000-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas resource estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Firestone, R. (2004), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”A.S. Siddiqui (2008b), “Distributed Energy Resources On-Site

Stadler, Michael

2010-01-01T23:59:59.000Z

462

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

463

Resource assessment/commercialization planning meeting  

DOE Green Energy (OSTI)

The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

None

1980-01-24T23:59:59.000Z

464

Deregulation in Japanese gas industries : significance and problems of gas rate deregulation for large industrial customers  

E-Print Network (OSTI)

In recent years, the circumstances surrounding Japanese City gas industries have been changing drastically. On one hand, as energy suppliers, natural gas which has become major fuel resource for city gas, as public utilities, ...

Inoue, Masayuki

1994-01-01T23:59:59.000Z

465

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................