Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Impact of reservoir properties on mixing of inert cushion and natural gas in storage reservoirs.  

E-Print Network [OSTI]

??Underground natural gas storage is a process which effectively balances a variable demand market with a nearly constant supply of energy provided by the pipeline (more)

Srinivasan, Balaji S.

2006-01-01T23:59:59.000Z

2

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network [OSTI]

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-Verdín, Carlos

3

PRELIMINARY CHARACTERIZATION OF CO2 SEPARATION AND STORAGE PROPERTIES OF COAL GAS RESERVOIRS  

SciTech Connect (OSTI)

An attractive alternative of sequestering CO{sub 2} is to inject it into coalbed methane reservoirs, particularly since it has been shown to enhance the production of methane during near depletion stages. The basis for enhanced coalbed methane recovery and simultaneous sequestration of carbon dioxide in deep coals is the preferential sorption property of coal, with its affinity for carbon dioxide being significantly higher than that for methane. Yet, the sorption behavior of coal under competitive sorptive environment is not fully understood. Hence, the original objective of this research study was to carry out a laboratory study to investigate the effect of studying the sorption behavior of coal in the presence of multiple gases, primarily methane, CO{sub 2} and nitrogen, in order to understand the mechanisms involved in displacement of methane and its movement in coal. This had to be modified slightly since the PVT property of gas mixtures is still not well understood, and any laboratory work in the area of sorption of gases requires a definite equation of state to calculate the volumes of different gases in free and adsorbed forms. This research study started with establishing gas adsorption isotherms for pure methane and CO{sub 2}. The standard gas expansion technique based on volumetric analysis was used for the experimental work with the additional feature of incorporating a gas chromatograph for analysis of gas composition. The results were analyzed first using the Langmuir theory. As expected, the Langmuir analysis indicated that CO{sub 2} is more than three times as sorptive as methane. This was followed by carrying out a partial desorption isotherm for methane, and then injecting CO{sub 2} to displace methane. The results indicated that CO{sub 2} injection at low pressure displaced all of the sorbed methane, even when the total pressure continued to be high. However, the displacement appeared to be occurring due to a combination of the preferential sorption property of coal and reduction in the partial pressure of methane. As a final step, the Extended Langmuir (EL) model was used to model the coal-methane-CO{sub 2} binary adsorption system. The EL model was found to be very accurate in predicting adsorption of CO{sub 2}, but not so in predicting desorption of methane. The selectivity of CO{sub 2} over methane was calculated to be 4.3:1. This is, of course, not in very good agreement with the measured values which showed the ratio to be 3.5:1. However, the measured results are in good agreement with the field observation at one of the CO{sub 2} injection sites. Based on the findings of this study, it was concluded that low pressure injection of CO{sub 2} can be fairly effective in displacing methane in coalbed reservoirs although this might be difficult to achieve in field conditions. Furthermore, the displacement of methane appears to be not only due to the preferential sorption of methane, but reduction in partial pressure as well. Hence, using a highly adsorbing gas, such as CO{sub 2}, has the advantages of inert gas stripping and non-mixing since the injected gas does not mix with the recovered methane.

John Kemeny; Satya Harpalani

2004-03-01T23:59:59.000Z

4

Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir  

E-Print Network [OSTI]

, Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties... for their support. The author also wishes to express his deepest appreciation to Dr. H. Chen for all the help and suggestions he made in this study. The author expresses his gratitude to every one in Empresa Colombiana de Petroleos, Ecopetrol, who made possible...

Santiago Molina, Cesar Alfonso

1991-01-01T23:59:59.000Z

5

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

6

The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir  

E-Print Network [OSTI]

of the effect of gas production rate and rock and fluid properties on the recovery of gas from strong water drive gas reservoirs will permit gas production optimization and should result in conservation of natural and financial resources. Hence... saturations, gas production rate is not a dominant factor affecting the ultimate gas recovery. Almost all the gas is recovered whether producing the field at 0. 1 or 10 times GRR. In predicting the gas recovery in a strong water drive reser- voir...

Soemarso, Christophorus

2012-06-07T23:59:59.000Z

7

2-D numerical simulation of digital rock experiments with lattice gas automation for electrical properties of reservoir formation  

Science Journals Connector (OSTI)

......41074103 from National Natural Science Foundation...law from lattice-gas hydrodynamics, Phys...equation using a lattice gas Boltzmann method...1991b. Lattice gas automata for flow...Logging Analysist, Corpus Christi, TX, 1982 July......

Wenzheng Yue; Guo Tao; Shangxu Wang; Bin Tian

2010-12-01T23:59:59.000Z

8

Electrochromically switched, gas-reservoir metal hydride devices with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

9

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

Stephen C. Ruppel

2005-02-01T23:59:59.000Z

10

Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities  

E-Print Network [OSTI]

Reservoir oil bubblepoint pressures revisited; solution gas­oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

Valkó, Peter

11

Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

12

Feasibility of waterflooding Soku E7000 gas-condensate reservoir  

E-Print Network [OSTI]

We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion...

Ajayi, Arashi

2012-06-07T23:59:59.000Z

13

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

spacing in highly uncertain and risky unconventional gas reservoirs. To achieve the research objectives, an integrated reservoir and decision modeling tool that fully incorporates uncertainty was developed. Monte Carlo simulation was used with a fast...

Turkarslan, Gulcan

2011-10-21T23:59:59.000Z

14

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

15

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

16

Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures  

E-Print Network [OSTI]

, and the time required f e' to reach pseudo-steady-state flow in finite acting reservoirs. In Runs 6-8, variation of the fracture penetration was achieved by using different fracture lengths, while holding the drainage radius constant at 2, 640 feet for each... Reservoir Pressure Fracture Conductivity Flow Rate Drainage Radius 10/o 0. 1 md 50 ft 640 acres 150 F 0. 65 5000 psia 0. 1 500 MCF/D 2, 640 ft Run ? Xf (ft) Xf/X Drawdown Time (Days) 132. 0 264. 0 528. 0 0. 05 0. 1 0. 2 30 90 50 17...

Makoju, Charles Adoiza

2012-06-07T23:59:59.000Z

17

Oil reservoir properties estimation using neural networks  

SciTech Connect (OSTI)

This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)

1997-02-01T23:59:59.000Z

18

Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry  

Broader source: Energy.gov [DOE]

Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry presentation at the April 2013 peer review meeting held in Denver, Colorado.

19

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

A. E.; Copp, J. F. . 111991. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field. Proceedings of () ; () : Sixteenth workshop on...

20

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

NONE

1998-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in ... not suitable for wellbore stability analysis in laminated shale gas for...

Jun-Liang Yuan; Jin-Gen Deng; Qiang Tan; Bao-Hua Yu

2013-09-01T23:59:59.000Z

22

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

23

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

24

Analysis of a geopressured gas reservoir using solution plot method  

E-Print Network [OSTI]

dependent formation compressibility and water influx require extensive study of the reservoir core samples and aquifer characteristics that are not commonly conducted. Poston and Chen solved this problem by re-arranging the material balance equation... of water compressibility (c~) and formation compressibility (c/ ). Studies of geopressured gas reservoirs have shown such reservoirs to be generally associated with either interbedded shales and or an aquifer. Each of these conditions can provide...

Hussain, Syed Muqeedul

1992-01-01T23:59:59.000Z

25

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect (OSTI)

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

26

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

approach for exploration of gas hydrate reservoirs in marine areas. Authors C. Y. Sun, B. H. Niu, P. F. Wen, Y. Y. Huang, H. Y. Wang, X. W. Huang and J. Li Published Journal...

27

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

28

Low permeability gas reservoir production using large hydraulic fractures  

E-Print Network [OSTI]

LOVT PERMEABILITY GAS RESERVOIR PRODUCTION USING LARGE HYDRAULIC FRACTURES A Thesis by STEPHEN ALLEN HOLDITCH Approved as to style and content by: ( airman of Committee) (Head of Department) (Me er) (Member) (Membe r) (Member) (Member...) August 1970 111 ABSTRACT Low Permeability Gas Reservoir Production Using Large Hydraulic Fractures. (August 1970) Stephen Allen Holditch, B. S. , Texas ARM University Directed by: Dr, R. A. Morse There has been relatively little work published...

Holditch, Stephen A

2012-06-07T23:59:59.000Z

29

Analyzing aquifers associated with gas reservoirs using aquifer influence functions  

E-Print Network [OSTI]

ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE V z May 1988 z V z z I- Major Subject: Petroleum Engineering ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Approved as to style and content by: (Chair of Committ R...

Targac, Gary Wayne

1988-01-01T23:59:59.000Z

30

US production of natural gas from tight reservoirs  

SciTech Connect (OSTI)

For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

Not Available

1993-10-18T23:59:59.000Z

31

Recovery of oil from fractured reservoirs by gas displacement  

E-Print Network [OSTI]

RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

Unneberg, Arild

2012-06-07T23:59:59.000Z

32

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

index in estimating reservoir performance. The optimization routine is done with VBA using Excel solver. Model Assumptions The reservoir is in stabilized flow under pseudo-steady state conditions at constant pressure with no aquifer influx... is matched with a type curve to predict field performance. Fetkovich Decline Type Curves 11 is based on analytical solutions to flow equations for production at constant BHP and include both transient and boundary dominated flow periods. These log...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

33

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

index in estimating reservoir performance. ? The optimization routine is done with VBA using Excel solver. Model Assumptions ? The reservoir is in stabilized flow under pseudo-steady state conditions at constant pressure with no aquifer influx... is matched with a type curve to predict field performance. Fetkovich Decline Type Curves 11 is based on analytical solutions to flow equations for production at constant BHP and include both transient and boundary dominated flow periods. These log...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

34

Development of reservoir simulator for hydraulically fractured gas wells in noncontinuous lenticular reservoirs  

SciTech Connect (OSTI)

A mathematical model is presented which forms the basis for a reservoir simulator that can be used to assist in the interpretation and prediction of the performance of hydraulically fractured gas wells completed in the western tight sands area. The model represents a first step in developing a reservoir simulator that can be used as an exploration tool and to analyze proposed gas well tests and future production trends in noncontinuous sand lense formations which are representative of the tight gas sands located in the Rocky Mountain gas provinces. The model developed consists of the necessary mathematical equations to simulate both reservoir and well performance under a variety of operating conditions. The equations developed are general in that they consider the following effects: (1) three-dimensional flow in the reservoir and one-dimensional flow in the fracture; (2) non-Darcy flow in the reservoir and fracture; (3) wellbore and fracture storage; (4) formation damage on the fracture face; (5) frictional pressure drop in the production string; (6) noncontinuous sand lenses; and (7) Klinkenberg effect. As a start toward the development of the final version of the desired reservoir simulator, a two-dimensional simulator was secured, placed on the computer, and debugged, and some test cases were run to ensure its validity. Using this simulator as a starting point, changes to reflect the effects of items 3 and 6 were made since it was believed these were the more important effects to consider at this stage of development. The development of an operational two-dimensional gas reservoir simulator was completed. Further work will be required to extend the simulator to three dimensions and incorporate all the changes reflected in items 1 to 6.

Evans, R.D.; Carroll, H.B. Jr.

1980-10-01T23:59:59.000Z

35

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

36

Production Optimization in Shale Gas Reservoirs.  

E-Print Network [OSTI]

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

37

MathematicalGeology, Vol. 11,No. I,1979 Modeling and Optimizing a Gas-Water Reservoir  

E-Print Network [OSTI]

of gas in psia pressure of gas in psia at time t constant production rate of gas in moles per year production rate at time t in moles per year ideal gas constant constant rate of water injection in cubic feet of the reservoir in cubic feet, below which gas production ceases initial reservoir volume in cubic feet reservoir

Waterman, Michael S.

38

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

39

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL BOGATCHEV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering DEVELOPING A TIGHT GAS SAND ADVISOR FOR COMPLETION AND STIMULATION IN TIGHT GAS RESERVOIRS WORLDWIDE A Thesis by KIRILL...

Bogatchev, Kirill Y

2008-10-10T23:59:59.000Z

40

Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs  

E-Print Network [OSTI]

ACCOUNTING FOR ADSORBED GAS AND ITS EFFECT ON PRODUCTION BEHAVIOR OF SHALE GAS RESERVOIRS A Thesis by SALMAN AKRAM MENGAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering ACCOUNTING FOR ADSORBED GAS AND ITS EFFECT ON PRODUCTION BEHAVIOR OF SHALE GAS RESERVOIRS A Thesis by SALMAN AKRAM MENGAL...

Mengal, Salman Akram

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

42

CO2 gas/oil ratio prediction in a multi-component reservoir by combined seismic and electromagnetic imaging  

E-Print Network [OSTI]

CO 2 flooding of an oil reservoir are inverted to producein a complex reservoir containing oil, water, hydrocarbonincluding oil, water and gas) and reservoir pressure. The

Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

2002-01-01T23:59:59.000Z

43

Criteria for displacement by gas versus water in oil reservoirs  

E-Print Network [OSTI]

on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199... on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199...

Piper, Larry Dean

2012-06-07T23:59:59.000Z

44

Numerical modeling of gas migration into and through faulted sand reservoirs in Pabst Field (Main Pass East Block 259), northern Gulf of Mexico  

E-Print Network [OSTI]

The further exploration and development of Pabst Gas Field with faulted sand reservoirs require an understanding of the properties and roles of faults, particularly Low Throw near Vertical Faults (LTNVFs), in gas migration and accumulation at a...

Li, Yuqian

2006-08-16T23:59:59.000Z

45

Inflow performance relationships for solution-gas-drive reservoirs  

SciTech Connect (OSTI)

In this theoretical study, a numerical model was used to examine the influence of pressure level and skin factor on the inflow performance relationships (IPR's) of wells producing under solution-gas-drive systems. Examination of the synthetic deliverability curves suggests that the exponent of the deliverability curve is a function of time and that the exponent is usually greater than unity. The implication of this observation to field data is discussed. The accuracy of procedures given in the literature to predict oilwell deliverabilities is also examined. It is shown that these methods can be used to predict future performance provided that the exponent of the deliverability curve is known and that extrapolations over large time ranges are avoided. If single-point tests are used to predict future performance (such tests assume that the exponent of the deliverability curve is constant), then errors in predictions will be minimized. Although relative permeability and fluid property data are required, the Muskat material-balance equation and the assumption that GOR is independent of distance can be used to predict future production rates. This method avoids problems associated with other methods in the literature and always yields reliable results. New methods to modify the IPR curve to incorporate changes in skin factor are presented. A new flow-efficiency definition based on the structure of the deliverability equations for solution-gas-drive reservoirs is proposed. This definition avoids problems that result when the currently available methods are applied to heavily stimulated wells.

Camacho-V, R.G.; Raghavan, R.

1989-05-01T23:59:59.000Z

46

Property:AvgReservoirDepth | Open Energy Information  

Open Energy Info (EERE)

AvgReservoirDepth AvgReservoirDepth Jump to: navigation, search Property Name AvgReservoirDepth Property Type Quantity Description Average depth to reservoir Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "AvgReservoirDepth" Showing 24 pages using this property. A Amedee Geothermal Area + 213 m0.213 km 0.132 mi 698.819 ft 232.939 yd + B Beowawe Hot Springs Geothermal Area + 850 m0.85 km

47

Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs  

Science Journals Connector (OSTI)

Abstract Unlike in conventional gas reservoirs, gas in shale reservoirs is stored mainly as free gas and adsorbed gas, and a small amount of dissolved gas. Well production from shale gas reservoirs usually exhibits sharply decline trend in the early period of production and then turns to long-term stable production at a relatively low rate, for which gas desorption contribution has been considered as a possible explanation. This study aims at providing an accurate evaluation of the contribution from gas desorption to dynamic production. Through incorporation of artificial component subdivision in a numerical simulator, the production contributions of the free and adsorbed gas can be obtained separately. This analysis approach is validated firstly and then applied to two case studies based on conceptual models of Barnett and Antrim Shale. The results show that desorbed gas dominates the production in Antrim Shale, while it only plays a small role in the production in Barnett Shale. The impact of permeability and initial gas saturation are also analyzed. In previous studies, numerical and analytical simulators were used to investigate the difference between the production performances with or without desorption, attributing the production increase to gas desorption. However, our study shows this treatment overestimates the contribution from gas desorption. This work provides a simple but accurate method for the dynamic analysis of desorption contribution to total production, contributing to reservoir resource assessment, the understanding of production mechanisms, and shale gas production simulation.

Tingyun Yang; Xiang Li; Dongxiao Zhang

2014-01-01T23:59:59.000Z

48

Simulator for unconventional gas resources multi-dimensional model SUGAR-MD. Volume I. Reservoir model analysis and validation  

SciTech Connect (OSTI)

The Department of Energy, Morgantown Energy Technology Center, has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are: (1) To develop and validate a mathematical model which describes gas flow through Devonian shales. (2) To determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales. (3) To recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales. (4) To analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance. (5) To study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. The flow equations that are the mathematical basis of the two-dimensional model are presented. It is assumed that gas transport to producing wells in Devonian shale reservoirs occurs through a natural fracture system into which matrix blocks of contrasting physical properties deliver contained gas. That is, the matrix acts as a uniformly distributed gas source in a fracture medium. Gas desorption from pore walls is treated as a uniformly distributed source within the matrix blocks. 24 references.

Not Available

1982-01-01T23:59:59.000Z

49

Developing a tight gas sand advisor for completion and stimulation in tight gas reservoirs worldwide  

E-Print Network [OSTI]

and experience about completion and stimulation technologies used in TGS reservoirs. We developed the principal design and two modules of a computer program called Tight Gas Sand Advisor (TGS Advisor), which can be used to assist engineers in making decisions...

Bogatchev, Kirill Y.

2009-05-15T23:59:59.000Z

50

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

51

Production optimization of a tight sandstone gas reservoir with well completions: A numerical simulation study.  

E-Print Network [OSTI]

??Tight gas sands have significant gas reserves, which requires cost-effective well completion technology and reservoir development plans for viable commercial exploitation. In this study, a (more)

Defeu, Cyrille W.

2010-01-01T23:59:59.000Z

52

The Importance of Geochemical Parameters and Shale Composition on Rock Mechanical Properties of Gas Shale Reservoirs: a Case Study From the Kockatea Shale and Carynginia Formation From the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Evaluation of the gas shale mechanical properties is very important screening criteria ... for hydraulic fracturing and as a result in gas shale sweet spot mapping. Youngs modulus and ... mechanical properties t...

Mohammad Mahdi Labani; Reza Rezaee

2014-06-01T23:59:59.000Z

53

Development and application of type curves for pressure transient analysis of horizontal wells in shale gas reservoirs  

Science Journals Connector (OSTI)

Even though significant progresses have been made in the past few years, there appears to be a lack of information regarding the characterisation of shale gas formations. A major purpose of this study is to demonstrate impacts of horizontal well geometries and gas flow parameters as well as shale gas reservoir system on horizontal well production behaviour and flow regime on pressure transient analysis (PTA). Extensive numerical simulations were conducted to model transient pressure behaviour of a horizontal well and apply the results to well test analysis in shale gas reservoirs. Based on the results from numerical simulations, a set of type curves have been developed in terms of dimensionless pseudopressure and time. Results from type curve matching for synthetic pressure data in shale gas reservoirs demonstrate that the conventional analysis approach may still be applicable for the quantitative analysis on the transient gas flow behaviour and determination of formation properties. [Received: June 21, 2013; Accepted: August 6, 2013

Sung Jun Lee; Tae Hong Kim; Kun Sang Lee

2014-01-01T23:59:59.000Z

54

Theoretical fundamentals, critical issues, and adequate formulation of effective shale gas and condensate reservoir simulation  

Science Journals Connector (OSTI)

The issues of relevance to describing the storage and movement of hydrocarbon gas and condensate and water through extremely low permeability shale formations are reviewed. The shale rock is viewed as a heterogeneous quad-media continuum system. Each system has different wettability storage transport and connectivity characteristics. The hydrocarbon storage is considered as being in the free gas adsorbed gas and dissolved gas. The alteration of fluid properties and flow behavior under pore confinement are emphasized. For gas transport the effective mean-radii and apparent permeability as a function of pore-size distribution and gas adsorption are examined. The nonequilibrium fluid distribution effect produced by tortuous narrow flow paths is discussed. It is emphasized that these form the essential phenomena that must be taken into account for effective simulation of shale gas and condensate reservoirs.

Faruk Civan; Deepak Devegowda; Richard Sigal

2012-01-01T23:59:59.000Z

55

Property:SanyalTempReservoir | Open Energy Information  

Open Energy Info (EERE)

SanyalTempReservoir SanyalTempReservoir Jump to: navigation, search Property Name SanyalTempReservoir Property Type Page Description see Sanyal_Temperature_Classification Allows Values Extremely Low Temperature;Very Low Temperature;Low Temperature;Moderate Temperature;High Temperature;Ultra High Temperature;Steam Field Pages using the property "SanyalTempReservoir" Showing 16 pages using this property. A Amedee Geothermal Area + Very Low Temperature + B Beowawe Hot Springs Geothermal Area + Moderate Temperature + Blue Mountain Geothermal Area + High Temperature + C Chena Geothermal Area + Very Low Temperature + D Desert Peak Geothermal Area + Moderate Temperature + K Kilauea East Rift Geothermal Area + High Temperature + L Lightning Dock Geothermal Area + High Temperature +

56

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

57

Submarine fan lobe models: Implications for reservoir properties  

SciTech Connect (OSTI)

A multitude of submarine fan lobe models, advocating widely different reservoir properties, has been introduced into the sedimentologic literature. Four of these models are compared to show their differences in reservoir properties. Braided suprafan lobes are characterized by stacked sand bodies with good lateral and vertical communication, and they constitute excellent reservoir facies. The unchanneled depositional lobes, composed of sheetlike sand bodies with good lateral and moderate vertical communication, exhibit properties of good reservoir facies. Fanlobes, which refer to meandering channels and associated levee facies of large mud-rich submarine fans such as the Mississippi Fan in the Gulf of Mexico, are characterized by offset stacked sand bodies with poor lateral and vertical communication. These lenticular sands have the potential to be moderately good reservoir facies. Ponded lobes, which represent mud-rich slump facies of slope environments, comprise poor reservoir facies because of poor sand content and poor sand-body connectivity caused by chaotic bedding. Furthermore, the presence of slumped mud layers in ponded lobes is expected to hinder fluid flow. Because different lobe models vary significantly from one another in terms of reservoir properties, caution must be exercised to apply the proper lobe model to ancient fan sequences in hydrocarbon exploration and production.

Shanmugam, G.; Moiola, R.J. (Mobil Research and Development Corp., Dallas, TX (USA))

1990-09-01T23:59:59.000Z

58

EIA - AEO2010 -Importance of low-permeability natural gas reservoirs  

Gasoline and Diesel Fuel Update (EIA)

Importance of low-permeability natural gas reservoirs Importance of low-permeability natural gas reservoirs Annual Energy Outlook 2010 with Projections to 2035 Importance of low-permeability natural gas reservoirs Introduction Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40 percent of natural gas production and about 35 percent of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in “darcies.”)

59

Physical Properties of Gas Hydrates: A Review  

SciTech Connect (OSTI)

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

60

Prediction of Gas Injection Performance for Heterogeneous Reservoirs  

SciTech Connect (OSTI)

This report describes research into gas injection processes in four main areas: laboratory experiments to measure three-phase relative permeability; network modeling to predict three-phase relative permeability; benchmark simulations of gas injection and water flooding at the field scale; and the development of fast streamline techniques to study field-scale ow. The aim of the work is to achieve a comprehensive description of gas injection processes from the pore to the core to the reservoir scale. To this end, measurements of three-phase relative pemeability have been made and compared with predictions from pore scale modeling. At the field scale, streamline-based simulation has been extended to compositional displacements, providing a rapid method to predict oil recovery from gas injection.

Franklin M. Orr, Jr.; Martin J. Blunt

1998-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

.3 Desorption parameters for the Billi coalbed methane reservoir correspond to within an acceptable range with those of the Barnett shale. For the initial reservoir pressure used in this study these values correspond to an initial methane storage of 344 scf... media has been studied extensively in coalbed methane reservoirs , where adsorption can be the primary mode of gas storage. Many analytic and semi-analytic models have been developed from the study of gas desorption from coalbed methane reservoirs...

Freeman, Craig M.

2010-07-14T23:59:59.000Z

62

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions; and over 5 weeks in August--September, the peak GHG emission period, during 2012. (Pacific Northwest

63

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network [OSTI]

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

Yan, Bicheng

2013-07-15T23:59:59.000Z

64

Prediction of Gas Injection Performance for Heterogeneous Reservoirs  

SciTech Connect (OSTI)

This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

Blunt, Martin J.; Orr, Franklin M.

1999-05-17T23:59:59.000Z

65

Inflow performance relationship for perforated wells producing from solution gas drive reservoir  

SciTech Connect (OSTI)

The IPR curve equations, which are available today, are developed for open hole wells. In the application of Nodal System Analysis in perforated wells, an accurate calculation of pressure loss in the perforation is very important. Nowadays, the equation which is widely used is Blount, Jones and Glaze equation, to estimate pressure loss across perforation. This equation is derived for single phase flow, either oil or gas, therefore it is not suitable for two-phase production wells. In this paper, an IPR curve equation for perforated wells, producing from solution gas drive reservoir, is introduced. The equation has been developed using two phase single well simulator combine to two phase flow in perforation equation, derived by Perez and Kelkar. A wide range of reservoir rock and fluid properties and perforation geometry are used to develop the equation statistically.

Sukarno, P. [Inst. Teknologi Bandung (Indonesia); Tobing, E.L.

1995-10-01T23:59:59.000Z

66

Geological controls on gas accumulation in a unique Zechstein carbonate reservoir  

E-Print Network [OSTI]

potentially contribute and combine favourably to Wissey's reservoir quality and gas reserves. It is nowGeological controls on gas accumulation in a unique Zechstein carbonate reservoir Craig Duguid, The King's Buildings, West Mains Road, Edinburgh, EH9 3JW, Scotland, UK Email: S0567834@sms.ed.ac.uk Gas

67

Property:MeanReservoirTemp | Open Energy Information  

Open Energy Info (EERE)

MeanReservoirTemp MeanReservoirTemp Jump to: navigation, search Property Name MeanReservoirTemp Property Type Temperature Description Mean estimated reservoir temperature at location based on the USGS 2008 Geothermal Resource Assessment if the United States Pages using the property "MeanReservoirTemp" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + 363.15 K90 °C 194 °F 653.67 °R + Adak Geothermal Area + 428.15 K155 °C 311 °F 770.67 °R + Akun Strait Geothermal Area + 353.15 K80 °C 176 °F 635.67 °R + Akutan Fumaroles Geothermal Area + 523.15 K250 °C 482 °F 941.67 °R + Alvord Hot Springs Geothermal Area + 408.15 K135 °C 275 °F 734.67 °R + Amedee Geothermal Area + 388.15 K115 °C 239 °F 698.67 °R + Arrowhead Hot Springs Geothermal Area + 388.15 K115 °C

68

Inflow Performance Relationships (IPR) for Solution Gas Drive Reservoirs -- a Semi-Analytical Approach  

E-Print Network [OSTI]

INFLOW PERFORMANCE RELATIONSHIPS (IPR) FOR SOLUTION GAS DRIVE RESERVOIRS ? A SEMI-ANALYTICAL APPROACH A Thesis by MAR?A ALEJANDRA NASS Submitted to the Office of Graduate Studies of Texas A&M University... Inflow Performance Relationships (IPR) For Solution Gas Drive Reservoirs ? a Semi-Analytical Approach Copyright 2010 Mar?a Alejandra Nass INFLOW PERFORMANCE RELATIONSHIPS (IPR) FOR SOLUTION GAS DRIVE RESERVOIRS ? A SEMI...

Nass, Maria A.

2010-07-14T23:59:59.000Z

69

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network [OSTI]

gas-reservoir MnNiMg electrochromic mirror devices have beencontrast to conventional electrochromic approaches, hydrogenThe application of electrochromic devices based on tungsten

Anders, Andre

2008-01-01T23:59:59.000Z

70

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network [OSTI]

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

71

,"New York Dry Natural Gas New Reservoir Discoveries in Old Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

72

Naturally fractured tight gas reservoir detection optimization. Quarterly report, July 1--September 30, 1994  

SciTech Connect (OSTI)

Research continued in the detection of naturally fractured tight gas reservoirs. Tasks include modeling, data analysis, geologic assessment of the Piceance Basin, and remote sensing.

NONE

1997-05-01T23:59:59.000Z

73

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network [OSTI]

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

74

Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)  

Reports and Publications (EIA)

Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

2010-01-01T23:59:59.000Z

75

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

76

The construction and use of aquifer influence functions in determining original gas in place for water-drive gas reservoirs  

E-Print Network [OSTI]

THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR WATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH GAJDICA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1986 Major Subject: Petroleum Engineering THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR MATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH...

Gajdica, Ronald Joseph

1986-01-01T23:59:59.000Z

77

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network [OSTI]

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

78

Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization  

Science Journals Connector (OSTI)

Gas production from hydrate reservoir by the combination of warm water flooding and depressurization is proposed, which can overcome ... gas production by the combination of warm water flooding and depressurizati...

YuHu Bai; QingPing Li

2010-09-01T23:59:59.000Z

79

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

80

Seismic imaging of reservoir flow properties: Time-lapse pressurechanges  

SciTech Connect (OSTI)

Time-lapse fluid pressure and saturation estimates are sensitive to reservoir flow properties such as permeability. In fact, given time-lapse estimates of pressure and saturation changes, one may define a linear partial differential equation for permeability variations within the reservoir. The resulting linear inverse problem can be solved quite efficiently using sparse matrix techniques. An application to a set of crosswell saturation and pressure estimates from a CO{sub 2} flood at the Lost Hills field in California demonstrates the utility of this approach. From the crosswell estimates detailed estimates of reservoir permeability are produced. The resulting permeability estimates agree with a permeability log in an adjacent well and are in accordance with water and CO{sub 2} saturation changes in the interwell region.

Vasco, Don W.

2003-04-08T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

AN INTERNATIONAL EFFORT TO COMPARE GAS HYDRATE RESERVOIR SIMULATORS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AN INTERNATIONAL EFFORT TO COMPARE GAS HYDRATE RESERVOIR SIMULATORS Joseph W. Wilder 1 , George J. Moridis 2 , Scott J. Wilson 3 , Masanori Kurihara 4 , Mark D. White 5 , Yoshihiro Masuda 6 , Brian J. Anderson 7, 8 *, Timothy S. Collett 9 , Robert B. Hunter 10 , Hideo Narita 11 , Mehran Pooladi-Darvish 12 , Kelly Rose 7 , Ray Boswell 7 1 Department of Theoretical & Applied Math University of Akron 302 Buchtel Common Akron, OH 44325-4002 USA 2 Lawrence Berkeley National Laboratory, University of California Earth Sciences Division, 1 Cyclotron Rd., MS 90-1116 Berkeley, CA 94720 USA 3 Ryder Scott Company, Petroleum Consultants 621 17th Street, Suite 1550 Denver, Colorado 80293 USA 4 Japan Oil Engineering Company, Ltd. Kachidoki Sun-Square 1-7-3, Kachidoki, Chuo-ku,

82

Variations in dissolved gas compositions of reservoir fluids from the Coso  

Open Energy Info (EERE)

Variations in dissolved gas compositions of reservoir fluids from the Coso Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may

83

Numerical investigation of gas flow rate in shale gas reservoirs with nanoporous media  

Science Journals Connector (OSTI)

Abstract Theoretical analysis of transport mechanism of gas flow in shale gas reservoirs with nanoporous media was carried out on the basis of molecular kinetic theory. The motion equation and mathematical model of shale gas transport in multi-scale medium are established in this article. The pressure distribution equation of radial flow was derived, and the computing method of the control area of gas well was presented. Additionally, the volume flow rate equations of vertical and horizontal fractured wells were obtained. Through Newton iterative method, volume flow rate was analyzed, considering various factors such as production pressure drawdown, fracture half-length, fracture conductivity, fracture spacing and diffusion coefficient. According to the numerical results, the volume flow rate of the gas well increases when the diffusion coefficient grows. Consequently diffusion in shale gas reservoirs with nanoporous media plays an important role. With increase of fracture half-length, the volume flow rate increases first and then tends towards stability. Moreover, for certain length of the horizontal wellbore, when fracture spacing increases and the number of the fractures lessens, the control area and the volume flow rate of the gas well decreases. Therefore, there is an optimum allocation among these factors to achieve maximum volume flow.

Hongqing Song; Mingxu Yu; Weiyao Zhu; Peng Wu; Yu Lou; Yuhe Wang; John Killough

2015-01-01T23:59:59.000Z

84

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network [OSTI]

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

85

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

SciTech Connect (OSTI)

The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

2010-05-01T23:59:59.000Z

86

Property:EstReservoirVol | Open Energy Information  

Open Energy Info (EERE)

EstReservoirVol EstReservoirVol Jump to: navigation, search Property Name EstReservoirVol Property Type Quantity Description Mean estimated reservoir volume at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this type to express a quantity of three-dimensional space. The default unit is the cubic meter (m³). Acceptable units (and their conversions) are: Cubic Meters - 1 m³,m3,m^3,cubic meter,cubic meters,Cubic Meter,Cubic Meters,CUBIC METERS Cubic Kilometers - 0.000000001 km³,km3,km^3,cubic kilometer,cubic kilometers,cubic km,Cubic Kilometers,CUBIC KILOMETERS Cubic Miles - 0.000000000239912759 mi³,mi3,mi^3,mile³,cubic mile,cubic miles,cubic mi,Cubic Miles,CUBIC MILES Cubic Feet - 35.314666721 ft³,ft3,ft^3,cubic feet,cubic foot,FT³,FT3,FT^3,Cubic Feet, Cubic Foot

87

Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 96 108 95 1980's 99 77 208 329 327 163 398 242 163 146 1990's 437 259 110 108 79 53 66 84 42 37 2000's 42 52 18 13 9 48 12 56 85 178 2010's 1 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas New Reservoir Discoveries in Old Fields Oklahoma Dry Natural Gas Proved Reserves Dry Natural Gas New Reservoir Discoveries in Old Fields

88

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Reservoirs 19. Cheng et al. (2007) Decline Curve Analysis for Multilayered Tight Gas Reservoirs 20. Blasingame and Rushing Method for Gas-in-Place and Reserves Estimation (2005) 21. Clarkson et al. (2007) Production Data Analysis for Coalbed-Methane... Wells 22. Clarkson et al. (2008) Production Data Analysis for Coalbed-Methane Wells 23. Rushing et al. (2008) Production Data Analysis for Coalbed-Methane Wells 24. Lewis and Hughes (2008) Production Data Analysis for Shale Gas Wells 25. Mattar et al...

Currie, Stephanie M.

2010-10-12T23:59:59.000Z

89

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

90

Development of gas-bearing reservoirs in the Trenton Llimestone Formation of New York. Final report  

SciTech Connect (OSTI)

The Energy Authority completed a study of the natural gas-bearing potential of New York State's Trenton Limestone Formation. The report includes an analysis of existing gas-well information and geological maps covering 33 counties in western and central New York State. The Trenton Limestone Formation is a limestone sequence with zones of shale interbeds that, when jointed and fractured, form reservoirs for natural gas. These reservoirs appear to be large and capable of sustained production, providing the production rates are carefully monitored to maintain reservoir pressure. Test wells have shown evidence of natural gas in all areas where the formation is present. The areas with the greatest reservoir potential trend from northeast to southwest beginning near the Adirondack foothills in Oneida County. When reservoir volumes are matched with a high success rate of discovery and minimum drilling costs, the northeastern part of central New York State appears to be the most likely region for both local use and commercial exploration. The Trenton formation in this area of the State generally contains gas at above-normal hydrostatic pressure. This indicates that the gas reservoirs are extensive and reach considerable depths. Due to the geophysical conditions of the reservoirs, however, it is important to carefully manage production and maintain pre-production pressure for optimum gas recovery.

Robinson, J.E.

1985-12-01T23:59:59.000Z

91

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In  

Open Energy Info (EERE)

Study Method For Exploration Of Gas Hydrate Reservoirs In Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs In Marine Areas Details Activities (0) Areas (0) Regions (0) Abstract: We propose an integrated study method for exploration of gas hydrate reservoirs in marine areas. This method combines analyses of geology, seismology, and geochemistry. First, geological analysis is made using data of material sources, structures, sediments, and geothermal regimes to determine the hydrocarbon-formation conditions of gas hydrate in marine areas. Then analyses of seismic attributes,such as BSR, AVO, and BZ as well as forward modeling are conducted to predict the potential

92

Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2  

E-Print Network [OSTI]

#12;CONTENTS Shale we look for gas?............................................................................. 1 The Marcellus shale--An old "new" gas reservoir in Pennsylvania ............ 2 Meet the staff, the contour interval should be 6 inches. #12;STATE GEOLOGIST'S EDITORIAL Shale We Look For Gas? Recently, you

Boyer, Elizabeth W.

93

Pressure Transient Analysis for Multi-stage Fractured Horizontal Wells in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

This article presents the PTA on the multi-stage fractured horizontal well in shale gas reservoirs incorporating desorption and diffusive flow in ... considering the mechanisms of desorption and diffusion in shale

Jingjing Guo; Liehui Zhang; Haitao Wang; Guoqing Feng

2012-07-01T23:59:59.000Z

94

Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes  

E-Print Network [OSTI]

condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

Sandoval Rodriguez, Angelica Patricia

2002-01-01T23:59:59.000Z

95

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned production forecasting model, Arps? Hyperbolic Decline Model...

Statton, James Cody

2012-07-16T23:59:59.000Z

96

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside...

Seo, Jeong Gyu

2004-09-30T23:59:59.000Z

97

A placement model for matrix acidizing of vertically extensive, multilayer gas reservoirs  

E-Print Network [OSTI]

A PLACEMENT MODEL FOR MATRIX ACIDIZING OF VERTICALLY EXTENSIVE, MULTILAYER GAS RESERVOIRS A Thesis by MANABU NOZAKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering A PLACEMENT MODEL FOR MATRIX ACIDIZING OF VERTICALLY EXTENSIVE, MULTILAYER GAS RESERVOIRS A Thesis by MANABU NOZAKI Submitted to the Office...

Nozaki, Manabu

2008-10-10T23:59:59.000Z

98

Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico  

Science Journals Connector (OSTI)

We present new results and interpretations of the electrical anisotropy and reservoir architecture in gas hydrate-bearing sands using logging data collected during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II. We focus specifically on sand reservoirs in Hole Alaminos Canyon 21 A (AC21-A), Hole Green Canyon 955 H (GC955-H) and Hole Walker Ridge 313 H (WR313-H). Using a new logging-while-drilling directional resistivity tool and a one-dimensional inversion developed by Schlumberger, we resolve the resistivity of the current flowing parallel to the bedding, R? and the resistivity of the current flowing perpendicular to the bedding, R?. We find the sand reservoir in Hole AC21-A to be relatively isotropic, with R? and R? values close to 2?m. In contrast, the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic. In these reservoirs, R? is between 2 and 30?m, and R? is generally an order of magnitude higher. Using Schlumbergers WebMI models, we were able to replicate multiple resistivity measurements and determine the formation resistivity the gas hydrate-bearing sand reservoir in Hole WR313-H. The results showed that gas hydrate saturations within a single reservoir unit are highly variable. For example, the sand units in Hole WR313-H contain thin layers (on the order of 10100cm) with varying gas hydrate saturations between 15 and 95%. Our combined modeling results clearly indicate that the gas hydrate-bearing sand reservoirs in Holes GC955-H and WR313-H are highly anisotropic due to varying saturations of gas hydrate forming in thin layers within larger sand units.

Ann E. Cook; Barbara I. Anderson; John Rasmus; Keli Sun; Qiming Li; Timothy S. Collett; David S. Goldberg

2012-01-01T23:59:59.000Z

99

The performance of a volatile oil reservoir overlain by a gas cap  

E-Print Network [OSTI]

THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1960 Major Subject: PETROLEUM ENGINEERING THE PERFORMANCE OF A VOLATILE OIL RESERVOIR OVERLAIN BY A GAS CAP A Thesis By J. RALPH ELLIS, JR. Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ellis, Joseph Ralph, Jr

2012-06-07T23:59:59.000Z

100

The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs  

E-Print Network [OSTI]

THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

Ferguson, Ed Martin

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The production characteristics of a solution gas-drive reservoir as measured on a centrifugal model  

E-Print Network [OSTI]

of Texas in partial fulfillment oi' the requirements for the degree of MASTER OF SCIENCE August, 1955 Major Subject: Petroleum Engineering THE PRODUCTION CHARACTERISTICS OF A SOLUTION GAS-DRIVE RESERVOIR AS MEASURED ON A CENTRIFUGAL MODEL A Thesis... gas drive reservoir per- formancee at high pressures. The construe tj onal and operational details for the model are given, The results of forty model flow tests are given in which magnitudes of the we11 densi4y, production rate, fluid viscosity...

Goodwin, Robert Jennings

2012-06-07T23:59:59.000Z

102

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

Maria Cecilia Bravo

2006-06-30T23:59:59.000Z

103

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

104

Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes  

E-Print Network [OSTI]

The quantitative estimation of reservoir properties directly from seismic data is a major goal of reservoir characterization. Integrated reservoir characterization makes use of different varieties of well and seismic data to construct detailed...

Jaradat, Rasheed Abdelkareem

2005-08-29T23:59:59.000Z

105

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

106

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity  

SciTech Connect (OSTI)

The objectives of this project are to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. These objectives will be achieved through detailed geological, engineering, and geostatistical characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on the completion of Subtasks 1, 2, and 3. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data relevant to the Smackover reservoir in southwestern Alabama. Subtask 2 comprises the geological and engineering characterization of Smackover reservoir lithofacies. This has been accomplished through detailed examination and analysis of geophysical well logs, core material, well cuttings, and well-test data from wells penetrating Smackover reservoirs in southwestern Alabama. From these data, reservoir heterogeneities, such as lateral and vertical changes in lithology, porosity, permeability, and diagenetic overprint, have been recognized and used to produce maps, cross sections, graphs, and other graphic representations to aid in interpretation of the geologic parameters that affect these reservoirs. Subtask 3 includes the geologic modeling of reservoir heterogeneities for Smackover reservoirs. This research has been based primarily on the evaluation of key geologic and engineering data from selected Smackover fields. 1 fig.

Mancini, E.A.

1990-01-01T23:59:59.000Z

107

A new p/z technique for the analysis of abnormally pressured gas reservoirs  

E-Print Network [OSTI]

/cumulative production data. The match of the c, data and the c, "type curves" should yields gas-in-place (G) and the ratio of aquifer to reservoir (M), as well as validate the c, function. 11 As described above, the Fetkovich, et al. method requires specific... the following: ~ The development of a gas material balance equation that has particular application to abnormally pressured gas reservoirs (this is the same formulation used by Fetkovich, et al. , 1998, and is re-presented in Appendix A for reference (as well...

Gan, Ronald Gunawan

2001-01-01T23:59:59.000Z

108

Processing dipole acoustic logging data to image fracture network in shale gas reservoirs  

Science Journals Connector (OSTI)

A recent advance in borehole remote acoustic reflection imaging is the utilization of a dipole acoustic system in a borehole to emit and receive elastic waves to and from a remote geologic reflector in formation. An important application of this new technique is the delineation of fracture network in shale gas reservoirs as interest and activities in shale gas exploration increase in China. We develop a data processing procedure and implement it to handle routine processing of dipole acoustic logging data. The procedure takes into account the characteristics of the dipole data such as frequency dispersion attenuation recording length and dipole source orientation etc. to obtain an image of reflectors within 20~30 meters around the borehole. We have applied the technique to process dipole acoustic data from several wells drilled into gas reservoirs in China. The obtained images clearly identify major fracture network in the gas producing intervals of the reservoir demonstrating the effectiveness of the imaging technique.

Zhuang Chunxi; Su Yuanda; Tang Xiaoming

2012-01-01T23:59:59.000Z

109

General screening criteria for shale gas reservoirs and production data analysis of Barnett shale  

E-Print Network [OSTI]

Shale gas reservoirs are gaining importance in United States as conventional oil and gas resources are dwindling at a very fast pace. The purpose of this study is twofold. First aim is to help operators with simple screening criteria which can help...

Deshpande, Vaibhav Prakashrao

2009-05-15T23:59:59.000Z

110

Characterization of oil and gas reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

111

Gas hydrate-filled fracture reservoirs on continental margins.  

E-Print Network [OSTI]

?? Many scientists predicted that gas hydrate forms in fractures or lenses in fine-grained sediments, but only in the last decade were gas hydrates found (more)

Cook, Ann Elizabeth

2010-01-01T23:59:59.000Z

112

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

113

"Solution plot technique"-Analysis of water influx in gas reservoirs using simulation studies  

E-Print Network [OSTI]

the reservoir-aquifer boundary. The most widely used methods for estimating water- influx which can be applied to water-drive gas reservoirs include: 1. Van Everdingen-Hurst Radial, unsteady statet. 2. Carter and Tracy, unsteady state2. 3, Fetkovich, pseudo... of calculating water- influx, and involves the use of the convolution integral method. Fetkovich proposed a model that utilizes a pseudo-steady state productivity index and the aquifer material balance for estimating the water influx. The Van Everdingen...

Hardikar, Sachin Suresh

1992-01-01T23:59:59.000Z

114

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs  

SciTech Connect (OSTI)

This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.

Maria Cecilia Bravo; Mariano Gurfinkel

2005-06-30T23:59:59.000Z

115

Heterogeneity effect on non-wetting phase trapping in strong water drive gas reservoirs  

Science Journals Connector (OSTI)

Abstract In strong water drive gas reservoirs (WDGR), the presence of entrance water in the gas zone has negative effects on the relative permeability; therefore, gas is trapped behind the water front as a non-wetting phase. Understanding WDGR could be complicated and depends on both the petrophysical and operational parameters, such as, reservoir heterogeneity, permeability, production rate and so on. In order to quantify the uncertainty associated with reservoirs, it is critical to create porous media models that incorporate stratigraphic details. In the present study, experimental models were used to simulate WDGR and describe the heterogeneity effect on residual gas saturation and the recovery factor. In models, distinct gas and water (aquifer portion) zones were designed, wherein the ratio of the permeability of the aquifer to the gas zone was varied over three ranges. All tests were conducted in the presence of connate water, and the main WDGR set-up was constructed for high pressure operational conditions. All porous media were characterized by DykstraParsons coefficient as heterogeneity index. The results demonstrate that the residual gas saturation depends on both heterogeneity index and permeability ratio. Results reveal that heterogeneity is not always detrimental to gas recovery. In addition, when the ratio of the aquifer to gas zone permeability is less than one, the amount of trapped gas reduces as the heterogeneity of the porous media increases and consequently, the recovery factor may be improved.

Mohammad Rezaee; Behzad Rostami; Peyman Pourafshary

2013-01-01T23:59:59.000Z

116

Interaction of Fracture Fluid With Formation Rock and Proppant on Fracture Fluid Clean-up and Long-term Gas Recovery in Marcellus Shale Reservoirs.  

E-Print Network [OSTI]

??The exploitation of unconventional gas reservoirs has become an integral part of the North American gas supply. The economic viability of many unconventional gas developments (more)

Yue, Wenting

2012-01-01T23:59:59.000Z

117

Pore-scale mechanisms of gas flow in tight sand reservoirs  

SciTech Connect (OSTI)

Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

2010-11-30T23:59:59.000Z

118

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network [OSTI]

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

119

Molecular Gas Reservoir in low-z Powerful Radio Galaxies  

E-Print Network [OSTI]

We report a survey for molecular gas in 3C radio galaxies at redshifts z gas masses in the range 10^7--10^9 Msun. The remainder had typical upper limits in molecular gas masses of ~10^8 Msun.

Jeremy Lim; Stephane Leon; Francoise Combes; Dinh-V-Trung

2002-11-13T23:59:59.000Z

120

MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA  

SciTech Connect (OSTI)

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir models. In general, boundary locations, average permeability and porosity, relative permeability curves, and local flow properties may all need to be adjusted to achieve a plausible reservoir model that honors all data. In this project, we will characterize the distribution of geologic facies as an indicator random field, making use of the tools of geostatistics as well as the tools of inverse and probability theory for data integration.

Albert C. Reynolds; Dean S. Oliver; Fengjun Zhang; Yannong Dong; Jan Arild Skjervheim; Ning Liu

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs  

E-Print Network [OSTI]

the geomechanics of oil and gas reservoirs. The fragile microstructure of some rocks makes it difficult to predict of Steel, Aluminum, Concrete, etc. Moreover, the pattern of rock damage in oil and gas reservoirsFinite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil

Patzek, Tadeusz W.

122

Production decline analysis of horizontal well in gas shale reservoirs.  

E-Print Network [OSTI]

??The major factor influencing the increase of natural gas use is the rise in its global demand. Due to the relentlessly increasing demand, there have (more)

Adekoya, Folarin.

2009-01-01T23:59:59.000Z

123

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system. (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

124

Secondary natural gas recovery in mature fluvial sandstone reservoirs, Frio Formation, Agua Dulce Field, South Texas  

SciTech Connect (OSTI)

An approach that integrates detailed geologic, engineering, and petrophysical analyses combined with improved well-log analytical techniques can be used by independent oil and gas companies of successful infield exploration in mature Gulf Coast fields that larger companies may consider uneconomic. In a secondary gas recovery project conducted by the Bureau of Economic Geology and funded by the Gas Research Institute and the U.S. Department of Energy, a potential incremental natural gas resource of 7.7 bcf, of which 4.0 bcf may be technically recoverable, was identified in a 490-ac lease in Agua Dulce field. Five wells in this lease had previously produced 13.7 bcf from Frio reservoirs at depths of 4600-6200 ft. The pay zones occur in heterogeneous fluvial sandstones offset by faults associated with the Vicksburg fault zone. The compartments may each contain up to 1.0 bcf of gas resources with estimates based on previous completions and the recent infield drilling experience of Pintas Creek Oil Company. Uncontacted gas resources occur in thin (typically less than 10 ft) bypassed zones that can be identified through a computed log evaluation that integrates open-hole logs, wireline pressure tests, fluid samples, and cores. At Agua Dulce field, such analysis identified at 4-ft bypassed zone uphole from previously produced reservoirs. This reservoir contained original reservoir pressure and flowed at rates exceeding 1 mmcf/d. The expected ultimate recovery is 0.4 bcf. Methodologies developed in the evaluation of Agua Dulce field can be successfully applied to other mature gas fields in the south Texas Gulf Coast. For example, Stratton and McFaddin are two fields in which the secondary gas recovery project has demonstrated the existence of thin, potentially bypassed zones that can yield significant incremental gas resources, extending the economic life of these fields.

Ambrose, W.A.; Levey, R.A. (Univ. of Texas, Austin, TX (United States)); Vidal, J.M. (ResTech, Inc., Houston, TX (United States)); Sippel, M.A. (Research and Engineering Consultants, Inc., Englewood, CA (United States)); Ballard, J.R. (Envirocorp Services and Technology, Houston, TX (United States)); Coover, D.M. Jr. (Pintas Creek Oil Company, Corpus Christi, TX (United States)); Bloxsom, W.E. (Coastal Texas Oil and Gas, Houston, TX (United States))

1993-09-01T23:59:59.000Z

125

The simulation of gas production from oceanic gas hydrate reservoir by the combination of ocean surface warm water flooding with depressurization  

Science Journals Connector (OSTI)

A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of therma...

Hao Yang; Yu-Hu Bai; Qing-Ping Li

2012-10-01T23:59:59.000Z

126

Optimizing production from water drive gas reservoirs based on desirability concept  

Science Journals Connector (OSTI)

Abstract There are various factors which determine the optimization and economic production from water drive gas reservoirs. These factors play an important role in designing an effective reservoir development plan. The present study, in the first step, investigates the relation between recovery factor, volumetric sweep efficiency and cumulative water production with six different engineering and geologic factors using design of experiments (DOE) and response surface methodology (RSM). Next, all derived response functions are optimized simultaneously based on the concept of desirability. In this manner, part of water drive gas reservoirs is simulated using BoxBehnken design. Important factors that have been studied include reservoir horizontal permeability (Kh), permeability anisotropy (Kv/Kh), aquifer size (Vaq), gas production rate (Qg), perforated thickness (Hp) and tubing head pressure (THP). The results indicate that by combining various levels of factors and considering relative importance of each response function, optimized conditions could be raised in order to maximizing recovery factor, volumetric sweep efficiency and minimizing cumulative water production. Also high rates of gas production result poor volumetric sweep efficiency and early water breakthrough, hence ultimate recovery factor decreases by 3.28.4%.

Meysam Naderi; Behzad Rostami; Maryam Khosravi

2014-01-01T23:59:59.000Z

127

Stress-dependent permeability on tight gas reservoirs  

E-Print Network [OSTI]

.2 Diffusivity Equation, Liquid Case?????????????.?. 8 2.3 Diffusivity Equation, Gas Case??????????????.?. 9 2.4 Stress-Dependent Formations????????????????. 11 2.5 Linear Flow???????????????????????. 14 2.6 Radial Flow???????????????????????. 14 2... laboratory data is not available. 1.3 Methodology The methodology consists of using both analytical and numerical models of a stress- sensitive formation saturated with irreducible water saturation and gas. The model considers analytical...

Rodriguez, Cesar Alexander

2005-02-17T23:59:59.000Z

128

Influence of reservoir heterogeneity on gas resource potential for geologically based infill drilling, Brooks and I-92 reservoirs, Frio Formation, south Texas  

SciTech Connect (OSTI)

Gas resource potential for strategic infill drilling or recompletion in a reservoir can be calculated by subtracting gas volumes derived using the material balance (pressure decline) method from volumes derived using a volumetric method. This resource potential represents remaining gas that is not in communication with existing wells. Frio reservoirs in mature, nonassociated gas plays located downdip from the Vicksburg fault zone are characterized by multiple, vertically stacked sandstones. The Brooks reservoir, in La Gloria field, lies in a fluvial-dominated system that contains dip-elongate channel sandstone belts 1-2 mi wide. Within these belts are six or more vertically stacked channel-fill, point-bar and splay deposits. Depositional environments were interpreted from SP logs. Individual sandstones are separated vertically by thin mudstone layers and pinch out laterally into flood-plain deposits.

Jackson, M.L.W.; Ambrose, W.A. (Bureau of Economic Geology, Austin, TX (USA))

1989-09-01T23:59:59.000Z

129

Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea  

Science Journals Connector (OSTI)

Abstract Examinations of core and well-log data from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) drill sites suggest that Sites UBGH2-2_2 and UBGH2-6 have relatively good gas hydrate reservoir quality in terms of individual and total cumulative thicknesses of gas-hydrate-bearing sand (HYBS) beds. In both of the sites, core sediments are generally dominated by hemipelagic muds which are intercalated with turbidite sands. The turbidite sands are usually thin-to-medium bedded and mainly consist of well sorted coarse silt to fine sand. Anomalies in infrared core temperatures and porewater chlorinity data and pressure core measurements indicate that gas hydrate occurrence zones (GHOZ) are present about 68155mbsf at Site UBGH2-2_2 and 110155mbsf at Site UBGH2-6. In both the GHOZ, gas hydrates are preferentially associated with many of the turbidite sands as pore-filling type hydrates. The HYBS identified in the cores from Site UBGH2-6 are medium-to-thick bedded particularly in the lower part of the GHOZ and well coincident with significant high excursions in all of the resistivity, density, and velocity logs. Gas-hydrate saturations in the HYBS range from 12% to 79% with an average of 52% based on pore-water chlorinity. In contrast, the HYBS from Site UBGH2-2_2 are usually thin-bedded and show poor correlations with both of the resistivity and velocity logs owing to volume averaging effects of the logging tools on the thin HYBS beds. Gas-hydrate saturations in the HYBS range from 15% to 65% with an average of 37% based on pore-water chlorinity. In both of the sites, large fluctuations in biogenic opal contents have significant effects on the sediment physical properties, resulting in limited usage of gamma ray and density logs in discriminating sand reservoirs.

J.-J. Bahk; G.-Y. Kim; J.-H. Chun; J.-H. Kim; J.Y. Lee; B.-J. Ryu; J.-H. Lee; B.-K. Son; T.S. Collett

2013-01-01T23:59:59.000Z

130

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network [OSTI]

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

131

Characterization of dynamic change of Fan-delta reservoir properties in water-drive development  

SciTech Connect (OSTI)

Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

1997-08-01T23:59:59.000Z

132

Calculation of geothermal reservoir temperatures and steam fractions from gas compositions  

SciTech Connect (OSTI)

This paper deals with the chemical equilibria and physical characteristics of the fluid in the reservoir (temperature, steam fraction with respect to total water, gas/steam ratio, redox conditions), which seem to be responsible for the observed concentrations of some reactive species found in the geothermal fluids (CO2, H2, H2S and CH4). Gas geochemistry is of particular interest in vapor-dominated fields where the fluid discharged consists of almost pure steam containing a limited number of volatile chemical species. Considering several geothermal systems, a good correlation has been obtained among the temperatures calculated from the gas geothermometers and the temperatures measured in the reservoir of evaluated by other physical or chemical methods. 24 refs., 5 figs.

D'Amore, F.; Truesdell, A.H.

1985-01-01T23:59:59.000Z

133

Estimation Of Reservoir Properties From Seismic Data By Smooth Neural Networks  

E-Print Network [OSTI]

Traditional joint inversion methods reqnire an a priori prescribed operator that links the reservoir properties to the observed seismic response. The methods also rely on a linearized approach to the solution that makes ...

Saggaf, Muhammad M.

2000-01-01T23:59:59.000Z

134

Prediction of Gas Injection Performance for Heterogeneous Reservoirs  

SciTech Connect (OSTI)

This report was an integrated study of the physics and chemistry affecting gas injection, from the pore scale to the field scale, and involved theoretical analysis, laboratory experiments and numerical simulation. Specifically, advances were made on streamline-based simulation, analytical solutions to 1D compositional displacements, and modeling and experimental measures of three-phase flow.

Blunt, M.J.; Orr, F.M. Jr.

2001-03-26T23:59:59.000Z

135

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer etal. absolute permeability model segmented based on critical desorption pressure and Chen etal. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

136

MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA  

SciTech Connect (OSTI)

Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. The volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade. The techniques developed in this research will make it easier to use all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. In this project, we have developed computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Specifically, we have developed methods for adjusting porosity and permeability fields to match both production and time-lapse seismic data and have also developed a procedure to adjust the locations of boundaries between facies to match production data. In all cases, the history matched rock property fields are consistent with a prior model based on static data and geologic information. Our work also indicates that it is possible to adjust relative permeability curves when history matching production data.

Albert C. Reynolds; Dean S. Oliver; Yannong Dong; Ning Liu; Guohua Gao; Fengjun Zhang; Ruijian Li

2004-12-01T23:59:59.000Z

137

U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir  

Gasoline and Diesel Fuel Update (EIA)

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,373 1980's 2,279 2,809 3,155 2,745 2,482 2,712 1,666 1,401 1,640 2,139 1990's 2,242 1,321 1,481 1,767 3,404 1,884 2,871 2,268 2,022 1,841 2000's 2,211 2,420 1,421 1,529 1,147 1,164 1,132 1,171 858 2,487 2010's 1,515 1,100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas New Reservoir Discoveries in Old Fields,

138

U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,637 1980's 2,648 3,080 3,520 3,071 2,778 3,053 1,855 1,556 1,979 2,313 1990's 2,492 1,655 1,773 1,930 3,606 2,518 3,209 2,455 2,240 2,265 2000's 2,463 2,898 1,752 1,653 1,244 1,243 1,197 1,244 1,678 2,656 2010's 1,701 1,260 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: New Reservoir Discoveries in Old Fields of Natural Gas, Wet After

139

U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,301 4,579 2,566 1980's 2,577 2,998 3,419 2,965 2,686 2,960 1,771 1,499 1,909 2,243 1990's 2,412 1,604 1,724 1,866 3,480 2,452 3,110 2,382 2,162 2,196 2000's 2,368 2,800 1,694 1,610 1,206 1,208 1,155 1,188 1,622 2,598 2010's 1,668 1,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas New Reservoir Discoveries in Old Fields

140

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Altering Wettability in Gas Condensate Sandstone Reservoirs for Gas Mobillity Improvement  

E-Print Network [OSTI]

and high temperature, simulating the natural environment of a reservoir. Several experimental techniques are implemented to examine the effect of treatments on wettability. These include flow displacement tests and oil imbibitions. The experimental work...

Fernandez Martinez, Ruth Gabriela

2012-07-16T23:59:59.000Z

142

Impes modeling of volumetric dry gas reservoirs with mobile water  

E-Print Network [OSTI]

neither gravity nor capillary pressure terms are pertinent. Therefore, the IMPES approach showed greater stability for all cases considered in this work. The developed simulator is a Visual Basic Application (VBA) code for which the users can obsereve....3 Averaging of Flow Equation Terms??????.???..???.14 2.4 Material Balance Equation???????.?????????.16 2.5 IMPES Formulation???????????????????17 CHAPTER III PROGRAM CHARACTERISTICS AND PROPERTIES????.23 3.1 VBA Code Algorithm...

Forghany, Saeed

2004-09-30T23:59:59.000Z

143

Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing various production...

Jayakumar, Swathika 1986-

2012-07-09T23:59:59.000Z

144

Characteristics of the nuclear magnetic resonance logging response in fracture oil and gas reservoirs  

Science Journals Connector (OSTI)

Fracture oil and gas reservoirs exist in large numbers. The accurate logging evaluation of fracture reservoirs has puzzled petroleum geologists for a long time. Nuclear magnetic resonance (NMR) logging is an effective new technology for borehole measurement and formation evaluation. It has been widely applied in non-fracture reservoirs, and good results have been obtained. But its application in fracture reservoirs has rarely been reported in the literature. This paper studies systematically the impact of fracture parameters (width, number, angle, etc), the instrument parameter (antenna length) and the borehole condition (type of drilling fluid) on NMR logging by establishing the equation of the NMR logging response in fracture reservoirs. First, the relationship between the transverse relaxation time of fluid-saturated fracture and fracture aperture inthe condition of different transverse surface relaxation rates was analyzed; then, the impact of the fracture aperture, dip angle, length of two kinds of antennas and mud type was calculated through forward modeling and inversion. The results show that the existence of fractures affects the NMR logging; the characteristics of the NMR logging response become more obvious with increasing fracture aperture and number of fractures. It is also found that T2 distribution from the fracture reservoir will be affected by echo spacing, type of drilling fluids and length of antennas. A long echo spacing is more sensitive to the type of drilling fluid. A short antenna is more effective for identifying fractures. In addition, the impact of fracture dip angle on NMR logging is affected by the antenna length.

Lizhi Xiao; Kui Li

2011-01-01T23:59:59.000Z

145

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network [OSTI]

Average Reservoir Fluid Pro erties Before Break- Through Ultimate Economic Re cover Fraction OIP 1(a) (b) (c) 2(a) (b) (c) 3(a) (b) (c) (b) (c) (d) 5(*) (b) (c} 6(a) (b) (c) 3800 4200 4600 3800 4200 4600 3800 4ZOO 4600 3000...-through recovery of 75 per cent. Nitrogen resulted in an 81 per cent break- through recovery, after reaching miscibility at 4160 psi. Although nitrogen gave a higher break-through recovery than flue gas, flue gas 25 0. 80 4600 psi 4200 psi f4 0 0 0 'g 4...

Maxwell, H. D.

2012-06-07T23:59:59.000Z

146

3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming  

SciTech Connect (OSTI)

Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method integrates outcrop--derived statistics, core observations of concretions, and radar amplitude and

Christopher D. White

2009-12-21T23:59:59.000Z

147

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

148

Estimation of original gas in place from short-term shut-in pressure data for commingled tight gas reservoirs with no crossflow  

E-Print Network [OSTI]

gas production (GP) under these circumstances. This research studies different empirical methods to estimate the original gas in place (OGIP) for one-layer or commingled two-layer tight gas reservoirs without crossflow, from short-term (72-hour) shut...

Khuong, Chan Hung

2012-06-07T23:59:59.000Z

149

Dependence of gas shale fracture permeability on effective stress and reservoir pressure: Model match and insights  

Science Journals Connector (OSTI)

Abstract Although permeability data for different gas shales have been reported previously and attempts have been made to match permeability with empirical correlations, theoretical studies of shale permeability modelling are lacking. In this work, the correlation between fracture permeability and effective stress is established for gas shales through theoretical derivation. This model is able to match the permeability data for different gas shales. The matching results for the gas shale studied show that the model coefficient, fracture compressibility, which decreases as initial shale permeability increases, is strongly affected by the flow directions and varies with the shales mineralogical composition. Furthermore, the correlation between fracture permeability and reservoir pressure has also been established. Sensitivity study shows that fracture permeability may decrease significantly with the reservoir pressure drawdown. Moreover, the horizontal fracture permeability drop is found to be significantly affected by the Youngs modulus anisotropic ratio (Eh/Ev). The insights gained warrant further theoretical and experimental studies to evaluate shale fracture permeability.

Dong Chen; Zhejun Pan; Zhihui Ye

2015-01-01T23:59:59.000Z

150

Seismic imaging of reservoir flow properties: Time-lapse amplitude changes  

SciTech Connect (OSTI)

Asymptotic methods provide an efficient means by which to infer reservoir flow properties, such as permeability, from time-lapse seismic data. A trajectory-based methodology, much like ray-based methods for medical and seismic imaging, is the basis for an iterative inversion of time-lapse amplitude changes. In this approach a single reservoir simulation is required for each iteration of the algorithm. A comparison between purely numerical and the trajectory-based sensitivities demonstrates their accuracy. An application to a set of synthetic amplitude changes indicates that they can recover large-scale reservoir permeability variations from time-lapse data. In an application of actual time-lapse amplitude changes from the Bay Marchand field in the Gulf of Mexico we are able to reduce the misfit by 81% in twelve iterations. The time-lapse observations indicate lower permeabilities are required in the central portion of the reservoir.

Vasco, D.W.; Datta-Gupta, Akhil; Behrens, Ron; Condon, Pat; Rickett, Jame s

2003-03-13T23:59:59.000Z

151

Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the re-fracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs  

Science Journals Connector (OSTI)

Abstract It is proposed that very low permeability formations are possible candidates for CO2 sequestration. Further, experimental studies have shown that shale formations have huge affinity to adsorb CO2, the order of 5 to 1 compared to the methane. Therefore, potential sequestration of CO2 in shale formations leading to enhanced gas recovery (EGR) will be a promising while challenging target for the oil and gas industry. On the other side, hydraulic re-fracturing treatment of shale gas wells is currently gaining more attention due to the poor performance of shale gas reservoirs after a couple years of production. Hence, investigating and comparing the performance of CO2-EGR with the re-fracturing treatment is essential for the future economic viability of depleted shale gas reservoirs. This paper presents a systematic comparison of the effect of these two processes on improving gas production performance of unconventional reservoirs, which is not well understood and has not been studied thoroughly in the literature. In this paper, a shale gas field data has been evaluated and incorporated in our simulations for both CO2-EGR and re-fracturing treatment purposes. Numerical simulations are performed using local grid refinement (LGR) in order to accurately model the non-linear pressure drop. Also, a dual-porosity/dual-permeability model is incorporated in the reservoir simulation model. Further, the uncertainties associated with inter-related set of geologic and engineering parameters are evaluated and quantified for re-fracturing treatment through several simulation runs. This comprehensive sensitivity study helps in understanding the key reservoir and fracture properties that affect the production performance and enhanced gas recovery in shale gas reservoirs. The results showed that re-fracturing treatment outperforms CO2-EGR due to the pronounced effect on cumulative methane gas production. Moreover, the sensitivity analysis showed that the characteristics of reservoir matrix including permeability and porosity are the most influential parameters for re-fracturing treatment. The findings of this study recommend hydraulic re-fracturing of shale reservoirs at first for enhancing gas production followed by CO2 injection at a later time. This work provides field operators with more insight into maximizing gas recovery from unconventional shale gas reservoirs using re-fracturing stimulation, CO2 injection, or a combination of both methods.

Mohammad O. Eshkalak; Emad W. Al-Shalabi; Alireza Sanaei; Umut Aybar; Kamy Sepehrnoori

2014-01-01T23:59:59.000Z

152

Petrophysical Analysis and Geographic Information System for San Juan Basin Tight Gas Reservoirs  

SciTech Connect (OSTI)

The primary goal of this project is to increase the availability and ease of access to critical data on the Mesaverde and Dakota tight gas reservoirs of the San Juan Basin. Secondary goals include tuning well log interpretations through integration of core, water chemistry and production analysis data to help identify bypassed pay zones; increased knowledge of permeability ratios and how they affect well drainage and thus infill drilling plans; improved time-depth correlations through regional mapping of sonic logs; and improved understanding of the variability of formation waters within the basin through spatial analysis of water chemistry data. The project will collect, integrate, and analyze a variety of petrophysical and well data concerning the Mesaverde and Dakota reservoirs of the San Juan Basin, with particular emphasis on data available in the areas defined as tight gas areas for purpose of FERC. A relational, geo-referenced database (a geographic information system, or GIS) will be created to archive this data. The information will be analyzed using neural networks, kriging, and other statistical interpolation/extrapolation techniques to fine-tune regional well log interpretations, improve pay zone recognition from old logs or cased-hole logs, determine permeability ratios, and also to analyze water chemistries and compatibilities within the study area. This single-phase project will be accomplished through four major tasks: Data Collection, Data Integration, Data Analysis, and User Interface Design. Data will be extracted from existing databases as well as paper records, then cleaned and integrated into a single GIS database. Once the data warehouse is built, several methods of data analysis will be used both to improve pay zone recognition in single wells, and to extrapolate a variety of petrophysical properties on a regional basis. A user interface will provide tools to make the data and results of the study accessible and useful. The final deliverable for this project will be a web-based GIS providing data, interpretations, and user tools that will be accessible to anyone with Internet access. During this project, the following work has been performed: (1) Assimilation of most special core analysis data into a GIS database; (2) Inventorying of additional data, such as log images or LAS files that may exist for this area; (3) Analysis of geographic distribution of that data to pinpoint regional gaps in coverage; (4) Assessment of the data within both public and proprietary data sets to begin tuning of regional well logging analyses and improve payzone recognition; (5) Development of an integrated web and GIS interface for all the information collected in this effort, including data from northwest New Mexico; (6) Acquisition and digitization of logs to create LAS files for a subset of the wells in the special core analysis data set; and (7) Petrophysical analysis of the final set of well logs.

Martha Cather; Robert Lee; Robert Balch; Tom Engler; Roger Ruan; Shaojie Ma

2008-10-01T23:59:59.000Z

153

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network [OSTI]

. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas...

Freeman, Craig Matthew

2013-11-25T23:59:59.000Z

154

Matrix Heterogeneity Effects on Gas Transport and Adsorption in Coalbed and Shale Gas Reservoirs  

Science Journals Connector (OSTI)

In coalbeds and shales, gas transport and storage are important for accurate ... rates and for the consideration of subsurface greenhouse gas sequestration. They involve coupled fluid phenomena in ... transport, ...

Ebrahim Fathi; I. Ycel Akkutlu

2009-11-01T23:59:59.000Z

155

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

SciTech Connect (OSTI)

This report outlines progress in the second 3 months of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' The development of an automatic technique for analytical solution of one-dimensional gas flow problems with volume change on mixing is described. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of their development of techniques for analytic solutions along a streamline including volume change on mixing for arbitrary numbers of components.

Franklin M. Orr, Jr.

2001-03-31T23:59:59.000Z

156

Natural and Induced Fracture Diagnostics from 4-D VSP in low Permeability Gas Reservoirs  

SciTech Connect (OSTI)

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark Willis; Daniel Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

157

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Our analysis and imaging of reservoir properties at the Fullerton Clear Fork field (Figure 1) is in its final stages. Major accomplishments during the past 6 months include: (1) characterization of facies and cyclicity in cores, (2) correlation of cycles and sequences using core-calibrated wireline logs, (3) calculation and modeling of wireline porosity, (4) analysis of new cores for conventional and special core analysis data, (5) construction of full-field reservoir model, and (6) revision of 3D seismic inversion of reservoir porosity and permeability. One activity has been eliminated from the originally proposed tasks. Task 3 (Characterization and Modeling of Rock Mechanics and Fractures) has been deleted because we have determined that fractures are not significant contributing in the reservoir under study. A second project extension has been asked for to extend the project until 7/31/04. Remaining project activities are: (1) interpretation and synthesis of fieldwide data, (2) preparation of 3D virtual reality demonstrations of reservoir model and attributes, (3) transfer of working data sets to the operator for reservoir implementation and decision-making, and (4) preparation and distribution of final reports.

Stephen C. Ruppel

2004-07-20T23:59:59.000Z

158

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

on unconventional gas has increased with tight gas sands, gas shales and coalbed methane being the primary contributors. Elsewhere, the potential of unconventional gas formations is just beginning to be explored, with assessments under way in Europe, South...

Ortiz Prada, Rubiel Paul

2012-02-14T23:59:59.000Z

159

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

160

Vertical composition gradient effects on original hydrocarbon in place volumes and liquid recovery for volatile oil and gas condensate reservoirs  

E-Print Network [OSTI]

in Place Volumes and Liquid Recovery for Volatile Oil and Gas Condensate Reservoirs. (December 2000) Juan Manual Jaramillo Arias, B. S. , Universidad de America; B. S. , Universidad Nacional de Colombia Chair of Advisory Committee: Dr. Maria A. Barrufet... Reservoir Performance 2. 2 Equation of State Review. . 2. 3 Peng Robinson Equation of State (PR EOS). 2. 4 Vapor Liquid Equilibria. . 2. 5 Volume Translation. 2. 6 Pseudoization or Lumping. 2. 7 Heavy Fraction Characterization. . 2. 8 Compositional...

Jaramillo Arias, Juan Manuel

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

162

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-Print Network [OSTI]

3 TOTAL PRODUCTION GAIN VERSUS GAS INJECTED FOR KW/K = 1 Cum. Water Prod. STB 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 Cum. Gas Prod. MMMSCF . 545 715 . 825 . 830 . 979 . 788 . 979 1. 100 1. 100 1. 230 Cum... Production 13. 0 11. 3 12. 0 12. 5 3. 4 0. 22 TABLE 4 TOTAL PRODUCTION GAIN VERSUS GAS INJECTED FOR KW/K = 10 Cum. Water Prod. STB 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 Cum. Gas Prod. MMMSCF 1. 549 1. 814 1. 942...

Haugen, Sigurd Arild

2012-06-07T23:59:59.000Z

163

Report Title: Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data  

E-Print Network [OSTI]

Report Title: Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data Report Type: Annual Technical Report Reporting Period Start Date: October 1, 2002 Reporting Period Liu, Guohua Gao & Ruijian Li Date Report Issued: March 2004 DOE Award Number: DE-FC26-00BC15309

Reynolds, Albert C.

164

Report Title: Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data  

E-Print Network [OSTI]

Report Title: Mapping of Reservoir Properties and Facies Through Integration of Static and Dynamic Data Report Type: Annual Technical Report Reporting Period Start Date: October 1, 2000 Reporting Period, Ruijian Li, Yafes Abacioglu & Yannong Dong Date Report Issued: December 2001 DOE Award Number: DE-FC26

Reynolds, Albert C.

165

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network [OSTI]

). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

166

Using multi-layer models to forecast gas flow rates in tight gas reservoirs  

E-Print Network [OSTI]

.2 Typical Tight Gas Sand Log Interval (Cotton Valley Formation)........................... 3 2.1 Type of Decline Curves by Arps........................................................................... 11 2.2 Fetkovich Type Curves... ......................................................................................... 14 2.3 Fetkovich Type Curves for Gas Wells .................................................................. 15 3.1 Plan View of Hydraulic Fracture and Grid System...............................................30 3.2 History Match...

Jerez Vera, Sergio Armando

2007-04-25T23:59:59.000Z

167

EOS7C Version 1.0: TOUGH2 Module for Carbon Dioxide or Nitrogen inNatural Gas (Methane) Reservoirs  

SciTech Connect (OSTI)

EOS7C is a TOUGH2 module for multicomponent gas mixtures in the systems methane carbon dioxide (CH4-CO2) or methane-nitrogen (CH4-N2) with or without an aqueous phase and H2O vapor. EOS7C uses a cubic equation of state and an accurate solubility formulation along with a multiphase Darcy s Law to model flow and transport of gas and aqueous phase mixtures over a wide range of pressures and temperatures appropriate to subsurface geologic carbon sequestration sites and natural gas reservoirs. EOS7C models supercritical CO2 and subcritical CO2 as a non-condensible gas, hence EOS7C does not model the transition to liquid or solid CO2 conditions. The components modeled in EOS7C are water, brine, non-condensible gas, gas tracer, methane, and optional heat. The non-condensible gas (NCG) can be selected by the user to be CO2 or N2. The real gas properties module has options for Peng-Robinson, Redlich-Kwong, or Soave-Redlich-Kwong equations of state to calculate gas mixture density, enthalpy departure, and viscosity. Partitioning of the NCG and CH4 between the aqueous and gas phases is calculated using a very accurate chemical equilibrium approach. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. We present instructions for use and example problems to demonstrate the accuracy and practical application of EOS7C.

Oldenburg, Curtis M.; Moridis,George J.; Spycher, Nicholas; Pruess, Karsten

2004-06-29T23:59:59.000Z

168

Development of general inflow performance relationships (IPR's) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

169

Environment of deposition and reservoir properties of Teapot sandstones (Upper Cretaceous), Well Draw field, Converse County, Wyoming  

E-Print Network [OSTI]

fossils, and reservoir morphology. Three distinct sandstone facies produce oil and gas at Well Draw field. The main producing zone consists of thicker, channel turbidites. The lower two zones are thinly interbedded with shale and have limited reservoir...) strati- graphically updip (west) of Well Draw field. Structure map of top of Lower Cretaceous Dakota Sandstone. Contour interval is 1, 000 ft (304. 8 m). IIIodified from Berg (1975). Marine shelf sandstones form an important category of oil and gas...

Sullivan, John Joseph

2012-06-07T23:59:59.000Z

170

Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs  

E-Print Network [OSTI]

FACTORS THAT AFFECT FRACTURE FLUID CLEAN-UP AND PRESSURE BUILDUP TEST RESULTS IN TIGHT GAS RESERVOIRS A Thesis KEVIN TODD MONTGOMERY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering FACTORS THAT AFFECT FRACTURE FLUID CLEAN-UP AND PRESSURE BUILDUP TEST RESULTS IN TIGHT GAS RESERVOIRS A Thesis KEVIN TODD MONTGOMERY Approved as to style and content by: S...

Montgomery, Kevin Todd

1990-01-01T23:59:59.000Z

171

The effect of high-pressure injection of gas on the reservoir volume factor of a crude oil  

E-Print Network [OSTI]

THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By+ BAXTER DS'kONEYCUTT o Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, i957 Major Subject: Petroleum Engineering THE EFFECT OF HIGH-PRESSURE INJECTION OF GAS ON THE RESERVOIR VOLUME FACTOR OF A CRUDE OIL A Thesis By BAXTER D. HONEYCUTT Appro d as to style...

Honeycutt, Baxter Bewitt

2012-06-07T23:59:59.000Z

172

Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea  

Science Journals Connector (OSTI)

Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH26 and UBGH210 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH26 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH26 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 58cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120cm) reaches about 25% with an average saturation of 11%. However, in the UBGH210 well, gas hydrate occupies a 5-m thick sand reservoir near 135mbsf with a maximum saturation of about 60%. In the UBGH210 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

M.W. Lee; T.S. Collett

2013-01-01T23:59:59.000Z

173

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

174

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

175

Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1  

SciTech Connect (OSTI)

This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

1992-06-01T23:59:59.000Z

176

DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N{sup 2} gas. Subtask 2.2 conducts experiments with CO{sup 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application. Regarding Task 1, several results related to subtask 1.1 are given. In this period, most of our research centered on how to estimate the dispersivity at the field scale. Simulation studies (Solano et al. 2001) show that oil recovery for enriched gas drives depends on the amount of dispersion in reservoir media. But the true value of dispersion, expressed as dispersivity, at the field scale, is unknown. This research investigates three types of dispersion in permeable media to obtain realistic estimates of dispersive mixing at the field scale. The dispersivity from single-well tracer tests (SWTT), also known as echo dispersivity, is the dispersivity that is unaffected by fluid flow direction. Layering in permeable media tends to increase the observed dispersivity in well-to-well tracer tests, also known as transmission dispersivity, but leaves the echo dispersivity unaffected. A collection of SWTT data is analyzed to estimate echo dispersivity at the SWTT scale. The estimated echo dispersivities closely match a published trend with length scale in dispersivities obtained from groundwater tracer tests. This unexpected result--it was thought that transmission dispersivity should be greater than echo dispersivity--is analyzed with numerical simulation. A third type of dispersive mixing is local dispersivity, or the mixing observed at a point as tracer flows past it. Numerical simulation results show that the local dispersivity is always less than the transmission dispersivity and greater than the echo dispersivity limits. It is closer to one limit or the other depending on the amount and type of heterogeneity, the autocorrelation structure of the medium's permeability, and the lateral (vertical) permeability. The agreement between the SWTT echo dispersivities and the field trend suggests that the field data are measuring local dispersivities. All dispersivities appear to grow with length. Regarding Task 2, two results are described: (1) An experimental study of N{sup 2} foam finds the two steady-state foam-flow regimes at elevated temperature and with acid, adding evidence that the two regimes occur widely, if not universally, in foam in porous media. (2) A simulation finds that the optimal injection strategy for overcoming gravity override in homogeneous reservoirs is injection of large alternating slugs of surfactant and gas at fixed, maximum attainable injection rates. A simple model for the process explains why the this strategy works so well. Before conducting simulations of SAG displacements, however, it is important to analyze the given foam model using fractional-flow theory. Fractional-flow theory predicts that some foam processes will give foam collapse immediately behind the gas front. In simulations, numerical dispersion leads to a false impression of good sweep efficiency. In this case simply grid refinement may not warn of the inaccuracy of the simulation.

William R. Rossen; Russell T. Johns; Gary A. Pope

2003-01-28T23:59:59.000Z

177

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network [OSTI]

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple...

Izgec, Bulent

2004-09-30T23:59:59.000Z

178

Scientific Visualization Applications in Oil & Gas Exploration and Production  

E-Print Network [OSTI]

Scientific Visualization Applications in Oil & Gas Exploration and Production SIBGRAPI 2009 #12 Property cross plots #12;Oil and gas production analysis and optimization SIBGRAPI 2009 Structural maps with property distributions Well schematics Production network Gas injection optimization Reservoir slices #12

Lewiner, Thomas (Thomas Lewiner)

179

Layered Pseudo-Steady-State Models for tight commingled gas reservoirs  

E-Print Network [OSTI]

Fig. 5 - Typical Production Rate Performance for a Two-Layer Commingled Reservoir with constant p?& 18 Fig. 6 - Typical Average Reservoir Pressure Performance for Two-Layer Commingled Reservoirs 19 Fig. 7 - Fetkovich Decline Curves 21 Fig. 8... ? Matching Single-Layer Rate Decline With Fetkovich Curves 23 Fig. 9 - Matching a Two-Layer Commingled Reservoir With Fetkovich Curves 24 Fig. 10 - Schematic Flow Chart of the Layered PSS Program 29 Fig. 11 - Matching the Rate for Case b (Optimization...

El-Banbi, Ahmed

1995-01-01T23:59:59.000Z

180

Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley-fill Sandstone, Pleasant Prairie Oilfield, Haskell County, Kansas  

E-Print Network [OSTI]

Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley- fill Sandstone, Pleasant Prairie Oilfield, Haskell County, Kansas By 2012 Peter J. Senior B.S., Kansas State University, 2009 Submitted.../02/2012 The Thesis Committee for Peter J. Senior certifies that this is the approved version of the following thesis: Depositional Environment, Reservoir Properties, and EOR Potential of an Incised-valley- fill Sandstone, Pleasant Prairie Oilfield, Haskell...

Senior, Peter

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

SciTech Connect (OSTI)

This report outlines progress in the second quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents results of an investigation of the effects of variation in interfacial tension (IFT) on three-phase relative permeability. We report experimental results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. In order to create three-phase systems, in which IFT can be controlled systematically, we employed analog liquids composing of hexadecane, n-butanol, isopropanol, and water. Phase composition, phase density and viscosity, and IFT of three-phase system were measured and are reported here. We present three-phase relative permeabilities determined from recovery and pressure drop data using the Johnson-Bossler-Naumann (JBN) method. The phase saturations were obtained from recovery data by the Welge method. The experimental results indicate that the wetting phase relative permeability was not affected by IFT variation whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases the ''oil'' and ''gas'' phases become more mobile at the same phase saturations.

Franklin M. Orr, Jr.

2003-03-31T23:59:59.000Z

182

Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix  

Science Journals Connector (OSTI)

Abstract Shale gas reservoir is typical unconventional reservoir, it's necessary to take advantage of multi-stage fractured horizontal well so as to develop those kinds of reservoirs, which can form high conductivity hydraulic fractures and activate natural fractures. Due to the existence of concentration gap between matrix and fractures, desorption gas can simultaneously diffuse into the natural fractures and hydraulic fractures. This process can be called dual diffusion. Based on the triple-porosity cubic model, this paper establishes a new well testing model of multi-stage fractured horizontal well in shale gas reservoir with consideration of the unique mechanisms of desorption and dual diffusion in matrix. Laplace transformation is employed to solve this new model. The pseudo pressure transient responses are inverted into real time space with stehfest numerical inversion algorithm. Type curves are plotted, and different flow regimes in shale gas reservoirs are identified and the effects of relevant parameters are analyzed as well. Considering the mechanism of dual diffusion in matrix, the flow can be divided into five regimes: early linear flow; pseudo-steady state inter-porosity flow; the diffusion from matrix into micro-fractures; the diffusion from matrix into hydraulic fractures and boundary-dominated flow. There are large distinctions of pressure response between pseudo steady state diffusion and unsteady state diffusion under different value of pore volume ratio. It's similar to the feature of pseudo-steady state inter-porosity flow, diffusion coefficient and Langmuir parameters reflect the characters of pseudo-steady state diffusion. The numbers of stage of hydraulic fractures have certain impact on the shape factor of matrix and the inter-porosity coefficient. This new model is validated compared with some existing models. Finally, coupled with an application, this mew model can be approximately reliable and make some more precise productivity prediction.

Leng Tian; Cong Xiao; Mingjin Liu; Daihong Gu; Guangyu Song; Helong Cao; Xianglong Li

2014-01-01T23:59:59.000Z

183

DEVELOPMENT OF MORE-EFFICIENT GAS FLOODING APPLICABLE TO SHALLOW RESERVOIRS  

SciTech Connect (OSTI)

The objective of this research is to widen the applicability of gas flooding to shallow oil reservoirs by reducing the pressure required for miscibility using gas enrichment and increasing sweep efficiency with foam. Task 1 examines the potential for improved oil recovery with enriched gases. Subtask 1.1 examines the effect of dispersion processes on oil recovery and the extent of enrichment needed in the presence of dispersion. Subtask 1.2 develops a fast, efficient method to predict the extent of enrichment needed for crude oils at a given pressure. Task 2 develops improved foam processes to increase sweep efficiency in gas flooding. Subtask 2.1 comprises mechanistic experimental studies of foams with N{sub 2} gas. Subtask 2.2 conducts experiments with CO{sub 2} foam. Subtask 2.3 develops and applies a simulator for foam processes in field application. Regarding Task 1, several very important results were achieved this period for subtask 1.2. In particular, we successfully developed a robust Windows-based code to calculate MMP and MME for fluid characterizations that consist of any number of pseudocomponents. We also were successful in developing a new technique to quantify the displacement mechanism of a gas flood--that is, to determine the fraction of a displacement that is vaporizing or condensing. These new technologies will be very important to develop new correlations and to determine important parameters for the design of gas injection floods. Regarding Task 2, several results were achieved: (1) A detailed study of the accuracy of foam simulation validates the model with fits to analytical fractional-flow solutions. It shows that there is no way to represent surfactant-concentration effects on foam without some numerical artifacts. (2) New results on capillary crossflow with foam show that this is much less detrimental than earlier studies had argued. (3) It was shown that the extremely useful model of Stone for gravity segregation with foam is rigorously true as long as the standard assumptions of fractional-flow theory apply. Without this proof, it was always possible that this powerful model would break down in some important application.

William R. Rossen; Russell T. Johns; Gary A. Pope

2003-01-28T23:59:59.000Z

184

Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China  

E-Print Network [OSTI]

Using ArcGIS to extrapolate greenhouse gas emissions on the Pengxi River, a tributary of the Three Gorges Reservoir in China Lindsey MW Yasarer, PhD Candidate, University of Kansas Dr. Zhe Li, Associate Professor, Chongqing University Dr.... Belinda Sturm, Associate Professor, University of Kansas RESERVOIR GREENHOUSE GAS EMISSIONS (Image from FURNAS www.dsr.inpe.br) HOW TO SCALE UP GHG EMISSIONS? PROJECT OBJECTIVE: Estimate overall greenhouse gas emissions from the Pengxi River Backwater...

Yasarer, Lindsey

2014-11-19T23:59:59.000Z

185

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

186

Two-phase pressure transient analysis for multi-stage fractured horizontal well in shale gas reservoirs  

Science Journals Connector (OSTI)

Abstract Most researches on shale gas production and pressure transient analysis placed more emphasis on single-phase flow, the two-phase flow caused by flowback after hydrofracture in shale gas reservoirs does not attract much attention. This paper presents a two-phase pressure transient analysis model of multi-stage fractured horizontal well with the consideration of wellbore storage, skin effect, two-phase saturation, hydraulic fractures parameters and desorption characteristics of shale gas reservoirs. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method and orthogonal transformation. Pseudo-pressure and pseudo-pressure derivative type curve is plotted by using the Stehfest algorithm. Seven different flow regimes have been identified and the effects of influence factors such as initial saturation, skin factor, absorption index, fracture stages, horizontal well lateral length and wellbore storage coefficient have also been discussed. The presents research could be used to interpret the pressure behavior more accurately and effectively of shale gas reservoirs.

Weiyang Xie; Xiaoping Li; Liehui Zhang; Junchao Wang; Lina Cao; Lin Yuan

2014-01-01T23:59:59.000Z

187

Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China  

Science Journals Connector (OSTI)

Abstract The Lower Silurian Longmaxi Formation (the Palaeozoic) is organic-rich (black) shale in the southern Sichuan Basin (the Yangtze Plate) of China. This study analyses the lateral extent and thickness, burial depth, total organic carbon content and thermal maturity of the Longmaxi Formation black shale as the key features of the shale gas reservoir. The thickness of the black shale ranges from 10 to 170m. The thickest reservoir is located in Changning-Naxi-Yongchuan region. The TOC of the shale at the bottom of the formation (50-m thickness) is above 2.0%. The lateral distribution of TOC varies with the lateral distribution of thickness, with the maximum TOC in the Gongxian-Luzhou-Yongchuan region. The burial depth ranges from 2000 to 4500m. The shale is thermally over mature. The evaluation of reservoir characteristics indicates that the Longmaxi Formation has conditions appropriate for shale gas accumulation and thus resource potential in the southern Sichuan Basin of China. The objective of this preliminary evaluation of the reservoir characteristics is to locate potential areas favourable for exploration. The most favourable areas are defined here as those where the thickness of black shale is more than 100m and the burial depth is less than 3000m; these cover approximately 12,600km2. The most favourable areas, which cover an area of approximately 5100km2, are located in the northeast Luzhou region.

Shangbin Chen; Yanming Zhu; Yong Qin; Hongyan Wang; Honglin Liu; Junhua Fang

2014-01-01T23:59:59.000Z

188

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2002-05-01T23:59:59.000Z

189

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-09-01T23:59:59.000Z

190

Shale gas rock characterization and 3D submicron pore network reconstruction .  

E-Print Network [OSTI]

??"Determining shale gas petrophysical properties is the cornerstone to any reservoir-management practice. Hitherto, conventional core analyses are inadequate to attain the petrophysical properties of shale (more)

Elgmati, Malek, 1982-

2011-01-01T23:59:59.000Z

191

Naturally fractured tight gas reservoir detection optimization. Annual report, September 1993--September 1994  

SciTech Connect (OSTI)

This report is an annual summarization of an ongoing research in the field of modeling and detecting naturally fractured gas reservoirs. The current research is in the Piceance basin of Western Colorado. The aim is to use existing information to determine the most optimal zone or area of fracturing using a unique reaction-transport-mechanical (RTM) numerical basin model. The RTM model will then subsequently help map subsurface lateral and vertical fracture geometries. The base collection techniques include in-situ fracture data, remote sensing, aeromagnetics, 2-D seismic, and regional geologic interpretations. Once identified, high resolution airborne and spaceborne imagery will be used to verify the RTM model by comparing surficial fractures. If this imagery agrees with the model data, then a further investigation using a three-dimensional seismic survey component will be added. This report presents an overview of the Piceance Creek basin and then reviews work in the Parachute and Rulison fields and the results of the RTM models in these fields.

NONE

1994-10-01T23:59:59.000Z

192

Estimating rock properties in two phase petroleum reservoirs: an error analysis  

E-Print Network [OSTI]

. 60x10 1. 16x10 4. 16x10 1. 01 9. 13x10 1. 51 2. 07%10 6. 51x10 5. 42x10 8. 18 3. 16x10 26 function approximated in the tt parameter space gives a mean prediction error which is essentially zero. However, using the permeability estimates obtained.... G ver (Mem er) . L. Curry . D. Ho land ( d of Department) December 1983 ABSTRACT Estimating Rock Properties In Two Phase Petroleum Reservoirs: An Error Analysis. (December 1983) Anthony Ian Paul B. Sc. , Imperial College, London University...

Paul, Anthony Ian

1983-01-01T23:59:59.000Z

193

Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing in horizontal wells has demonstrated successful results for developing unconventional low-permeability oil and gas reservoirs. Despite being vastly implemented by different operators across North America, hydraulic...

Moreno, Jose A

2014-08-12T23:59:59.000Z

194

Pore-scale mechanisms of gas flow in tight sand reservoirs  

E-Print Network [OSTI]

include tight gas sands, gas shales, and coal-bed methane.Figure 3. Although the gas-shale production grows at a

Silin, D.

2011-01-01T23:59:59.000Z

195

Hydraulic Fracturing Simulation of Complex Fractures Growth in Naturally Fractured Shale Gas Reservoir  

Science Journals Connector (OSTI)

Hydraulic fracturing is regarded as one of the essential techniques for developing shale reservoirs at present. During fracturing, propagation of multi-fractures and complex fracture network is developed as re...

Wang Song; Zhao Jinzhou; Li Yongming

2014-10-01T23:59:59.000Z

196

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara, a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock; and the Frontier, a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. This was the tenth quarter of the contract. During this quarter the investigators (1) continued processing the seismic data, and (2) continued modeling some of the P-wave amplitude anomalies that we see in the data.

Mavko, G.; Nur, A.

1994-04-29T23:59:59.000Z

197

Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow  

Science Journals Connector (OSTI)

Abstract Irregular wellbore collapse phenomena and accidents frequently occur during drilling operations in Longmaxi shale gas reservoir. Considering shale formation with natural cross beddings and fractures, we propose a multi-weakness plane instead of a single weakness plane failure model. Shale samples obtained from the Lower Silurian Longmaxi Strata of Sichuan Basin are investigated based on characterization and analysis of mineralogy, pore structure, sliding failure condition, and rock mechanics to study the impact of porous flow on jointed shale masses. Results show that Longmaxi gas shale is a brittle and fracture-prone material with poor hydrating capacity and extremely low permeability in rock matrices. Reduction of rock strength under porous flow may contribute to changes in intensity parameters of the weakness planes. Therefore, considering the failure of multi-weakness planes under porous flow, we present a wellbore stability model for shale gas reservoir. Two types of weakness plane distribution patterns are examined to discuss the effect of the occurrence, numbers, and water saturation of weakness planes. The results demonstrate that the number of weakness planes, difference in weakness plane occurrence, and diverse water saturation levels significantly affect wellbore stability during drilling.

Chuan Liang; Mian Chen; Yan Jin; Yunhu Lu

2014-01-01T23:59:59.000Z

198

Greenhouse Gas Emissions from U.S. Hydropower Reservoirs: FY2011 Annual Progress Report  

SciTech Connect (OSTI)

The primary objective of this study is to quantify the net emissions of key greenhouse gases (GHG) - notably, CO{sub 2} and CH{sub 4} - from hydropower reservoirs in moist temperate areas within the U.S. The rationale for this objective is straightforward: if net emissions of GHG can be determined, it would be possible to directly compare hydropower to other power-producing methods on a carbon-emissions basis. Studies of GHG emissions from hydropower reservoirs elsewhere suggest that net emissions can be moderately high in tropical areas. In such areas, warm temperatures and relatively high supply rates of labile organic matter can encourage high rates of decomposition, which (depending upon local conditions) can result in elevated releases of CO{sub 2} and CH{sub 4}. CO{sub 2} and CH{sub 4} emissions also tend to be higher for younger reservoirs than for older reservoirs, because vegetation and labile soil organic matter that is inundated when a reservoir is created can continue to decompose for several years (Galy-Lacaux et al. 1997, Barros et al. 2011). Water bodies located in climatically cooler areas, such as in boreal forests, could be expected to have lower net emissions of CO{sub 2} and CH{sub 4} because their organic carbon supplies tend to be relatively recalcitrant to microbial action and because cooler water temperatures are less conducive to decomposition.

Stewart, Arthur J [ORNL; Mosher, Jennifer J [ORNL; Mulholland, Patrick J [ORNL; Fortner, Allison M [ORNL; Phillips, Jana Randolph [ORNL; Bevelhimer, Mark S [ORNL

2012-05-01T23:59:59.000Z

199

Rate-decline Relations for Unconventional Reservoirs and Development of Parametric Correlations for Estimation of Reservoir Properties  

E-Print Network [OSTI]

? flow rate (qg) and cumulative production (Gp) versus production time (East Tx tight gas well numerical simulation model). ...................................................................................................... 4 1.2 (Log-log Plot): q/Gp... versus production time. Duong model and Modified Duong Model (MDNG ? 2) matches for numerical simulation case (East Tx tight gas well). ........................... 6 1.3 (Log-log Plot): K/Gp ? 1 versus production time. Modified Logistic Growth Model...

Askabe, Yohanes 1985-

2012-10-24T23:59:59.000Z

200

Evaluation of EOR Potential by Gas and Water Flooding in Shale Oil Reservoirs.  

E-Print Network [OSTI]

??The demand for oil and natural gas will continue to increase for the foreseeable future; unconventional resources such as tight oil, shale gas, shale oil (more)

Chen, Ke

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network [OSTI]

SPE 125893 Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation production. Economic analyses are performed to identify and rank the impact of the above parameters. (3) The lack of dense natural fractures does not eliminate the potential for an economic fracture

Mohaghegh, Shahab

202

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-03-31T23:59:59.000Z

203

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-01-01T23:59:59.000Z

204

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2005-08-21T23:59:59.000Z

205

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-31T23:59:59.000Z

206

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-09-30T23:59:59.000Z

207

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2002-12-01T23:59:59.000Z

208

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-05-01T23:59:59.000Z

209

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-06-30T23:59:59.000Z

210

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-09-01T23:59:59.000Z

211

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2003-07-01T23:59:59.000Z

212

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2004-12-31T23:59:59.000Z

213

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P Paulsson

2006-05-05T23:59:59.000Z

214

Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N. P. Paulsson

2005-09-30T23:59:59.000Z

215

DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS  

SciTech Connect (OSTI)

Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

Bjorn N.P. Paulsson

2003-12-01T23:59:59.000Z

216

Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir  

E-Print Network [OSTI]

of the hydraulic fracture patterns created during the well stimulation process. This work introduces a novel approach to model the hydraulic fractures in a shale reservoir using a stochastic method called random-walk. We see this approach as a beginning step...

Mhiri, Adnene

2014-08-10T23:59:59.000Z

217

Comparison of Various Deterministic Forecasting Techniques in Shale Gas Reservoirs with Emphasis on the Duong Method  

E-Print Network [OSTI]

for Boundary dominated flow (BDF) wells but it has been observed in shale reservoirs the predominant flow regime is transient flow. Therefore it was imperative to develop newer models to match and forecast transient flow regimes. The SEDM/SEPD, the Duong model...

Joshi, Krunal Jaykant

2012-10-19T23:59:59.000Z

218

Facies, depositional environments, and reservoir properties of the Shattuck sandstone, Mesa Queen Field and surrounding areas, southeastern New Mexico  

E-Print Network [OSTI]

iii FACIES, DEPOSITIONAL ENVIRONMENTS, AND RESERVOIR PROPERTIES OF THE SHATTUCK SANDSTONE, MESA QUEEN FIELD AND SURROUNDING AREAS, SOUTHEASTERN NEW MEXICO A Thesis by JARED BRANDON HAIGHT Submitted to the Office... PROPERTIES OF THE SHATTUCK SANDSTONE, MESA QUEEN FIELD AND SURROUNDING AREAS, SOUTHEASTERN NEW MEXICO A Thesis by JARED BRANDON HAIGHT Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

Haight, Jared

2004-09-30T23:59:59.000Z

219

Rapid Determination of Hydrocarbon Reservoir Quality Properties at the Wellsite by Energy Dispersive X-ray Fluorescence Spectroscopy (ED-XRF)  

Science Journals Connector (OSTI)

Elemental analysis of reservoir cuttings can be obtained by ED-XRF in near real-time during oil and gas drilling. Elemental data can be used in stochastic models to predict lithology,...

Smith, Christopher

220

Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion  

SciTech Connect (OSTI)

This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.

Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang; Engel, David W.; Fang, Yilin; Eslinger, Paul W.

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of general inflow performance relationships (IPR`s) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

222

Nonassociated gas resources in low-permeability sandstone reservoirs, lower tertiary Wasatch Formation, and upper Cretaceous Mesaverde Group, Uinta Basin, Utah  

SciTech Connect (OSTI)

The US Geological Survey recognizes six major plays for nonassociated gas in Tertiary and Upper Cretaceous low-permeability strata of the Uinta Basin, Utah. For purposes of this study, plays without gas/water contacts are separated from those with such contacts. Continuous-saturation accumulations are essentially single fields, so large in areal extent and so heterogeneous that their development cannot be properly modeled as field growth. Fields developed in gas-saturated plays are not restricted to structural or stratigraphic traps and they are developed in any structural position where permeability conduits occur such as that provided by natural open fractures. Other fields in the basin have gas/water contacts and the rocks are water-bearing away from structural culmination`s. The plays can be assigned to two groups. Group 1 plays are those in which gas/water contacts are rare to absent and the strata are gas saturated. Group 2 plays contain reservoirs in which both gas-saturated strata and rocks with gas/water contacts seem to coexist. Most units in the basin that have received a Federal Energy Regulatory Commission (FERC) designation as tight are in the main producing areas and are within Group 1 plays. Some rocks in Group 2 plays may not meet FERC requirements as tight reservoirs. However, we suggest that in the Uinta Basin that the extent of low-permeability rocks, and therefore resources, extends well beyond the limits of current FERC designated boundaries for tight reservoirs. Potential additions to gas reserves from gas-saturated tight reservoirs in the Tertiary Wasatch Formation and Cretaceous Mesaverde Group in the Uinta Basin, Utah is 10 TCF. If the potential additions to reserves in strata in which both gas-saturated and free water-bearing rocks exist are added to those of Group 1 plays, the volume is 13 TCF.

Fouch, T.D.; Schmoker, J.W.; Boone, L.E.; Wandrey, C.J.; Crovelli, R.A.; Butler, W.C.

1994-08-01T23:59:59.000Z

223

Depositional environment and reservoir morphology of the Upper Wilcox sandstones, Katy gas field, Waller County, Texas  

E-Print Network [OSTI]

" Wilcox oil and gas fields Page Structure map on the top of the Wilcox Group, Katy gas field, Wailer County, Texas. Contour interval is 100 feet. Nap shows location of wells in the field which penetrate the'IJpper Wilcox" section. Cores are from... Sedimentary structures of the Upper Wilcox sandstones in Humble W-35, Katy gas field, Mailer County, Texas 18 Shale character, deformational features, and sedimentary structures of the Upper Wilcox sand- stones in Humble W-35, Katy gas field, Mailer...

DePaul, Gilbert John

2012-06-07T23:59:59.000Z

224

Peer Reviewed: Experimenting with Hydroelectric Reservoirs  

Science Journals Connector (OSTI)

Peer Reviewed: Experimenting with Hydroelectric Reservoirs ... Researchers created reservoirs in Canada to explore the impacts of hydroelectric developments on greenhouse gas and methylmercury production. ...

R. A. Bodaly; Kenneth G. Beaty; Len H. Hendzel; Andrew R. Majewski; Michael J. Paterson; Kristofer R. Rolfhus; Alan F. Penn; Vincent L. St. Louis; Britt D. Hall; Cory J. D. Matthews; Katharine A. Cherewyk; Mariah Mailman; James P. Hurley; Sherry L. Schiff; Jason J. Venkiteswaran

2004-09-15T23:59:59.000Z

225

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network [OSTI]

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

Wang, Jianwei

2010-01-14T23:59:59.000Z

226

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

227

A method for evaluating a gas reservoir using a digital computer  

E-Print Network [OSTI]

GROSS REVENUE ALL LEASE SJNYAIY YEAR OIL OR CONDENSATE GROSS NET BARRELS BARRELS GROSS HCF GAS NET HCF OIL REVENUE GAS REVENUE TOTAL REVENUE FUTURE IISCSUNTL-0 VET VA&UE COSTS REVENUE 6 30 PEA. 4107. 4959 2699 ' 781 ' 215 ~ 3594... OF ESTINATED PRODUCTION AND REVENUE AS OF JUNE Ie 1963 JOHN OOE iIORKING INTEREST I 00000000 OIL NET INTEREST 0 ~ 8750000D GAS NET INTEREST 0 ' 87500000 PIPICIN GAS CO BIRCHFIELD LEASE 'IIO ~ I SANPLE GAS FIELD BACA COUNTY' COL0%600 FUTURE PRODUCTION...

Garb, Forrest Allan

2012-06-07T23:59:59.000Z

228

Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration  

SciTech Connect (OSTI)

A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Youngs modulus, and Poissons ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. The injection pressure and ground surface displacement are often monitored for injection well safety, and are believed can partially reflect the risk of fault reactivation and seismicity. Based on the reduced order model and response surface, the input parameters can be screened for control the risk of induced seismicity. The uncertainty of the subsurface structure properties cause the numerical simulation based on a single or a few samples does not accurately estimate the geomechanical response in the actual injection site. Probability of risk can be used to evaluate and predict the risk of injection when there are great uncertainty in the subsurface properties and operation conditions.

Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

2013-08-12T23:59:59.000Z

229

Properties of gas clumps and gas clumping factor in the intra-cluster medium  

Science Journals Connector (OSTI)

......3.2 Properties of gas clumps From our simulations...the number of resolved gas clumps in simulated X-ray...in the literature. The production of more realistic mock...given the large numerical cost of simulations at a much...must defer the study of gas clumping statistics at......

F. Vazza; D. Eckert; A. Simionescu; M. Brggen; S. Ettori

2013-01-01T23:59:59.000Z

230

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, April 1, 1993--June 31, 1993  

SciTech Connect (OSTI)

This was the seventh quarter of the contract. During this quarter we (1) continued the large task of processing the seismic data, (2) collected additional geological information to aid in the interpretation, (3) tied the well log data to the seismic via generation of synthetic seismograms, (4) began integrating regional structural information and fracture trends with our observations of structure in the study area, (5) began constructing a velocity model for time-to-depth conversion and subsequent AVO and raytrace modeling experiments, and (6) completed formulation of some theoretical tools for relating fracture density to observed elastic anisotropy. The study area is located at the southern end of the Powder River Basin in Converse County in east-central Wyoming. It is a low permeability fractured site, with both gas and oil present. Reservoirs are highly compartmentalized due to the low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. A basemap is presented with the seismic lines being analyzed for this project plus locations of 13 wells that we are using to supplement the analysis. The arrows point to two wells for which we have constructed synthetic seismograms.

Mavko, G.; Nur, A.

1993-07-26T23:59:59.000Z

231

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

During this quarter we (1) received the last of the field tapes and survey information for the seismic field data acquisition which was finished at the very end of the previous quarter, (2) began the large task of processing the seismic data, (3) collected well logs and other informination to aid in the interpretation, and (4) initiated some seismic modeling studies. As already reported, the field data acquisition was at Amoco`s Powder River Basin site in southeast Wyoming. This is a low permeability fractured site, with both gas and oil present. The reservoir is highly compartmentalized, due to the low permeability, with the fractures providing the only practical drainage paths for production. The two formations of interest are: The Niobrara: a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier: a tight sandstone lying directly below the Niobrara, brought into contact with it by an unconformity. The fractures are thought to lie in a roughly northwest-southeast trend, along the strike of a flexure, which forms one of the boundaries of the basin.

Mavko, G.; Nur, A.

1993-04-26T23:59:59.000Z

232

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network [OSTI]

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

233

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network [OSTI]

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation. (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

234

Analysing sand-dominated channel systems for potential gas-hydrate-reservoirs using an AVO seismic inversion technique on the Southern Hikurangi Margin, New Zealand  

Science Journals Connector (OSTI)

Gas hydrates have recently been recognised as a class of unconventional petroleum resource and the economic viability of gas production from hydrates is now being viewed as a realistic possibility within the next decade. Therefore, potential offshore hydrate accumulations in the world-class endowed gas hydrate province, the Hikurangi Margin, New Zealand, represent a significant medium- to long-term opportunity to meet the country's future energy requirements. In this paper we delineate a potential gas hydrate reservoir in the East Coast Basin, New Zealand and quantitatively estimate its gas hydrate concentrations from 2D seismic data with no well information available. The target is interesting for exploration since it shows evidence for gas-hydrate bearing sands, in particular, buried channel systems. We use a combined analysis of high-resolution velocity analysis, amplitude-versus-offset (AVO) attribute and AVO inversion to investigate whether we can identify regions that are likely to contain highly concentrated gas hydrates and whether they are likely to be sand-dominated. To estimate hydrate concentrations we apply a rock physics model. Our results indicate the presence of several up to 200m thick zones that are likely to host gas hydrates, with one location predicted to consist of high-permeable channel sands and an inferred gas hydrate saturation of ?25%. These findings suggest significant amounts of gas hydrates may be present in high-quality reservoirs on this part of the margin.

M. Fohrmann; I.A. Pecher

2012-01-01T23:59:59.000Z

235

The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity  

E-Print Network [OSTI]

in maintaining wellbore integrity. During the production process in HPHT wells, the pressure differential inside the casing and the surrounding formation is larger than the conventional wells. The stress induced by fluid withdrawal in highly compact reservoirs...

Yuan, Zhaoguang

2012-11-15T23:59:59.000Z

236

Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Peigui Yin; Shaochang Wo

2006-12-08T23:59:59.000Z

237

Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action, and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Zhengxin Tong; Evren Unsal; Siluni Wickramathilaka; Shaochang Wo; Peigui Yin

2008-06-30T23:59:59.000Z

238

Fundamentals of reservoir surface energy as related to surface properties, wettability, capillary action, and oil recovery from fractured reservoirs by spontaneous imbibition  

SciTech Connect (OSTI)

The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed-wet rocks. Imbibition measurements will include novel sensitive pressure measurements designed to elucidate the basic mechanisms that determine induction time and drive the very slow rate of spontaneous imbibition commonly observed for mixed-wet rocks. In further demonstration of concepts, three approaches to improved oil recovery from fractured reservoirs will be tested; use of surfactants to promote imbibition in oil wet rocks by wettability alteration: manipulation of injection brine composition: reduction of the capillary back pressure which opposes production of oil at the fracture face.

Norman R. Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Jason Zhengxin Tong; Peigui Yin; Shaochang Wo

2006-06-08T23:59:59.000Z

239

Reservoir-Wellbore Coupled Simulation of Liquid Loaded Gas Well Performance  

E-Print Network [OSTI]

Liquid loading of gas wells causes production difficulty and reduces ultimate recovery from these wells. In 1969, Turner proposed that existence of annular two-phase flow at the wellhead is necessary for the well to avoid liquid loading...

Riza, Muhammad Feldy

2013-11-12T23:59:59.000Z

240

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging  

DOE Patents [OSTI]

The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

1996-12-17T23:59:59.000Z

242

Inferential determination of various properties of a gas mixture  

DOE Patents [OSTI]

Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

2007-03-27T23:59:59.000Z

243

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2...

Nogueira de Mago, Marjorie Carolina

2005-11-01T23:59:59.000Z

244

Discovery of Large Molecular Gas Reservoirs in Post-Starburst Galaxies  

E-Print Network [OSTI]

Post-starburst (or "E+A") galaxies are characterized by low H$\\alpha$ emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO (1-0) and (2-1) emission with the IRAM 30m and SMT 10m telescopes in 32 nearby ($0.01gas masses of $M(H_2)=10^{8.6}$-$10^{9.8} M_\\odot$ and molecular gas mass to stellar mass fractions of $\\sim10^{-2}$-$10^{-0.5}$, comparable to those of star-forming galaxies. The large amounts of molecular gas rule out complete gas consumption, expulsion, or starvation as the primary mechanism that ends the starburst in these galaxies. The upper limits on $M(H_2)$ for th...

French, K Decker; Zabludoff, Ann; Narayanan, Desika; Shirley, Yancy; Walter, Fabian; Smith, John-David; Tremonti, Christy A

2015-01-01T23:59:59.000Z

245

A better understanding of a Uinta Basin channelized analog reservoir through geostatistics and reservoir simulation  

E-Print Network [OSTI]

the behavior of channelized oil and gas reservoirs. Results show that the number of channels in the model can have a significant effect on performance. The rock properties in these channels and the channel paths are also important factors that determine...

Robbana, Enis

2012-06-07T23:59:59.000Z

246

Handbook of gas hydrate properties and occurrence  

SciTech Connect (OSTI)

This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

Kuustraa, V.A.; Hammershaimb, E.C.

1983-12-01T23:59:59.000Z

247

Transport properties of a meson gas  

E-Print Network [OSTI]

We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

D. Fernandez-Fraile; A. Gomez Nicola

2007-07-09T23:59:59.000Z

248

Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas  

DOE Patents [OSTI]

A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

2008-07-08T23:59:59.000Z

249

ESS 2012 Peer Review - CAES Geo Performance for Natural Gas and Salt Reservoirs and TMH Response of GSFs - Payton Gardner, SNL  

Broader source: Energy.gov (indexed) [DOE]

CAES Geo Performance CAES Geo Performance for Natural Gas and Salt Reservoirs, Thermal-Mechanical- Hydraulic Response of Geological Storage Formations for CAES 27 September 2012 SJ Bauer, M Martinez, W. Payton Gardner, J Holland 2 CAES Geo Performance for Natural Gas and Salt Reservoirs / Thermal-Mechanical-Hydraulic (T-M-H) Response of Geological Storage Formations for CAES  Problem: Siting of CAES facilities may be limited by specific geologic conditions  Opportunity: Fundamental understanding of T-M-H will enable/extend CAES siting potential throughout the US 3 Images taken from: http://www.rwe.com/ 1. CAES in Mined Salt Caverns  Model large scale salt cavern response to air pressure cycling  Experimentally evaluate thermal cycling effect on domal salt

250

5 - Reservoir Engineering  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the basic fundamentals that are useful to practical petroleum engineers by including basic principles, definitions, and data related to the reservoir engineering. It introduces the topics at a level that can be understood by engineers and geologists who are not expert in the field of reservoir engineering. Various correlations are provided in the chapter to understand the functioning of reservoir engineering, and newer techniques for improving recovery are also discussed. Reservoir engineering covers a broad range of subjects including the occurrence of fluids in a gas or oil-bearing reservoir, movement of those or injected fluids, and evaluation of the factors governing the recovery of oil or gas. The objectives of a reservoir engineer are to maximize producing rates and to recover oil and gas from reservoirs in the most economical manner possible. The advent of programmable calculators and personal computers has changed the approach that the reservoir engineers use to solve problems. In the chapter, many of the charts and graphs that have been historically used are presented for completeness and for illustrative purposes. In addition, separate sections of the chapter are devoted to the use of equations in some of the more common programs suitable for programmable calculators and personal computers.

F. David Martin; Robert M. Colpitts

1996-01-01T23:59:59.000Z

251

Identification and evaluation of bypassed and incompletely drained gas reservoirs in the wave-dominated deltaic system of the Frio Formation (Oligocene), North McFaddin field, Victoria County, South Texas  

SciTech Connect (OSTI)

An integrated geologic, engineering, and petrophysical evaluation of North McFaddin field, undertaken in cooperation with the current operator. Anaqua Oil and Gas, Inc., targeted actual and potential secondary natural gas resources within thin reservoirs (typically 5-15 ft thick). Funded by the Gas Research Institute, the U.S. Department of Energy, and the State of Texas, this research forms part of the Secondary Gas Recovery project of the Bureau of Economic Geology. Improved vertical resolution of recently developed wireline tools and advances in well-log analytical techniques have been fundamental in identifying these resources. Reservoirs are vertically compartmentalized by nonreservoir facies of subequal thicknesses and collectively are grouped into sequences 75-100 ft thick. Individual reservoirs typically form laterally discontinuous lobes (5000-6000 ft wide) of variable elongation and orientation with respect to inferred depositional dip. Reservoir facies are interpreted to be of distal shoreface origin. Contour maps of net sandstone thickness, relative spontaneous potential deflection, and resistivity were superposed for each reservoir unit. These data were integrated with structure maps and well-test production, wireline-formation test, and sidewall-core data, allowing the potentially productive limits of each reservoir unit to be delineated. By comparing subsequently determined volumes of original gas in place with historical production data, potentially recoverable reserves were estimated to be as much as 1000 mmcf for individual reservoirs. These procedures enabled not only the recommendation of recompletion targets, but also suggested a strategic location for a potential development well.

Burn, M.J.; Levey, R.A. (Univ. of Texas, Austin, TX (United States)); Sippel, M.A. (Research and Engineering Consultants, Inc., Englewood, CO (United States)); Vidal, J. (ResTech, Inc., Houston, TX (United States)); Ballard, J.R. (Envirocorp Services Technology, Inc., Houston, TX (United States)); Knowles, P. (Anaqua Oil and Gas, Inc., Corpus Christi, TX (United States))

1993-09-01T23:59:59.000Z

252

Relation of sedimentologic features and reservoir quality in a shelf ridge sandstone deposit - comparison of outcrop and subsurface properties  

SciTech Connect (OSTI)

The High Energy Ridge Margin (HERM) facies of the Shannon Sandstone in the Salt Creek anticline area of the Powder River basin, Wyoming, is comprised of fine to medium-grained glauconitic sandstone (82%), which is cross-bedded, rippled, and burrowed, and shale and limonitic clay (18%). Histograms of log permeability-to-air values measured from 214 1-in. diameter cores drilled from the face of an outcrop of the HERM facies of the lower Shannon indicate the existence of two major permeability populations. These two permeability populations can be related to cross-bedded sandstone (higher permeabilities), and noncross-bedded, rippled, and burrowed sandstone with clay laminae (lower permeabilities). Examination of the HERM facies in upper Shannon cores from Teapot Dome oil field, located 5 mi from the studied outcrop at a depth of 300 ft, indicate similar sedimentologic features and similar permeability populations related to cross-bedded and noncross-bedded subfacies within the HERM facies. Comparisons of permeability and porosity histograms, cumulative distribution functions, correlation lengths, and natural logarithm of permeability versus porosity plots also indicate a strong similarity in HERM reservoir properties between outcrop and Teapot Dome field. The similarities of outcrop and Teapot Dome permeabilities and porosities, which are from the same geologic facies but from different depositional episodes (upper and lower Shannon), suggest that rocks deposited under similar depositional processes within a given deposystem have similar reservoir properties.

Jackson, S.R.; Szpakiewicz, M.; Tomutsa, L.

1987-05-01T23:59:59.000Z

253

White Dwarf Properties and the Degenerate Electron Gas  

E-Print Network [OSTI]

White Dwarf Properties and the Degenerate Electron Gas Nicholas Rowell April 10, 2008 Contents 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Consequences for the Mass of White Dwarfs . . . . . . . . . . . . . . . . . . . . 7 3 1 Introduction White dwarfs are the second most common type of star in the Galaxy, and represent

Tittley, Eric

254

Paleozoic oil/gas shale reservoirs in southern Tunisia: An overview  

Science Journals Connector (OSTI)

Abstract During these last years, considerable attention has been given to unconventional oil and gas shale in northern Africa where the most productive Paleozoic basins are located (e.g. Berkine, Illizi, Kufra, Murzuk, Tindouf, Ahnet, Oued Mya, Mouydir, etc.). In most petroleum systems, which characterize these basins, the Silurian played the main role in hydrocarbon generation with two main hot shale levels distributed in different locations (basins) and their deposition was restricted to the Rhuddanian (Lllandovery: early Silurian) and the LudlowPridoli (late Silurian). A third major hot shale level had been identified in the Frasnian (Upper Devonian). Southern Tunisia is characterized by three main Paleozoic sedimentary basins, which are from North to South, the southern Chotts, Jeffara and Berkine Basin. They are separated by a major roughly EW trending lower Paleozoic structural high, which encompass the Mehrez-Oued Hamous uplift to the West (Algeria) and the Nefusa uplift to the East (Libya), passing by the Touggourt-Talemzane-PGA-Bou Namcha (TTPB) structure close to southern Tunisia. The forementioned major source rocks in southern Tunisia are defined by hot shales with elevated Gamma ray values often exceeding 1400 API (in Hayatt-1 well), deposited in deep water environments during short lived (c. 2Ma) periods of anoxia. In the course of this review, thickness, distribution and maturity maps have been established for each hot shale level using data for more than 70 wells located in both Tunisia and Algeria. Mineralogical modeling was achieved using Spectral Gamma Ray data (U, Th, K), SopectroLith logs (to acquire data for Fe, Si and Ti) and Elemental Capture Spectroscopy (ECS). The latter technique provided data for quartz, pyrite, carbonate, clay and Sulfur. In addition to this, the Gamma Ray (GR), Neutron Porosity (?N), deep Resistivity (Rt) and Bulk Density (?b) logs were used to model bulk mineralogy and lithology. Biostratigraphic and complete geochemical review has been undertaken from published papers and unpublished internal reports to better assess these important source intervals.

Mohamed Soua

2014-01-01T23:59:59.000Z

255

Data requirements and acquisition for reservoir characterization  

SciTech Connect (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min.

1993-03-01T23:59:59.000Z

256

Depositional environments and reservoir properties of the upper Queen Formation, Concho Bluff and Concho Bluff North fields, Midland basin, Texas  

SciTech Connect (OSTI)

The upper Queen Formation (Upper Permian) in Concho Bluff and Concho Bluff North fields (Crane, Upton, and Ector counties, Texas) consists of four thick (6-11 m) clastic members separated by evaporite members, and contains several major sandstone reservoirs. A study of cores and logs from the upper Queen was done to determine its depositional environments and the properties of its sandstone reservoirs. Four facies are present in the upper Queen. Facies 1 consists of planar- and wavy-laminated fine and very fine sandstones and silty sandstones deposited in fluvial sandflats and delta-plains. Facies 2 consists of wavy-laminated siltstones and haloturbated mudstones with anhydrite nodules deposited in subaqueous prodelta environments and subaerial saline mudflats. Facies 3 consists of well-sorted fine to very fine sandstones with horizontal and inclined planar laminae deposited in eolian sand sheets. Facies 4 consists of massive to laminated halite and anhydrite deposited in hypersaline playas. The vertical sequence of these facies indicates that the upper Queen was deposited during four cycles of fan-delta progradation into and retreat from coastal-plain playas during a sea level lowstand in the Midland basin. The sandstones of the fluvial sandflat and eolian sand-sheet facies constitute the reservoirs of the upper Queen in the fields. The average cumulative thickness of these facies is 8 m, and the fields average 16% porosity and 40-50 md of permeability. The remaining facies are all nonproductive with averagge porosities of less than 10% and average permeabilities of less than 1 md.

Mazzullo, J.; Newsom, D.; Harper, J.; McKone, C.; Price, B. (Texas A and M Univ., College Station (United States))

1992-04-01T23:59:59.000Z

257

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir  

E-Print Network [OSTI]

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir: a comparison with natural dioxide Á Dissolved organic matter Á Boreal hydroelectric reservoir Á Greenhouse gas production

Long, Bernard

258

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

259

Chapter 5 - Coal Composition and Reservoir Characterization  

Science Journals Connector (OSTI)

Abstract Coal consists of organic and mineral matter. Fixed carbon from organic matter measures the energy output of coal during combustion. Mineral matter determines how coal responds to combustion and affects reservoir porosity and permeability. Minerals infill pores, cleats, or fractures and replace the organic composition of coal. Organic composition is grouped into maceral association as microlithotypes and macrolithotypes, the latter for megascopic field descriptions (e.g. coal cores and mine face). Coal composition controls reservoir properties such as gas adsorption capacity, gas content, porosity, and permeability. Permeability is important to gas transport from coal matrix pores to the production well. Coal permeability is a function of the width, length, and height of cleats or fractures as well as the aperture, spacing, frequency or density, and connectivity of cleats or fractures. Coal cleats or fractures formed during burial, compaction, and coalification (endogenetic) and after coalification during deformation, uplift, and erosion of the basin of deposition.

Romeo M. Flores

2014-01-01T23:59:59.000Z

260

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

for estimates of the oil and gas flow rate from the Macondoteam and carried out oil and gas flow simulations using theoil-gas system. The flow of oil and gas was simulated using

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reservoir geochemistry: A link between reservoir geology and engineering?  

SciTech Connect (OSTI)

Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-02-01T23:59:59.000Z

262

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Excellent progress has been made on all project objectives and goals. All tasks have been completed in the Phase 1 study area, the initial area of project focus. Primary elements of this work include the following: The stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. Finally, a preliminary 3-D model has been constructed that incorporates stratigraphic architecture, rock-fabric data, and petrophysical data. Reservoir volumetrics calculated from the model show that a very large fraction of the original oil in place remains.

Stephen C. Ruppel

2003-01-01T23:59:59.000Z

263

Reservoir Protection (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

264

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

265

Pressure maintenance in a volatile oil reservoir  

E-Print Network [OSTI]

reservoir. Historically, produced and makeup gas was injected to maintain pressure. In today's economy. gas has an increasing market value compared to the price of oil. Therefore, it becomes increasingly difficult to justify economically the injection... of produced gas and the purchase of additional make up gas to maintain reservoir pressure. Accordingly, water injection to maintain pressure becomes more favorable economically. This research investigated water injection into a volatile oil reservoir...

Schuster, Bruce Alan

2012-06-07T23:59:59.000Z

266

Predicting production performance of CBM reservoirs  

Science Journals Connector (OSTI)

Prediction of gas production from the coalbed methane (CBM) reservoirs is challenging due to the complex interaction of storage and transport mechanisms. The vast majority of the gas in CBM reservoirs is stored by adsorption in the coal matrix which practically has no permeability. The flow to production wells however takes place through the cleats or the natural fracture system which store relatively small amounts of gas. These unique coal characteristics have resulted in classification of CBM as an unconventional gas resource. Gas production from CBM reservoirs is governed by gas diffusion through coal matrix followed by gas desorption into the cleat system through which the gas flows to the wellbore generally under two-phase conditions. As a result, the production profile of the CBM reservoirs greatly differs from conventional gas reservoirs. This precludes the use of common techniques such as decline curves to forecast the recovery, future revenues, and well performance. Numerical reservoir models (simulators) that incorporate the unique flow and storage characteristics of CBM reservoirs are by far the best tools for predicting the gas production from the CBM reservoirs. It is however cumbersome, time consuming, and expensive to use a complex reservoir simulator for evaluating CBM prospects when the required reservoir parameters are not available. Therefore, there is a need for a quick yet reliable tool for predicting production performance of CBM reservoirs. This paper presents a set of production type curves that can be used for predicting gas and water the production from CBM prospects. The type curves are particularly useful for parametric studies when the key characteristics are not well established. A numerical reservoir model that incorporated the unique flow and storage characteristics of CBM reservoirs was employed to develop the type curves. The impact of various reservoir parameters on the type curves was investigated to confirm the uniqueness of the type curves. The application and limitation of the type curves have been also discussed.

K. Aminian; S. Ameri

2009-01-01T23:59:59.000Z

267

NETL: Natural Gas Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources Significant volumes of natural gas can also be produced from tight (low permeability) sandstone reservoirs and coal seams, both unconventional reservoir rocks. NETL...

268

5 - Reservoir Engineering  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the basic fundamentals useful to practical petroleum engineers. Topics are introduced at a level that can be understood by engineers and geologists who are not expert in this field. Various correlations are provided in the chapter where useful. Newer techniques for improving recovery are also discussed in the chapter. Reservoir engineering covers a broad range of subjects including the occurrence of fluids in a gas or oil-beating reservoir, movement of those fluids or injected fluids, and evaluation of the factors governing the recovery of oil or gas. The objectives of a reservoir engineer are to maximize production rates and to ultimately recover oil and gas from reservoirs in the most economical manner possible. The chapter includes many of the charts and graphs that have been historically used. While illustrating enhanced oil recovery methods, estimation of waterflood residual oil saturation, fluid movements, material balance with volumetric analysis, the chapter also discusses pressure transient testing, recovery of hydrocarbons, and decline curve analysis. Decline curve analysis estimates primary oil recovery for an individual reservoir. The conventional analysis of production decline curves for oil or gas production consists of plotting the log of flow rate versus time on semilog paper. In case of a decline in the rate of production, the data are extrapolated into the future to provide an estimate of expected production and reserves.

2004-01-01T23:59:59.000Z

269

Integrated seismic study of naturally fractured tight gas reservoirs. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This was the ninth quarter of the contract. During this quarter we (1) continued processing the seismic data, (2) collected additional logs to aid in the interpretation, and (3)began modeling some of the P-wave amplitude anomalies that we see in the data. The study area is located at the southern end of the powder river Basin in Converse county in east-central Wyoming. It is a low permeability fractured site, with both has and oil present. Reservoirs are highly compartmentalized due tot he low permeabilities, and fractures provide the only practical drainage paths for production. The two formations of interest are: The Niobrara; a fractured shale and limey shale to chalk, which is a reservoir rock, but also its own source rock. The Frontier, a tight sandstone lying directly below the Niobrara, brought into contract with it by an unconformity.

Mavko, G.; Nur, A.

1994-01-29T23:59:59.000Z

270

Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin  

Science Journals Connector (OSTI)

Successful exploration and development of shale-gas in the United States and Canada suggest ... is regarded as a strong potential play for shale-gas with the following significant features: (1)...R...o>2.5%); (4)...

Tonglou Guo ???

2013-12-01T23:59:59.000Z

271

Exponential approach to, and properties of, a non-equilibrium steady state in a dilute gas  

E-Print Network [OSTI]

We investigate a kinetic model of a system in contact with several thermal reservoirs at different temperatures $T_\\alpha$. Our system is a spatially uniform dilute gas whose internal dynamics is described by the nonlinear Boltzmann equation with Maxwellian collisions. Similarly, the interaction with reservoir $\\alpha$ is represented by a Markovian process that has the Maxwellian $M_{T_\\alpha}$ as its stationary state. We prove existence and uniqueness of a non-equilibrium steady state (NESS) and show exponential convergence to this NESS in a metric on probability measures introduced into the study of Maxwellian collisions by Gabetta, Toscani and Wenberg (GTW). This shows that the GTW distance between the current velocity distribution to the steady-state velocity distribution is a Lyapunov functional for the system. We also derive expressions for the entropy production in the system plus the reservoirs which is always positive.

Eric A. Carlen; Joel L. Lebowitz; Clement Mouhot

2014-06-16T23:59:59.000Z

272

Marine Gas Hydrates  

Science Journals Connector (OSTI)

In several review articles, e.g., Boswell and Collett (2010), four gas hydrate reservoir types are evaluated in terms of their resource potential: sand-dominated reservoirs, clay-dominated fractured reservoirs, ....

Gerhard Bohrmann; Marta E. Torres

2014-09-01T23:59:59.000Z

273

Radioactive Marker Measurements in Heterogeneous Reservoirs ...  

E-Print Network [OSTI]

quence of subsurface fluid water, gas, oil production e.g., Gam- ...... reservoirs.'' J. Pet. Technol., 25, 734744. Gonzalez-Moran, T., Rodriguez, R., and Cortes,...

2004-05-04T23:59:59.000Z

274

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

2006-09-30T23:59:59.000Z

275

Metalorganic frameworks Gas-Sorption Properties of Cobalt(II)Carborane-Based  

E-Print Network [OSTI]

Metal�organic frameworks Gas-Sorption Properties of Cobalt(II)�Carborane-Based Coordination materials, and nanostructures. Interestingly however, none of these studies address how the gas-sorption

276

Alternate Representations for Numerical Modeling of Multi-Stage Hydraulically Fractured Horizontal Wells in Shale Gas Reservoirs.  

E-Print Network [OSTI]

??Increasing demand of oil and natural gas and depletion of production from conventional resources accelerate the advancement of technology to economically produce oil and natural (more)

Siripatrachai, Nithiwat

2011-01-01T23:59:59.000Z

277

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

of natural gas in oil) STB Stock Tank Barrel ( one barrel oftank barrel (scf/STB). Gas solubility increases with pressure such that oilgas in oil is given by SGOR which has units of standard cubic feet per stock-tank

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

278

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

279

Using 3He/4He isotope ratios to identify the source of deep reservoir contributions to shallow fluids and soil gas  

Science Journals Connector (OSTI)

One strategy to counteract rising atmospheric CO2 levels is the capture and subsequent geological storage of anthropogenic CO2. Legislation will require the monitoring and early identification of any leakage to the near surface from the storage site. Owing to their low concentrations and unreactive nature, noble gases are well established as key tracers of crustal fluid systems (Ballentine et al., 2002). The 3He/4He and noble gas content of soil gases and groundwater may provide the opportunity to detect, identify and quantify a weak, deep-sourced signal that contributes to a larger, near-surface biological signal. We present 3He/4He, Ne, Ar, Kr, and Xe data from near-surface soil gases, two of which exhibit hydrocarbon microseepage from deeper oil reservoirs from the Teapot Dome oil field, Wyoming, USA. We also present a noble gas characterisation of the oil reservoirs beneath the seepages. A helium excess (4Heexcess up to 37.7ppm) relative to air concentrations (4Heair=5.24ppm) is found in soil gases at both microseepage sites. Error propagation demonstrates that it is possible to unambiguously resolve the 3He/4He of the deep helium source and allows us to explore the limits of this technique. At one seep the resolved deep 3He/4He=0.0550.009Ra (where Ra=1.40נ10?6) is indistinguishable from the range observed in the subsurface hydrocarbon system of 0.046 to 0.109Ra. Notably the soil gas 4He/CH4=1.8נ10?3 at this microseepage site compares similarly with the lower subsurface source 4He/CH4=1.4 to 3.4נ10?4 and demonstrates the conservative nature of helium as a tracer. We show that the sensitivity of helium as a deep fluid tracer should be increased by up to two orders of magnitude in groundwater compared to soil gases studied here due to the low solubility of helium in water. Groundwater rather than soil gas should be the priority in any monitoring strategy that plans to use helium as an early indicator of deep fluid microseepage.

Sarah J. Mackintosh; Chris J. Ballentine

2012-01-01T23:59:59.000Z

280

Improved recovery from Gulf of Mexico reservoirs. Quarterly status report, January 1--March 31, 1996  

SciTech Connect (OSTI)

On February 18, 1992, Louisiana State University with two technical subcontractors, BDM, Inc. and ICF, Inc., began a research program to estimate the potential oil and gas reserve additions that could result from the application of advanced secondary and enhanced oil recovery technologies and the exploitation of undeveloped and attic oil zones in the Gulf of Mexico oil fields that are related to piercement salt domes. This project is a one year continuation of this research and will continue work in reservoir description, extraction processes, and technology transfer. Detailed data will be collected for two previously studies reservoirs: a South Marsh Island reservoir operated by Taylor Energy and one additional Gulf of Mexico reservoir operated by Mobil. Additional reservoirs identified during the project will also be studied if possible. Data collected will include reprocessed 2-D seismic data, newly acquired 3-D data, fluid data, fluid samples, pressure data, well test data, well logs, and core data/samples. The new data will be used to refine reservoir and geologic characterization of these reservoirs. Further laboratory investigation will provide additional simulation input data in the form of PVT properties, relative permeabilities, capillary pressure, and water compatibility. Geological investigations will be conducted to refine the models of mud-rich submarine fan architectures used by seismic analysts and reservoir engineers. Research on advanced reservoir simulation will also be conducted. This report describes a review of fine-grained submarine fans and turbidite systems.

Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

1996-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optimization of coalbed-methane-reservoir exploration and development strategies through integration of simulation and economics  

SciTech Connect (OSTI)

The unique properties and complex characteristics of coalbed methane (CBM) reservoirs, and their consequent operating strategies, call for an integrated approach to be used to explore for and develop coal plays and prospects economically. An integrated approach involves the use of sophisticated reservoir, wellbore, and facilities modeling combined with economics and decision-making criteria. A new CBM prospecting tool (CPT) was generated by combining single-well (multilayered) reservoir simulators with a gridded reservoir model, Monte Carlo (MC) simulation, and economic modules. The multilayered reservoir model is divided into pods, representing relatively uniform reservoir properties, and a 'type well' is created for each pod. At every MC iteration, type-well forecasts are generated for the pods and are coupled with economic modules. A set of decision criteria contingent upon economic outcomes and reservoir characteristics is used to advance prospect exploration from the initial exploration well to the pilot and development stages. A novel approach has been used to determine the optimal well spacing should prospect development be contemplated. CPT model outcomes include a distribution of after-tax net present value (ATNPV), mean ATNPV (expected value), chance of economic success (Pe), distribution of type-well and pod gas and water production, reserves, peak gas volume, and capita. Example application of CPT to a hypothetical prospect is provided. An integrated approach also has been used to assist with production optimization of developed reservoirs. For example, an infill-well locating tool (ILT) has been constructed to provide a quick-look evaluation of infill locations in a developed reservoir. An application of ILT to a CBM reservoir is provided.

Clarkson, C.R.; McGovern, J.M.

2005-12-15T23:59:59.000Z

282

Coalbed Methane Production Analysis and Filter Simulation for Quantifying Gas Drainage from Coal Seams  

Science Journals Connector (OSTI)

Gas and water production rate analysis of CBM wells help determining dynamic reservoir properties of ... for estimating GIP and its change between particular production periods. Moreover, geostatistics can be use...

C. zgen Karacan; Ricardo A. Olea

2014-01-01T23:59:59.000Z

283

Controlled-source electromagnetic modeling of the masking effect of marine gas hydrate on a deeper hydrocarbon reservoir  

E-Print Network [OSTI]

that electric field data were reliable to roughly 5000 m of TX-RX offset for the 1 Hz and 3 Hz cases, and to 6500 m offset for 10 Hz. The gas hydrate/hydrocarbon model was then run with zero-value boundary conditions. The goal was to determine what effect...

Dickins, David

2009-06-02T23:59:59.000Z

284

Uncertainty quantification of volumetric and material balance analysis of gas reservoirs with water influx using a Bayesian framework  

E-Print Network [OSTI]

data, such as pressure and production data, are available. In this work, I propose a methodology for using a Bayesian approach to quantify the uncertainty of original gas in place (G), aquifer productivity index (J), and the volume of the aquifer (Wi...

Aprilia, Asti Wulandari

2007-04-25T23:59:59.000Z

285

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network [OSTI]

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

286

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

287

Properties of Molecular Gas in Galaxies in Early and Mid Stage of Interaction: II. Molecular Gas Fraction  

E-Print Network [OSTI]

We have investigated properties of interstellar medium in interacting galaxies in early and mid stages using mapping data of 12CO(J =1-0) and HI. Total gas mass (a sum of atomic and molecular gas mass) in interacting galaxies slightly reduced with large dispersion in the comparison with field galaxies. We found that molecular gas mass is enhanced in interacting galaxies assuming the standard CO-H2 conversion factor, while atomic gas mass is reduced. These results are reinforced by the fact that interacting galaxies have higher molecular gas fraction (fmol), a ratio of the surface density of molecular gas to that of total gas, (0.71 +- 0.15) than isolated galaxies (0.52 +- 0.18) and this indicates that an efficient transition from atomic gas to molecular gas is induced by the interaction. Isolated spiral galaxies show monotonically and gradually increase of fmol along the surface density of total gas. Contrary to isolated galaxies, interacting galaxies show high fmol (>0.8) even at low surface density of total...

Kaneko, Hiroyuki; Iono, Daisuke; Tamura, Yoichi; Tosaki, Tomoka; Nakanishi, Koichiro; Sawada, Tsuyoshi

2014-01-01T23:59:59.000Z

288

A Methodological Approach For Reservoir Heterogeneity Characterization Using Artificial Neural Networks  

E-Print Network [OSTI]

distribution of rock properties. Characterization of porosity, permeability, oil, gas and water saturation of hydrocarbon bearing rocks is the focus of this technical paper. Calculating formation porosity and waterSPE 28394 A Methodological Approach For Reservoir Heterogeneity Characterization Using Artificial

Mohaghegh, Shahab

289

A Hierarchical Multiscale Approach to History Matching and Optimization for Reservoir Management in Mature Fields  

E-Print Network [OSTI]

Reservoir management typically focuses on maximizing oil and gas recovery from a reservoir based on facts and information while minimizing capital and operating investments. Modern reservoir management uses history-matched simulation model...

Park, Han-Young

2012-10-19T23:59:59.000Z

290

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

291

California--State Offshore Nonassociated Natural Gas, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) California--State Offshore Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet...

292

An Investigation of Regional Variations of Barnett Shale Reservoir Properties, and Resulting Variability of Hydrocarbon Composition and Well Performance  

E-Print Network [OSTI]

In 2007, the Barnett Shale in the Fort Worth basin of Texas produced 1.1 trillion cubic feet (Tcf) gas and ranked second in U.S gas production. Despite its importance, controls on Barnett Shale gas well performance are poorly understood. Regional...

Tian, Yao

2010-07-14T23:59:59.000Z

293

Prediction of reservoir properties using diagenetic analysis of a template unit: example from Upper Cretaceous sandstones in Powder River basin, Wyoming  

SciTech Connect (OSTI)

Depositional and postdepositional histories of the Parkman formation in the Powder River basin, Wyoming, were studied in detail and compared with other Upper Cretaceous lenticular sandstone units of the Teapot, Sussex, and Shannon sandstones. Petrographic analysis was done using light, cathodoluminescent, scanning, scanning transmission, and backscattered microscopic techniques. X-ray microanalysis was done using energy and wavelength-dispersive spectroscopy systems. The primary diagenetic events observed in these Upper Cretaceous sandstones include ductile-grain deformation and original porosity reduction; formation of authigenic chlorite, kaolinite, illite, and smectite; quartz overgrowths; formation of authigenic feldspar; alteration of feldspar; carbonate cementation; and pyrite and iron oxide precipitation. The major effects upon reservoir properties include: porosity and permeability reduction due to formation of authigenic clays, quartz, and carbonate cement; and early formation of chlorite coatings preventing complete destruction of porosity by quartz overgrowths. Diagenetic alternations appear to be strongly influenced by depositional facies and chemistries of original interstitial waters. However, sources for authigenic silica and clays were predominantly exogenic, although some authigenic minerals had endogenic sources such as feldspar alteration to clay minerals. Authigenic minerals that have exogenic sources appear to have precipitated from fluids generated during diagenesis of the surrounding mud rocks. For this reason, major diagenetic trends in these lenticular sandstones are similar. A diagenetic model developed from the results of analysis of the Parkman formation was successfully used to predict reservoir properties in the Teapot, Sussex, and Shannon sandstones.

Dogan, A.U.; Brenner, R.L.

1987-05-01T23:59:59.000Z

294

Mathematical models of interconnections between composition and properties of oils in the Apsheron oil-and gas-bearing region of Azerbaijan  

SciTech Connect (OSTI)

This paper reports on the example of oils in the Apsheron oil- and gas-bearing region and Apsheron archipelago located in the western part of the Southern Caspian depression, of which the authors have developed mathematical models of a group hydrocarbon composition; interconnection between oil density and content of asphalt-resin materials, benzine, and ligroin; interconnections between oil density and viscosity and temperature; and interconnections between content of asphalt-resin properties and low-temperature fractions. The models obtained enable us to extrapolate factual data on composition and properties of oils beyond the limits of fixed depths of burial of oil-saturated reservoirs both to a zone of great depths and increased temperatures where hydrocarbons were in a gaseous or oil and gaseous state, and to a zone of near-surface conditions where oils acquire the consistency of asphalts.

Buryakovsky, L.A.; Dzhevanshir, R.D. (Inst. of Deep Oil and Gas Deposits, Azerbaijan Academy of Sciences, 33 Narimanov Prospect, Baku 370143, Azerbaijan (SU))

1992-01-01T23:59:59.000Z

295

Depositional facies, textural characteristics, and reservoir properties of dolomites in Frobisher-Alida interval in southwest North Dakota  

SciTech Connect (OSTI)

The Mississippian Frobisher-Alida interval is an upward-shoaling cycle that began with open-marine sedimentation and culminated with the deposition of a widespread sabkha-salina evaporite. This cycle is the most prolific oil-producing interval in the North Dakota portion of the Williston basin. Most Frobisher-Alida production in the southern Williston basin is from dolomite reservoirs. The six major facies defined in this paper are lithologic suites that represent sediments and precipitates deposited in similar environments. 20 figures, 5 tables.

Petty, D.M.

1988-10-01T23:59:59.000Z

296

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

297

Effects of fluid properties and initial gas saturation on oil recovery by water flooding  

E-Print Network [OSTI]

EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

Arnold, Marion Denson

2012-06-07T23:59:59.000Z

298

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

SciTech Connect (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

299

4. International reservoir characterization technical conference  

SciTech Connect (OSTI)

This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

NONE

1997-04-01T23:59:59.000Z

300

Relative permeability of CBM reservoirs: Controls on curve shape  

Science Journals Connector (OSTI)

Relative permeability to gas and water for 2-phase flow coalbed methane (CBM) reservoirs has long been known to exhibit a strong control on (gas and water) production profile characteristics. Despite its important control on both primary and enhanced recovery of CBM for coal seams that have not been fully dewatered, relative permeability in coal has received little attention in the literature in the past decade. There are few published laboratory-derived curves; these studies and their resulting data represent a small subset of the commercial CBM reservoirs and do not allow for a systematic investigation of the physical controls on relative permeability curve shape. Other methods for estimation of relative permeability curves include derivation from simulation history-matching, and production data analysis. Both of these methods will yield pseudo-relative permeability curves whose shapes could be affected by several dynamic CBM reservoir and operating characteristics. The purpose of the current work is to perform a systematic investigation of the controls on CBM relative permeability curve shape, including non-static fracture permeability and porosity, multi-layer effects and transient flow. To derive the relative permeability curves, effective permeability to gas and water are obtained from flow equations, flow rates and pressure data. Simulated cases are analyzed so that derived and input curves may be compared allowing for investigation of CBM reservoir properties on curve shape. One set of relative permeability curves that were input into the simulator were obtained from pore-scale modeling. Field cases from two basins are also examined and controls on derived relative permeability curve shape inferred. The results of this work should be useful for future CBM development and greenhouse gas sequestration studies, and it is hoped that it will spark additional research of this critical CBM flow property.

C.R. Clarkson; M. Rahmanian; A. Kantzas; K. Morad

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Properties of gas in and around galaxy haloes  

Science Journals Connector (OSTI)

......subtracting the peculiar velocity of the halo. The peculiar velocity of the halo is calculated by taking the mass-weighted average velocity of all the gas particles...with the pressure map shows that the outflows...strengthened by SN-driven winds. Figure 7 As Fig......

Freeke van de Voort; Joop Schaye

2012-07-11T23:59:59.000Z

302

Shale Reservoir Characterization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

303

A simplified procedure for gas deliverability calculations using dimensionless IPR curves  

SciTech Connect (OSTI)

A new method for deliverability calculations of gas wells, which eliminates the need for conventional multipoint tests, is presented. Using the analytical solution for real gas flow under stabilized conditions, and a broad range of rock and fluid properties, an empirical relation for calculating gas well deliverability in an unfractured reservoir is developed. This relationship is similar to Vogel's dimensionless Inflow Performance Relation (IPR) for solution-gas drive reservoirs. Also developed in this study is a second empirical relation, which estimates future deliverability from current flow test data. A simple procedure for gas deliverabili

Mishra, S.; Caudle, B.H.

1984-09-01T23:59:59.000Z

304

Application of the isochronal, transient p/z plotting method for determination of original gas in place, to low permeability reservoirs  

E-Print Network [OSTI]

, need to be known in order to make the volumetric calculations. Available geologic information, however, is often too sparce to obtain accurate estimates of reservoir area. This makes early volumetric estimates of OGIP unreliable in many cases...

Protos, Nicholas Emmanuel

1991-01-01T23:59:59.000Z

305

Acoustic properties of natural gas hydrates and the geophysical assessment of the subsurface distribution of hydrates in the Gulf of Mexico and Atlantic.  

Science Journals Connector (OSTI)

Natural gas hydrates are a solid form of natural gas found in the deep water marine margins of continents and under permafrost in Arctic regions worldwide. They have been recognized as a very significant potential energy source in the future. They form under high pressure and low temperature. Hydrate saturated sediments are acoustically faster and slightly less dense than water saturated sediments but much faster and denser than gas saturated sediments. These properties allow for the identification of marine hydrate saturated sediments that are underlain by gas saturated sediments. The resulting geophysical reflector referred to as a bottom simulating reflector or BSR often mimics the seafloor in areas where geothermal gradient is laterally consistent. The Bureau of Ocean Energy Management Regulation and Enforcement has used three?dimensional seismic data in the Gulf of Mexico and two?dimensional seismic data in the Atlantic to (1) map the distribution of BSRs (2) drill six wells in the GOM with moderate to high hydrate saturations in sand reservoirs and (3) assess the resource potential of hydrates.

William Shedd; Matt Frye; Paul Godfriaux; Kody Kramer

2011-01-01T23:59:59.000Z

306

DOI: 10.1002/chem.201200456 Control of Interpenetration and Gas-Sorption Properties of MetalOrganic  

E-Print Network [OSTI]

DOI: 10.1002/chem.201200456 Control of Interpenetration and Gas-Sorption Properties of Metal areas and excellent gas-sorption properties.[1­3] In MOF chemistry, con- trol of the interpenetration is of high importance because the degree of interpenetration significantly affects the gas- sorption

Paik Suh, Myunghyun

307

Molecular Gas Properties of Early-Type Galaxies A. F. Crocker (UMass Amherst), M. Krips (IRAM Grenoble, France), L. M.  

E-Print Network [OSTI]

Molecular Gas Properties of Early-Type Galaxies A. F. Crocker (UMass Amherst), M. Krips (IRAM Atlas3D sample) has detected 12 CO emission from molecular gas in approximately 25%. To study the properties of the molecular gas in early-type galaxies we have recently followed up the brightest of these 12

Bureau, Martin

308

Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using Artificial Neural Networks  

E-Print Network [OSTI]

Coalbed methane is becoming one of the major natural gas resources. CO2 injection into CBM reservoirs

Mohaghegh, Shahab

309

Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure  

DOE Patents [OSTI]

A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

2005-02-01T23:59:59.000Z

310

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

311

Impact of Langmuir isotherm on production behavior of CBM reservoirs.  

E-Print Network [OSTI]

??Coalbed Methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoir performance is also influenced by the interrelationship (more)

Arrey, Efundem Ndipanquang.

2004-01-01T23:59:59.000Z

312

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method  

E-Print Network [OSTI]

In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

Lee, Byungtark

2011-10-21T23:59:59.000Z

313

Predicted geoacoustic properties of gas hydrate saturated marine sediments  

E-Print Network [OSTI]

for various temperatures and pressures. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . ? 53 3 Physical properties of grain material, pore fluid, variables affecting global fluid motion, and skeletal frame... of quartz and glass as a function of pressure 79 27 Skeletal frame elastic moduli as a function of varying hydrate concen- tration. . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . ?. 81 28...

Curtis, William Robert

2012-06-07T23:59:59.000Z

314

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

conductivity of gas hydrate-bearing sand. J. Geophys. Res.seal overlying gas hydrate-bearing sand reservoirs togeologic data on gas-hydrate-bearing sand reservoirs in the

Moridis, G.J.

2011-01-01T23:59:59.000Z

315

Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997  

SciTech Connect (OSTI)

From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

Grigg, R.B.; Schechter, D.S.

1998-02-01T23:59:59.000Z

316

Analytical model of the temperature dependent properties of microresonators immersed in a gas  

SciTech Connect (OSTI)

A comprehensive theoretical model of microresonators immersed in a viscous gas of varying temperature is presented and verified by experiments. Analytical expressions for both the temperature dependent resonant frequency and quality factor of the first flexural eigenmode were derived extending Sader's theory of viscous damping to small temperature variations. The model provides useful implications for the thermal stabilization of microresonators immersed in a gas as well as for the reduction in the influence of the temperature dependent gas properties on the resonant frequency. Finally, an analytical expression is deduced for the mass detection capability of a microresonator that undergoes temperature variations.

Ilin, E. A.; Kehrbusch, J.; Radzio, B.; Oesterschulze, E. [Physics and Technology of Nanostructures, Nano-Bio-Center, University of Kaiserslautern, Erwin-Schroedinger Strasse 46, 67663 Kaiserslautern (Germany)

2011-02-01T23:59:59.000Z

317

PROPERTY TABLES AND CHARTS (SI UNITS) Table A1 Molar mass, gas constant, and  

E-Print Network [OSTI]

.0943 Carbon monoxide CO 28.011 0.2968 133 3.50 0.0930 Carbon tetrachloride CCl4 153.82 0.05405 556.4 4.56 0 Table A­20 Ideal-gas properties of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304.2 7.39 0

Kostic, Milivoje M.

318

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect (OSTI)

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

319

Application of reservoir models to Cherokee Reservoir  

SciTech Connect (OSTI)

As a part of the Cherokee Reservoir Project hydrodynamic-temperature models and water quality models hav

Kim, B.R.; Bruggink, D.J.

1982-01-01T23:59:59.000Z

320

Gas sorption properties of zwitterion-functionalized carbon nanotubes  

SciTech Connect (OSTI)

We have functionalized carbon nanotubes with carboxylic acid and zwitterion groups. We have evaluated the effect of functionalization by measuring the sorption of CO{sub 2}, CH{sub 4}, and N{sub 2} at 35? for pressures up to 10 bar. Zwitterion functionalized nanotubes were found to be highly hygroscopic. Thermal gravimetric analysis indicates that water can be desorbed at about 200C. The adsorption of gases in zwitterion functionalized nanotubes is dramatically reduced compared with nanotubes functionalized with carboxylic acid groups. The presence of water on the zwitterion functionalized nanotube reduces the sorption even further. Molecular simulations show that three or more zwitterion groups per tube entrance are required to significantly reduce the flux of CO{sub 2} into the tubes. Simulations also show that gas phase water is rapidly sorbed into the zwitterion functionalized nanotubes, both increasing the free energy barrier to CO{sub 2} entering the tube and also lowering the equilibrium adsorption through competitive adsorption.

Surapathi, Anil; Chen, Hang-yan; Marand, Eva; Johnson, J Karl, Zdenka Sedlakova

2013-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Corrosion and Mechanical Properties of Materials in Combustion and Mixed-Gas Environments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corrosion and Mechanical Properties of Corrosion and Mechanical Properties of Materials in Combustion and Mixed-Gas Environments Background A number of advanced technologies are being developed to convert coal to clean fuels for power generation and for use as a feedstock in chemical plants. Coal con- version and combustion processes create by-products that affect the performance of the materials of which the plant components are fabricated, reducing the systems'

322

Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report  

SciTech Connect (OSTI)

This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

Kelkar, M.

1992-09-01T23:59:59.000Z

323

Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.

Menzie, D.E.

1995-05-01T23:59:59.000Z

324

Analysis and evaluation of interwell seismic logging techniques for reservoir characterization. [Quarterly report], April 1--June 30, 1993  

SciTech Connect (OSTI)

The objective of this three-year research program is to investigate interwell seismic logging techniques for indirectly interpreting oil and gas reservoir geology and rock physical properties. This work involves a balanced study of advanced theoretical and numerical modeling of seismic waves transmitted between pairs of reservoir wells combined with experimental dam acquisition and processing of measurements at controlled sites as well as in full-scale reservoirs. This reservoir probing concept is aimed at demonstrating high-resolution measurements and detailed interpretation of heterogeneous hydrocarbon-bearing formations. In this quarterly report technical progress is summarized for Task 3, data processing and analysis of: preliminary interpretation of interwell seismic data from wells 5-7 and 7-7 at the Gypsy Test Site; and the response of a thin layer in an anistropic shale.

Parra, J.O.

1993-12-31T23:59:59.000Z

325

Full Reviews: Reservoir Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer reviewer comments for Reservoir Characterization.

326

Seismic inversion and attributes analysis for porosity evaluation of the tight gas sandstones of the Whicher Range field in the Perth Basin, Western Australia  

Science Journals Connector (OSTI)

Abstract A comprehensive understanding of porosity variations in tight gas sandstones plays an important role in reservoir management and provision of plans for developing of the field. This is especially important when we encounter with some degree of complexity in reservoir characteristics of these sandstones. Reservoir properties of tight gas sandstones of the Whicher Range field, the target reservoir of this study, were affected by internal reservoir heterogeneity mostly related to depositional and diagenetic features of the reservoir sandstones. In this study, 2D seismic data in combination with well log data were used for prediction of porosity based on seismic inversion technique and multi-attribute regression analysis. The results show that acoustic impedance from model based inversion is the main seismic attribute in reservoir characterization of tight sandstones of the field. Wide variations in this parameter can be effectively used to differentiate the reservoir sandstones based on their tightness degree. Investigation of porosity by this method resulted in 2D-view of porosity variations in sandstone reservoir which is in accordance with variations in geological characteristics of tight gas sandstones in the field. This view can be extended to a 3D-view in the framework of reservoir model to follow the variations throughout the field.

Rahim Kadkhodaie-Ilkhchi; Reza Moussavi-Harami; Reza Rezaee; Majid Nabi-Bidhendi; Ali Kadkhodaie-Ilkhchi

2014-01-01T23:59:59.000Z

327

New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Associated-Dissolved Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade...

328

New Mexico Nonassociated Natural Gas, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Reserves in Nonproducing Reservoirs, Wet (Billion Cubic Feet) Decade Year-0...

329

New Mexico Natural Gas Liquids Lease Condensate, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

in Nonproducing Reservoirs (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

330

New Mexico Natural Gas Wet After Lease Separation, Reserves in...  

U.S. Energy Information Administration (EIA) Indexed Site

After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) New Mexico Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion...

331

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

in Nonproducing Reservoirs (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

332

California--State Offshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Natural Gas Liquids Lease Condensate, Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

333

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

334

Property:Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrNaturalGas SPPurchasedEngyNrmlYrMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

335

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

336

Property:Building/SPPurchasedEngyNrmlYrMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrTownGas SPPurchasedEngyNrmlYrMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

337

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

338

Property:Building/SPPurchasedEngyPerAreaKwhM2TownGas | Open Energy  

Open Energy Info (EERE)

TownGas TownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2TownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

339

Property:Building/SPPurchasedEngyForPeriodMwhYrTownGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrTownGas SPPurchasedEngyForPeriodMwhYrTownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrTownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

340

Property:Building/SPPurchasedEngyForPeriodMwhYrNaturalGas | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrNaturalGas SPPurchasedEngyForPeriodMwhYrNaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrNaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Property:Building/SPPurchasedEngyPerAreaKwhM2NaturalGas | Open Energy  

Open Energy Info (EERE)

NaturalGas NaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2NaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

342

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network [OSTI]

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

Jagoe, Bryan Keith

2012-06-07T23:59:59.000Z

343

Data quality enhancement in oil reservoir operations : an application of IPMAP  

E-Print Network [OSTI]

This thesis presents a study of data quality enhancement opportunities in upstream oil and gas industry. Information Product MAP (IPMAP) methodology is used in reservoir pressure and reservoir simulation data, to propose ...

Lin, Paul Hong-Yi

2012-01-01T23:59:59.000Z

344

Structure-property relationships in gas-phase protonated and metalated peptide ions  

E-Print Network [OSTI]

STRUCTURE-PROPERTY RELATIONSHIPS IN GAS-PHASE PROTONATED AND METALATED PEPTIDE IONS A Dissertation by JAMES GARRETT SLATON Submitted to the Office of Graduate Studies of Texas A&M University in partial... by JAMES GARRETT SLATON Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, David H. Russell Committee...

Slaton, James Garrett

2009-05-15T23:59:59.000Z

345

Effect of Continuous, Trapped, and Flowing Gas on Performance of Alkaline Surfactant Polymer (ASP) Flooding  

Science Journals Connector (OSTI)

Alkali Surfactant Polymer (ASP) flooding has traditionally been considered in tertiary mode, i.e., after a reservoir has been sufficiently water flooded. ... and flow properties of an ASP flood are captured to calibrate a comprehensive reservoir-simulation model. ... Roshanfekr, M.; Johns, R. T.; Pope, G.; Britton, L.; Linnemeyer, H.; Britton, C.; Vyssotski, A.Simulation of the Effect of Pressure and Solution Gas on Oil Recovery From Surfactant/Polymer Floods SPE J. 2012, 17 ( 3) 705 ...

R. Farajzadeh; A. Ameri; M. J. Faber; D. W. van Batenburg; D. M. Boersma; J. Bruining

2013-08-22T23:59:59.000Z

346

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Gas Hydrate Research and Stratigraphic Test Results, Milne Point Unit, Alaska North Slope Authors: Robert Hunter (ASRC Energy), Scott Digert (BPXA), Tim Collett (USGS), Ray Boswell (USDOE) Venue: AAPG National Meeting Gas Hydrate session, Oral Presentation, San Antonio, TX, April 22, 2008 (http://www.AAPG.org [external site]) Abstract: This BP-DOE collaborative research project is helping determine whether or not gas hydrate can become a technically and economically recoverable gas resource. Reservoir characterization, development modeling, and associated studies indicate that 0-0.34 trillion cubic meters (TCM) gas may be technically recoverable from the estimated 0.92 TCM gas-in-place within the Eileen gas hydrate accumulation on the Alaska North Slope (ANS). Reservoir modeling indicates sufficient potential for technical recovery to justify proceeding into field operations to acquire basic reservoir and fluid data from the Mount Elbert gas hydrate prospect in the Milne Point Unit (MPU). Successful drilling and data acquisition in the Mount Elbert-01 stratigraphic test well was completed during February 3-19, 2007. Data was acquired from 131 meters of core (30.5 meters gas hydrate-bearing), extensive wireline logging, and wireline production testing operations using Modular Dynamics Testing (MDT). The stratigraphic test validated the 3D seismic interpretation of the MPU gas hydrate-bearing Mount Elbert prospect. Onsite core sub- sampling preserved samples for later analyses of interstitial water geochemistry, physical properties, thermal properties, organic geochemistry, petrophysics, and mechanical properties. MDT testing was accomplished within two gas hydrate-bearing intervals, and acquired during four long shut-in period tests. Four gas samples and one pre-gas hydrate dissociation formation water sample were collected. MDT analyses are helping to improve understanding of gas hydrate dissociation, gas production, formation cooling, and long-term production potential as well as help calibrate reservoir simulation models.

347

DETERMINING ALL GAS PROPERTIES IN GALAXY CLUSTERS FROM THE DARK MATTER DISTRIBUTION ALONE  

SciTech Connect (OSTI)

We demonstrate that all properties of the hot X-ray emitting gas in galaxy clusters are completely determined by the underlying dark matter (DM) structure. Apart from the standard conditions of spherical symmetry and hydrostatic equilibrium for the gas, our proof is based on the Jeans equation for the DM and two simple relations which have recently emerged from numerical simulations: the equality of the gas and DM temperatures, and the almost linear relation between the DM velocity anisotropy profile and its density slope. For DM distributions described by the Navarro-Frenk-White or the Sersic profiles, the resulting gas density profile, the gas-to-total-mass ratio profile, and the entropy profile are all in good agreement with X-ray observations. All these profiles are derived using zero free parameters. Our result allows us to predict the X-ray luminosity profile of a cluster in terms of its DM content alone. As a consequence, a new strategy becomes available to constrain the DM morphology in galaxy clusters from X-ray observations. Our results can also be used as a practical tool for creating initial conditions for realistic cosmological structures to be used in numerical simulations.

Frederiksen, Teddy F.; Hansen, Steen H.; Host, Ole [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Roncadelli, Marco [INFN, Sezione di Pavia, Via A. Bassi 6, 27100 Pavia (Italy)

2009-08-01T23:59:59.000Z

348

Shale-gas scheduling for natural-gas supply in electric power production  

Science Journals Connector (OSTI)

Abstract This paper describes a novel integration of shale-gas supply in geographical proximity to natural-gas power production. Shale-gas reservoirs hold special properties that make them particularly suited for intermittent shut-in based production schemes. The proposed scheme argues that shale-gas reservoirs can be used to shift storage of gas used for meeting varying demands, from separate underground storage units operated by local distribution companies to the gas producers themselves. Based on this property, we present an economical attractive option for generating companies to increase their use of firm gassupply contracts to the natural-gas power plants in order to secure a sufficient gas supply. The shale-well scheduling is formulated as profit-maximization model for well operators, in which we seek to include their main operational challenges, while preserving an economic incentive for the operators to adopt the proposed scheme. The resulting large-scale mixed integer linear program is solved by a Lagrangian relaxation scheme, with a receding horizon strategy implemented to handle operational uncertainties. We present the proposed optimization framework by illustrative case studies. The numerical results show a significant economic potential for the shale-well operators, and a viable approach for generating companies to secure a firm gas supply for meeting varying seasonal electricity demands.

Brage Rugstad Knudsen; Curtis H. Whitson; Bjarne Foss

2014-01-01T23:59:59.000Z

349

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

E-Print Network [OSTI]

a suspected hazard to oil and gas drilling operations, andregional oil and gas reservoir) and the BGHS. Drilling

Boswell, R.D.

2010-01-01T23:59:59.000Z

350

Conceptual study of thermal stimulation in shale gas formations  

Science Journals Connector (OSTI)

Abstract Shale gas formations have become a major source of energy in recent years. Developments in hydraulic fracturing technology have made these reservoirs more accessible and productive. Apart from other dissimilarities from conventional gas reservoirs, one major difference is that a considerable amount of gas produced from these shale gas formations comes from desorption. Up to 85% of the total gas within shale can be found as an adsorbed phase on clay and kerogen, so how much adsorbed gas can be produced will have significant impact on ultimate gas recovery. The Langmuir isotherm has been widely used in industry to describe the pressure dependence of adsorbed gas. However, temperature dependent adsorption behavior and its major implications for evaluating thermal stimulation as a recovery method for shale reservoirs have not been thoroughly explored. Therefore, in order to design and analyze the thermal treatment of shale gas formations successfully, it is crucial to understand the effects of fracture heating on the shale gas adsorption and desorption phenomenon, and how can we exploit such effects to enhance shale gas recovery from hydraulically fractured reservoirs. Even though numerous research efforts have been focused on thermal recovery of shale oil, its possible application to shale gas has not been investigated. In this research, we propose a method to evaluate desorbed gas as a function of pressure and temperature in shale formations, by regression of a Bi-Langmuir model on Langmuir isotherm data. We have developed a fully coupled unconventional reservoir simulator, which is capable of capturing real gas flow in the shale matrix and in the hydraulic fracture by accounting for the effects of gas desorption and diffusion, as well as the temperature diffusion process within the matrix. This simulator enables us to investigate the effects of fracture heating on the shale gas desorption phenomenon on the global well performance and recovery. The results of this study show, for the first time in a rigorous way, that by increasing the temperature within the fracture, shale gas recovery can be improved. We have rationalized and quantified relations between the adsorption/desorption fundamental phenomena and stimulation temperature, fracture spacing, reservoir permeability and bottom hole pressure. The thermal properties of shale formations only have limited impacts on long term production. The results of this study can provide a guidance to develop a strategy to design thermal treatment in hydraulically fractured shale formations and propose the degree of thermal stimulation temperature required in a fracture to promote an economically viable return on production.

HanYi Wang; Omobola Ajao; Michael J. Economides

2014-01-01T23:59:59.000Z

351

A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models  

E-Print Network [OSTI]

Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

Samandarli, Orkhan

2012-10-19T23:59:59.000Z

352

Simulation of Radon Transport in Geothermal Reservoirs  

SciTech Connect (OSTI)

Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

Semprini, Lewis; Kruger, Paul

1983-12-15T23:59:59.000Z

353

Dispersivity as an oil reservoir rock characteristic  

SciTech Connect (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

354

Status of Cherokee Reservoir  

SciTech Connect (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

355

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

Not Available

1991-10-01T23:59:59.000Z

356

Understanding the reservoir important to successful stimulation  

SciTech Connect (OSTI)

In anisotropic Bakken shale reservoirs, fracture treatments serve to extend the well bore radius past a disturbed zone and vertically connect discrete intervals. Natural fractures in the near-well bore area strongly control the well deliverability rate. The Bakken is one of the few shale formations in the world with commercial oil production. This article covers the Bakken reservoir properties that influence production and stimulation treatments. The concluding part will discuss the design and effectiveness of the treatments.

Cramer, D.D. (BJ Services Co., Denver, CO (US))

1991-04-22T23:59:59.000Z

357

Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Annual report, July 12, 1992--July 12, 1993  

SciTech Connect (OSTI)

Dispersion of fluids flowing through porous media is an important phenomenon in miscible displacement. Much of the research involving dispersion and dispersivity as a property of reservoir rock has focused on miscible liquid-liquid displacement processes. This study addresses the measurement of dispersion in a gas-gas displacement system. It will enlarge the understanding of the characteristics of dispersivity and flow systems of reservoir rocks. New experimental methods and apparatus for gas-gas dispersion were developed in this study. Twenty eight gas-gas miscible displacement measurements under different flowrates and pressures were conducted on three Berea sandstone cores of varying lengths and physical properties. A gas chromatograph was utilized and modified to measure the concentration of gas at the outlet of the cores. Nitrogen was used as the displacing gas, while helium was used as the displaced gas. The experimental results were illustrated using S-shaped effluent breakthrough curves. The effect of flowrate and pressure on gas-gas dispersion, dispersion coefficient, dispersivity, and dispersion factor were determined from these curves. Gas effective diffusion coefficients were obtained by graphical methods using the dispersion coefficients under low velocities. A new method to determine the total flowing pore volume by dispersion measurement was proposed in this study. The heterogeneity of reservoir rock can be studied by this method. An increase in displacing velocity was found to decrease the mixing or dispersion of gases in porous media under low pressure (15, 30 and 40 psig). The presumption was made that a critical velocity exists for a given displacement, below which the increase of velocity results in a decrease in dispersion, and above which an increase in dispersion occurs. An increase in pressure will decrease the mixing of gases when the displacement velocity remains constant.

Menzie, D.E.

1994-01-01T23:59:59.000Z

358

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

359

Mechanical properties of welds in commercial alloys for high-temperature gas-cooled reactor components  

SciTech Connect (OSTI)

Weld properties of Hastelloy-X, Incoloy alloy 800H (with and without Inconel-82 cladding), and 2 1/4 Cr-1 Mo are being studied to provide design data to support the development of steam generator, core auxiliary heat exchanger, and metallic thermal barrier components of the high-temperature gas-cooled reactor (HTGR) steam cycle/cogeneration plant. Tests performed include elevated-temperature creep rupture tests and tensile tests. So far, data from the literature and from relatively short-term tests at GA Technologies Inc. indicate that the weldments are satisfactory for HTGR application.

Lindgren, J.R.; Li, C.C.; Ryder, R.H.; Thurgood, B.E.

1984-07-01T23:59:59.000Z

360

Table A1 Molar mass, gas constant, and critical-point properties  

E-Print Network [OSTI]

.2 7.39 0.0943 Carbon monoxide CO 28.011 0.2968 133 3.50 0.0930 Carbon tetrachloride CCl4 153.82 0 of carbon dioxide, CO2 Table A­21 Ideal-gas properties of carbon monoxide, CO Table A­22 Ideal.0520 584 10.34 0.1355 n-Butane C4H10 58.124 0.1430 425.2 3.80 0.2547 Carbon dioxide CO2 44.01 0.1889 304

Kostic, Milivoje M.

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas hydrate occurrences and their relation to host sediment properties: Results from Second Ulleung Basin Gas Hydrate Drilling Expedition, East Sea  

Science Journals Connector (OSTI)

Abstract The Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) recovered various forms of gas-hydrate bearing sediments from 10 drill sites in the lower slope and basin floor of the Ulleung Basin. To characterize the gas-hydrate occurrences and the properties of the host sediments, whole-round core samples were taken from portions of recovered cores determined to be hydrate-bearing based on infrared (IR) scanning. These samples were further characterized by a variety of shipboard experiments such as imaging of the sediments with hand-held IR and visual cameras, measurements of pore water chlorinity within and around IR inferred cold regions in the core and grain-size analysis of pore-water squeeze cakes. Sediment compositions of selected samples were further characterized by X-ray diffraction and scanning electron microscopes during post-cruise analysis. The shipboard and post-cruise analysis results collectively indicate that the recovered gas hydrates mainly occur as 1) pore-filling type bounded by discrete silty sand to sandy silt layers, 2) fracture-filling veins and nodules, or 3) disseminated type in silt. In addition, minor but significant variation in gas hydrate concentrations were observed in diatomaceous silt where gas hydrates occur as pore-filling material in layers dominated by intact diatom frustules. Gas hydrate accumulations of fracture-filling type occur predominantly in regions where acoustic blanking features in the seismic record suggest gas migration from below the gas hydrate stability zone. Results from the UBGH2 core studies along with the analysis of similar samples from other expeditions, including those executed by the Ocean Drilling Program, the Integrated Ocean Drilling Program, and the First Ulleung Basin Gas Hydrate Drilling Expedition, greatly improved our understanding of lithologic controls on marine gas hydrate occurrences.

J.-J. Bahk; D.-H. Kim; J.-H. Chun; B.-K. Son; J.-H. Kim; B.-J. Ryu; M.E. Torres; M. Riedel; P. Schultheiss

2013-01-01T23:59:59.000Z

362

Analysis of pressure data from the horizontal wells with multiple hydraulic fractures in shale gas.  

E-Print Network [OSTI]

??In the last several years, the unconventional gas reservoirs development has grown tremendously. Most of these unconventional reservoirs have very low permeability and are not (more)

Tabar, Essa M.

2011-01-01T23:59:59.000Z

363

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

364

Optimising hydraulic fracture treatments in reservoirs under complex conditions.  

E-Print Network [OSTI]

??Growing global energy demand has prompted the exploitation of non-conventional resources such as Coal Bed Methane (CBM) and conventional resources such as gas-condensate reservoirs. Exploitation (more)

Valencia, Karen Joy

2005-01-01T23:59:59.000Z

365

Galactic outflow and diffuse gas properties at z>=1 using different baryonic feedback models  

E-Print Network [OSTI]

We measure and quantify properties of galactic outflows and diffuse gas at $z \\geq 1$ in cosmological hydrodynamical simulations. Our novel sub-resolution model, MUPPI, implements supernova feedback using fully local gas properties, where the wind velocity and mass loading are not given as input. We find the following trends at $z = 2$ by analysing central galaxies having a stellar mass higher than $10^{9} M_{\\odot}$. The outflow velocity and mass outflow rate ($\\dot{M}_{\\rm out}$) exhibit positive correlations with galaxy mass and with the star formation rate (SFR). However, most of the relations present a large scatter. The outflow mass loading factor ($\\eta$) is between $0.2 - 10$. The comparison Effective model generates a constant outflow velocity, and a negative correlation of $\\eta$ with halo mass. The number fraction of galaxies where outflow is detected decreases at lower redshifts, but remains more than $80 \\%$ over $z = 1 - 5$. High SF activity at $z \\sim 2 - 4$ drives strong outflows, causing the ...

Barai, Paramita; Murante, Giuseppe; Ragagnin, Antonio; Viel, Matteo

2014-01-01T23:59:59.000Z

366

A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure  

DOE Patents [OSTI]

A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

Morrow, Thomas E. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

2004-03-09T23:59:59.000Z

367

The Natural Gas Pools Characteristics in Sulige Gas Field, Ordos Basin, China  

Science Journals Connector (OSTI)

There are abundant natural gas resources in Sulige gas field, Ordos Basin. The ascertained resources ... setting and reservoir heterogeneity. The characteristics of natural gas pools were analyzed from gas compos...

Lin Xiaoying; Zeng Jianhui; Zhang Shuichang

2012-01-01T23:59:59.000Z

368

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

369

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

370

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

SciTech Connect (OSTI)

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

371

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

372

The microscopic meaning of grand potential: cluster properties of the one-dimensional lattice gas  

E-Print Network [OSTI]

We demonstrate, with a concrete example, how the combinatorial approach to a general system of particles, which was introduced in detail in the earlier paper arXiv:1205.4986, works and where it enters to provide a genuine extension of results obtainable by more traditional methods of statistical mechanics. To this end, an effort is made to study cluster properties of the one-dimensional lattice gas with nearest neighbor interactions. Three cases: the infinite temperature limit, the range of finite temperatures, and the zero temperature limit are discussed separately, yielding some new results and providing alternative proofs of known results. In particular, the closed-form expression for the grand partition function in the zero temperature limit is obtained, which results in the non-analytic behavior of the grand potential, in accordance with the Yang-Lee theory.

Agata Fronczak

2012-09-18T23:59:59.000Z

373

Modeling of multiphase behavior for gas flooding simulation.  

E-Print Network [OSTI]

??Miscible gas flooding is a common method for enhanced oil recovery. Reliable design of miscible gas flooding requires compositional reservoir simulation that can accurately predict (more)

Okuno, Ryosuke, 1974-

2011-01-01T23:59:59.000Z

374

GAS EXPLORATION Winter 2006 GasTIPS 5  

E-Print Network [OSTI]

GAS EXPLORATION Winter 2006 · GasTIPS 5 T he prediction of reservoir parameters such as gas or oil, but is particularly challenging in the case of gas exploration. Current seismic imaging technol- ogy cannot accurately discriminate between economic and non-eco- nomic concentrations of gas. This is primarily because

Rubin, Yoram

375

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Not Available

1992-11-01T23:59:59.000Z

376

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

377

Chemistry, Reservoir, and Integrated Models  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models.

378

Analytical models of the effective permeability of sand-shale reservoirs  

Science Journals Connector (OSTI)

......overall properties of anisotropic composites, J...permeability of sand-shale reservoirs J. F...of statistically anisotropic materials in terms...the case of sand-shale reservoirs, it...both isotropic and anisotropic grain structures...permeability of sand-shale reservoirs with......

J. F. McCarthy

1991-05-01T23:59:59.000Z

379

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

380

NATURAL GAS FROM SHALE: Questions and Answers  

Broader source: Energy.gov (indexed) [DOE]

Representation of common equipment at a natural gas hydraulic fracturing drill pad. Representation of common equipment at a natural gas hydraulic fracturing drill pad. How is Shale Gas Produced? Shale gas formations are "unconventional" reservoirs - i.e., reservoirs of low "permeability." Permeability refers to the capacity of a porous, sediment, soil - or rock in this case - to transmit a fluid. This contrasts with a "conventional" gas reservoir produced from sands and carbonates (such as limestone). The bottom line is that in a conventional reservoir, the gas is in interconnected pore spaces, much like a kitchen sponge, that allow easier flow to a well; but in an unconventional reservoir, like shale, the reservoir must be mechanically "stimulated" to

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electronic properties of the AlGaN/GaN heterostructure and two-dimensional electron gas observed by electroreflectance  

Science Journals Connector (OSTI)

A contacted electroreflectance technique was used to investigate AlGaN/GaN heterostructures and their intrinsic electric field-induced properties. By studying variations in the electroreflectance with applied field spectral features associated with the AlGaN barrier the two-dimensional electron gas at the interface and bulk GaN were identified. Barrier-layer composition and electric field were determined from the AlGaN FranzKeldysh oscillations. For a high mobilityheterostructure grown on SiC measured AlGaN polarizationelectric field and two-dimensional electron gas density approached values predicted by a standard bandstructure model. The two-dimensional electron gas produced a broad field-tunable first derivative electroreflectance feature. With a dielectric function calculation we describe the line shape and relative amplitude of the two-dimensional electron gas electroreflectance feature for a wide range of electron density and applied field values.

S. R. Kurtz; A. A. Allerman; D. D. Koleske; A. G. Baca; R. D. Briggs

2004-01-01T23:59:59.000Z

382

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

383

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

384

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

385

Session: Reservoir Technology  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

386

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

387

Numerical Modeling of Diffusion in Fractured Media for Gas-Injection  

E-Print Network [OSTI]

Hoteit,* SPE, and Abbas Firoozabadi, SPE, Reservoir Engineering Research Institute Summary Diffusion in fractured reservoirs, unlike in unfractured reservoirs, can affect significantly the efficiency of gas injection in oil reser- voirs and recycling in gas/condensate reservoirs. The physical diffusion, similar

Firoozabadi, Abbas

388

Reservoir Characterization with Limited Sample Data using Geostatistics  

E-Print Network [OSTI]

Kansas City Formation. The main tool of the study was geostatistics, since only geostatistics can incorporate data from variety of sources to estimate reservoir properties. Three different subjects in geostatistical methods were studied, analyzed...

Ghoraishy, Sayyed Mojtaba

2008-01-01T23:59:59.000Z

389

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

390

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

391

DOI: 10.1002/chem.201303086 Comparison of Gas Sorption Properties of Neutral and Anionic Metal  

E-Print Network [OSTI]

of the stronger interaction of the gas molecules with the anionic framework and the ammoni- um cations included

Paik Suh, Myunghyun

392

Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions  

SciTech Connect (OSTI)

To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

Jeong, J. H., E-mail: juno@fris.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, Sendai (Japan); Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai (Japan); Kim, Y.; Kim, W. K.; Park, S. O. [Semiconductor R and D Center, Samsung Electronics Co., Ltd., Hwasung (Korea, Republic of)

2014-05-07T23:59:59.000Z

393

Oil & Gas Research | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions |...

394

Evaluation of Devonian shale reservoir using multi-well pressure transient testing data  

SciTech Connect (OSTI)

A multi-well test program designed to study the gas production mechanisms of the eastern Devonian shale reservoirs was completed. Two offset wells were drilled as observation wells in Meigs County, OH. The results indicated a complete anisotropic, layered reservoir system which implies directional gas flow and orientation of natural fractures. This study has provided an insight into the production behavior of reservoirs. It will aid future development of shale gas by optimizing well spacing and understanding of the gas release mechanisms of the Devonian shalings. 33 refs.

Lee, B.O.; Alam, J.; Sawyer, W.K.; Horan, K.; Frohne, K.H.

1982-01-01T23:59:59.000Z

395

New correlations for dew-point, specific gravity and producing yield for gas condensates  

E-Print Network [OSTI]

This work presents four newly developed correlations to estimate dew-point pressure, current specific gravity and producing yield of gas condensate reservoirs. The first correlation may be used to predict the dew-point pressure of the reservoir gas...

Ovalle Cortissoz, Adriana Patricia

2012-06-07T23:59:59.000Z

396

Optoelectronic Reservoir Computing  

E-Print Network [OSTI]

Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.

Yvan Paquot; Franois Duport; Anteo Smerieri; Joni Dambre; Benjamin Schrauwen; Marc Haelterman; Serge Massar

2011-11-30T23:59:59.000Z

397

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

NONE

1998-09-30T23:59:59.000Z

398

Opportunities to improve oil productivity in unstructured deltaic reservoirs  

SciTech Connect (OSTI)

This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

Not Available

1991-01-01T23:59:59.000Z

399

High resolution reservoir geological modelling using outcrop information  

SciTech Connect (OSTI)

This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

1997-08-01T23:59:59.000Z

400

Morphology and Gas Adsorption Properties of Palladium?Cobalt-Based Cyanogels  

Science Journals Connector (OSTI)

The aerogel surfaces are found to be fractal as analyzed by gas adsorption and small-angle X-ray scattering. ... In addition, the presence of narrow micro- and mesoporosity in these gels makes them suitable candidates for selective gas adsorbents and filters. ... Xerogels were made by smearing out the hydrogels on a filter paper to eliminate the water. ...

Rahul S. Deshpande; Stefanie L. Sharp-Goldman; Jennifer L. Willson; Andrew B. Bocarsly; Joachim Gross; Adam C. Finnefrock; Sol M. Gruner

2003-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ni(NiO)/single-walled carbon nanotubes composite: Synthesis of electro-deposition, gas sensing property for NO gas and density functional theory calculation  

SciTech Connect (OSTI)

Graphical abstract: The Ni(NiO)/semiconducting single-walled carbon nanotubes composite collected from the cathode after electro-deposition shows a high sensitivity to low-concentration NO gas at room temperature (18 C). Display Omitted Highlights: ? Ni(NiO) nanoparticles were deposited on semiconducting SWCNTs by electro-deposition. ? Ni(NiO)/semiconducting SWCNTs film shows a high sensitivity to NO gas at 18 C. ?Theoretical calculation reveals electron transfer from SWCNTs to NO via Ni. -- Abstract: Single-walled carbon nanotubes which contains metallic SWCNTs (m-SWCNTs) and semiconducting SWCNTs (s-SWCNTs) have been obtained under electric arc discharge. Their separation can be effectively achieved by the electro-deposition method. The Ni(NiO)/s-SWCNTs composite was found on cathode where Ni was partially oxidized to NiO at ambient condition with Ni(NiO) nanoparticles deposited uniformly on the bundles of SWCNTs. These results were confirmed by Raman spectra, transmission electron microscopy (TEM), scanning electron microscopy (SEM), UVvisNIR and TG characterizations. Furthermore, investigation of the gas sensing property of Ni(NiO)/s-SWCNTs composite film to NO gas at 18 C demonstrated the sensitivity was approximately 5% at the concentration of 97 ppb. Moreover, density functional theory (DFT) calculations were performed to explore the sensing mechanism which suggested the adsorption of NO molecules onto the composite through NNi interaction as well as the proposition of electron transfer mechanisms from SWCNTs to NO via the Ni medium.

Li, Li; Zhang, Guo; Chen, Lei [Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, Heilongjiang University, Harbin 150080 (China); Bi, Hong-Mei [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Shi, Ke-Ying, E-mail: shikeying2008@yahoo.cn [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)] [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

2013-02-15T23:59:59.000Z

402

Quantum reservoirs with ion chains  

E-Print Network [OSTI]

Ion chains are promising platforms for studying and simulating quantum reservoirs. One interesting feature is that their vibrational modes can mediate entanglement between two objects which are coupled through the vibrational modes of the chain. In this work we analyse entanglement between the transverse vibrations of two heavy impurity defects embedded in an ion chain, which is generated by the coupling with the chain vibrations. We verify general scaling properties of the defects dynamics and demonstrate that entanglement between the defects can be a stationary feature of these dynamics. We then analyse entanglement in chains composed of tens of ions and propose a measurement scheme which allows one to verify the existence of the predicted entangled state.

B. G. Taketani; T. Fogarty; E. Kajari; Th. Busch; Giovanna Morigi

2014-02-06T23:59:59.000Z

403

Chapter 7 - General Regularities in Oil and Gas Distribution  

Science Journals Connector (OSTI)

Publisher Summary The chapter provides a detailed geological description of the South Caspian Sea area, focusing on the major characteristics and patterns found in the distribution of oil and gas producing areas of the region. The chapter has divided the South Caspian Sea into three major areas: the Azerbaijan portion, the Turkmenistan portion, and the areas adjacent to the South Caspian basin. The chapter analyzes these areas, focusing on various topics related to the geological aspect of oil and gas production such as issues relating to depositional environments, oil and gas traps, lithology and properties of reservoir rocks, composition and properties of argillaceous rocks, effects of pressure and temperature, effects of abnormally high formation pressures, distribution of oil reserves, oil composition and its properties, properties of natural gas, the formation waters related properties, oil and gas migration and accumulation, and the potential of very deep oil and gas bearing deposits. The chapter also highlights the areas worthy of future exploration to find oil and gas reserves.

Leonid A. Buryakovsky; George V. Chilingar; Fred Aminzadeh

2001-01-01T23:59:59.000Z

404

Evaluation of target reservoirs for horizontal drilling: Lower Glen Rose Formation, South Texas  

SciTech Connect (OSTI)

The primary objective of this project is to test the hypothesis that a horizontally drilled borehole can increase gas production sufficiently from the Lower Glen Rose Formation to provide an economic advantage over conventional vertical drilling. Additional objectives are to conduct detailed investigations of reservoir properties and completion methods. This paper presents preliminary results of a project, co-funded by PrimeEnergy and the United States Department of Energy (DOE), to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing DOE investigation of directional drilling in the development of tight gas resources within the United States. This paper builds on data presented in Muncey (1992) with data from two vertical tests of the Lower Glen Rose Formation, both drilled in 1993, and the analysis of approximately 20 line-miles of high-resolution seismic data recorded in 1992 and 1993.

Muncey, G.; Drimal, C.E. Jr.

1993-12-31T23:59:59.000Z

405

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

406

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

407

Accurate Thermodynamic Properties from the BACKONE Equation for the Processing of Natural Gas  

Science Journals Connector (OSTI)

The fractionation processes are done to clean the natural gas from low-boiling gases (e.g., nitrogen) or heavy hydrocarbons (pentane, etc.) and to separate side products such as ethane, propane, or butane. ... Results for the speed of sound, in pure and mixed gaseous methane and ethane, are shown in Figure 2. ... Figure 16 Sketch of a natural gas liquefaction plant (according to Phillips optimized cascade process116). ...

Martin Wendland; Bahaa Saleh; Johann Fischer

2004-05-25T23:59:59.000Z

408

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

409

Interaction between CO2-rich solutions and reservoir-seal rocks. Experimentation  

E-Print Network [OSTI]

formations (after Cook, 1999). Geological Storage Options for CO2 1.Depleted oil and gas reservoirs 2.Use of CO2 in enhanced oil recovery 3.Deep unused saline water-saturated reservoir rocks 4.Deep unmineable coal systems 5.Use of CO2 in enhanced coal bed methane recovery 6.Other suggested options (basalts, oil

Politècnica de Catalunya, Universitat

410

URTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic  

E-Print Network [OSTI]

by 20%. Introduction: Thermal fracturing Injection of cold fluids into reservoir rock, induces thermalURTeC 1620617 Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales Saeid of any part of this paper without the written consent of URTeC is prohibited. Summary Thermal shock

Patzek, Tadeusz W.

411

Effect of low and high storage temperatures on head space gas concentrations and physical properties of wood pellets  

SciTech Connect (OSTI)

Headspace gas concentrations and wood pellet properties were studied in sealed glass canisters at 540 degrees C storage temperatures. CO2 and CO concentrations at 5, 10, 20 and 40 degrees C at the end of 2328 days of storage were 1600 and 200, 4700 and 1200, and 31 200 and 15 800 parts per million by volume (ppmv) respectively. Corresponding O2 concentration was about 1949, 1920, 180 and 207% respectively. Non-linear regression equations adequately described the gas concentrations in the storage container as a function of time. Safe level estimation functions developed were linear for O2 and logarithmic for CO and CO2 concentrations. Measured pellet properties moisture, length, diameter, unit, bulk and tapped density, durability, calorific value, ash content and per cent fines were in the range of 46502%, 1415 mm, 6465 mm, 11251175 kg m-3, 750770 kg m-3, 825840 kg m-3, 7374%, 18321878 MJ kg-1, 065074% and 013015%. Durability values of pellets decreased by 13% at 40 degrees C storage temperature and other properties changed marginally.

Jaya Shankar Tumuluru; Shahab Sokhansanj; C. Jim Lim; Tony Bi; Xingya Kuang; Staffan Melin

2013-11-01T23:59:59.000Z

412

Reservoir characterization of thinly laminated heterolithic facies within shallow-marine sand bodies  

SciTech Connect (OSTI)

Shallow marine sandstones typically form high quality reservoirs but they can contain a significant proportion of extremely heterogeneous facies. Particularly significant are heterolithic (mixed interlaminated sand-mud) deposits which are common in estuarine/incised valley-fill reservoirs and other tidally-influenced depositional environments. The complex mm/cm-scale interfingering of sands and clays in these reservoirs is below the resolution of most logging tools, which poses major problems for the petrophysical evaluation, quantitative reservoir modelling and reservoir performance prediction. This study outlines an integrated geological/petrophysical framework for the reservoir characterization of heterolithic facies from the Jurassic of the North Sea Basin which utilizes well logs, cores, minipermeameter and analog outcrop data. The calibration of wireline logs (GR, LDT/CNL, EPT and dipmeter) with cores helps in establishing the relationship between the architecture of sand-shale laminations and their wireline log response/electrofacies. The routine sampling procedure for porosity/permeability measurement from cores will not accurately determine the average reservoir properties for these heterolithic intervals. The selection of measurement points is of vital importance for determining average reservoir properties. The minipermeameter measurements are especially useful for these thin bedded reservoirs and serve as a useful guide for reservoir zonation and evaluation of petrophysical properties from wireline logs. The incorporation of analog outcrop data helps further in establishing vertical and lateral communication relationships at field scale.

Gupta, R.; Johnson, H. [Imperial College, London (United Kingdom); Myking, B.

1996-08-01T23:59:59.000Z

413

Integrated Geologic and Geophysical Assessment of the Eileen Gas Hydrate Accumulation, North Slope, Alaska  

SciTech Connect (OSTI)

Using detailed analysis and interpretation of 2-D and 3-D seismic data, along with modeling and correlation of specially processed log data, a viable methodology has been developed for identifying sub-permafrost gas hydrate prospects within the Gas Hydrate Stability Zone (HSZ) and associated ''sub-hydrate'' free gas prospects in the Milne Point area of northern Alaska (Figure 1). The seismic data, in conjunction with modeling results from a related study, was used to characterize the conditions under which gas hydrate prospects can be delineated using conventional seismic data, and to analyze reservoir fluid properties. Monte Carlo style gas hydrate volumetric estimates using Crystal Ball{trademark} software to estimate expected in-place reserves shows that the identified prospects have considerable potential as gas resources. Future exploratory drilling in the Milne Point area should provide answers about the producibility of these shallow gas hydrates.

Timothy S. Collett; David J. Taylor; Warren F. Agena; Myung W. Lee; John J. Miller; Margarita Zyrianova

2005-04-30T23:59:59.000Z

414

Power control system for a hot gas engine  

DOE Patents [OSTI]

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

415

Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea)  

Science Journals Connector (OSTI)

Abstract We analyzed the data consist of core digital images and X-rays, core-logs, LWD (logging-while-drilling), and sediment grain-size from the second Ulleung Basin Gas Hydrate Expedition (UBGH2) in the East Sea. Core digital images and X-rays were spliced as a complete composite core in meters below seafloor (mbsf) for five sites; UBGH2-1_1 (Hole D), 2_1 (B), 2_2 (B), 2-6 (B) and 2-10 (CD), and were correlated with the core-log and LWD measurements showing that possible gas hydrate bearing layers are between the depths of about 60180mbsf at these sites. Bulk densities generally increase with depth from 1.3 to 2.0g/cm3 in LWD data, and from 1.1 to 1.8g/cm3 onboard which measured lower than in-situ. Gas hydrate bearing sediments respond with an increase of LWD densities (1.41.6g/cm3) and a decrease in core-logs (1.11.4g/cm3). P-wave velocity values of LWD increase (1400 to 1700m/s) with depth for non-reservoirs, and are high (1500 and 2000m/s) within the gas hydrate bearing intervals depending on the hydrate saturations.Resistivity values logged onboard range from less than 1.0 to over 10.0?-m, while LWD records are around 1.0?-m and between 5.0 and 30.0?-m in background sediments and possible gas hydrate reservoirs, respectively. High resistivity values were observed (5.030.0?-m) within coarse-grained turbidites (mean grain-size between 2.9 and 5.1?; laminated sandy mud or muddy sands). Medium resistivities were observed (5.0?-m) within the silt-dominant hemi-pelagic and turbiditic sediments (5.17.4?; crudely laminated, bioturbated, homogeneous sand, and disintegrated sand and sandy mud facies) bearing pore-filling gas hydrates, or disseminated gas hydrates either formed in pores or small fractures of fine-grained sediments. Core-log measurements are highly fluctuating and sensitive but mostly lower (e.g., density and resistivity) than LWD records.

Senay Horozal; Gil Young Kim; Jang Jun Bahk; Roy H. Wilkens; Dong Geun Yoo; Byong Jae Ryu; Seong Pil Kim

2015-01-01T23:59:59.000Z

416

An ab initio study on gas sensing properties of graphene and Si-doped graphene  

Science Journals Connector (OSTI)

...In order to exploit the potential applications of graphene as gas sensors, the adsorptions of a...2, NO2 and H2O) on pristine graphene (PG) and Si-doped graphene (SiG) have been investigated by ab...2 and NO2 ...

Y. Zou; F. Li; Z. H. Zhu; M. W. Zhao; X. G. Xu; X. Y. Su

2011-06-01T23:59:59.000Z

417

ccsd00001419, Coherence and correlation properties of a one-dimensional attractive Fermi gas  

E-Print Network [OSTI]

-dimensional attractive Fermi gas Iacopo Carusotto 1, 2 and Yvan Castin 1, #3; 1 Laboratoire Kastler Brossel, #19; Ecole approaches. The crossover to a condensate of pairs can be identi#12;ed as the #12;rst-order pair coherence atomic samples at temperatures well below the degeneracy temperature [1]. This suggests that atomic gases

418

Gas Sorption and Barrier Properties of Polymeric Membranes from Molecular Dynamics and Monte Carlo Simulations  

E-Print Network [OSTI]

experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow toward lowering both the gas solubility and the diffusion coefficients. 1. Introduction The adsorption

Goddard III, William A.

419

Probabilistic Performance Forecasting for Unconventional Reservoirs With Stretched-Exponential Model  

E-Print Network [OSTI]

and Montana's Elm Coulee field producing from the Bakken oil shale (400 wells). This section aims to present the utility of proposed methodology for assessing reserves in tight gas and oil reservoirs. The overall results are presented in Table 4...

Can, Bunyamin

2011-08-08T23:59:59.000Z

420

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

Mohan Kelkar

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas reservoir properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Integrated Reservoir Characterization: Offshore Louisiana, Grand Isle Blocks 32 & 33  

E-Print Network [OSTI]

of remaining recoverable hydrocarbons in the RD-1 compartment. It is estimated that about 6.7 billion cubic feet of gas might remain within this reservoir waiting to be recovered. A seismic amplitude anomaly response from the QH and RD sands is interpreted...

Casey, Michael Chase

2011-08-08T23:59:59.000Z

422

Optimization of condensing gas drive  

E-Print Network [OSTI]

- cal, undersaturated reservoir with gas being injected into the crest and oil being produced from the base of the structure. Fractional oil re- covery at gas breakthrough proved to be less sensitive to changes in oil withdrawal rates as the gas... injection pressure was increased. The validity of the model was established by accurately simulating several low pressure gas drives conducted in the laboratory. Oil recoveries at gas breakthrough using the model compared closely with those recoveries...

Lofton, Larry Keith

2012-06-07T23:59:59.000Z

423

Assessment of halite-cemented reservoir zones  

SciTech Connect (OSTI)

This paper describes the techniques used to identify the presence and distribution of halite-cemented layers in a sandstone oil reservoir. The distribution of these layers in the wells was found by matching the core data with two independent halite identifiers from the well logs. Numerical well models were used to assess the dimensions and spatial distribution of the halite-cemented layers. Multiple simulation runs in which the spatial distribution, the dimensions, and the vertical permeability were varied resulted in a stochastic model that best matched the production history. Gas and water coning are retarded by the halite-cemented layers if the perforations are properly located.

Huurdeman, A.J.M.; Floris, F.J.T.; Lutgert, J.E. (TNO Inst. of Applied Geoscience (NL)); Breunese, J.N. (Geological Survey of the Netherlands (NL)); Al-Asbahl, A.M.S. (Ministry of Oil and Mineral Resources (YE))

1991-05-01T23:59:59.000Z

424

Rate-transient analysis of 2-phase (gas+water) CBM wells  

Science Journals Connector (OSTI)

In recent work, the authors (Clarkson etal., 2008, 2007; Jordan etal., 2006) demonstrated how modern production data analysis (PDA) methods, such as flowing material balance (FMB) and production type-curves, may be adapted to account for the unique reservoir characteristics of coalbed methane (CBM) reservoirs through the appropriate use of material balance and time transforms. Reservoir characteristics related to storage and fluid flow that were addressed included: adsorbed and free-gas storage; single-phase flow of water above desorption pressure (undersaturated coals); 2-phase flow of gas and water below desorption pressure (saturated coals); non-static absolute permeability during depletion; and multi-layer behavior. Example (field) applications of the new PDA methods were limited to vertical wells that were either openhole completed, or slightly stimulated with hydraulic fracturing methods. In this work, new workflows and analytical approaches are provided for analyzing vertical, hydraulically-fractured and horizontal CBM wells. The analysis and methodology for 2-phase flow reservoirs is complex, requiring modifications to account for desorption and changes in effective permeability. The proposed workflow for 2-phase CBM wells includes the transformation of the well production and flowing pressure data into dimensionless type-curve and straight line (ex. flowing material balance) coordinates using certain outputs (krg, pR) from the simulator used in turn to history-match the production data. Transient straight-line (pressure-transient analysis analog) techniques are applied for the first time to 2-phase CBM well production data. The type-curve and straight-line matches to actual production data are then used to retrieve reservoir properties (e.g. absolute permeability) and stimulation conditions (e.g. skin), which in turn are compared to reservoir simulation input as a consistency check. Both simulated and field cases are analyzed to illustrate the new procedures and analytical techniques. The primary contribution of the current work is the application of modern production analysis methods to 2-phase CBM reservoirs. These methods have been modified for CBM reservoir behavior and combined with analytical (or numerical) modeling to extract quantitative reservoir information from CBM reservoirs which exhibit a wide-range in production characteristics, and are completed in a variety of styles. The modifications proposed in this work to enable the use of single-phase flow techniques must be regarded as practical approximations. The methods rely heavily on late-time data because of the poor quality of water production and flowing pressure data that typically exists. The methods are expected to be used as a pre-cursor to or in parallel with field reservoir simulation, to assist with CBM development decisions.

C.R. Clarkson; C.L. Jordan; D. Ilk; T.A. Blasingame

2012-01-01T23:59:59.000Z

425

Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico  

SciTech Connect (OSTI)

In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses.

Hutchinson, D.R. (USGS); Shelander, D. (Schlumberger, Houston, TX); Dai, J. (Schlumberger, Hoston, TX); McConnell, D. (AOA Geophysics, Inc., Houston, TX); Shedd, W. (Minerals Management Service); Frye, M. (Minerals Management Service); Ruppel, C. (USGS); Boswell, R.; Jones, E. (Chevron Energy Technology Corp., Houston, TX); Collett, T.S. (USGS); Rose, K.; Dugan, B. (Rice Univ., Houston, TX); Wood, W. (U.S. Naval Research Laboratory); Latham, T. (Chevron Energy Technology Corp., Houston, TX)

2008-07-01T23:59:59.000Z

426

HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA  

SciTech Connect (OSTI)

We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

Imanishi, Masatoshi [Subaru Telescope, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile)

2013-09-15T23:59:59.000Z

427

California--State Offshore Natural Gas Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) California--State Offshore Natural Gas Wet After Lease Separation, Reserves in Nonproducing...

428

Gas Retention and Accumulation in Stellar Clusters and Galaxies: Implications for Star Formation and Black Hole Accretion.  

E-Print Network [OSTI]

??Star formation cannot proceed without the existence of an extensive gas reservoir. In particular, the supply of gas to form stars in dwarf galaxies and (more)

Naiman, Jill Palmer

2014-01-01T23:59:59.000Z

429

REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES  

SciTech Connect (OSTI)

Ongoing Phase 2 work comprises the development and field-testing of a real-time reservoir stimulation diagnostic system. Phase 3 work commenced in June 2001, and involved conducting research, development and field-testing of real-time enhanced dual-fluid stimulation processes. Experimental field-testing to date includes three well tests. Application of these real-time stimulation processes and diagnostic technologies has been technically successful with commercial production from the ''marginal'' reservoirs in the first two well tests. The third well test proved downhole-mixing is an efficient process for acid stimulation of a carbonate reservoir that produced oil and gas with 2200 psi bottomhole reservoir pressure, however, subsequent shut-in pressure testing indicated the reservoir was characterized by low-permeability. Realtimezone continues to seek patent protection in foreign markets to the benefit of both RTZ and NETL. Realtimezone and the NETL have licensed the United States patented to Halliburton Energy Services (HES). Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies, from well testing conducted over the last 12-month work period and including well test scheduled for year-end of 2002. Technical data transfer to industry is ongoing via Internet tech-transfer, public presentations and industry publications. Final Phase 3 test work will be focused on further field-testing the innovational process of blending stimulation fluids downhole. This system provides a number of advantages in comparison to older industry fracturing techniques and allows the operator to control reservoir fracture propagation and concentrations of proppant placed in the reservoir, in real-time. Another observed advantage is that lower friction pressures result, which results in lower pump treating pressures and safer reservoir hydraulic fracturing jobs.

George Scott III

2002-08-01T23:59:59.000Z

430

The Properties of Lyman Alpha Nebulae: Gas Kinematics from Non-resonant Lines  

E-Print Network [OSTI]

[Abridged] With VLT/X-shooter, we obtain optical and NIR spectra of six Ly-alpha blobs at z~2.3. Using three measures --- the velocity offset between the Lya line and the non-resonant [OIII] or H-alpha line (Dv_Lya), the offset of stacked interstellar metal absorption lines, and the spectrally-resolved [OIII] line profile --- we study the kinematics of gas along the line of sight to galaxies within each blob center. These three indicators generally agree in velocity and direction, and are consistent with a simple picture in which the gas is stationary or slowly outflowing at a few hundred km/s from the embedded galaxies. The absence of stronger outflows is not a projection effect: the covering fraction for our sample is limited to winds of up to ~1000km/s. The Dv_Lya offsets here are smaller than typical of LBGs, but similar to those of compact LAEs. The latter suggests that outflow speed cannot be a...

Yang, Yujin; Jahnke, Knud; Dav, Romeel

2014-01-01T23:59:59.000Z

431

New developments in high resolution borehole seismology and their applications to reservoir development and management  

SciTech Connect (OSTI)

Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

Paulsson, B.N.P. [Chevron Petroleum Technology Company, La Habra, CA (United States)

1997-08-01T23:59:59.000Z

432

VLA IMAGING OF VIRGO SPIRALS IN ATOMIC GAS (VIVA). I. THE ATLAS AND THE H I PROPERTIES  

SciTech Connect (OSTI)

We present the results of a new VLA H I Imaging survey of Virgo galaxies, the VLA Imaging survey of Virgo galaxies in Atomic gas (VIVA). The survey includes high-resolution H I data of 53 carefully selected late type galaxies (48 spirals and five irregular systems). The goal is to study environmental effects on H I gas properties of cluster galaxies to understand which physical mechanisms affect galaxy evolution in different density regions, and to establish how far out the impact of the cluster reaches. As a dynamically young cluster, Virgo contains examples of galaxies experiencing a variety of environmental effects. Its nearness allows us to study each galaxy in great detail. We have selected Virgo galaxies with a range of star formation properties in low to high density regions (at projected distances from M87, d {sub 87} = 0.3-3.3 Mpc). Contrary to previous studies, more than half of the galaxies in the sample ({approx}60%) are fainter than 12 mag in B{sub T} . Overall, the selected galaxies represent the late type Virgo galaxies (S0/a to Sd/Irr) down to m{sub p} {approx}< 14.6 fairly well in morphological type, systemic velocity, subcluster membership, H I mass, and deficiency. The H I observations were done in C short (CS) configuration of the VLA radio telescope, with a typical spatial resolution of 15'' and a column density sensitivity of {approx}3-5 x 10{sup 19} cm{sup -2} in 3{sigma} per 10 km s{sup -1} channel. The survey was supplemented with data of comparable quality from the NRAO archive, taken in CS or C configuration. In this paper, we present H I channel maps, total intensity maps, velocity fields, velocity dispersions, global/radial profiles, position-velocity diagrams and overlays of H I/1.4 GHz continuum maps on the optical images. We also present H I properties such as total flux (S {sub HI}), H I mass (M {sub HI}), linewidths (W{sub 20} and W{sub 50}), velocity (V{sub HI}), deficiency (def{sub HI}), and size (D {sup eff}{sub HI} and D {sup iso}{sub HI}), and describe the H I morphology and kinematics of individual galaxies in detail. The survey has revealed details of H I features that were never seen before. In this paper, we briefly discuss differences in typical H I morphology for galaxies in regions of different galaxy densities. We confirm that galaxies near the cluster core (d {sub 87} {approx}< 0.5 Mpc) have H I disks that are smaller compared to their stellar disks (D{sub HI}/D{sub 25} < 0.5). Most of these galaxies in the core also show gas displaced from the disk, which is either currently being stripped or falling back after a stripping event. At intermediate distances (d{sub 87} {approx} 1 Mpc) from the center, we find a remarkable number of galaxies with long one-sided H I tails pointing away from M87. In a previous letter, we argue that these galaxies are recent arrivals, falling into the Virgo core for the first time. In the outskirts, we find many gas-rich galaxies, with gas disks extending far beyond their optical disks. Interestingly, we also find some galaxies with H I disks that are smaller compared to their stellar disks at large clustercentric distances.

Chung, Aeree; Van Gorkom, J. H. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Kenney, Jeffrey D. P.; Crowl, Hugh [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Vollmer, Bernd [Observatoire astronomique de Strasbourg, 11 rue de l'universite, 67000 Strasbourg (France)], E-mail: achung@aoc.nrao.edu, E-mail: jvangork@astro.columbia.edu, E-mail: kenney@astro.yale.edu, E-mail: hugh@astro.yale.edu, E-mail: hugh@astro.umass.edu, E-mail: bvollmer@astro.u-strasbg.fr

2009-12-15T23:59:59.000Z

433

Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs  

E-Print Network [OSTI]

individual scale, as an ensemble of porous media, with well defined properties (porosity and permeabilityMultiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs Peter Popov1, vuggy, porus media is a challenging problem which occurs frequently in reservoir engineering

Popov, Peter

434

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we present the data on surfactant injection in near well bore region. We demonstrate that by injecting the surfactant, the relative permeability