National Library of Energy BETA

Sample records for gas recovery biomass

  1. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  2. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  3. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  4. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  5. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  6. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  7. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  8. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  9. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  10. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  11. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  12. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  13. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  14. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  15. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  16. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  17. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  18. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  19. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  20. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  1. Recovery of sugars from ionic liquid biomass liquor by solvent...

    Office of Scientific and Technical Information (OSTI)

    Recovery of sugars from ionic liquid biomass liquor by solvent extraction Citation Details In-Document Search Title: Recovery of sugars from ionic liquid biomass liquor by solvent ...

  2. Montgomery County Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource...

  3. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf (177.31 KB) More Documents ...

  4. American Recovery and Reinvestment Act of 2009: Biomass Program Investments

    SciTech Connect (OSTI)

    2012-06-01

    This fact sheet discusses the Biomass Program's investments using Recovery Act funding, as well as make note of how Recovery Act projects are currently doing.

  5. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  6. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  7. Recovery Act, Office of the Biomass Program,Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcements Special Notice | Department of Energy Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice A description of The U.S. Department of Energy's (DOE's) Office of the Biomass Program (OBP) intends to issue two Funding Opportunity Announcements (FOAs) Recovery Act, Office of the Biomass Program,Funding Opportunity Announcements Special Notice (22.62 KB) More

  8. Gas Recovery Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Jump to: navigation, search Name: Gas Recovery Systems Place: California Zip: 94550 Product: Turnkey landfill gas (LFG) energy extraction systems. References: Gas Recovery...

  9. Pioneer Valley Resource Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314, -72.6624209...

  10. SEMASS Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Facility SEMASS Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Plymouth County, Massachusetts Coordinates 41.9120406, -70.7168469...

  11. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  12. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  13. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  14. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  15. Gas-recovery system

    DOE Patents [OSTI]

    Heckman, R.A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  16. Gas-Recovery System

    DOE Patents [OSTI]

    Heckman, R. A.

    1971-12-14

    Nuclear explosions have been proposed as a means for recovering gas from underground gas-bearing rock formations. In present practice, the nuclear device is positioned at the end of a long pipe which is subsequently filled with grout or concrete. After the device is exploded, the grout is drilled through to provide a flow path for the released gas to the ground surface. As settled grout is brittle, often the compressive shock of the explosion fractures the grout and deforms the pipe so that it may not be removed nor reused. In addition, the pipe is sometimes pinched off completely and the gas flow is totally obstructed. (2 claims)

  17. Biomass Gas Electric LLC BG E | Open Energy Information

    Open Energy Info (EERE)

    Gas Electric LLC BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer...

  18. U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. Department of Energy Recovery Act Investment in Biomass Technologies

    SciTech Connect (OSTI)

    2010-11-01

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  20. Department of Energy Recovery Act Investment in Biomass Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

  1. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  2. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  3. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  4. Carbon sequestration with enhanced gas recovery: Identifying...

    Office of Scientific and Technical Information (OSTI)

    studies, we propose a field test of the Carbon Sequestration with Enhanced Gas Recovery (CSEGR) process. The objective of the field test is to evaluate the feasibility of ...

  5. Hot-gas conditioning of biomass derived synthesis gas

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.

    1993-12-31

    Battelle has tested selected catalysts to evaluate the potential for hot-gas conditioning of biomass gasifier product gas to modify the product gas to produce a gas suitable for methanol synthesis. The Battelle Process Research Unit (PRU) gasifier was utilized as a source of a stable supply of product gas that contained all of the trace constituents that might be present in a commercial scale gasification system. One goal of alternate fuel generation with renewable biomass fuels is the production of a liquid transportation fuel such as methanol. The hot-gas conditioning tests run were planned to evaluate commercial catalysts that would crack hydrocarbons and provide water gas shift activity to adjust the product gas composition for methanol synthesis. During the test program, a novel, low cost catalyst, was identified that showed high levels of activity and stability. The composition of this catalyst is such that it has the potential to be a disposable catalyst and is free from hazardous materials. The initial tests with this catalyst showed high levels of water gas shift activity superior to, and hydrocarbon cracking activity nearly as high as, a commercial cracking catalyst tested.

  6. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers Citation Details In-Document Search Title: Recovery of Water from Boiler Flue Gas Using ...

  7. DOE Announces Webinars on Natural Gas for Biomass Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars February 6: Live Webinar on Natural Gas for Biomass Technologies ...

  8. Biomass and Natural Gas to Liquid Transportation Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

  9. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  10. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  11. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect (OSTI)

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  12. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  13. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  14. Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report

    SciTech Connect (OSTI)

    M. Misra

    2007-06-10

    This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two fronts—computer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood

  15. Biomass Gas Cleanup Using a Therminator

    SciTech Connect (OSTI)

    Dayton, David C; Kataria, Atish; Gupta, Rabhubir

    2012-03-06

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a Therminator to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very

  16. Biomass IBR Fact Sheet: Gas Technology Institute

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gas Technology Institute will conduct research and development on hydropyrolysis and hydroconversion processes to make gasoline and diesel.

  17. Imperial Valley Resource Recovery Plant Biomass Facility | Open...

    Open Energy Info (EERE)

    15,000 kW 15,000,000 W 15,000,000,000 mW 0.015 GW References Biomass Power Association (BPA) Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TER...

  18. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  19. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Michael Vanden Berg; Paul Anderson; Janae Wallace;...

  20. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop materials and coatings to reduce corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, fuel cost, and CO 2 emissions. Introduction Industrial boilers are commonly used to make process steam, provide

  1. Texas Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making ...

  2. Responsible recovery of unconventional oil and gas (UOG) requires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responsible recovery of unconventional oil and gas (UOG) requires technologies that ensure ... Office of Oil and Natural Gas Goals One of the primary goals of FE's Office of Oil and ...

  3. Co-conversion of Biomass, Shale-natural gas, and process-derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and ...

  4. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Co-Evolution of Biofuels Lignocellulosic Biomass Microalgae ... HomeBiomass Permalink One-Pot-to-Prep Biomass for Biofuels Biofuels, Biomass, Energy, ...

  5. A small scale biomass fueled gas turbine engine

    SciTech Connect (OSTI)

    Craig, J.D.; Purvis, C.R.

    1999-01-01

    A new generation of small scale (less than 20 MWd) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  6. Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech/NETL Research | Department of Energy Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research Underground CO2 Storage, Natural Gas Recovery Targeted by Virginia Tech/NETL Research October 20, 2015 - 8:14am Addthis Researchers from Virginia Tech are injecting CO2 into coal seams in three locations in Buchanan County, Va., as part of an NETL-sponsored CO2 storage research project associated with enhanced gas recovery. Researchers from Virginia Tech are

  7. Recovery of Water from Boiler Flue Gas Using Condensing Heat...

    Office of Scientific and Technical Information (OSTI)

    DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water ...

  8. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search ...

  9. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-re...

  10. Water-related Issues Affecting Conventional Oil and Gas Recovery...

    Office of Scientific and Technical Information (OSTI)

    Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah Citation Details In-Document Search Title: Water-relat...

  11. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; Laurens, Lieve M. L.

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  12. Exhaust Gas Energy Recovery Technology Applications

    SciTech Connect (OSTI)

    Wagner, Robert M; Szybist, James P

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  13. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region`s net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region`s energy and greenhouse gas mitigation strategies.

  14. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  15. Co-conversion of Biomass, Shale-natural gas, and process-derived CO2 into Fuels and Chemicals

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Suresh Babu, Senior Program Manager, Biomass Program Development, Brookhaven National Laboratory

  16. Analysis of factors affecting methane-gas recovery from six landfills...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 09 BIOMASS FUELS; 54 ENVIRONMENTAL SCIENCES; METHANE; MATERIALS RECOVERY; AIR POLLUTION; CLIMATES; DATA PROCESSING; FIELD TESTS; GLOBAL ASPECTS; ...

  17. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  18. Cryogenic recovery of LPG from natural gas

    SciTech Connect (OSTI)

    Gray, M.L.; McClintock, W.A.

    1984-02-07

    In accordance with the present invention a natural gas stream predominating in methane and containing significant amounts of C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is cooled in a plurality of cooling stages to a temperature sufficient to produce at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons. Then at least one liquid phase portion predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is separated from the main gas stream during the course of the cooling. The thus separated liquid phase portion or portions predominating in C/sub 2/, C/sub 3/, C/sub 4/ and C/sub 5/ and higher molecular weight hydrocarbons is further separated into a vapor phase portion predominating in C/sub 2/, C/sub 3/, and C/sub 4/ hydrocarbons and at least one liquid phase portion predominating in C/sub 5/ and higher molecular weight hydrocarbons, at least one second separation step, at least one portion of the at least one vapor phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/, hydrocarbons is recovered as at least one product of the process and at least one portion of the remaining portion of the at least one phase portion predominating in C/sub 2/, C/sub 3/ and C/sub 4/ hydrocarbons is recycled to and recombined with the main gas stream as a liquid phase.

  19. Biomass Gas Clean-Up Using a Therminator

    SciTech Connect (OSTI)

    2006-04-01

    Clean-up and conditioning of syngas is a key technical barrier to the commercialization of biomass gasification systems. Current technologies do not meet the necessary performance, cost, and environmental criteria to achieve commercialization of biomass gasification technologies.

  20. Webinar on the Potential for Natural Gas to Enhance Biomass Technologies

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) will present a live webinar titled "The Potential for Natural Gas to Enhance Biomass Technologies" on Thursday, February 6, 2013, from 1:00 p.m. to 2:00 p.m. Eastern Time. During the webinar, Mr. Zia Haq and Mr. Prasad Gupte, of BETO, and Mr. Timothy Skone, of the U.S. Department of Energy's Office of Fossil Energy, will present an overview of Natural Gas-Biomass to Liquids technology, advantages of using natural gas, and some key themes that were established at the September Natural Gas-Biomass to Liquids Workshop.

  1. Natural gas recovery, storage, and utilization SBIR program

    SciTech Connect (OSTI)

    Shoemaker, H.D.

    1993-12-31

    A Fossil Energy natural-gas topic has been a part of the DOE Small Business Innovation Research (SBIR) program since 1988. To date, 50 Phase SBIR natural-gas applications have been funded. Of these 50, 24 were successful in obtaining Phase II SBIR funding. The current Phase II natural-gas research projects awarded under the SBIR program and managed by METC are presented by award year. The presented information on these 2-year projects includes project title, awardee, and a project summary. The 1992 Phase II projects are: landfill gas recovery for vehicular natural gas and food grade carbon dioxide; brine disposal process for coalbed gas production; spontaneous natural as oxidative dimerization across mixed conducting ceramic membranes; low-cost offshore drilling system for natural gas hydrates; motorless directional drill for oil and gas wells; and development of a multiple fracture creation process for stimulation of horizontally drilled wells.The 1993 Phase II projects include: process for sweetening sour gas by direct thermolysis of hydrogen sulfide; remote leak survey capability for natural gas transport storage and distribution systems; reinterpretation of existing wellbore log data using neural-based patter recognition processes; and advanced liquid membrane system for natural gas purification.

  2. Kansas Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  3. Mississippi Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  4. Semi-annual report for the unconventional gas recovery program, period ending March 31, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-06-01

    Four subprograms are reported on: methane recovery from coalbeds, Eastern gas shales, Western gas sands, and methane from geopressured aquifers. (DLC)

  5. Improving material and energy recovery from the sewage sludge and biomass residues

    SciTech Connect (OSTI)

    Kliopova, Irina Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  6. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect (OSTI)

    Moses, C.A.; Bernstein, H.

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  7. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    Damon, D.A.; Siwajek, L.A.; Klint, B.W.

    1993-12-31

    Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

  8. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    SciTech Connect (OSTI)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) process for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus

  9. Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-04-01

    This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

  10. Reducing GHG emissions by co-utilization of coal with natural gas or biomass

    SciTech Connect (OSTI)

    Smith, I.M.

    2004-07-01

    Energy reserves price and security of supply issues are discussed in the context of the prospects for coal and policies to reduce greenhouse gas (GHG) emissions. Coal is projected to remain a major source of energy, with most of the demand growth in developing countries. Currently available power-generating technologies, deploying coal with natural gas or biomass, are examined. Examples of successful, partial substitution of coal by other fuels in power stations are highlighted, including the GHG emissions reductions achieved as well as the costs where available. Among various options, hybrid gasification and parallel cofiring of coal with biomass and natural gas appear to have the greatest potential to reduce GHG emissions. Much may also be achieved by cofiring, reburning, and repowering with gas turbines. The best method differs between different power systems. Co-utilization of biomass with coal is a least-cost option to reduce GHG emissions where the fuel prices are comparable, usually due to subsidies or taxes. The role of biomass is likely to increase due to greater use of subsidies, carbon taxes, and emissions trading within the context of the Kyoto Protocol. This should provide opportunities for clean coal technology transfer and diffusion, including biomass co-utilization. 32 refs., 1 fig., 3 tabs.

  11. Apparatus and method for fast recovery and charge of insulation gas

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-09-03

    An insulation gas recovery and charge apparatus is provided comprising a pump, a connect, an inflatable collection device and at least one valve.

  12. Low inlet gas velocity high throughput biomass gasifier

    DOE Patents [OSTI]

    Feldmann, Herman F.; Paisley, Mark A.

    1989-01-01

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  13. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  14. Low inlet gas velocity high throughput biomass gasifier

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.

    1989-05-09

    A method is described for operating a gasifier which comprises: introducing inlet gas at a velocity of about 0.5 to 7 ft/sec to fluidize a bed in a gasifier vessel; forming the bed into a fluidized bed in a first space region by means of the inlet gas, the fluidized bed containing a circulating hot relatively fine and inert solid bed particle component; inputting and throughputting carbonaceous material into and through the first space region with fluidized bed at a rate from 500-4400 lbs/ft/sup 2/-hr; endothermally pyrolyzing the carbonaceous material by means of the circulating hot inert particle component so as to form a product gas; forming contiguous to and above the fluidized bed a lower average density entrained space region containing an entrained mixture of inert solid particles, char, and carbonaceous material and the product gas; gradually and continuously removing the entrained mixture and the product gas from the lower average density entrained space region of the gasifier to a separator, residence time of the carbonaceous material in the gasifier not exceeding 3 minutes on average; separating the entrained mixture from the product gas; passing the entrained mixture containing inert solid particles, char, and carbonaceous material through an exothermic reaction zone to add heat; and returning at least the inert solid particles to the first space region.

  15. Method and apparatus for recovery of oil, gas and mineral deposits by panel opening

    SciTech Connect (OSTI)

    Wang, F. D.

    1984-10-30

    A method for oil, gas and mineral recovery by panel opening drilling including providing spaced injection and recovery drill holes which respectively straddle a deposit bearing underground region, each drill hole including a panel shaped opening substantially facing the deposit bearing region and injecting the injection hole with a fluid under sufficient pressure to uniformly sweep the deposits in the underground region to the recovery hole for recovery of the deposits therefrom. An apparatus for creating such panel shaped is also provided.

  16. Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  17. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    SciTech Connect (OSTI)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  18. Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications WBS 3.2.5.9 May 22, 2013 Thermo-chemical Platform Review Presented by: Ben Phillips, Emery Energy Lyman Frost, Ceramatec 2 Project Overview * Start Date - 9/30/2008 * Completion Date - Dec 2012 * Construction - 100% complete * Project - 100% complete 1. Tt-C - Gasification of Wood, Biorefinery Residue Streams and Low Sugar Biomass 2. Tt-F - Syngas Cleanup & Conditioning 3. Tt-H - Validation of Syngas Quality Total

  19. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    SciTech Connect (OSTI)

    Roberts, Michael J.; Souleimanova, Razima

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  20. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  1. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced Biomass Feedstock Logistics Supply Chains in Kansas

    SciTech Connect (OSTI)

    Cafferty, Kara G.; Searcy, Erin M.; Nguyen, Long; Spatari, Sabrina

    2014-11-01

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this

  2. Top Value Added Chemicals from Biomass: Volume I--Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Value Added Chemicals from Biomass Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass Program (EERE) For the Office of the Biomass Program T. Werpy and G. Petersen, Editors U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

  3. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  4. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  5. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  6. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  7. Expander-gas processing plant converted to boost C3 recovery at Canada's Judy Creek

    SciTech Connect (OSTI)

    Khan, S.A.

    1985-06-03

    This article discusses Esso Resources Canada Ltd's conversion of its Judy Creek cryogenic expander gas plant in Alberta to a process which can boost recovery of propane and heavier hydrocarbons. After conversion, propane recovery at the plant increased from 72% to 95%. At constant plant feed rates, 100% propane recovery has been recorded. The total investment for the conversion, less than $750,000, was paid out in under 6 months.

  8. Oil and Gas Recovery Data from the Riser Insertion Tub- XLS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  9. Oil and Gas Recovery Data from the Riser Insertion Tub- ODS

    Broader source: Energy.gov [DOE]

    Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected on May 24 in preparation for cutting off the riser.

  10. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  11. State-of-the-art modeling for unconventional gas recovery

    SciTech Connect (OSTI)

    King, G.R. ); Ertekin, T. )

    1991-03-01

    In this paper a series of mathematical and numerical developments that simulate the unsteady-state behavior of unconventional gas reservoirs is reviewed. Five major modules, considered to be unique to the simulation of gas reservoirs, are identified. The inclusion of these models into gas reservoir simulators is discussed in mathematical detail with accompanying assumptions.

  12. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    SciTech Connect (OSTI)

    Matitu, M.R.

    1994-12-31

    Carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO{sub 2} emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors.

  13. Cold box shuttle - a system for the recovery of offshore gas - applied to Sweden

    SciTech Connect (OSTI)

    Smith, D.; Eriksson, L.; Pehrsson, L.O.; Strom-Olsen, H.

    1982-01-01

    The recovery of offshore gas as LNG, by heat exchange on an LNG carrier with liquid nitrogen, was studied in the context of a North Sea gas source and a Swedish market. The technical suitability of each component of this cold-box shuttle system was examined and the capital and operating costs were estimated. It was concluded that the system is technically robust and flexible and that, for the case studied, gas could be landed at a competitive cost.

  14. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  15. Low-quality natural gas sulfur removal/recovery

    SciTech Connect (OSTI)

    K. Amo; R.W. Baker; V.D. Helm; T. Hofmann; K.A. Lokhandwala; I. Pinnau; M.B. Ringer; T.T. Su; L. Toy; J.G. Wijmans

    1998-01-29

    A significant fraction of U.S. natural gas reserves are subquality due to the presence of acid gases and nitrogen; 13% of existing reserves (19 trillion cubic feed) may be contaminated with hydrogen sulfide. For natural gas to be useful as fuel and feedstock, this hydrogen sulfide has to be removed to the pipeline specification of 4 ppm. The technology used to achieve these specifications has been amine, or similar chemical or physical solvent, absorption. Although mature and widely used in the gas industry, absorption processes are capital and energy-intensive and require constant supervision for proper operation. This makes these processes unsuitable for treating gas at low throughput, in remote locations, or with a high concentration of acid gases. The U.S. Department of Energy, recognizes that exploitation of smaller, more sub-quality resources will be necessary to meet demand as the large gas fields in the U.S. are depleted. In response to this need, Membrane Technology and Research, Inc. (MTR) has developed membranes and a membrane process for removing hydrogen sulfide from natural gas. During this project, high-performance polymeric thin-film composite membranes were brought from the research stage to field testing. The membranes have hydrogen sulfide/methane selectivities in the range 35 to 60, depending on the feed conditions, and have been scaled up to commercial-scale production. A large number of spiral-wound modules were manufactured, tested and optimized during this project, which culminated in a field test at a Shell facility in East Texas. The short field test showed that membrane module performance on an actual natural gas stream was close to that observed in the laboratory tests with cleaner streams. An extensive technical and economic analysis was performed to determine the best applications for the membrane process. Two areas were identified: the low-flow-rate, high-hydrogen-sulfide-content region and the high-flow-rate, high

  16. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-11-01

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  17. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect (OSTI)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  18. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  19. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  20. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  1. Recovery of purified helium or hydrogen from gas mixtures

    DOE Patents [OSTI]

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  2. OpenEI Community - natural gas+ condensing flue gas heat recovery...

    Open Energy Info (EERE)

    groupincrease-natural-gas-energy-efficiency

  3. Biomass torrefaction mill

    DOE Patents [OSTI]

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  4. Proceedings of the 1992 SPE Permian Basin oil and gas recovery conference

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This book covers the proceedings of the 1992 Permian Basin Oil and Gas Recovery Conference. Topics covered include: fluid-loss measurements from drilling fluid, CO{sub 2} injection, coalbed methane production, drilling equipment, hydraulic fracturing in horizontal wells, reservoir characterization, cementing and well completions, and well testing.

  5. An integrated process for simultaneous desulfurization, dehydration, and recovery of hydrocarbon liquids from natural gas streams

    SciTech Connect (OSTI)

    Sciamanna, S.F. ); ))

    1988-01-01

    Conventional processing schemes for desulfurizing, drying, and separation of natural gas liquids from natural gas streams require treating the gas by a different process for each separation step. In a simpler process, based on the University of California, Berkeley Sulfur Recovery Process (UCBSRP) technology, hydrogen sulfide, propane and heavier hydrocarbons, and water are absorbed simultaneously by a polyglycol ether solvent containing a homogenous liquid phase catalyst. The catalyst promotes the subsequent reaction of hydrogen sulfide with added sulfur dioxide to produce a high quality sulfur product. Hydrocarbons are separated as two product streams with the split between propane and butane. This new process offers an overall reduction in both capital and energy costs.

  6. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  7. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect (OSTI)

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  8. The use of flue gas for the growth of microalgal biomass

    SciTech Connect (OSTI)

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A.

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  9. Compression Stripping of Flue Gas with Energy Recovery

    SciTech Connect (OSTI)

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  10. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  11. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  12. Estimations and prospects of secondary recovery through conventional gas and waterflooding

    SciTech Connect (OSTI)

    Araujo, J.B.

    1981-03-01

    Conventional waterflooding and/or gas injection have been used extensively for the production of additional hydrocarbons, preferably in light and medium oil reservoirs, and in a lesser extent in heavy oil reservoirs. There are 182 active projects of secondary recovery distributed in Venezuela as follows: 113 projects of gas injection, 64 of waterflooding, and 5 projects of simultaneous injection of gas and water. The daily production by using these methods is 800,000 bpd (40% of national production), and it is expected that 6,000 million bbl of additional oil will be recovered. An objective estimation of the active projects of gas injection and/or waterflooding performed at the present in Venezuela is presented based on statistical data and relevant results. The future prospects also are predicted and quantified.

  13. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  14. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    SciTech Connect (OSTI)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, at 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.

  15. Analysis on storage off-gas emissions from woody, herbaceous, and torrefied biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tumuluru, Jaya Shankar; Lim, C. Jim; Bi, Xiaotao T.; Kuang, Xingya; Melin, Staffan; Yazdanpanah, Fahimeh; Sokhansanj, Shahab

    2015-03-02

    Wood chips, torrefied wood chips, ground switchgrass, and wood pellets were tested for off-gas emissions during storage. Storage canisters with gas-collection ports were used to conduct experiments at room temperature of 20 °C and in a laboratory oven set at 40 °C. Commercially-produced wood pellets yielded the highest carbon monoxide (CO) emissions at both 20 and 40 °C (1600 and 13,000 ppmv), whereas torrefied wood chips emitted the lowest of about <200 and <2000 ppmv. Carbon dioxide (CO₂) emissions from wood pellets were 3000 ppmv and 42,000 ppmv, whereas torrefied wood chips registered at about 2000 and 25,000 ppmv, atmore » 20 and 40 °C at the end of 11 days of storage. CO emission factors (milligrams per kilogram of biomass) calculated were lowest for ground switchgrass and torrefied wood chips (2.68 and 4.86 mg/kg) whereas wood pellets had the highest CO of about 10.60 mg/kg, respectively, at 40 °C after 11 days of storage. In the case of CO₂, wood pellets recorded the lowest value of 55.46 mg/kg, whereas switchgrass recorded the highest value of 318.72 mg/kg. This study concludes that CO emission factor is highest for wood pellets, CO₂ is highest for switchgrass and CH₄ is negligible for all feedstocks except for wood pellets, which is about 0.374 mg/kg at the end of 11-day storage at 40 °C.« less

  16. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  17. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  18. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  19. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  20. San Marcos Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  1. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  2. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  3. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  4. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  5. Otay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  6. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  7. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  8. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  9. Rotary gas expander for energy recovery from natural gas expansion. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-15

    The specific purpose of this project was to develop a positive-displacement rotary expansion device (based on the Wankel Engine principle) and demonstrate that it could be used as an economical alternative to sophisticated turboexpanders for low gas flow and small pressure differential stations. The positive-displacement rotary expander would operate at much lower speeds than conventional turboexpanders. It would therefore be more efficient at lower pressure differentials and gas flows, and could cost significantly less because inefficient and costly gear-reduction equipment would not be required. Another purpose of this project was to develop a fail safe control system for operation in hazardous atmospheres. Design considerations for the rotary gas expander and the control system are discussed. A projection is made of the electrical generation potential and the economics of recovering the energy present in the high temperature gas. (MCW)

  10. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect (OSTI)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  11. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  12. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  13. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect (OSTI)

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  14. Biomass power and conventional fossil systems with and without CO2 sequestration - Comparing the energy balance, greenhouse gas emissions and economics

    SciTech Connect (OSTI)

    Spath, Pamela L.; Mann, Margaret K.

    2004-01-01

    Lifecycle analysis of coal-, natural gas- and biomass-based power generation systems with and without CO2 sequestration. Compares global warming potential and energy balance of these systems.

  15. Bamboo: An Overlooked Biomass Resource? (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 01 COAL, LIGNITE, AND PEAT; AGRICULTURAL WASTES; ASH CONTENT; BAMBOO; BIOMASS; ENERGY RECOVERY ...

  16. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  17. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  18. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  19. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  20. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  1. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  2. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  3. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    SciTech Connect (OSTI)

    Swindeman, R.W.

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  4. Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignocellulosic Biomass - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  5. Microsoft Word - NETL-TRS-4-2014_CO2 Storage and Enhanced Gas Recovery_20140924.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of CO 2 Storage and Enhanced Gas Recovery in Depleted Shale Gas Formations Using a Dual- Porosity/Dual-Permeability, Multiphase Reservoir Simulator 25 September 2014 Office of Fossil Energy NETL-TRS-4-2014 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  6. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  7. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect (OSTI)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  8. Small Modular Biomass Systems

    SciTech Connect (OSTI)

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  9. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  10. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  11. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  12. Newby Island I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Newby Island I Biomass Facility Jump to: navigation, search Name Newby Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa...

  13. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  14. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  15. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  16. Low-quality natural gas sulfur removal/recovery: Task 2. Topical report, September 30, 1992--August 29, 1993

    SciTech Connect (OSTI)

    Cook, W.J.; Neyman, M.; Brown, W.; Klint, B.W.; Kuehn, L.; O`Connell, J.; Paskall, H.; Dale, P.

    1993-08-01

    The primary purpose of this Task 2 Report is to present conceptual designs developed to treat a large portion of proven domestic natural gas reserves which are low quality. The conceptual designs separate hydrogen sulfide and large amounts of carbon dioxide (>20%) from methane, convert hydrogen sulfide to elemental sulfur, produce a substantial portion of the carbon dioxide as EOR or food grade CO{sub 2}, and vent residual CO{sub 2} virtually free of contaminating sulfur containing compounds. A secondary purpose of this Task 2 Report is to review existing gas treatment technology and identify existing commercial technologies currently used to treat large volumes of low quality natural gas with high acid content. Section II of this report defines low quality gas and describes the motivation for seeking technology to develop low quality gas reserves. The target low quality gas to be treated with the proposed technology is identified, and barriers to the production of this gas are reviewed. Section III provides a description of the Controlled Freeze Zone (CFG)-CNG technologies, their features, and perceived advantages. The three conceptual process designs prepared under Task 2 are presented in Section IV along with the design basis and process economics. Section V presents an overview of existing gas treatment technologies, organized into acid gas removal technology and sulfur recovery technology.

  17. Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report

    SciTech Connect (OSTI)

    Wolcott, Joanne; Shayegi, Sara

    1997-01-13

    Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

  18. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  19. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  20. Determination of the Effect of Coal/Biomass-Derived Syngas Contaminants on the Performance of Fischer-Tropsch and Water-Gas-Shift Catalysts

    SciTech Connect (OSTI)

    Trembly, Jason; Cooper, Matthew; Farmer, Justin; Turk, Brian; Gupta, Raghubir

    2010-12-31

    Today, nearly all liquid fuels and commodity chemicals are produced from non-renewable resources such as crude oil and natural gas. Because of increasing scrutiny of carbon dioxide (CO{sub 2}) emissions produced using traditional fossil-fuel resources, the utilization of alternative feedstocks for the production of power, hydrogen, value-added chemicals, and high-quality hydrocarbon fuels such as diesel and substitute natural gas (SNG) is critical to meeting the rapidly growing energy needs of modern society. Coal and biomass are particularly attractive as alternative feedstocks because of the abundant reserves of these resources worldwide. The strategy of co-gasification of coal/biomass (CB) mixtures to produce syngas for synthesis of Fischer-Tropsch (FT) fuels offers distinct advantages over gasification of either coal or biomass alone. Co-feeding coal with biomass offers the opportunity to exploit economies of scale that are difficult to achieve in biomass gasification, while the addition of biomass to the coal gasifier feed leverages proven coal gasification technology and allows CO{sub 2} credit benefits. Syngas generated from CB mixtures will have a unique contaminant composition because coal and biomass possess different concentrations and types of contaminants, and the final syngas composition is also strongly influenced by the gasification technology used. Syngas cleanup for gasification of CB mixtures will need to address this unique contaminant composition to support downstream processing and equipment. To investigate the impact of CB gasification on the production of transportation fuels by FT synthesis, RTI International conducted thermodynamic studies to identify trace contaminants that will react with water-gas-shift and FT catalysts and built several automated microreactor systems to investigate the effect of single components and the synergistic effects of multiple contaminants on water-gas-shift and FT catalyst performance. The contaminants

  1. Biomass Production and Nitrogen Recovery

    Broader source: Energy.gov (indexed) [DOE]

    Principal Investigator: M. Cristina Negri Organization: Argonne National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted ...

  2. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  3. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  4. DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming

    Broader source: Energy.gov [DOE]

    Research sponsored by the U.S. Department of Energy Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana.

  5. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  6. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  7. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  8. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  9. Sequestration of Carbon Dioxide with Enhanced Gas Recovery-CaseStudy Altmark, North German Basin

    SciTech Connect (OSTI)

    Rebscher, Dorothee; Oldenburg, Curtis M.

    2005-10-12

    Geologic carbon dioxide storage is one strategy for reducingCO2 emissions into the atmosphere. Depleted natural gas reservoirs are anobvious target for CO2 storage due to their proven record of gascontainment. Germany has both large industrial sources of CO2 anddepleting gas reservoirs. The purpose of this report is to describe theanalysis and modeling performed to investigate the feasibility ofinjecting CO2 into nearly depleted gas reservoirs in the Altmark area inNorth Germany for geologic CO2 storage with enhanced gasrecovery.

  10. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  11. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  12. New Hampshire Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Hampshire Recovery Act State Memo New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The ...

  13. Hawaii Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act ...

  14. Woodlake Sanitary Services Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodlake Sanitary Services Biomass Facility Facility Woodlake Sanitary Services Sector Biomass Facility Type Landfill Gas Location Hennepin County, Minnesota...

  15. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  16. Ridgewood Providence Power Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Ridgewood Providence Power Biomass Facility Facility Ridgewood Providence Power Sector Biomass Facility Type Landfill Gas Location Providence County, Rhode Island...

  17. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  18. KMS Joliet Power Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    navigation, search Name KMS Joliet Power Partners LP Biomass Facility Facility KMS Joliet Power Partners LP Sector Biomass Facility Type Landfill Gas Location Will County, Illinois...

  19. Marsh Road Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Marsh Road Power Plant Biomass Facility Facility Marsh Road Power Plant Sector Biomass Facility Type Landfill Gas Location San Mateo County,...

  20. Report of the workshop on Arctic oil and gas recovery. [Offshore

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    Mission of the workshop was to identify research priorities for the technology related to Arctic offshore oil and gas production. Two working groups were formed on ice-related subjects and soil-related subjects. Instrumentation needed to accomplish some of the research objectives was also discussed. Results of a research priority allocation survey are summarized. (DLC)

  1. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  2. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; Summers, Cathy A.; Gerdemann, Steve; Oryshchyn, Danylo B.; Turner, Paul; Patrick, Brian R.

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  3. Review of technology for Arctic offshore oil and gas recovery. Appendices

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  4. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  5. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  6. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  7. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2005-09-29

    This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally

  8. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect (OSTI)

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  9. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  10. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  11. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  12. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W.; Vidic, Radisav D; Gregory, Kelvin B.

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  13. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    SciTech Connect (OSTI)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  14. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  15. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified

  16. Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

    SciTech Connect (OSTI)

    Werpy, Todd A.; Holladay, John E.; White, James F.

    2004-11-01

    This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.

  17. Biomass Program Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  18. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  19. Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  1. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  2. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  3. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  4. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  6. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  7. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer-Tropsch diesel from coal and cellulosic biomass.

    SciTech Connect (OSTI)

    Xie, X.; Wang, M.; Han, J.

    2011-04-01

    This study expands and uses the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model to assess the effects of carbon capture and storage (CCS) technology and cellulosic biomass and coal cofeeding in Fischer-Tropsch (FT) plants on energy use and greenhouse gas (GHG) emissions of FT diesel (FTD). To demonstrate the influence of the coproduct credit methods on FTD life-cycle analysis (LCA) results, two allocation methods based on the energy value and the market revenue of different products and a hybrid method are employed. With the energy-based allocation method, fossil energy use of FTD is less than that of petroleum diesel, and GHG emissions of FTD could be close to zero or even less than zero with CCS when forest residue accounts for 55% or more of the total dry mass input to FTD plants. Without CCS, GHG emissions are reduced to a level equivalent to that from petroleum diesel plants when forest residue accounts for 61% of the total dry mass input. Moreover, we show that coproduct method selection is crucial for LCA results of FTD when a large amount of coproducts is produced.

  8. Report of the workshop on Arctic oil and gas recovery held at Sandia National Laboratories, Albuquerque, New Mexico, June 30-July 2, 1980

    SciTech Connect (OSTI)

    Sackinger, W. M.

    1980-09-01

    This report is the result of a workshop on Arctic offshore oil and gas recovery, held at Sandia National Laboratories Albuquerque, New Mexico, on June 30-July 2, 1980. Research priorities for the technology related to Arctic offshore oil and gas production were defined. The workshop was preceded by a report entitled, A Review of Technology for Arctic Offshore Oil and Gas Recovery, authored by Dr. W. M. Sackinger. The mission of the workshop was to identify research priorities without considering whether the research should be conducted by government or by industry. Nevertheless, at the end of the meeting the general discussion did consider this, and the concensus was that environmental properties should certainly be of concern to the government, that implementation of petroleum operations was the province of industry, and that overlapping, coordinated areas of interest include both environment and interactions of the environment with structures, transport systems, and operations. An attempt to establish relative importance and a time frame was made after the workshop through the use of a survey form. The form and a summary of its results, and a discussion of its implications, are given.

  9. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  10. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  11. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  12. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOE Patents [OSTI]

    Bingham, Dennis N. [Idaho Falls, ID; Klingler, Kerry M. [Idaho Falls, ID; Wilding, Bruce M. [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  13. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging, structural cross section, graph of production history, porosity vs. natural log permeability plots, detailed core log, paragenetic sequence, and reservoir characterization sheet for the following fields in southwest Alabama: North Smiths Church oil field; North Wallers Creek oil field; Northeast Barnett oil field; Northwest Range oil field; Pace Creek oil field; Palmers Crossroads oil field; Perdido oil field; Puss Cuss Creek oil field; Red Creek gas condensate field; Robinson Creek oil field; Silas oil field; Sizemore Creek gas condensate field; Smiths Church gas condensate field; South Burnt Corn Creek oil field; South Cold Creek oil field; South Vocation oil field; South Wild Fork Creek gas condensate field; South Womack Hill oil field; Southeast Chatom gas condensate field; Southwest Barrytown oil field; and Souwilpa Creek gas condensate field.

  14. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01

    This volume contains maps, well logging, structural cross section, graph of production history, porosity vs. natural log permeability plots, detailed core log, paragenetic sequence, and reservoir characterization sheet for the following fields in southwest Alabama: North Smiths Church oil field; North Wallers Creek oil field; Northeast Barnett oil field; Northwest Range oil field; Pace Creek oil field; Palmers Crossroads oil field; Perdido oil field; Puss Cuss Creek oil field; Red Creek gas condensate field; Robinson Creek oil field; Silas oil field; Sizemore Creek gas condensate field; Smiths Church gas condensate field; South Burnt Corn Creek oil field; South Cold Creek oil field; South Vocation oil field; South Wild Fork Creek gas condensate field; South Womack Hill oil field; Southeast Chatom gas condensate field; Southwest Barrytown oil field; and Souwilpa Creek gas condensate field.

  15. Producing Clean, Renewable Diesel from Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Renewable Diesel from Biomass Producing Clean, Renewable Diesel from Biomass November 30, 2011 - 12:08pm Addthis ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. ThermoChem Recovery International's process demonstration unit -- where wood waste and forest residue is converted into renewable fuel. | Courtesy of TRI. Paul Bryan Biomass Program Manager, Office of Energy Efficiency &

  16. Energy Recovery Associates | Open Energy Information

    Open Energy Info (EERE)

    - NY NJ CT PA Area Sector: Biofuels Product: Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Number of...

  17. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  18. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  19. Spray process for the recovery of CO.sub.2 from a gas stream and a related apparatus

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev; Perry, Robert James; Wood, Benjamin Rue; Genovese, Sarah Elizabeth

    2014-02-11

    A method for recovering carbon dioxide (CO.sub.2) from a gas stream is disclosed. The method includes the step of reacting CO.sub.2 in the gas stream with fine droplets of a liquid absorbent, so as to form a solid material in which the CO.sub.2 is bound. The solid material is then transported to a desorption site, where it is heated, to release substantially pure CO.sub.2 gas. The CO.sub.2 gas can then be collected and used or transported in any desired way. A related apparatus for recovering carbon dioxide (CO.sub.2) from a gas stream is also described herein.

  20. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the feeding and conversion of biomass and coal-biomass mixtures as essential upstream ... Activities support research for handling and processing of coal-biomass mixtures, ensuring ...

  1. Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy...

    Open Energy Info (EERE)

    Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guidemanual...

  2. Wisconsin Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the ...

  3. Georgia Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the ...

  4. Maine Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  5. Rhode Island Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's ...

  6. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  7. Hydrogen Production: Biomass-Derived Liquid Reforming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass-Derived Liquid Reforming Hydrogen Production: Biomass-Derived Liquid Reforming Photo of cylindrical reactor vessel and associated piping and equipment in the Thermochemical Process Development Unit at NREL Liquids derived from biomass resources-including ethanol and bio-oils-can be reformed to produce hydrogen in a process similar to natural gas reforming. Biomass-derived liquids can be transported more easily than their biomass feedstocks, allowing for semi-central

  8. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  9. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  10. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.