Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

National propane safety week caps fifth anniversary of GAS Check  

SciTech Connect (OSTI)

This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

Prowler, S.

1990-09-01T23:59:59.000Z

2

Technology and economics of gas utilization: Methanol  

SciTech Connect (OSTI)

The paper reviews the current and emerging technology for the conversion of natural gas into methanol and assesses its impact on the production economics. Technologies of potential use for offshore developments of large gas reserves or associated gas are discussed. New technologies for the production of methanol synthesis-gas, such as autothermal reforming and GHR technology, are described and the economic advantages over conventional steam reforming are quantified. New methanol synthesis technology, such as slurry phase reactors, are outlined but appear to offer little advantage over conventional technology for offshore gas utilization. The purification of methanol for fuel and chemical grade product is outlined and the cost of transport presented. The data presented gives an overview of the production costs for production of methanol from large gas reserves (> 1Tcf, 25--35PJ/a) and smaller scale reserves (10--20MMscfd, 4--10PJ/a). The variation of the production cost of methanol with gas price indicates that the gas price is the principal economic consideration. However, adoption of new technology will improve production economics by an amount equivalent to an incremental gas cost of about $0.5/GJ. For gas reserves of low development cost, the adoption of new technology is not a prerequisite to economic viability.

Seddon, D.

1994-12-31T23:59:59.000Z

3

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

4

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network [OSTI]

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

5

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

6

Liquefaction of natural gas to methanol for shipping and storage  

SciTech Connect (OSTI)

The penetration of natural gas into distant markets can be substantially increased by a new methanol synthesis process under development at the Brookhaven National Laboratory. The new methanol process is made possible by the discovery of a catalyst that drops synthesis temperatures from about 275/sup 0/C to about 100/sup 0/C. The new low temperature liquid catalyst can convert synthesis gas completely to methanol in a single pass through the methanol synthesis reactor. This characteristic leads to a further major improvement in the methanol plant. As a result of process design factors made possible by the BNL catalyst, the plant required to convert natural gas to methanol is very simple. Conversion of natural gas to methanol requires two chemical reactions, both of which are exothermic, and thus represent a loss of heating value in the feed natural gas. This loss is about 20% of the feed gas energy, and is, therefore, higher than the 10% loss in energy in natural gas liquefaction, which is a simpler physical - not a chemical - change. The energy disadvantage of the methanol option must be balanced against the advantage of a much lower capital investment requirement made possible by the new BNL synthesis. Preliminary estimates show that methanol conversion and shipping require an investment for liquefaction to methanol, and shipping liquefied methanol that can range from 35 to 50% of the capital needed for the LNG plant and LNG tanker fleet. This large reduction in capital requirements is expected to make liquefaction to methanol attractive in many cases where the LNG capital needs are prohibitive. 3 tabs.

O'Hare, T.E.; Sapienza, R.S.; Mahajan, D.; Skaperdas, G.T.

1986-07-01T23:59:59.000Z

7

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic Feet) U.S.Propane

8

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

9

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network [OSTI]

of NO and N02 in a Turbulent Propane/Air Di fusion Flame,"Fuel Methanol Ethanol Ethane Propane i so Octane n - Cetanestage of the secondary Propane, at A spark air line contains

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

10

Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility  

SciTech Connect (OSTI)

The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

Lyke, S.E.; Moore, R.H.

1981-01-01T23:59:59.000Z

11

Published in Journal de Physique IV, vol 11, pp. Pr3-101 ---Pr3-108 Kinetic modelling of gas-phase decomposition of propane : correlation with pyrocarbon deposition  

E-Print Network [OSTI]

-phase decomposition of propane : correlation with pyrocarbon deposition CĂ©dric Descamps, Gerard L. Vignoles , Olivier : A chemical kinetic model for gas-phase pyrolysis of propane has been set up, partially reduced, and validated the notion of "maturation" from propane to lighter hydrocarbons, then to aromatic compounds and PAHs. The gas

Boyer, Edmond

12

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory  

E-Print Network [OSTI]

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

Metz, Ricardo B.

13

Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing  

SciTech Connect (OSTI)

Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A. [Los Alamos National Lab., NM (United States)

1993-07-01T23:59:59.000Z

14

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

15

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect (OSTI)

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

16

Methanol injection and recovery in a large turboexpander plant. [Canada  

SciTech Connect (OSTI)

Methanol is used to prevent hydrate formation in Petro-Canada's 2000 MMSCFD Empress expander plant. Injection and recovery facilities have operated essentially trouble-free since start-up late in 1979. A portion of the methanol recovery section has been modified to provide removal of the H/sub 2/S and most of the COS from the propane product stream, concurrent with methanol recovery. The Empress straddle plant strips natural gas liquids from pipeline gas leaving Alberta for eastern Canadian and U.S. markets. The original cold oil absorption plant, started up in 1964 and expanded in 1967, recovered over 90% of the propane and virtually all of the heavier components. In 1976, a market for ethane was secured as feedstock for the world-scale ethylene complex under construction in Alberta, and it was decided to replace the cold oil plant with a turboexpander facility. The plant and its operations are described in some detail. 2 refs.

Nelson, K.; Wolfe, L.

1981-01-01T23:59:59.000Z

17

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect (OSTI)

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

18

Alternative Fuel Tool Kit How to Implement: Propane  

E-Print Network [OSTI]

, colorless gas that is a byproduct of natural gas production and crude oil refining. Propane autogas What is Liquefied Petroleum Gas? Liquefied petroleum gas (LPG) is commonly referred to as propane energy storage, propane is stored as a liquid in a pressurized tank onboard the vehicle, typically at 100

19

Process Design and Integration of Shale Gas to Methanol  

E-Print Network [OSTI]

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

Ehlinger, Victoria M.

2013-02-04T23:59:59.000Z

20

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network [OSTI]

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Study of the Low Temperature Oxidation of Propane Maximilien Cord  

E-Print Network [OSTI]

Study of the Low Temperature Oxidation of Propane Maximilien Cord , Benoit Husson , Juan of China, Hefei, Anhui 230029, P. R. China Abstract The lowtemperature oxidation of propane oxidation of propane in the gas phase has been the subject of very few experimental studies, mainly

Paris-Sud XI, Université de

22

Propane situation update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.9 MMbbls PADD 2 propane inventories million barrels Source: EIA, Weekly Petroleum Status Report, data through April 11 April 11 8.9 MMbbls PADD 2 (Midwest) propane inventories...

23

Propane on Titan  

E-Print Network [OSTI]

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

24

Gas phase synthesis of MTBE from methanol and isobutene over dealuminated zeolites  

SciTech Connect (OSTI)

Gas phase synthesis of MTBE from methanol and isobutene has been investigated over different zeolites. It is shown that bulk Si/Al ratio has a marked influence on the formation of MTBE. H-beta zeolite was found to be as active as acid Amberlyst-15 (reference catalyst), and noticeably superior to non- and dealuminated forms of H-Y, H-ZSM-5, zeolite omega, and H-mordenites. Screening test results obtained over other catalysts (SAPOs and pillared clays) are briefly commented. The contribution of the external surface of the zeolites to the reaction is discussed. In the case of H-Y zeolites, it is shown that extra framework Al species ({sup 27}Al NMR signal at 30 ppm) have a detrimental effect on the reaction. 64 refs., 12 figs., 3 tabs.

Collignon, F.; Mariani, M.; Moreno, S.; Remy, M.; Poncelet, G. [Universite Catholique de Louvain (Belgium)] [Universite Catholique de Louvain (Belgium)

1997-02-01T23:59:59.000Z

25

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect (OSTI)

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

26

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers [EERE]

Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane...

27

Conversion of synthesis gas and methanol to hydrocarbons using zeolite catalysts  

E-Print Network [OSTI]

of methanol to hydrocarbons: 2CHsOH ~ (CH, ), O ~ C, -C, Olefinsr paraf f ins aromatics (2l coke This pathway and stoichiometry illustrates that conversion of methanol will yield a maximum of 43. 75 % by weight hydrocarbons and 56. 25% water. Langner... is readily calculated. CO + 2Ht ? + CHsOH /)G tppx = 12. 1 kcal/mol (3) With a feed ratio of 2/1 Hz/CO, the equilibrium CO conversion at 573K and 1, 500 psi is 46. 1%. Commercially, the conversions are much less than equilibrium. It would be desirable...

Matthews, Michael Anthony

2012-06-07T23:59:59.000Z

28

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

29

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

1999-01-01T23:59:59.000Z

30

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

2001-01-01T23:59:59.000Z

31

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

32

Methanol partial oxidation reformer  

DOE Patents [OSTI]

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

33

The catalytic oxidation of propane  

E-Print Network [OSTI]

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

1949-01-01T23:59:59.000Z

34

Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996  

SciTech Connect (OSTI)

A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

NONE

1996-04-20T23:59:59.000Z

35

Produce syngas for methanol  

SciTech Connect (OSTI)

Combined reforming, in which an oxygen reforming reactor is added downstream from a conventional tubular reactor to produce syngas for methanol, achieves a substantial reduction in energy consumption with the least impact on the environment. This paper reports that the advantages of this process scheme are as follows: 8% to 10% reduction in the consumption of natural gas per ton of methanol, The size of the primary reformer is reduced, Reduction of syngas compression requirement due to increased syngas pressure, Reduced steam consumption, Production of syngas with the stoichiometric composition required by methanol synthesis. Synthesis gases for the production of methanol and synfuels are basically mixtures of hydrogen and carbon oxides. They have been produced from natural gas by steam reforming, autothermal reforming and noncatalytic partial oxidation.

Farina, G.L. (Foster Wheeler International Corp., Milan (IT))

1992-03-01T23:59:59.000Z

36

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5, 201449,propane

37

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane price

38

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane

39

Residential propane price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane

40

Residential propane prices available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Residential propane prices decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices5,

42

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane

43

Clean Fuel Advanced Technology Public Education Campaign: Billboards According to the U.S. Department of Energy's July 2013 alternative fuel price report, the price of propane  

E-Print Network [OSTI]

.S. Department of Energy's July 2013 alternative fuel price report, the price of propane (LPG) in North Carolina at least $1,000 in yearly fuel costs by driving on natural gas or propane. · According to the U

44

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network [OSTI]

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

45

Natural Gas Ethanol Flex-Fuel  

E-Print Network [OSTI]

Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

46

Alternative Fuels Data Center: Propane Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAboutPropane

47

Direct methanol fuel cell and system  

DOE Patents [OSTI]

A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

Wilson, Mahlon S. (Los Alamos, NM)

2004-10-26T23:59:59.000Z

48

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

49

Propane - A Mid-Heating Season Assessment  

Reports and Publications (EIA)

This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

2001-01-01T23:59:59.000Z

50

1, 2341, 2001 OH + propane and  

E-Print Network [OSTI]

ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract Introduction Conclusions #12;ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract

Paris-Sud XI, Université de

51

Rapid starting methanol reactor system  

DOE Patents [OSTI]

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

52

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network [OSTI]

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

53

State heating oil and propane program  

SciTech Connect (OSTI)

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-01-01T23:59:59.000Z

54

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

55

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

56

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

57

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

58

Residential propane price decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price

59

Natural Gas Monthly (NGM) - Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports,...

60

The Methanol Economy Project  

SciTech Connect (OSTI)

The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

Olah, George; Prakash, G.K.

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Basic metal oxides as cocatalysts for Cu/SiO{sub 2} catalysts in the conversion of synthesis gas to methanol  

SciTech Connect (OSTI)

The catalytic behavior of Cu catalysts supported on ultrapure silica and promoted with Ca, Zn, and La oxides was investigated in the hydrogenation of CO and CO{sub 2} to methanol at high pressure. Cu on very pure silica produces hardly any methanol, while the addition of basic oxides and the use of {gamma}-alumina as support improve the catalyst performance. The strong promoting effect of Ca and La oxide on the silica-supported Cu and the weak promoting effect for alumina-supported Cu suggest that the basic oxide additives must be close to or in contact with the Cu particles to be effective in methanol synthesis. The methanol activity of Zn/Cu/SiO{sub 2} increased with increasing CO{sub 2} content in a CO-CO{sub 2}-H{sub 2} mixture, suggesting that CO{sub 2} is the main carbon source for methanol.

Gotti, A.; Prins, R. [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Lab. of Technical Chemistry] [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Lab. of Technical Chemistry

1998-09-10T23:59:59.000Z

62

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3 of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (9000

Arnold, Frances H.

63

29Counting Atoms in a Molecule The complex molecule Propanal  

E-Print Network [OSTI]

29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

64

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

65

Recovery of methanol in an MTBE process  

SciTech Connect (OSTI)

In a process for the manufacture of methyltertiarybutylether (MTBE) in which methanol and a mixture of C/sub 4/ hydrocarbons containing isobutylene are contacted in a reaction zone containing an ion-exchange resin catalyst under suitable conditions to effect the reaction of methanol and isobutylene to produce a reaction product containing MTBE, unreacted methanol, unreacted isobutylene and other C/sub 4/ hydrocarbons, the reaction product is introduced to a fractionation zone wherein it is separated into a bottoms product comprising essentially MTBE and an overhead product containing unreacted methanol, unreacted isobutylene, and other C/sub 4/ hydrocarbons, and the overhead product is introduced to an absorption zone wherein the methanol is absorbed; the improvement is described which comprises utilizing silica gel as adsorbent and regenerating the silica gel adsorbent in a closed loop by contacting the silica gel absorbent with a desorption gas stream at an elevated temperature for a sufficient period of time to remove absorbed methanol, cooling the effluent from the adsorption zone to condense desorbed methanol removing desorbed methanol from the system and recycling the desorption gas to the adsorption zone.

Whisenhunt, D.E.; Byers, G.L.; Hattiangadi, U.S.

1988-05-31T23:59:59.000Z

66

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

67

The nature and formation of coke in the reaction of methanol to hydrocarbons over chabazite  

E-Print Network [OSTI]

). Reactant: methanol t-butanol 1-heotanol Reaction conditions Temp. (K) LHSV (hr ) 644 1. 0 644 1. 0 644 0. 7 Conversion (g) 1 00 100 99. 9 Hydrocarbon distribution (wt g) methane ethane ethylene propane propylene i-butane n-butane bu...

McLaughlin, Kenneth Woot

1983-01-01T23:59:59.000Z

68

MTBE, methanol prices rise  

SciTech Connect (OSTI)

After several months of drifting lower in line with declining autumn gasoline prices, tabs for methyl tert-butyl ether (MTBE) have turned around. There has been no big demand surge, but consumers and traders are beginning to build up inventories in advance of a series of midwinter shutdowns and turnarounds by producers. Spot prices, which dropped as low as 75 cts/gal, have rebounded to 90 cts/gal fob. Eager for a positive glimmer, methanol producers posted a 3-cts/gal increase in contract prices this month. It marks the first upward idea since February. In that time contract prices have dropped 75% from $1.55/gal to 39 cts/gal. A hard winter has hit early in much of the US sending natural gas prices up sharply. At the same time, formaldehyde and acetic acid markets remain firm, and with MTBE rebounding, methanol producers feel entitled to a piece of the action. {open_quotes}I don`t buy into this claim that MTBE demand is up and I don`t think producers can justify even a 3-cts/gal increase,{close_quotes} says one. {open_quotes}There is nothing in the economy to warrant a run-up. Housing starts are weaker, and demand is down at least 80,000 bbl/day with the MTBE shutdown.{close_quotes}

Morris, G.D.L.; Cornitius, T.

1995-12-20T23:59:59.000Z

69

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

70

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

71

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network [OSTI]

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

72

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

1952-01-01T23:59:59.000Z

73

Communication China's growing methanol economy and its implications for energy  

E-Print Network [OSTI]

but scarce oil and natural gas. Adapting to such limitations, it has developed a chemical industry, with the rest coming from natural gas (Peng, 2011). Methanol is commonly used to produce formaldehyde, methylCommunication China's growing methanol economy and its implications for energy and the environment

Jackson, Robert B.

74

Homogeneous catalyst formulations for methanol production  

DOE Patents [OSTI]

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

1991-02-12T23:59:59.000Z

75

Homogeneous catalyst formulations for methanol production  

DOE Patents [OSTI]

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O'Hare, Thomas E. (Huntington Station, NY)

1990-01-01T23:59:59.000Z

76

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

77

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network [OSTI]

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

78

No. 2 heating oil/propane program  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

79

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

80

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters  

SciTech Connect (OSTI)

In this work we report on thevacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuumultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

2008-05-12T23:59:59.000Z

82

Vacuum-Ultraviolet (VUV) Photoionization of Small Methanol and Methanol-Water Clusters  

SciTech Connect (OSTI)

In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH+(n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH n(H2O)H+ (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH+, (CH3OH)2+, (CH3OH)nH+ (n = 1-9), and (CH3OH)n(H2O)H+ (n = 2-9) as a function of photon energy. With an increasein the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.

Kostko, Oleg; Belau, Leonid; Wilson, Kevin R.; Ahmed, Musahid

2008-04-24T23:59:59.000Z

83

Heating Oil and Propane Update - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for last year (2013-2014 season) for the U.S., PADD 1, PADD 1C, and PADD 2 averages. Wholesale propane graphs Wholesale Propane (dollars per gallon)more price data change from...

84

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported  

E-Print Network [OSTI]

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

85

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T hydroxylase (P450BM3) to a laboratory-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic

Arnold, Frances H.

86

Preliminary Investigation of Tracer Gas Reaeration Method for Shallow Bays  

E-Print Network [OSTI]

was used with propane for the tracer gas and Rhodamine-WT, a fluorescent dye, for the "conservative" tracer. The propane was injected through porous tile diffusers, and the dye was released simultaneously. The propane acts as a model for the surface...

Baker, Sarah H.; Holley, Edward R.

87

Methanol production method and system  

DOE Patents [OSTI]

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

1984-01-01T23:59:59.000Z

88

Portland Public School Children Move with Propane  

SciTech Connect (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

89

Alternative Fuels Data Center: Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAbout

90

The production of methanol by the Brookhaven National Laboratory process  

SciTech Connect (OSTI)

The purpose of this study was to develop a capital cost estimate and methanol production costs for a new methanol process under development at the Brookhaven National Laboratory (BNL). The cost of fuel delivered to the US Gulf Coast is compared with fuel produced by a conventional methanol process and a liquefied natural gas (LNG) process. The new methanol process is made possible by the development of a new liquid phase catalyst. The new liquid catalyst system can convert synthesis gas almost completely to methanol in a SINGLE pass through the methanol synthesis reactor. This catalyst system reduces synthesis reaction temperatures from about 260{degree}C to about 100{degree}C, permitting isothermal synthesis conditions, in contrast to the temperature gradients in currently available pelleted, solid catalysts. Natural gas feedstock can be processed at pressures under 250 psia. Since nitrogen in the synthesis gas can be tolerated, the autothermal reforming step (combination of partial oxidation and steam reforming over a nickel catalyst) uses preheated air rather than oxygen. However, even with nitrogen present, the volume of gas fed to the reactor can still be smaller than the volume of gas that must be circulated in a conventional reactor, which operates with low conversions and requires high recycle volumes. The characteristics of the BNL system permits a major improvement in methanol plant design and economics. 11 figs., 15 tabs.

Miller, D.B.; Williams, J.J.; Johnson, A.R.

1990-11-01T23:59:59.000Z

91

An analysis of US propane markets, winter 1996-1997  

SciTech Connect (OSTI)

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

92

Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993  

SciTech Connect (OSTI)

Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

Liss, W.E.; Moulton, D.S.

1994-06-01T23:59:59.000Z

93

Propane Market Outlook Assessment of Key Market Trends, Threats...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

markets have become more pronounced. 2 2010 Propane Market Outlook Update 1 Introduction Energy markets are changing at an unprecedented pace. These changes have had dramatic...

94

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

95

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

96

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

97

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

98

A self-regulated passive fuel-feed system for passive direct methanol fuel cells.  

E-Print Network [OSTI]

??Unlike active direct methanol fuel cells (DMFCs) that require liquid pumps and gas compressors to supply reactants, the design of passive DMFCs eliminates these ancillary… (more)

Chan, Yeuk Him

2007-01-01T23:59:59.000Z

99

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

be combined with storage WH) N N N Propane Don't know/blan kstorage water heater) __ Other (describe) K.2 Is this water heater powered by natural gas, electricity or propane? [Propane __ Electric! Skip to §L K.3 Do you have more than one storage

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

100

Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1993-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network [OSTI]

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

102

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides  

E-Print Network [OSTI]

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

Iglesia, Enrique

103

This Week In Petroleum Propane Section  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068 -Vanadium andResidential propane

104

Residential propane price decreases slightly decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price7,

105

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid propane

106

Opportunities for coal to methanol conversion  

SciTech Connect (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

107

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect (OSTI)

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

108

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis  

DOE Patents [OSTI]

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

109

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

110

Enduring use of city gas keeps N. H. utility reminiscent of a simpler age  

SciTech Connect (OSTI)

This article reports on a gas distribution company which produces and pipes a propane/air mixture. The distribution of this mixture is detailed.

Not Available

1991-01-01T23:59:59.000Z

111

In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01.  

E-Print Network [OSTI]

In Proc of Direct Methanol Fuel Cell Symposium, 199th Electrochem.l Soc. Mtg, Washington DC, 3/01. MATHEMATICAL MODELING OF LIQUID-FEED DIRECT METHANOL FUEL CELLS Z. H. Wang and C. Y. Wang Electrochemical methanol fuel cells (DMFC). Diffusion and convection of both gas and liquid phases are considered

Wang, Chao-Yang

112

Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices  

SciTech Connect (OSTI)

Strategies for effective conversion of atmospheric CO{sub 2} to methanol offer promising new technologies not only for recycling of the greenhouse gas but also for an efficient production of fuel alternatives. Partial hydrogenation of carbon dioxide has been accomplished by means of heterogeneous catalysis, electrocatalysis, and photocatalysis. Oxide-based catalysts are predominantly used for industrial fixation of carbon dioxide. A unique approach in this direction involves the use of enzymes as catalysts for conversion of carbon dioxide to methanol. The use of enzymes is particularly appealing since it provides a facile low-temperature route for generation of methanol directly from gaseous carbon dioxide. The authors report an enzymatically coupled sequential reduction of carbon dioxide to methanol by using a series of reactions catalyzed by three different dehydrogenases. Overall, the process involves an initial reduction of CO{sub 2} to formate catalyzed by formate dehydrogenase (F{sub ate}DH), followed by reduction of formate to formaldehyde by formaldehyde dehydrogenase (F{sub ald}DH), and finally formaldehyde is reduced to methanol by alcohol dehydrogenase (ADH). In this process, reduced nicotinamide adenine dinucleotide (NADH) acts as a terminal electron donor for each dehydrogenase-catalyzed reduction.

Obert, R.; Dave, B.C.

1999-12-29T23:59:59.000Z

113

Can propane school buses save money and provide other benefits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

114

VEE-0040- In the Matter of Western Star Propane, Inc.  

Broader source: Energy.gov [DOE]

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

115

VEE-0060- In the Matter of Blakeman Propane, Inc.  

Broader source: Energy.gov [DOE]

On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

116

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect (OSTI)

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

117

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE

118

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1 DOE

119

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1

120

Methanol | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,Metalysis Jump to:DecMethanol Jump to:

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Methanol-reinforced kraft pulping  

SciTech Connect (OSTI)

The addition of methanol to a high-sulfidity kraft cook on Scandinavian softwood chips was studied under different process conditions. Delignification and the degradation of carbohydrates were accelerated, but the effect on delignification was greater. Thus, methanol addition improved selectivity. The positive effect of methanol could also be observed for modified kraft cooks having a leveled out alkali concentration and lower concentration of sodium ions and dissolved lignin at the end of the cook. Methanol addition had no discernible effect on pulp strength or on pulp bleachability.

Norman, E.; Olm, L.; Teder, A. (STFI, Stockholm (Sweden))

1993-03-01T23:59:59.000Z

122

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network [OSTI]

Coal The economics of producing methanol and other fuels aresome discussion of producing methanol as a by-product from

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

123

Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times  

SciTech Connect (OSTI)

The autothermal production of olefins from propane or n-butane by oxidative dehydrogenation and cracking in air or oxygen at atmospheric pressure over noble metal coated ceramic foam monoliths at contact times of {approximately}5 milliseconds has been studied. On Pt, synthesis gas (CO and H{sub 2}) dominates near its stoichiometry, while olefin production dominates at higher fuel-to-oxygen ratios. No carbon buildup is observed, and catalysts exhibit no deactivation over at least several days. On Rh, primarily synthesis gas is produced under these conditions, while on Pd, carbon deposition rapidly deactivates the catalyst. The authors observed up to 65% selectivity to olefins at nearly 100% conversion of propane or n-butane with a catalyst contact time of 5 ms. Ethylene selectivity is maximized by increasing the reaction temperature, either by preheating the reactants or by using oxygen enriched air. Propylene selectivity is maximized by lower temperature and shorter catalyst contact time. Very small amounts alkanes and higher molecular weight species are obtained, suggesting that a homogeneous pyrolysis mechanism is not occurring. A very simple reaction mechanism appears to explain the observed product distribution. Reactions are initiated by oxidative dehydrogenation of the alkane by adsorbed oxygen to form a surface alkyl. On Pt, {beta}-hydrogen and {beta}-alkyl elimination reactions of adsorbed alkyl dominate which lead to olefin production rather than cracking to C{sub s} and H{sub s}. 24 refs., 14 figs., 4 tabs.

Huff, M.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)] [Univ. of Minnesota, Minneapolis, MN (United States)

1994-09-01T23:59:59.000Z

124

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

125

Mechanism of O2 Activation and Methanol Production by (Di(2-pyridyl)methanesulfonate)PtII  

E-Print Network [OSTI]

conversion of methane to methanol at low temper- ature is crucial for transportation of shale gas produced it to methanol and its derivatives. In this system, the kinetics of the oxidation of Pt(II) is important because activation and selective conversion of Pt(II) monomethyl complex (dpms)PtII Me(OH2) to its monomethyl Pt

Goddard III, William A.

126

Selective dehydrogenation of propane over novel catalytic materials  

SciTech Connect (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

127

Microsoft PowerPoint - Propane_Briefing_140205_nn.pptx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

add to 100%) Propane share of space heating demand by key regions and states U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

128

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)  

E-Print Network [OSTI]

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

Kushner, Mark

129

Experimental studies of steam-propane injection for the Duri intermediate crude oil  

E-Print Network [OSTI]

Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection...

Hendroyono, Arief

2003-01-01T23:59:59.000Z

130

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,  

E-Print Network [OSTI]

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

Li, Jing

131

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane  

E-Print Network [OSTI]

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

GĂĽlder, Ă?mer L.

132

Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane  

SciTech Connect (OSTI)

In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

2013-09-01T23:59:59.000Z

133

Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations  

E-Print Network [OSTI]

ARTICLE Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using propane monooxygenase prepared by directed evolu- tion [P450PMOR2; Fasan et al. (2007); Angew Chem Int Ed of the energy source (glucose) in the propane biotransformation com- pared to the native E. coli strain. Using

Arnold, Frances H.

134

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor  

E-Print Network [OSTI]

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

Walker, Lawrence R.

135

Dehydrogenation of Propane to Propylene over Supported Model NiAu Catalysts  

E-Print Network [OSTI]

Dehydrogenation of Propane to Propylene over Supported Model Ni­Au Catalysts Zhen Yan · Yunxi Yao 2012 � Springer Science+Business Media, LLC 2012 Abstract Hydrogenolysis and dehydrogenation of propane. For the conversionofpropane in the presence of hydrogen, the dehydrogenation of propane to propylene was observed onthe Ni

Goodman, Wayne

136

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing  

E-Print Network [OSTI]

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

Sessions, Alex L.

137

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic  

E-Print Network [OSTI]

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic and propane isotherms measured at ambient temperatures and ideal adsorption solution theory (IAST) calculations revealed increasing propylene/propane selectivities with increasing pressures. The eld of highly

138

PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

Choi, Kyu Yong

139

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a  

E-Print Network [OSTI]

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a , Georges and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane

Iglesia, Enrique

140

Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by  

E-Print Network [OSTI]

ARTICLE Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by Two: Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells

Alvarez-Cohen, Lisa

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,  

E-Print Network [OSTI]

, Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

Hudlicky, Tomas

142

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation  

E-Print Network [OSTI]

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between] in interaction with propane. Two complexes have been found as minima coordinated through either a methyl the methylene complex of propane into a methyl complex of pro- pane. This latter reaction has a much lower

Jones, William D.

143

Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane{  

E-Print Network [OSTI]

of propane{ Christian, Michael Mitchell and Paul J. A. Kenis* Received 31st May 2006, Accepted 10th August of propane into hydrogen at temperatures between 800 and 1000 uC. We characterized these microreactors. Kinetic analysis using a power law model showed reaction orders of 0.50 and 20.23 with respect to propane

Kenis, Paul J. A.

144

Selective adsorption of ethylene over ethane and propylene over propane in the metalorganic  

E-Print Network [OSTI]

Selective adsorption of ethylene over ethane and propylene over propane in the metal in the energy costs associated with the cryogenic separation of ethylene­ethane and propylene­propane mixtures adsorption data for ethylene, ethane, propylene, and propane at 45, 60, and 80 C for the entire series

145

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane  

E-Print Network [OSTI]

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

Iglesia, Enrique

146

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam

Paris-Sud XI, Université de

147

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts  

E-Print Network [OSTI]

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum of propane over ZrO2-supported MoOx catalysts. Competitive reactions of C3H6 and CH3 13 CH2CH3 showed combustion of propene, or by direct combustion of propane. A mixture of C3H8 and C3D8 undergoes oxidative

Iglesia, Enrique

148

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational Preference  

E-Print Network [OSTI]

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass- analyzed thresholdV and 9.9516 ( 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral

Kim, Sang Kyu

149

CONTRIBUTION A L'TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET ACTYLNE  

E-Print Network [OSTI]

CONTRIBUTION A L'�TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET AC�TYL�NE Par MM. JEAN VAN DER POLL du propane et de l'acétylène qui ont montré que, dans certains cas, les flammes oxy-propane et oxy

Paris-Sud XI, Université de

150

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network [OSTI]

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers in comparison to cases without the spiral. Tests through a range of cycle frequencies up to 20 Hz in oxygen-propane spiral in a pulsed detonation engine operating with propane and oxygen. A high-energy igniter is used

Texas at Arlington, University of

151

Layering and orientational ordering of propane on graphite: An experimental and simulation study  

E-Print Network [OSTI]

Layering and orientational ordering of propane on graphite: An experimental and simulation study 2002; accepted 30 July 2002 We report the results of an experimental and theoretical study of propane and experiments show that propane adsorbs in a layer-by-layer fashion and exhibits continuous growth beyond

Borguet, Eric

152

The methanol-to-hydrocarbons reaction : Influence of acid strength on the mechanism of olefin formation.  

E-Print Network [OSTI]

??The methanol-to-hydrocarbons (MTH) reaction is a flexible alternative step in the upgrading of natural gas, coal or biomass. By tuning the catalyst and process conditions,… (more)

Erichsen, Marius Westgĺrd

2010-01-01T23:59:59.000Z

153

Zeolitic imidazolate frameworks for kinetic separation of propane and propene  

DOE Patents [OSTI]

Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

Li, Jing; Li, Kunhao; Olson, David H.

2014-08-05T23:59:59.000Z

154

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

155

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil  

E-Print Network [OSTI]

, attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

Nesse, Thomas

2005-02-17T23:59:59.000Z

156

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense Membrane  

E-Print Network [OSTI]

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense of propane under OCV and under electrical bias. The propane conversion remained constantly equal to 12 by partial oxidation and oxidative dehydrogenation of propane, respectively. An anodic polarisation led

Paris-Sud XI, Université de

157

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique unlabeled products from mixtures of propene and propane-2-13C reactants. Aromatic products of propane-2-13C-Parmer) that allowed differential reactor operation (propane reactions were

Iglesia, Enrique

158

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network [OSTI]

Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

159

Costs Associated With Propane Vehicle Fueling Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNatural Gas UsageCosmic

160

Gas separation with oligomer-modified inorganic membranes  

E-Print Network [OSTI]

-based separation are presented. Alumina membranes with average pore sizes near 5 nm and 10 run were treated with various n-alkyl trichlorosilanes. Pure gas permeation studies using nitrogen, methane, and propane were performed to investigate the effects...

Javaid, Asad

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety

162

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents [OSTI]

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

163

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents [OSTI]

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, J.W.; Wender, I.; Palekar, V.M.

1995-01-24T23:59:59.000Z

164

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

165

Air Breathing Direct Methanol Fuel Cell  

DOE Patents [OSTI]

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

166

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

167

Absorption du rayonnement 12 et 8 millimtres par les vapeurs de propane sous pression  

E-Print Network [OSTI]

Absorption du rayonnement 12 et 8 millimètres par les vapeurs de propane sous pression A. Battaglia des pertes diélectriques (03B5") présentées par le propane gazeux aux fréquences de 24 et 36 GHz, à la Birnbaum. Abstract. 2014 Experimental study of dielectric losses (03B5") presented by gaseous propane

Boyer, Edmond

168

6, 39453963, 2006 Methanol inside aged  

E-Print Network [OSTI]

. The oxidation of methane (and other hydrocarbons) can also produce methanol primarily via the self reactionACPD 6, 3945­3963, 2006 Methanol inside aged tropical biomass burning plumes G. Dufour et al. Title Chemistry and Physics Discussions First space-borne measurements of methanol inside aged tropical biomass

169

Microsoft PowerPoint - Propane_Briefing_140131_summary_v2_nn...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of space heating demand by key regions and states Adam Sieminski, Administrator U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

170

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

171

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

172

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

173

Enhanced methanol utilization in direct methanol fuel cell  

DOE Patents [OSTI]

The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2001-10-02T23:59:59.000Z

174

Methanol market slowly tightens as Brazil starts soaking up material  

SciTech Connect (OSTI)

Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union.

Young, I.

1992-11-25T23:59:59.000Z

175

Romania program targets methanol and Fischer-Tropsch research  

SciTech Connect (OSTI)

Currently, the chemical organic industry, the petrochemical and engine fuels industry in Romania are entirely based on hydrocarbons from oil. To reduce the oil dependence of this sector and to ensure the stipulated growth rate of 8-9%, research and development programs have been set up with a view to the diversification of raw materials. In research on hydrocarbons from alcohol conversion, three process variants are known, i.e. olefins from methanol, gasolines from methanol and a combined gasolines and aromatic hydrocarbons from methanol. The Romanian process of methanol conversion to hydrocarbons is very flexible, with all the variants mentioned being carried out in the same plant by modifying the catalysts. In research on hydrocarbons from synthesis gas a modern process is being developed for gasification of brown coal in a fluidized bed, under pressure, in the presence of oxygen and water vapors. In the field of carbon oxide hydrogenation, studies have been carried out on selective Fischer-Tropsch processes in which the reaction products are high value hydrocarbon fractions.

Not Available

1987-03-01T23:59:59.000Z

176

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

SciTech Connect (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

177

Process for producing carbon monoxide and hydrogen from methanol  

SciTech Connect (OSTI)

A process is described for producing carbon monoxide and hydrogen which comprises contacting methanol vapor at a temperature of 200 degrees to 300 degrees C with an indirectly heated zinc containing catalyst to obtain an effluent gas in which the components of carbon monoxide and hydrogen constitute at least 90% by volume of said gas. At least a part of the impurities from said effluent gas are removed and said effluent gas is deparated into its carbon monoxide and hydrogen components by adsorption. The effluent gas can be separated into its carbon monoxide and hydrogen components by use of a plurality of adsorbers containing zeolite-type molecular sieve material where the zeolite is substantially permeable to hydrogen but sorbs carbon monoxide.

Jockel, H.; Marschner, F.; Moller, F.W.; Mortel, H.

1982-02-23T23:59:59.000Z

178

STATISTICAL PROPERTIES OF 12.2 GHz METHANOL MASERS ASSOCIATED WITH A COMPLETE SAMPLE OF 6.7 GHz METHANOL MASERS  

SciTech Connect (OSTI)

We present definitive detection statistics for 12.2 GHz methanol masers toward a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20{sup 0}. In total, we detect 250 12.2 GHz methanol masers toward 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. Eighty percent of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity but also the volume of gas conducive to the different maser transitions that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate toward those 6.7 GHz methanol masers that are coincident with extended green objects.

Breen, S. L.; Caswell, J. L.; Green, J. A.; Voronkov, M. A. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia); Fuller, G. A.; Quinn, L. J.; Avison, A., E-mail: Shari.Breen@csiro.au [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2011-06-01T23:59:59.000Z

179

Propane cold neutron source: creation and operation experience  

SciTech Connect (OSTI)

In most cold neutron sources, utilized until recently, liquid hydrogen, liquid deuterium and their mixtures were used as a moderating medium. The sources with the liquid hydrogen moderator offer the most specific effectiveness of cold neutron generation. But they are complicated in design, require special safety measures in the course of operation and are very expensive. In this connection, it is of undoubted interest to create a source which, although it yields the specific generation of cold neutrons comparable to the liquid hydrogen one, is safer in operation and simple in design. We assume such a source may be one which uses as a moderator liquid propane cooled to liquid nitrogen temperature.

Zemlyanov, M. G.

1997-09-01T23:59:59.000Z

180

RECS Propane Usage Form_v1 (Draft).xps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 Media Contact: Rick30propane

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane Buses

182

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane

183

Alternative Fuels Data Center: Propane Fueling Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropaneStation

184

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvaniaOrleans Propane

185

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety Advisory to someone by

186

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank OverfillSan

187

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnail WorkplacePropane inReducing

188

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect (OSTI)

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

189

Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography  

SciTech Connect (OSTI)

The Raoult's-law activity coefficients of 3- to 7-carbon aliphatic aldehyde, ketone, ester, and alcohol solutes at infinite dilution in methanol, water, and mixtures of the two and in polydimethysiloxane, all at 293-308 K, have been determined for the first time by appropriate combination of GLC and LLC retention data. The latter data are reported in terms of mole factions, while the former are given in concentration units of molality. However, interpretation of the data is difficult because of the multiplicity of the retention mechanisms. Nevertheless, the combined GLC/LLC technique, which had been applied previously only to pure solvents, is said to offer a number of advantages over static techniques for the determination of solute infinite-dilution activity coefficients with volatile solvents, especially with mixtures of solvents.

Djerki, R.A.; Laub, R.J.

1988-01-01T23:59:59.000Z

190

Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system  

E-Print Network [OSTI]

structure has all four heavy atoms coplanar, with the water center of mass lying on or near the C, axisFourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed

Cohen, Ronald C.

191

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network [OSTI]

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

192

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Propane Buwe  

E-Print Network [OSTI]

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Scheme 111 Propane Buwe X =CHI and Y = H lossofH2 Z = H-82-8; ethane, 74- 84-0; propane, 74-98-6;butane, 106-97-8. (28) The heats of formation for C3H2are the scaled

Schlegel, H. Bernhard

193

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network [OSTI]

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2000-01-01T23:59:59.000Z

194

Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine  

SciTech Connect (OSTI)

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

2011-10-05T23:59:59.000Z

195

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1  

E-Print Network [OSTI]

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1 , A. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized in a combustion apparatus which can easily be modeled, a laminar premixed flame of propane at atmospheric pressure

Paris-Sud XI, Université de

196

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane  

E-Print Network [OSTI]

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n for ethane, propane, and neopentane involvesthe cleavage of a single carbon-carbon bond, resulting

Goodman, Wayne

197

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional dynamics of the hydrogen  

E-Print Network [OSTI]

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional 1993) The far-infrared laservibration-rotation-tunneling (FIR-VRT) spectrumof the propane-water complex calculations. In the present paper and in its counterpart,13we present our results for the water-propane

Cohen, Ronald C.

198

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane) and R407C  

E-Print Network [OSTI]

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane with propane as refrigerant are analyzed in terms of the compressor model developed by [E. Navarro, E. Granryd. In addition, a comparison study between propane and R407C was carried out for one compressor and the observed

Fernández de Córdoba, Pedro

199

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia* Department rates during propane conversion at 773 K on Zn/Na-ZSM5 are about ten times higher than on Zn/H-ZSM5 catalysts with similar Zn content. The total rate of propane conversion is also higher on Zn/Na-ZSM5

Iglesia, Enrique

200

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5  

E-Print Network [OSTI]

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H Co/H-ZSM5 catalyzes propane dehydrogenation and aromatization reactions. Initial product selectivities, product site-yields, and the 13C content and distribution in the products of 2-13C-propane show

Iglesia, Enrique

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test method for the measurement of methanol emissions from stationary sources  

SciTech Connect (OSTI)

Methanol was designated under Title III of the Clean Air Act Amendments of 1990 as a pollutant to be regulated. A test method has been developed for the measurement of methanol emissions from stationary sources. The methanol sampling train (MST) consists of a glass-lined heated probe, two condensate knockout traps, and three sorbent cartridges packed with Anasorb 747. The Anasorb samples were desorbed with a 1:1 mixture of carbon disulfide and N,N-dimethylformamide. All samples were analyzed by gas chromatography with flame ionization detection. Following laboratory testing, field tests of the MST and the National Council of the Paper Industry for Air and Stream Improvement (NCASI) sampling method for methanol were conducted at two pulp and paper mills. In accordance with EPA Methol 301, two pairs of trains were run in parallel for six runs, collecting a total of 24 samples by each method. During each run, half of the trains were spiked with a known amount of methanol. The sampling location at the first test was an inlet vent to a softwood bleach plant scrubber where the methanol concentration was about 30 ppm. A second field test was conducted at the vent of a black liquor oxidation tank where the methanol concentration was about 350 ppm. Samples were shown to be stable for at least 2 weeks after collection.

Pate, B.A.; Peterson, M.R.; Rickman, E.E.; Jayanty, R.K.M.

1994-05-01T23:59:59.000Z

202

Prediction of gas-hydrate formation conditions in production and surface facilities  

E-Print Network [OSTI]

such as methane, ethane, propane, carbon dioxide and hydrogen sulfide to binary, ternary, and natural gas mixtures. I used the Statistical Analysis Software (SAS) to find the best correlations among variables such as specific gravity and pseudoreduced pressure...

Ameripour, Sharareh

2006-10-30T23:59:59.000Z

203

Method of steam reforming methanol to hydrogen  

DOE Patents [OSTI]

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

204

SciTech Connect: Effects of Propane/Natural Gas Blended Fuels on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatronAerogelDistances

205

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

206

Application of the Kellogg reforming exchanger system to large scale methanol plants  

SciTech Connect (OSTI)

In a majority of existing methanol production facilities, synthesis gas is furnished typically by a tubular fired steam reformer which uses natural gas as a feedstock. When one considers all synthesis gas produced from both ammonia and methanol plants, well over 80% is produced in a conventional reforming furnace. Steam reforming in a conventional sense, however, requires a considerable investment in both capital equipment and on-going maintenance and further, the use of such a unit operation will require heat recovery in the form of steam which forces the hand of the designer with respect to machinery driver selection. The authors have investigated alternatives to the coinventional approach with a view towards developing a process for methanol production that would be hopefully less expensive to construct, easier to operate and more reliable over the course of long term operation. In this paper, the authors present an alternative methanol plant process based on Kellogg`s proprietary reforming exchanger system (KRES). The flowsheet presented herein is for a 1500 MTPD facility that will produce US Federal Grade AA + methanol and will be compared on an economic basis to a conventional plant with respect to investment requirements and expected energy efficiency.

Joshi, G.; Schneider, R.V. III [M.W. Kellogg Co., Houston, TX (United States)

1995-12-31T23:59:59.000Z

207

Effect of temperature and pressure on the dynamics of nanoconfined propane  

SciTech Connect (OSTI)

We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

Gautam, Siddharth, E-mail: gautam.25@osu.edu; Liu, Tingting, E-mail: gautam.25@osu.edu; Welch, Susan; Cole, David [School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210 (United States); Rother, Gernot [Geochemistry and Interfacial Science Group, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jalarvo, Niina [Jülich Center for Neutron Sciences (JCNS-1), Forschungszentrum Jülich Outstation at Spallation Neutron Source(SNS), Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mamontov, Eugene [Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-24T23:59:59.000Z

208

Backward Raman amplification in a partially ionized gas A. A. Balakin,1  

E-Print Network [OSTI]

was accessed 10,11 . The experimental success was achieved using a gas jet of propane, subse- quently ionized that would be most desired. Using the pro- pane gas jet, as opposed to pure hydrogen, eased conditions on the gas jet nozzle, since a lower gas pressure could pro- duce a higher density target. However, the use

209

A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime  

SciTech Connect (OSTI)

The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Bourque, G. [Rolls-Royce Canada, Montreal (Canada)

2008-04-15T23:59:59.000Z

210

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents [OSTI]

A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

Steinberg, M.; Grohse, E.W.

1995-06-27T23:59:59.000Z

211

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents [OSTI]

A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

1995-01-01T23:59:59.000Z

212

*sja@iet.aau.dkwww.iet.aau.dk Initial experiments with a Pt based heat exchanger methanol reformer for a HTPEM fuel cell system  

E-Print Network [OSTI]

of the fuel water/methanol mixture is done by electrical heaters, but could be integrated with the burner side reformed hydro- carbon as fuel for fuel cells can redu- ce fuel storage volume considerably. The PBI of evaporated water and methanol is presented and steam-reformed to a hydrogen rich gas. The steam reforming

Andreasen, Søren Juhl

213

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect (OSTI)

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

NONE

1998-11-01T23:59:59.000Z

214

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Presentation...

215

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network [OSTI]

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

216

Analysis of tank deformation from fire induced ruptures and BLEVEs of 400 l propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400 liter ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. the resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called Boiling Liquid Expanding Vapour Explosions (BLEVE). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. this paper presents the measured data from the tanks and a step by step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1996-12-01T23:59:59.000Z

217

Analysis of fire-induced ruptures of 400-L propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400-L ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. The resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called boiling liquid expanding vapor explosions (BLEVEs). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. This paper presents the measured data from the tanks and a step-by-step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1997-08-01T23:59:59.000Z

218

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

219

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network [OSTI]

with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

220

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation  

E-Print Network [OSTI]

EXPERIMENTAL AND ANALYTICAL STUDIES OF HYDROCARBON YIELDS UNDER DRY-, STEAM-, AND STEAM-WITH- PROPANE DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University...-WITH- PROPANE-DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

Jaiswal, Namit

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Methanol synthesis in a trickle bed reactor  

E-Print Network [OSTI]

kinetic models for methanol synthesis under the assumption that the rate limiting step was the reaction between an adsorbed CO molecule and two adsorbed H2 molecules. The experiment was conducted over a Cu/ZnO/Cr~03 catalyst in a fixed bed reactor... to account for the large degree of initial deactivation. However, Rozovskii (1980) claimed the opposite and stated that methanol is made from carbon dioxide and no methanol is produced from Hz/CO mixtures over the Cu/ZnO/Alz03 catalyst. Liu et al. (1984...

Tjandra, Sinoto

1992-01-01T23:59:59.000Z

222

Methanol engine conversion feasibility study: Phase 1  

SciTech Connect (OSTI)

This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

Not Available

1983-03-01T23:59:59.000Z

223

Total to withdraw from Qatar methanol - MTBE?  

SciTech Connect (OSTI)

Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

NONE

1996-05-01T23:59:59.000Z

224

The effect of acid strength on the MTO reaction : Conversion of methanol to hydrocarbons over H-SAPO-34 and high silica Chabazite (H-SSZ-13).  

E-Print Network [OSTI]

??The Methanol-to-Olefins (MTO) process for the production of polymer-grade olefins is a possible step in the upgrading of natural gas. The preferred MTO catalyst is… (more)

Bleken, Francesca

2007-01-01T23:59:59.000Z

225

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells  

DOE Patents [OSTI]

A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

2006-03-21T23:59:59.000Z

226

Methanol-tolerant cathode catalyst composite for direct methanol fuel cells  

DOE Patents [OSTI]

A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

Zhu, Yimin (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

2006-09-05T23:59:59.000Z

227

Assessment of the risk of transporting propane by truck and train  

SciTech Connect (OSTI)

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

228

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

229

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

SciTech Connect (OSTI)

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

230

Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2/H2/H2O Mixtures: the Source of C in Methanol and the Role of Water  

SciTech Connect (OSTI)

The low temperature (403 – 453K) conversions of CO:hydrogen and CO2:hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction ~0.04%-0.5%). For CO2:hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO:D2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2:D2, yet the steady state rates are similar. Tracer experiments in 13CO:12CO2:hydrogen (with or without added water), show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2:hydrogen, is not visible in CO:moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water gas shift, with formate playing a spectator co-adsorbate role.

Yang, Yong; Mims, Charles A.; Mei, Donghai; Peden, Charles HF; Campbell, Charles T.

2013-02-01T23:59:59.000Z

231

Electronic Effect in Methanol Dehydrogenation on Pt Surfaces: Potential Control during Methanol Electrooxidation  

E-Print Network [OSTI]

advanced insight into the design of an optimal catalyst as the anode for direct methanol fuel cells. SECTION: Energy Conversion and Storage; Energy and Charge Transport Fuel cells are promising alternative energy conversion. Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs

Park, Byungwoo

232

A sandwich structured membrane for direct methanol fuel cells operating with neat methanol  

E-Print Network [OSTI]

A sandwich structured membrane for direct methanol fuel cells operating with neat methanol Q.X. Wu membrane enables improvements in cell performance. a r t i c l e i n f o Article history: Received 31 October 2012 Received in revised form 4 December 2012 Accepted 3 January 2013 Keywords: Fuel cell Direct

Zhao, Tianshou

233

WIDESPREAD METHANOL EMISSION FROM THE GALACTIC CENTER: THE ROLE OF COSMIC RAYS  

SciTech Connect (OSTI)

We report the discovery of a widespread population of collisionally excited methanol J = 4{sub -1} to 3{sub 0} E sources at 36.2 GHz from the inner 66' Multiplication-Sign 18' (160 Multiplication-Sign 43 pc) of the Galactic center. This spectral feature was imaged with a spectral resolution of 16.6 km s{sup -1} taken from 41 channels of a Very Large Array continuum survey of the Galactic center region. The revelation of 356 methanol sources, most of which are maser candidates, suggests a large abundance of methanol in the gas phase in the Galactic center region. There is also spatial and kinematic correlation between SiO (2-1) and CH{sub 3}OH emission from four Galactic center clouds: the +50 and +20 km s{sup -1} clouds and G0.13-0.13 and G0.25 + 0.01. The enhanced abundance of methanol is accounted for in terms of induced photodesorption by cosmic rays as they travel through a molecular core, collide, dissociate, ionize, and excite Lyman Werner transitions of H{sub 2}. A time-dependent chemical model in which cosmic rays drive the chemistry of the gas predicts CH{sub 3}OH abundance of 10{sup -8} to 10{sup -7} on a chemical timescale of 5 Multiplication-Sign 10{sup 4} to 5 Multiplication-Sign 10{sup 5} years. The average methanol abundance produced by the release of methanol from grain surfaces is consistent with the available data.

Yusef-Zadeh, F.; Royster, M. [Department of Physics and Astronomy and Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Northwestern University, Evanston, IL 60208 (United States); Cotton, W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Viti, S. [Department of Physics and Astronomy, University College London, Gower St. London, WCIE 6BT (United Kingdom); Wardle, M. [Department of Physics and Astronomy, Macquarie University, Sydney NSW 2109 (Australia)

2013-02-20T23:59:59.000Z

234

In-situ characterization of adsorbed species on methanol synthesis catalysts by FT-IR spectroscopy  

SciTech Connect (OSTI)

Transmission infrared spectroscopy was used to characterize adsorbed species on methanol synthesis catalysts during reaction conditions. A copper carbonyl, bidentate formate, and methoxy species were identified as stable surface groups. An adsorbed formaldehyde species was unstable at the reaction temperature, but could be observed on the catalyst surface at the beginning of the reaction. Surface species were very similar for feed mixtures of 1) carbon monoxide and hydrogen, 2) carbon monoxide, carbon dioxide, and hydrogen, and 3) formic acid and hydrogen. The role of copper in methanol synthesis catalysts was to increase the adsorption of carbon monoxide to form a linear carbonyl species. This carbonly promoted the hydrogenation of formate groups. The formate species was adsorbed on a zinc site (Zn/sub ..beta../) different from the zinc site (Zn/sub ..gamma../) on which formaldehyde and methoxy groups were adsorbed. The rate-determining step in methanol synthesis was determined to be the reaction of hydrogen from a hydroxyl species adsorbed on another zinc site (Zn/sub ..cap alpha../) with a methoxy group to yield methanol. It was established that at the experimental conditions used in this study, the methanol synthesis reaction was far from equilibrium while the water-gas shift reaction was near equilibrium.

Edwards, J.F.

1984-01-01T23:59:59.000Z

235

In situ characterization of adsorbed species on methanol synthesis catalysts by FT-IR spectroscopy  

SciTech Connect (OSTI)

Transmission infrared spectroscopy was used to characterize adsorbed species on methanol synthesis catalysts during reaction conditions. A copper carbonyl, bidentate formate, and methoxy species were identified as stable surface groups. An adsorbed formaldehyde species was unstable at the reaction temperature, but could be observed on the catalyst surface at the beginning of the reaction. Surface species were very similar for feed mixtures of (1) carbon monoxide and hydrogen, (2) carbon monoxide, carbon dioxide, and hydrogen, and (3) formic acid and hydrogen. The role of copper in methanol synthesis catalysts was to increase the adsorption of carbon monoxide to form a linear carbonyl species. This carbonyl promoted the hydrogenation of formate groups. The formate species was adsorbed on a zinc site (Zn/sub ..beta../) different from the zinc site (Zn/sub ..gamma../) on which formaldehyde and methoxy groups were adsorbed. The rate-determining step in methanol synthesis was determined to be the reaction of hydrogen from a hydroxyl species adsorbed on another zinc site (Zn/sub ..cap alpha../) with a methoxy group to yield methanol. It was established that at the experimental conditions used in this study, the methanol synthesis reaction was far from equilibrium while the water-gas shift reaction was near equilibrium. 186 references, 83 figures, 28 tables.

Edwards, J.F.

1984-06-01T23:59:59.000Z

236

Falling MTBE demand bursts the methanol bubble  

SciTech Connect (OSTI)

Methanol spot markets in Europe and the US have been hit hard by weakening demand from methyl tert-butyl ether (MTBE) producers. In Europe, spot prices for domestic T2 product have dropped to DM620-DM630/m.t. fob from early-January prices above DM800/m.t. and US spot prices have slipped to $1.05/gal fob from $1.35/gal. While chemical applications for methanol show sustained demand, sharp methanol hikes during 1994 have priced MTBE out of the gasoline-additive market. {open_quotes}We`ve learned an important lesson. We killed [MTBE] applications in the rest of the world,{close_quotes} says one European methanol producer. Even with methanol currently at DM620/m.t., another manufacturer points out, MTBE production costs still total $300/m.t., $30/m.t. more than MTBE spot prices. Since late 1994, Europe`s 3.3-million m.t./year MTBE production has been cut back 30%.

Wiesmann, G.; Cornitius, T.

1995-03-01T23:59:59.000Z

237

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect (OSTI)

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

238

No. 2 heating oil/propane program. Final report, 1992/93  

SciTech Connect (OSTI)

During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1993-05-01T23:59:59.000Z

239

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

240

A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces  

SciTech Connect (OSTI)

Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

Liu P.; Yang, Y.; White, M.G.

2012-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermally integrated staged methanol reformer and method  

DOE Patents [OSTI]

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

242

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

1955-01-01T23:59:59.000Z

243

Methanex considers methanol, MTBE in Qatar  

SciTech Connect (OSTI)

CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.

NONE

1995-12-13T23:59:59.000Z

244

Liquid phase methanol reactor staging process for the production of methanol  

DOE Patents [OSTI]

The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

1988-01-01T23:59:59.000Z

245

TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS  

SciTech Connect (OSTI)

This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

DOUGLAS, J.G.

2006-07-06T23:59:59.000Z

246

Theoretical study of syngas hydrogenation to methanol on the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001)...

247

Methanol Steam Reformer on a Silicon Wafer  

SciTech Connect (OSTI)

A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

2004-04-15T23:59:59.000Z

248

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

249

Simulation studies of steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

Venturini, Gilberto Jose

2002-01-01T23:59:59.000Z

250

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

251

Methanol production from Eucalyptus wood chips. Final report  

SciTech Connect (OSTI)

This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

252

Using Rare Gas Permeation to Probe Methanol Diffusion near the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at temperatures just above the glass transition. The diffusivity near the glass transition is characterized by an activation energy and prefactor that are seven and 1030...

253

Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water  

SciTech Connect (OSTI)

Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

1995-05-01T23:59:59.000Z

254

Photoelectron imaging of large anionic methanol clusters: ,,n70460...  

E-Print Network [OSTI]

been described elsewhere.9 Methanol cluster anions were produced by passing argon through a reservoirPhotoelectron imaging of large anionic methanol clusters: ,,MeOH...n - ,,n�70­460... Aster Kammrath Electron solvation in methanol anion clusters, MeOH n - n 70­460 , is studied by photoelectron imaging. Two

Neumark, Daniel M.

255

Molecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong  

E-Print Network [OSTI]

ultrafast hydrogen migration.7,8 The 38 fs 800 nm pump pulse produced methanol monocation, and a probe pulseMolecular Dynamics of Methanol Monocation (CH3OH+ ) in Strong Laser Fields Bishnu Thapa and H surfaces of methanol neutral, monocation, and singlet and triplet dication were explored using the CBS

Schlegel, H. Bernhard

256

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation  

SciTech Connect (OSTI)

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

2011-10-28T23:59:59.000Z

257

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network [OSTI]

, BP 20451, 1 Rue Grandville, 54001 Nancy, France 2 Division of Combustion Physics, Lund University flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure

Paris-Sud XI, Université de

258

Catalytic study of SOFC electrode materials in engine exhaust gas Pauline Briaulta  

E-Print Network [OSTI]

1 Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere Pauline Briaulta. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water

Paris-Sud XI, Université de

259

Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion  

E-Print Network [OSTI]

110.6 million barrels per day by 2030 [1]. One possible source of alternative fuel, biodiesel, can be derived from biomass feedstocks (e.g., soybean). This bio-based diesel can augment or replace petroleum based diesel with little to no modifications...

Pickett, Derek

2013-12-31T23:59:59.000Z

260

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanolNatural Gas

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

(Non) formation of methanol by direct hydrogenation of formate on copper catalysts  

SciTech Connect (OSTI)

We have attempted to hydrogenate adsorbed formate species on copper catalysts to probe the importance of this postulated mechanistic step in methanol synthesis. Surface formate coverages up to 0.25 were produced at temperatures between 413K and 453K on supported (Cu/SiO2) copper and unsupported copper catalysts. The adlayers were produced by various methods including (1) steady state catalytic conditions in CO2-H2 (3:1, 6 bar) atmospheres, and (2) by exposure of the catalysts to formic acid. As reported in earlier work, the catalytic surface at steady state contains bidentate formate species with coverages up to saturation levels of ~ 0.25 at the low temperatures of this study. The reactivity of these formate adlayers was investigated at relevant reaction temperatures in atmospheres containing up to 6 bar H2 partial pressure by simultaneous mass spectrometry (MS) and infrared (IR) spectroscopy measurements. The yield of methanol during the attempted hydrogenation (“titration”) of these adlayers was insignificant (<0.2 mol % of the formate adlayer) even in dry hydrogen partial pressures up to 6 bar. Hydrogen titration of formate species produced from formic acid also failed to produce significant quantities of methanol, and attempted titration in gases consisting of CO-hydrogen mixtures or dry CO2 were also unproductive. The formate decomposition kinetics, measured by IR, were also unaffected by these changes in the gas composition. Similar experiments on unsupported copper also failed to show any methanol. From these results, we conclude that methanol synthesis on copper cannot result from the direct hydrogenation of (bidentate) formate species in simple steps involving adsorbed H species alone. Furthermore, experiments performed on both supported (Cu/SiO2) and unsupported copper catalysts gave similar results implying that the methanol synthesis reaction mechanism only involves metal surface chemistry. Pre-exposure of the bidentate formate adlayer to oxidation by O2 or N2O produces a change to a monodentate configuration. Attempted titration of this monodentate formate/O coadsorbed layer in dry hydrogen produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production of water is also observed during this titration as the copper surface is re-reduced. These results indicate that co-adsorbates related to surface oxygen or water-derived species may be critical to methanol production on copper, perhaps assisting in the hydrogenation of adsorbed formate to adsorbed methoxyl.

Yang, Yong; Mims, Charles A.; Disselkamp, Robert S.; Kwak, Ja Hun; Peden, Charles HF; Campbell, C. T.

2010-10-14T23:59:59.000Z

262

Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies  

SciTech Connect (OSTI)

This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

2011-01-01T23:59:59.000Z

263

Micro Fuel Cells Direct Methanol Fuel Cells  

E-Print Network [OSTI]

energy density of 1.5 Wh/cc; 1.5Wh/g = X5; x10 energy density of Li ion battery * Direct & complete Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Micro Fuel Cells TM State of MTI Micro Fuel Cells Energy Content (Wh) Volume(cm^3) Li-Ion Battery DMFC #12;Direct Methanol Fuel Cell Technology

264

Microsoft PowerPoint - Propane_Briefing_140312.pptx  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 2011

265

Propane (Consumer Grade) Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural Gas Exports2. Types of77

266

U.S. Propane (Consumer Grade) Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (MillionElements)2009 2010

267

Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region  

E-Print Network [OSTI]

that are generally associated with chemical compounds. Gas hydrates of interest to the natural gas industry are made up of lattices containing water molecules in different ratios with methane, nitrogen, ethane, propane, iso-butane, normal butane, carbon dioxide... or carbon dioxide. 7 Transporting gas in the form of a gas hydrate can prove to be very useful in the supply chain of natural gas to meet future energy demand. Thus major challenges exist in effectively capturing, storing, transporting...

Rajnauth, Jerome Joel

2012-02-14T23:59:59.000Z

268

A Planar Anode -Supported Solid Oxide Fuel Cell Model with Internal Reforming of Natural Gas  

E-Print Network [OSTI]

gas, carbon monoxide, methanol, ethanol, and hydrocarbon compounds, and they are becoming one gas, carbon monoxide, methanol, ethanol and hydrocarbon compounds as well as H2. The SOFC can be used with the fuel gases, producing water while releasing electrons that flow via an external circuit to the cathode

Boyer, Edmond

269

Thermophysical property predictions of propane, propylene and their mixtures by Benedict-Webb-Rubin type equations of state  

E-Print Network [OSTI]

THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis by PRAMOD KUMAR BENGANI Submitted to the Office of Graduate Studies of Texas A & M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis...

Bengani, Pramod Kumar

1990-01-01T23:59:59.000Z

270

MAJOR STRUCTURES OF THE INNER GALAXY DELINEATED BY 6.7 GHz METHANOL MASERS  

SciTech Connect (OSTI)

We explore the longitude-velocity distribution of 6.7 GHz methanol masers in the context of the inner structure of our Galaxy. We analyze the correlation in velocities within this distribution and identify density enhancements indicating large-scale regions of enhanced star formation. These are interpreted as the starting points of the spiral arms and the interaction of the Galactic bar with the 3 kpc arms. The methanol masers support the presence of a long thin bar with a 45{sup 0} orientation. Signatures of the full 3 kpc arm structure are seen, including a prominent tangent at approximately -22{sup 0} Galactic longitude. We compare this distribution with existing models of the gas dynamics of our Galaxy. The 3 kpc arm structure appears likely to correspond to the radius of corotation resonance of the bar, with the bar on its inner surface and the starting points of the spiral arms on its outer surface.

Green, J. A.; Caswell, J. L.; McClure-Griffiths, N. M.; Breen, S. L.; Voronkov, M. A. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Avison, A.; Fuller, G. A.; Gray, M. D. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester, M13 9PL (United Kingdom); Burton, M. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Ellingsen, S. P. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Pestalozzi, M. [INAF/IFSI, via del Fosso del Cabaliere 100, I-00133 Roma (Italy); Thompson, M. A. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

2011-05-20T23:59:59.000Z

271

U N C L A S S I F I E D Gas Hydrate Experimental Capabilities at the Los Alamos  

E-Print Network [OSTI]

investigating synthesized (both in-situ and ex-situ) gas hydrates (methane, ethane, propane, CO2 and H2) using-host interactions that drive structure and dynamics. Lee et al., Science 2005 ·Storage of hydrogen in molecular form. ·Tetrahydrofuran (THF)-containing gas hydrate has been proposed as a storage material. THF + D2 clathrates

Downs, Robert T.

272

List of Methanol Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList of GeothermalMethanol Incentives Jump to:

273

(Non) formation of methanol by direct hydrogenation of formate...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

produces significant quantities of methanol, although decomposition of formate to carbon dioxide and hydrogen remains the dominant reaction pathway. Simultaneous production...

274

Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system  

SciTech Connect (OSTI)

The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

275

amine methanol, ether . Amine amine CO2  

E-Print Network [OSTI]

, . promoter . 1.2 CO2 HBGS process CO2 , CO2 . CO2 , IGCC (Integrated Gasification Combined Cycle) (fuel gas) CO2 . IGCC CO2 H2 . (gasification) CO H2 (water gas shift reaction) H2 CO CO2 . CO2 H2 turbine H2 . H2 , CO2 #12;. fuel gas CO2 40%, 60% H2 . fuel gas (gasification) HBGS process . CO2 CO2 . venture

Hong, Deog Ki

276

Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition  

E-Print Network [OSTI]

Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative species Steamed Fe-zeolites Mössbauer spectroscopy UV­Vis FTIR H2-TPR N2O decomposition Propane oxidative of propane to propene with N2O. The evacuated non-steamed FeH-ZSM-5 contained high concentration of Brønsted

Sklenak, Stepan

277

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ă?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

278

SUR LA POSSIBILIT D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'TUDE DES RACTIONS NUCLAIRES  

E-Print Network [OSTI]

175 A. SUR LA POSSIBILIT� D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'�TUDE DES R�ACTIONS. - Mise au point et étude des caractéristiques du fonctionnement d'une chambre à bulles à propane de 6 135 MeV. Abstract. 2014 Adjustment and studies of some characteristics of a 6 litre propane bubble

Boyer, Edmond

279

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

280

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Adsorption of intact methanol on Ru,,0001... Pawel Gazdzicki,1  

E-Print Network [OSTI]

in applications such as the direct methanol fuel cell, where Ru/Pt alloys are used as catalysts for dehydration and hydrogen/ deuterium as suggested in the literature is therefore discarded. At very low coverages or by annealing a low coverage methanol layer, hydrogen bonding leads to cluster formation, as evidenced

282

Mechanistic Studies of Methanol Synthesis over Cu from CO/CO2...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Methanol Synthesis over Cu from COCO2H2H2O Mixtures: the Source of C in Methanol and the Role of Water Mechanistic Studies of Methanol Synthesis over Cu from COCO2H2H2O...

283

COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS  

SciTech Connect (OSTI)

This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project. Overall plant availability (defined as the percentage of time that the LPMEOH{trademark} demonstration unit was able to operate, with the exclusion of scheduled outages) was 97.5%, and the longest operating run without interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced; Eastman accepted all of the available methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic acid.

E.C. Heydorn; B.W. Diamond; R.D. Lilly

2003-06-01T23:59:59.000Z

284

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per day, which represented a significant improvement over the 3.4Yi per day decline measured during the initial six weeks of operation in April and May of 1997. The deactivation rate also improved from the longer-term rate of 1.6% per day calculated throughout the summer and autumn of 1997.

None

1998-12-21T23:59:59.000Z

285

Proton exchange membrane materials for the advancement of direct methanol fuel-cell technology  

DOE Patents [OSTI]

A new class of hybrid organic-inorganic materials, and methods of synthesis, that can be used as a proton exchange membrane in a direct methanol fuel cell. In contrast with Nafion.RTM. PEM materials, which have random sulfonation, the new class of materials have ordered sulfonation achieved through self-assembly of alternating polyimide segments of different molecular weights comprising, for example, highly sulfonated hydrophilic PDA-DASA polyimide segment alternating with an unsulfonated hydrophobic 6FDA-DAS polyimide segment. An inorganic phase, e.g., 0.5 5 wt % TEOS, can be incorporated in the sulfonated polyimide copolymer to further improve its properties. The new materials exhibit reduced swelling when exposed to water, increased thermal stability, and decreased O.sub.2 and H.sub.2 gas permeability, while retaining proton conductivities similar to Nafion.RTM.. These improved properties may allow direct methanol fuel cells to operate at higher temperatures and with higher efficiencies due to reduced methanol crossover.

Cornelius, Christopher J. (Albuquerque, NM)

2006-04-04T23:59:59.000Z

286

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information

287

Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:BasicsPropane

288

Low temperature catalyst system for methanol production  

DOE Patents [OSTI]

This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

1984-04-20T23:59:59.000Z

289

Low temperature catalysts for methanol production  

DOE Patents [OSTI]

A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

1986-09-30T23:59:59.000Z

290

Methanol adsorption and decomposition on rhodium  

SciTech Connect (OSTI)

The decomposition of methanol on rhodium probed from {approximately}200 atomic sites of the (001) or (111) planes or Rh field emitter crystals but randomly with regard to crystallographic zones was studied by pulsed field desorption mass spectrometry. High electric field pulses were used to quantitatively desorb the final products, carbon monoxide and hydrogen, thus achieving steady-state conditions. Substantial amounts of methoxy (mainly desorbed as CH{sub 3}{sup +} ions) were also present at the surface. Applying a steady electric field, F{sub R} {ge} 4 V/nm, between the field pulses, led to a deceleration of the decomposition reaction and to increase of the amount of adsorbed CH{sub 3}O and CH{sub 2}O species. There were indicators that the rate-determining step of the reaction is C-H bond cleavage in adsorbed methoxy to form the CH{sub 2}O intermediate. This was supported by the observation of a kinetic isotope effect in the formation of CD{sub 2}O and CHDO from methyl-d{sub 2}-alcohol, CHD{sub 2}OH. Here, the C-H bond breaking to form the CD{sub 2}O was found to be twice as fast as the breaking of the C-D bond which results in CHDO. Field ion microscopy was applied to investigate the influence of the reaction on the structure of the whole hemispherical single crystal surface. There were neither topographic changes nor corrosion of the Rh surface after field-free exposure to 2 Pa methanol at temperatures up to 423 K.

Chuah, G.K.; Kruse, N.; Schmidt, W.A.; Block, J.H.; Abend, G. (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany, F.R.))

1989-10-01T23:59:59.000Z

291

Catalytic decomposition of methanol at various temperatures and several liquid hourly space velocities  

E-Print Network [OSTI]

DISTRIBUTION FOR COMPOSITE CATALYST B POSSIBLE REACTOR CONFIGURATION FOR THE PRODUCTION OF A GASEOUS FUEL ~Pa e 12 15 21 23 26 28 33 35 37 CHAPTER I INTRODUCTION Methanol can be produced from coal, and natural gas from foreign sources can... increase in 0 temperature resulted in a rapid increase in the production of C02, CO, C2H4, H2 and CH4 with a corresponding decrease in the production of dimethyl ether. In the case of zinc oxide catalyst the formation of dimethyl ether was almost...

Gupta, Yashpal Satyapal

1975-01-01T23:59:59.000Z

292

Gas hydrates in the Gulf of Mexico  

E-Print Network [OSTI]

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

293

Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida  

SciTech Connect (OSTI)

A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the project are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

294

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

295

Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable is the use of the LHV? What is the dewpoint of the reaction products?  

E-Print Network [OSTI]

Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable temperature we can achieve with a propane-and-air blowtorch? We repeat this calculation for several different

296

Shock tube and theoretical studies on the thermal decomposition of propane : evidence for a roaming radical channel.  

SciTech Connect (OSTI)

The thermal decomposition of propane has been studied using both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for propane have been measured at high temperatures behind reflected shock waves using high-sensitivity H-ARAS detection and CH{sub 3} optical absorption. The two major dissociation channels at high temperature are C{sub 3}H{sub 8} {yields} CH{sub 3} + C{sub 2}H{sub 5} (eq 1a) and C{sub 3}H{sub 8} {yields} CH{sub 4} + C{sub 2}H{sub 4} (eq 1b). Ultra high-sensitivity ARAS detection of H-atoms produced from the decomposition of the product, C{sub 2}H{sub 5}, in (1a), allowed measurements of both the total decomposition rate constants, k{sub total}, and the branching to radical products, k{sub 1a}/k{sub total}. Theoretical analyses indicate that the molecular products are formed exclusively through the roaming radical mechanism and that radical products are formed exclusively through channel 1a. The experiments were performed over the temperature range 1417-1819 K and gave a minor contribution of (10 {+-} 8%) due to roaming. A multipass CH{sub 3} absorption diagnostic using a Zn resonance lamp was also developed and characterized in this work using the thermal decomposition of CH{sub 3}I as a reference reaction. The measured rate constants for CH{sub 3}I decomposition agreed with earlier determinations from this laboratory that were based on I-atom ARAS measurements. This CH{sub 3} diagnostic was then used to detect radicals from channel 1a allowing lower temperature (1202-1543 K) measurements of k1a to be determined. Variable reaction coordinate-transition state theory was used to predict the high pressure limits for channel (1a) and other bond fission reactions in C{sub 3}H{sub 8}. Conventional transition state theory calculations were also used to estimate rate constants for other tight transition state processes. These calculations predict a negligible contribution (<1%) from all other bond fission and tight transition state processes, indicating that the bond fission channel (1a) and the roaming channel (1b) are indeed the only active channels at the temperature and pressure ranges of the present experiments. The predicted reaction exo- and endothermicities are in excellent agreement with the current version of the Active Thermochemical Tables. Master equation calculations incorporating these transition state theory results yield predictions for the temperature and pressure dependence of the dissociation rate constants for channel 1a. The final theoretical results reliably reproduce the measured dissociation rate constants that are reported here and in the literature. The experimental data are well reproduced over the 500-2500 K and 1 x 10{sup -4} to 100 bar range (errors of {approx}15% or less) by the following Troe parameters for Ar as the bath gas: k{sub {infinity}} = 1.55 x 10{sup 24}T{sup -2.034} exp(-45490/T) s{sup -1}, k{sub 0} = 7.92 x 10{sup 53}T{sup -16.67} exp(-50380/T) cm{sup 3} s{sup -1}, and F{sub c} = 0.190 exp(-T/3091) + 0.810 exp(-T/128) + exp(-8829/T).

Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. (Chemical Sciences and Engineering Division)

2011-04-21T23:59:59.000Z

297

The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions.  

E-Print Network [OSTI]

~ Ths writer is izntebteg to pr, P G~ ~och Tor his assistance azsi guidance in this work aC to Br~ J+ 9 Kinds Tor his aery. suggestions eel Succor~ a The oxidation cf propane~ propylene and prcya~cregyimm mbetccres ctver a ~ aiucdna ~st in a flew... formation of aldehyde fran pure grade propane The ~ce of Within the range of variables of this investigation and with propylene ~& aldehyde pr~cn was f'ennd to bs independent of" residence Qorrcgations relating aldehyde pressure to ~ and cncygsn pressure...

Looney, Franklin Sittig

1950-01-01T23:59:59.000Z

298

State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

299

State Heating Oil and Propane Program, 1990--1991 heating season  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

300

Method of converting environmentally pollutant waste gases to methanol  

SciTech Connect (OSTI)

A continuous flow method is described of converting environmentally pollutant by-product gases emitted during the manufacture of silicon carbide to methanol comprising: (a) operating a plurality of batch furnaces of a silicon carbide manufacturing plant thereby producing silicon carbide and emitting by-product gases during the operation of the furnaces; (b) staggering the operation of the batch furnaces to achieve a continuous emission of the by-product gases; (c) continuously flowing the by-product gases as emitted from the batch furnaces directly to a methanol manufacturing plant; (d) cleansing the by-product gases of particulate matter, including removing the element sulfur from the by-product gases, as they are flowed to the methanol manufacturing plant, sufficiently for use of the by-product gases in producing methanol; and (e) immediately producing methanol from the by-product gases at the methanol manufacturing plant whereby the producing of silicon carbide is joined with the producing of methanol as a unified process.

Pfingstl, H.; Martyniuk, W.; Hennepin, A. Ill; McNally, T.; Myers, R.; Eberle, L.

1993-08-03T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen production from methanol decomposition over Pt/Al2O3 and ceria promoted Pt/Al2O3 catalysts  

E-Print Network [OSTI]

rights reserved. Keywords: Methanol decomposition; Pt/alumina; Ceria; Hydrogen; PEM fuel cell 1 exchange mem- brane (PEM) fuel cell system. PEM fuel cells convert hydrogen gas into useful electric power is seen as an attractive means of providing the necessary hydrogen to the fuel cell. With the exception

Gulari, Erdogan

302

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

2013-12-31T23:59:59.000Z

303

Economics of natural gas upgrading  

SciTech Connect (OSTI)

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

304

Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOEP") Demonstration Project at K.ingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L, P. (the Partnership). The LPMEOHY Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. On 4 October 1994, Air Products and Chemicals, Inc. (Air Products) and signed the agreements that would form the Partnership, secure the demonstration site, and provide the financial commitment and overall project management for the project. These partnership agreements became effective on 15 March 1995, when DOE authorized the commencement of Budget Period No. 2 (Mod. AO08 to the Cooperative Agreement). The Partnership has subcontracted with Air Products to provide the overall management of the project, and to act as the primary interface with DOE. As subcontractor to the Partnership, Air Products will also provide the engineering design, procurement, construction, and commissioning of the LPMEOHTM Process Demonstration Unit, and will provide the technical and engineering supervision needed to conduct the operational testing program required as part of the project. As subcontractor to Air Products, Eastman will be responsible for operation of the LPMEOHTM Process Demonstration Unit, and for the interconnection and supply of synthesis gas, utilities, product storage, and other needed sewices. The project involves the construction of an 80,000 gallons per day (260 tons-per-day (TPD)) methanol unit utilizing coal-derived synthesis gas fi-om Eastman's integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOHTM process is ideally suited for directly processing gases produced by modern day coal gasifiers. Originally tested at a small 3,200 gallons per day, DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates.

None

1996-03-31T23:59:59.000Z

305

Low temperature catalysts for methanol production  

DOE Patents [OSTI]

A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O'Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

1986-01-01T23:59:59.000Z

306

Low temperature catalysts for methanol production  

DOE Patents [OSTI]

A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

1985-03-12T23:59:59.000Z

307

Low temperature catalysts for methanol production  

DOE Patents [OSTI]

A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

1986-10-28T23:59:59.000Z

308

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Here, Graciani et al. report on a new nanocatalyst that can do just that for CO2- in producing methanol, a key industrial chemical commonly used to make other chemicals and...

309

Coadsorption of methanol and isobutene on HY zeolite  

SciTech Connect (OSTI)

In order to develop a better understanding of methyl tert-butyl ether (MTBE) synthesis on zeolites, the coadsorption of methanol and isobutene on HY zeolite was investigated using IR spectroscopy. Initial adsorption of isobutene alone at 35{degree}C led to rapid oligomerization yielding strongly bound oligomers. The subsequent coadsorption of methanol did not induce any changes in the zeolite-adsorbate complexes. TPD following the coadsorption showed that the Bronsted acid sites could be restored by temperature treatment above approximately 300{degree}C. When methanol was adsorbed first and isobutene was subsequently coadsorbed, MTBE was formed even at 35{degree}C on the catalyst surface. MTBE desorbed easily at a temperature of 70{degree}C, restoring a major fraction of the Bronsted acid sites. Methanol was concluded to decrease the probability of oligomerization by effectively competing for the acid sites. 34 refs., 6 figs.

Kogelbauer, A.; Goodwin, J.G. Jr. [Univ. of Pittsburgh, PA (United States); Lercher, J.A. [Univ. of Twente, Enschede (Netherlands)

1995-05-25T23:59:59.000Z

310

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

311

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-01-01T23:59:59.000Z

312

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling. Revision 1  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-01T23:59:59.000Z

313

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-31T23:59:59.000Z

314

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-12-01T23:59:59.000Z

315

Studies of n-Propanol, iso-Propanol, and Propane Flames  

SciTech Connect (OSTI)

The phenomena of propagation and extinction of flames of saturated C{sub 3} alcohols and propane were studied experimentally and numerically in order to assess the effects of the presence and location of the hydroxyl radical in the fuel molecular structure. The experiments were carried out in the counterflow configuration under atmospheric pressure and for unreacted fuel-carrying stream temperature of 343 K. The simulations included detailed descriptions of molecular transport and chemical kinetics using a recently developed kinetic model for C{sub 3} alcohols. The experimental results revealed that the laminar flame speeds and extinction strain rates of n-propanol/air and propane/air flames are close to each other whereas those of iso-propanol/air flames are consistently lower. Similar behavior was observed also for the extinction strain rates of non-premixed n-propanol and iso-propanol flames. It was shown through sensitivity and reaction path analyses that there are two major differences between the intermediates of n-propanol/air and iso-propanol/air flames. In iso-propanol/air flames there are notably higher concentrations of propene whose consumption pathway results in the relatively unreactive allyl radicals, retarding thus the overall reactivity. In n-propanol/air flames there are notably higher concentrations of formaldehyde that reacts readily to form formyl radicals whose subsequent reactions enhance the overall reactivity. The kinetic model used in this study was found to overpredict the experimental results for rich n-propanol/air and propane/air flames. Analysis revealed that those discrepancies are most likely caused by deficiencies in the C{sub 3} alkane kinetics. Through sensitivity analysis, it was determined also that the propagation and extinction of n-propanol/air and iso-propanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 3} kinetics and not to fuel-specific reactions. Finally, the relative sooting propensities of flames of these three fuels were assessed computationally.

Veloo, Peter S.; Egolfopoulos, Fokion N.

2011-01-01T23:59:59.000Z

316

Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on MCM-48  

E-Print Network [OSTI]

. Methanol reacts reversibly, at a ratio of approximately 1 methanol per V, with one V-O-Si to produce both V-state reaction conditions, CH2O is produced as the dominant product of methanol oxidation at temperatures belowMechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported

Bell, Alexis T.

317

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process  

E-Print Network [OSTI]

, methanol recovery 1. Introduction A process of producing TAME via reactive distillation has been presented the bulk of the reaction between C5 and methanol to produce TAME and a reactive distillation. MethanolDesign of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Al-Arfaj, Muhammad A.

318

Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion  

E-Print Network [OSTI]

-d in a solution containing 0.8% methanol-d/23% methanol-h in carbon tetrachloride. Methanol-d molecules that both-d in an isotopically mixed solu- tion of methanol dissolved in carbon tetrachloride.11­13 The first step involved

Fayer, Michael D.

319

Evaluation of reformed methanol as an automotive engine fuel  

E-Print Network [OSTI]

EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1903 Major Subject: Mechanical Engineering EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Approved as to style and content by: Dr. T. R. Lalk (Chairman o f Committee ) Dr. R. R. Davison (Member...

McCall, David M

1983-01-01T23:59:59.000Z

320

Improved Flow-Field Structures for Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

Gurau, Bogdan

2013-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cross sections for electron scattering by propane in the low- and intermediate-energy ranges  

SciTech Connect (OSTI)

We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

2010-07-15T23:59:59.000Z

322

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report  

SciTech Connect (OSTI)

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what would be allowed for methanol synthesis alone. Aromatic-rich hydrocarbon liquid (C5+), containing a significant amount of methylated benzenes, was produced under these conditions. However, selectivity control to liquid hydrocarbons was difficult to achieve. Carbon dioxide and methane formation was problematic. Furthermore, saturation of the olefinic intermediates formed in the zeolite, and necessary for gasoline production, occurred over PdZnAl. Thus, yield to desirable hydrocarbon liquid product was limited. Evaluation of other oxygenate-producing catalysts could possibly lead to future advances. Potential exists with discovery of other types of catalysts that suppress carbon dioxide and light hydrocarbon formation. Comparative techno-economics for a single-step syngas-to-distillates process and a more conventional MTG-type process were investigated. Results suggest operating and capital cost savings could only modestly be achieved, given future improvements to catalyst performance. Sensitivity analysis indicated that increased single-pass yield to hydrocarbon liquid is a primary need for this process to achieve cost competiveness.

Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.

2013-11-26T23:59:59.000Z

323

Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

324

Gas/solvent-induced transformation and expansion of a nonporous solid to 1:1 host guest form  

SciTech Connect (OSTI)

Herein we report the gas (CO2, N2O and propane) and solvent (CS2 and acetone) induced transformation and expansion of guest free thermodynamic form of a p-tert-butylcalix [4]arene to 1:1 host guest form.

Thallapally, Praveen K.; McGrail, B. Peter; Dalgarno, Scott J.; Atwood, Jerry L.

2008-07-01T23:59:59.000Z

325

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report No. 1, October 1, 1993--June 30, 1994  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products and Chemicals, Inc. (Air Products). This document describes major accomplishments in project development for Fiscal Year 1993. The preliminary process hazards review, project safety plan, schedule, and cost management report are included as appendices. The demonstration is sited at the Eastman Chemical Company (Eastman) complex in Kingsport. Air Products and Eastman are working on a partnership agreement which will form the Air Products Liquid Phase Conversion Company, L.P. As a limited partner in the venture, Eastman will own and operate the demonstration unit. The project involves the construction of a 260 tons-per-day (TPD) or 80,000 gallon per day methanol demonstration unit utilizing an existing coal-derived synthesis gas from Eastman. The new equipment consists of synthesis gas feed preparation and compression, liquid phase reactor and auxiliaries, product distillation, and utilities. The technology to be demonstrated was developed by Air Products in a DOE sponsored program that started in 1981. Originally tested at a small, DOE-owned experimental facility in LaPorte, Texas, the LPMEOH{trademark} process offers several advantages over current methods of making methanol. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The liquid dissipates heat from the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the gas-to-methanol reaction to proceed at higher rates. The process is ideally suited to the type of gas produced by modem coal gasifiers. At the Eastman Chemical complex, the technology will be integrated with existing coal gasifiers to demonstrate the commercially important aspects of the operation of the LPMEOH{trademark} Process to produce methanol.

NONE

1998-12-31T23:59:59.000Z

326

Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters  

DOE Patents [OSTI]

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

327

Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters  

DOE Patents [OSTI]

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, J.W.; Wender, I.; Palekar, V.M.

1995-01-31T23:59:59.000Z

328

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

329

Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996  

SciTech Connect (OSTI)

The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.

NONE

1996-12-31T23:59:59.000Z

330

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect (OSTI)

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

331

Methyl tert-butyl ether (MTBE) is a volatile organic com-pound (VOC) derived from natural gas that is added to gas-  

E-Print Network [OSTI]

Methyl tert-butyl ether (MTBE) is a volatile organic com- pound (VOC) derived from natural gas Water in Urban and Agricultural Areas made from methanol, which is derived primarily from natural gas that is added to gas- oline either seasonally or year round in many parts of the United States to increase

332

Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area  

E-Print Network [OSTI]

C-130 T0 T1 G1 Ethane Propane i-Butane n-Butane i-Pentane n-ppbv) Ethane Ethene Ethyne Propane Propene i-Butane n-Butanee.g. , ethane, ethene, propane, propane, methanol, ethanol,

2010-01-01T23:59:59.000Z

333

Finding the missing stratospheric Bry: a global modeling study of CHBr3 and CH2Br2  

E-Print Network [OSTI]

C-130 T0 T1 G1 Ethane Propane i-Butane n-Butane i-Pentane n-ppbv) Ethane Ethene Ethyne Propane Propene i-Butane n-Butanee.g. , ethane, ethene, propane, propane, methanol, ethanol,

2010-01-01T23:59:59.000Z

334

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network [OSTI]

the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

Pathak, Dushyant

2006-04-12T23:59:59.000Z

335

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

Rivero Diaz, Jose Antonio

2002-01-01T23:59:59.000Z

336

Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report  

SciTech Connect (OSTI)

This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

NONE

1999-09-01T23:59:59.000Z

337

Analysis of depolarization ratios of ClNO{sub 2} dissolved in methanol  

SciTech Connect (OSTI)

A detailed analysis of the resonance Raman depolarization ratio dispersion curve for the N–O symmetric stretch of nitryl chloride in methanol at excitation wavelengths spanning the D absorption band is presented. The depolarization ratios are modeled using the time-dependent formalism for Raman scattering with contributions from two excited states (2{sup 1}A{sub 1} and 3{sup 1}B{sub 1}), which are taken as linearly dissociative along the Cl–N coordinate. The analysis focuses on the interplay between different types of broadening revealing the importance of inhomogenous broadening in determining the relative contributions of the two electronic transitions. We find that the transition dipole moment (M) for 2{sup 1}A{sub 1} is greater than for 3{sup 1}B{sub 1}, in agreement with gas phase calculations in the literature [A. Lesar, M. Hdoscek, M. Muhlhauser, and S. D. Peyerimhoff, Chem. Phys. Lett. 383, 84 (2004)]. However, we find that the polarity of the solvent influences the excited state energetics, leading to a reversal in the ordering of these two states with 3{sup 1}B{sub 1} shifting to lower energies. Molecular dynamics simulations along with linear response and ab initio calculations support the evidence extracted from resonance Raman intensity analysis, providing insights on ClNO{sub 2} electronic structure, solvation effects in methanol, and the source of broadening, emphasizing the importance of a contribution from inhomogeneous linewidth.

Trimithioti, Marilena; Hayes, Sophia C., E-mail: shayes@ucy.ac.cy [Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia (Cyprus); Akimov, Alexey V. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States) [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States); Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973 (United States); Prezhdo, Oleg V. [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)] [Department of Chemistry, University of Rochester, Rochester, New York 14627 (United States)

2014-01-07T23:59:59.000Z

338

Single-cell protein from methanol with Enterobacter aerogenes  

SciTech Connect (OSTI)

An identified Enterobacter aerogenes utilizing methanol as a sole carbon source was studied for the optimization of biomass production and the reduction of its nucleic acid content. Results indicated that the highest yield and conversion were obtained at 0.5% methanol. The addition of seawater as a source of trace elements has an adverse effect. However, the addition of urea as source of nitrogen enhanced the growth of E. aerogenes. Heat shock at 60 degrees C for one minute followed by incubation at 50 degrees C for 2 hours caused 72.6% reduction in the nucleic acid. 12 references.

Gnan, S.O.; Abodreheba, A.O.

1987-02-20T23:59:59.000Z

339

Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst  

SciTech Connect (OSTI)

The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2010-01-01T23:59:59.000Z

340

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

342

Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane  

SciTech Connect (OSTI)

Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

Deo, M.D.; Hwang, J.; Hanson, F.V.

1991-01-01T23:59:59.000Z

343

Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane  

SciTech Connect (OSTI)

Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

Deo, M.D.; Hwang, J.; Hanson, F.V.

1991-12-31T23:59:59.000Z

344

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect (OSTI)

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

345

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

346

Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.  

SciTech Connect (OSTI)

Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

2009-03-01T23:59:59.000Z

347

Modeling of the formation of short-chain acids in propane flames  

E-Print Network [OSTI]

In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

Battin-Leclerc, Frédérique; Jaffrezo, J L; Legrand, M

2009-01-01T23:59:59.000Z

348

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

SciTech Connect (OSTI)

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

349

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons per day) took place on 06 April 1997. Pressure drop and resistance coefficient across the gas sparger at the bottom of the reactor increased over this initial operating period. The demonstration unit was shut down from 08 May -17 June 1997 as part of a scheduled complex outage for the Kingsport site. During this outage, the gas sparger was removed, cleaned, and reinstalled. After completion of other maintenance activities, the demonstration unit was restarted, and maintained stable operation through the remainder of the reporting period. Again, the gas sparger showed an increase in pressure drop and resistance since the restart, although not as rapidly as during the April-May operation. Fresh oil was introduced online for the first time to a new flush connection on the gas inlet line to the reactov the flush lowered the pressure drop by 1 psi. However, the effects were temporary, and the sparger resistance coefficient continued to increase. Additional flushing with both fresh oil and entrained slurry recovered in the cyclone and secondary oil knock-out drum will be attempted in order to stabilize the sparger resistance coefficient.

None

1997-06-30T23:59:59.000Z

350

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

351

Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A Combined DFT and Kinetic Study. Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model...

352

Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on...

353

E-Print Network 3.0 - air-breathing direct methanol Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Res. 2005; 29:10411050 Summary: , U.S.A. SUMMARY An 8-cell air-breathing direct methanol fuel cell (DMFC) stack with the active area... of an air-breathing direct methanol fuel...

354

An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells  

E-Print Network [OSTI]

Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

Hall, Kwame (Kwame J.)

2009-01-01T23:59:59.000Z

355

Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

356

Direct Methanol Fuel Cell Experimental and Model Validation Study  

E-Print Network [OSTI]

Direct Methanol Fuel Cell Experimental and Model Validation Study M. Mench, J. Scott, S. Thynell boundary Fuel cell performance Current density distribution measurements Conclusions #12;3 Method, flow rate, species inlet and fuel cell temperature, and humidity. Transparent polycarbonate windows

Wang, Chao-Yang

357

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect (OSTI)

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

358

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

359

The efficient use of natural gas in transportation  

SciTech Connect (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

360

The efficient use of natural gas in transportation  

SciTech Connect (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

362

Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

1993-07-01T23:59:59.000Z

363

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

SciTech Connect (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

364

Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons  

E-Print Network [OSTI]

for fixed H /0 ratio and average s particle diameter is shown in Figures 3 and 4 respectively. The smooth curve for the 5 micron plate reflects uniform density throughout the bed due to good distribution of the gas phase. The curves for the 40 and 100...COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment...

Mehta, Shirish Ramniklal

1982-01-01T23:59:59.000Z

365

Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Catalytic Function  

E-Print Network [OSTI]

Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural of stoichiometric reduction in H2, and the oxidative dehydrogenation of propane. VOx domains on Al2O3 modified The oxidative dehydrogenation (ODH) of propane provides an attractive route for the synthesis of propene.1

Bell, Alexis T.

366

Performance modeling and cell design for high concentration methanol fuel cells  

E-Print Network [OSTI]

) it reduces the fuel efficiency (methanol is reacted without producing electrical current). We canChapter 50 Performance modeling and cell design for high concentration methanol fuel cells C. E The direct methanol fuel cell (DMFC) has become a lead- ing contender to replace the lithium-ion (Li

367

Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles  

E-Print Network [OSTI]

of this process is a limiting factor in the performance of direct methanol fuel cells, which produce electricityCorrelating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol

Kik, Pieter

368

Seasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets  

E-Print Network [OSTI]

, 2002] and photochemical produc- tion from hydrocarbon precursors. Methanol is often the most abundantSeasonal measurements of acetone and methanol: Abundances and implications for atmospheric budgets December 2005; published 21 February 2006. [1] Acetone and methanol have been measured hourly at a rural

Cohen, Ronald C.

369

Catalysis Today 53 (1999) 433441 New insights into methanol synthesis catalysts from X-ray absorption  

E-Print Network [OSTI]

O and Cr2O3 mixtures and produced methanol in low yields from CO­H2 mixtures at high temperatures (593Catalysis Today 53 (1999) 433­441 New insights into methanol synthesis catalysts from X a consistent structural picture of methanol synthesis catalysts. Copper metal is the principal Cu species

Iglesia, Enrique

370

Department of Energy and Mineral Engineering Spring 2012 BP Methanol Separation  

E-Print Network [OSTI]

issues in the well heads. To counteract this problem, methanol is injected into the produced water stream-effective system that would remove methanol from the produced water stream. Objectives Our objective was to reduce the methanol concentration of either one of two produced water samples. Specifically, our goal was to reduce

Demirel, Melik C.

371

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

372

Modelling of Gas Clathrate Hydrate Equilibria using the Electrolyte Non-Random Two-Liquid (eNRTL) Model  

E-Print Network [OSTI]

.g. pipeline blockages by hydrates in drilling applications or gas pipelines) [6]. Species being capable of forming hydrogen bonds with the water molecules like methanol or ethylene glycol as well as water

Paris-Sud XI, Université de

373

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures  

SciTech Connect (OSTI)

Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

Waller, F.J.

1997-11-01T23:59:59.000Z

374

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Flammability Limits in Pure O 2 (%) Heat of combustion (kJg ) Liquid heat of combustion (MJ perliter) Gas heat of combustion (MJ m @ STP) Peak combustion

Green, Michael A.

2005-01-01T23:59:59.000Z

375

Production of Liquid Cluster Ions by Nozzle Beam Source with and without He Gas  

SciTech Connect (OSTI)

We developed a new type of cluster ion source which could produce various kinds of liquid clusters such as water, methanol, ethanol and octane clusters. When the vapor pressure was larger than one atm, the water and ethanol clusters could be produced by an adiabatic expansion phenomenon without adding He gas. The peak size of the cluster ions increased with the increase of the vapor pressures. When the source temperature was at room temperature, the water and ethanol clusters were also produced by adding He gas. In another case of producing liquid clusters such as methanol and octane clusters, He gas was added to mix up with vapors of liquid materials. When the He gas pressure was larger than a few atms, the methanol and octane clusters were produced at a vapor pressure of two atm. The peak size increased with increase of the vapor pressure as well as the He gas pressure.

Takaoka, G. H.; Ryuto, H.; Okada, T.; Sugiyama, K. [Photonics and Electronics Science and Engineering Center, Kyoto University, Nishikyo, Kyoto 615-8510 (Japan)

2008-11-03T23:59:59.000Z

376

Methanol production from eucalyptus wood chips. Attachment V. The Florida eucalyptus energy farm: environmental impacts  

SciTech Connect (OSTI)

The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

377

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

378

ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation  

SciTech Connect (OSTI)

Energy-Dispersive X-ray Absorption Spectroscopy (ED-XAS) data combined with UV/Vis, Raman, and mass spectrometry data on alumina- and silica-supported molybdenum oxide catalysts under propane dehydrogenation conditions have been previously reported. A novel {delta}{mu} adsorbate isolation technique was applied here to the time-resolved (0.1 min) Mo K-edge ED-XAS data by taking the difference of absorption, {mu}, at t>1 against the initial time, t=0. Further, full multiple scattering calculations using the FEFF 8.0 code are performed to interpret the {delta}{mu} signatures. The resulting difference spectra and interpretation provide real time propane coverage and O depletion at the MoOn surface. The propane coverage is seen to correlate with the propene and/or coke production, with the maximum coke formation occurring when the propane coverage is the largest. Combined, these data give unprecedented insight into the complicated dynamics for propane dehydrogenation.

Ramaker, David; Gatewood, Daniel [Department of Chemistry, George Washington University, Washington D.C. 20052 (United States); Beale, Andrew M.; Weckhuysen, Bert M. [Inorganic Chemistry and Catalysis, Dept. of Chem., Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

2007-02-02T23:59:59.000Z

379

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect (OSTI)

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

380

High accuracy p-rho-t measurements up to 200 MPa between 200 K and 500 K using a compact single sinker magnetic suspension densimeter for pure and natural gas like mixtures  

E-Print Network [OSTI]

-74]. ............................................................. 90 FIGURE 54. Literature carbon dioxide deviations from NIST-12 database for temperatures between 240 K and 313 K [76]. ............................................ 91 FIGURE 55. Literature carbon dioxide deviations from NIST-12 database... based fuels such as coal, oil and natural gas. Among these, natural gas is the cleanest, safest, and most useful. Natural gas is a mixture of predominantly methane and other paraffinic hydrocarbons such as ethane, propane, butane, pentane etc...

Atilhan, Mert

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High specific power, direct methanol fuel cell stack  

DOE Patents [OSTI]

The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

Ramsey, John C. (Los Alamos, NM); Wilson, Mahlon S. (Los Alamos, NM)

2007-05-08T23:59:59.000Z

382

Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether  

SciTech Connect (OSTI)

Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

1995-11-01T23:59:59.000Z

383

High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points  

SciTech Connect (OSTI)

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Tan, Sugata [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

384

A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion  

SciTech Connect (OSTI)

We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.

Aceves, S M; Flowers, D L; Martinez-Frias, J; Smith, J R; Westbrook, C; Pitz, W; Dibble, R; Wright, J F; Akinyemi, W C; Hessel, R P

2000-11-29T23:59:59.000Z

385

Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol  

E-Print Network [OSTI]

to electric energy in a hydrogen/oxygen fuel cell was demon- strated. Although hydrogen/oxygen fuel cells): Application to Direct Methanol Fuel Cells Jeremy Kua and William A. Goddard III* Contribution from and designing new catalysts. We find that methanol dehydrogenation is most facile on Pt, with the hydrogens

Goddard III, William A.

386

Methanol and methyl fuel catalysts. Final technical report, September 1978-August 1980  

SciTech Connect (OSTI)

The Cu/ZnO methanol synthesis catalysts were investigated for (1) the role of additives such as alumina, ceria, and lanthana, (2) the effect of carbon dioxide in the H/sub 2//CO synthesis gas, (3) the chemisorption of hydrogen and carbon monoxide on the catalysts, and (4) the chemical poisoning of the catalysts by sulfur- and chlorine-containing compounds. Maximum activity and selectivity were obtained with a binary catalyst having a composition of Cu/ZnO = 30/70 metal atomic percent and with a synthesis gas of H/sub 2//CO/CO/sub 2/ = 70/28/2 volume percent in the absence of strongly reducing or strongly oxidizing chemical poisons. Both the binary and the ternary catalysts were fully characterized by scanning transmission electron microscopy (STEM), X-ray diffraction, electron spectroscopy, diffuse reflectance spectroscopy, and surface area-pore distribution measurements. Structural and morphologic information is presented in this report in detail for very active Cu/ZnO/Al/sub 2/O/sub 3/ catalysts prepared from acetates and for other catalysts in which the third component caused a loss of activity.

Klier, K.; Herman, R.G.

1980-12-15T23:59:59.000Z

387

Understanding the dynamics of a two-phase flow (liquid and gas) has been studied quite extensively over the past. This problem is indeed of direct relevance for many areas such  

E-Print Network [OSTI]

be trapped on the ground because of the presence of an obstacle. The studied products were propane, butane set-up, and pressure storage. 1 INTRODUCTION In many chemical and process plants, gas are stored for the understanding of the flow inside the pipe. The net of pipes linking the storage and the nozzle are composed

Paris-Sud XI, Université de

388

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect (OSTI)

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

389

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996  

SciTech Connect (OSTI)

The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.

NONE

1997-06-06T23:59:59.000Z

390

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol via

391

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to Methanol

392

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTour theFrom CO2 to MethanolFrom

393

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to Methanol via

394

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to Methanol

395

From CO2 to Methanol via Novel Nanocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlantFreedomofFrom CO2 to MethanolFrom

396

Liquid-liquid equilibrium of cyclohexane-n-hexane-methanol mixtures; Effect of water content  

SciTech Connect (OSTI)

Experimental liquid-liquid equilibrium data for the ternary system cyclohexane-n-hexane-methanol and for the binary systems n-hexane-methanol and cyclohexane-methanol are presented over a temperature range from 284 to 298{Kappa} at pressure of 0.1 MPa. Attention is given to the effect of the purity of methanol as far as the water content is concerned. The data are correlated by means of excess Gibbs energy models (NRTL and UNIQUAC), and the binary interaction parameters are reported.

Alessi, P.; Fermeglia, M.; Kikic, I. (Istituto di Chimica Applicata e Industriale, University of Trieste, via Valerio 2, I-34127 Trieste (IT))

1989-04-01T23:59:59.000Z

397

Indirect conversion of coal to methanol and gasoline: product price vs product slate  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

1980-01-01T23:59:59.000Z

398

Optimizing membrane electrode assembly of direct methanol fuel cells for portable power.  

E-Print Network [OSTI]

??Direct methanol fuel cells (DMFCs) for portable power applications require high power density, high-energy conversion efficiency and compactness. These requirements translate to fundamental properties of… (more)

Liu, Fuqiang

2006-01-01T23:59:59.000Z

399

Understanding the effect of modifying elements in supported vanadia bilayered catalysts for methanol oxidation to formaldehyde  

E-Print Network [OSTI]

that methanol initially adsorbs dissociatively producingmethanol dissociatively adsorbs across a V-O- support bond, producingmethanol dissociatively adsorbs across a V-O-Si bond producing

Vining, William Collins

2011-01-01T23:59:59.000Z

400

E-Print Network 3.0 - acute methanol toxicity Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: that bind to transthyretin, a thyroxine binding protein. 12;Toxicity of Dioxins Acute Toxicity Varies... ) to acetaldehyde to acetate to acetyl CoA Methanol ...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network [OSTI]

Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

402

An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane  

SciTech Connect (OSTI)

A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de [Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, B-9000 Gent (Belgium); Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B. [Ghent University, Laboratorium voor Petrochemische Techniek, Krijgslaan 281 S5, B-9000 Gent (Belgium)

2007-02-02T23:59:59.000Z

403

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect (OSTI)

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

404

Pipeline safety. Information on gas distribution system operators reporting unaccounted for gas  

SciTech Connect (OSTI)

According to Department of Transportation records, 92 of the 1491 gas distribution system operators reported high levels of unaccounted for gas (unaccounted for gas is the difference between the amount of gas purchased and sold) for 1984, the latest year for which data were available. Of the 92 gas system operators, 64 were municipals (gas systems owned by a governmental entity, such as a city or county) and 28 were nonmunicipals. Based on the data we reviewed, these 92 gas systems did not report any accidents during calendar year 1984. Part I provides more details on the unaccounted for gas of municipal gas systems. Federal and industry officials consider that unaccounted for gas in excess of 15% of gas purchases high and worthy of investigation. High levels of unaccounted for gas can occur for a number of reasons, including errors in metering and billing, not accounting for gas used by city or company facilities, and leaking gas pipelines. While it may, a leak does not always indicate a safety problem. For example, a slow leak in an open area may not be a safety hazard. The Secretary has the authority to regulate any liquid deemed hazardous when transported by pipeline, and therefore could regulate hazardous liquids not currently regulated including methanol and carbon dioxide. However, the Department of Transportation has no plans to regulate any additional liquids. Part II provides more details. 4 figs., 2 tabs.

Not Available

1986-02-01T23:59:59.000Z

405

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

406

Desorption Kinetics of Methanol, Ethanol, and Water from Graphene  

SciTech Connect (OSTI)

The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

2014-09-18T23:59:59.000Z

407

Development of Alaskan gas hydrate resources  

SciTech Connect (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

408

The preliminary result from spectra of $K^0_s ?^-$ in reaction p+propane at 10 GeV/c  

E-Print Network [OSTI]

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

P. Zh. Aslanyan

2006-05-04T23:59:59.000Z

409

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect (OSTI)

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

410

Compressible Solution Properties of Amorphous Polystyrene-block-Polybutadiene, Crystalline Polystyrene-block-Poly(Hydrogenated Polybutadiene) and Their Corresponding Homopolymers: Fluid-Fluid, Fluid-Solid and Fluid-Micelle Phase Transitions in Propane and Propylene  

SciTech Connect (OSTI)

Abstract Polystyrene, polybutadiene, hydrogenated polybutadiene, and styrene diblock copolymers of these homopolymers can form homogenous solutions in compressible solvents, such as propane and propylene, which separate into two bulk phases upon reducing pressure. The cloud and micellization pressures for homopolymer and diblock copolymers are generally found to be higher in propane than in propylene, except for hydrogenated polybutadiene and polystyrene-block-(hydrogenated polybutadiene). Hydrogenated polybutadiene homopolymers and copolymers exhibit relatively pressure-independent crystallization and melting observed in both propane and propylene solutions.

Hong, Kunlun [ORNL; Mays, Jimmy [ORNL; Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie

2009-01-01T23:59:59.000Z

411

APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu*  

E-Print Network [OSTI]

APPLICATION OF MEMS TECHNOLOGY TO MICRO DIRECT METHANOL FUEL CELL Xiaowei Liu* , Chunguang Suo, email: lxw@hit.edu.cn) ABSTRACT In view of micro fuel cells, the silicon processes are employed for microfabrication of the micro direct methanol fuel cell (DMFC). Using the MEMS technology we have successfully made

Paris-Sud XI, Université de

412

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate  

E-Print Network [OSTI]

Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate Samuel September 2014 Available online xxx Keywords: High temperature PEM Fuel cell Methanol Impedance spectroscopy]. The report forecasts even more success for fuel cells in the near future. Proton exchange membrane (PEM) fuel

Kær, Søren Knudsen

413

Electrochimica Acta 52 (2007) 43174324 Porous current collectors for passive direct methanol fuel cells  

E-Print Network [OSTI]

Electrochimica Acta 52 (2007) 4317­4324 Porous current collectors for passive direct methanol fuel methanol fuel cell (DMFC) with its cathode current collector made of porous metal foam was investigated that the passive DMFC having the porous current collector yielded much higher and much more stable performance than

Zhao, Tianshou

2007-01-01T23:59:59.000Z

414

Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells  

E-Print Network [OSTI]

Effect of Transient Hydrogen Evolution/Oxidation Reactions on the OCV of Direct Methanol Fuel Cells of a direct methanol fuel cell DMFC was observed to undergo an overshoot before it stabilized during at the catalyst layer, resulting in a transient reference hydrogen electrode, which allows quantifying

Zhao, Tianshou

415

Towards the optimal integrated production of biodiesel with internal recycling of methanol  

E-Print Network [OSTI]

1 Towards the optimal integrated production of biodiesel with internal recycling of methanol of the production methanol from glycerol and its integration in the production of biodiesel from algae. We propose a limited superstructure where the glycerol from biodiesel is first reformed for which steam reforming

Grossmann, Ignacio E.

416

Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol  

E-Print Network [OSTI]

Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol Dean S mixtures of water with acetone, acetonitrile, and methanol over their entire range of compositions have and acetonitrile mixtures. Spatial distribution functions are reported for the acetone/water system. © 2000

417

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation  

E-Print Network [OSTI]

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch, 2002 Vibrational relaxation and hydrogen bond dynamics in methanol-d dissolved in CCl4 have been-d molecules both accepting and donating hydrogen bonds at 2500 cm-1 . Following vibrational relaxation

Fayer, Michael D.

418

The Influence of Chain Dynamics on the Far Infrared Spectrum of Liquid Methanol-Water Mixtures  

SciTech Connect (OSTI)

Far-infrared absorption spectroscopy has been used to study the low frequency ({center_dot} 100 cm{sup -1}) intermolecular modes of methanol in mixtures with water. With the aid of a first principles molecular dynamics simulation on an equivalent system, a detailed understanding about the origin of the low frequency IR modes has been established. The total dipole spectrum from the simulation suggests that the bands appearing in the experimental spectra at approximately 55 cm{sup -1} and 70 cm{sup -1} in methanol and methanol-rich mixtures arise from both fluctuations and torsional motions occurring within the methanol hydrogen-bonded chains. The influence of these modes on both the solvation dynamics and the relaxation mechanisms in the liquid are discussed within the context of recent experimental and theoretical results that have emerged from studies focusing on the short time dynamics in the methanol hydrogen bond network.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL; ,

2005-07-12T23:59:59.000Z

419

Modeling of the anode side of a direct methanol fuel cell with analytical solutions  

E-Print Network [OSTI]

In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

Mosquera, Martín A

2010-01-01T23:59:59.000Z

420

Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUserUsingelectron

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's E.GilmanKurt's

422

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications  

SciTech Connect (OSTI)

This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is also a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

Carlstrom, Charles, M., Jr.

2009-07-07T23:59:59.000Z

423

MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization  

E-Print Network [OSTI]

of Propane Gas . . . . . . . . . . . . . . . . . . . . k-B.2.2 Model Propane Spectrum for TemperatureSpectra of Propylene and Propane ALTADENA Polarized Images

Burt, Scott R

2008-01-01T23:59:59.000Z

424

Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing  

SciTech Connect (OSTI)

ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

2013-09-03T23:59:59.000Z

425

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas Vehicle andMany

426

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas Vehicle andMany NREL

427

Methane conversion for highway fuel use (methanol plantship project). Volume 2. Executive summary. Resource materials. Executive summary, November 1991-May 1993 (Phase 2)  

SciTech Connect (OSTI)

The Executive Summary includes abbreviated presentations of the information in the final report and in an earlier interim report. FHWA-RD-92-085. The study covered: the impact of recent permitting, licensing, and environmental regulations on methanol plantship (MPS) design and operation; analysis of other MPS programs; updating of the process technology, alternative natural gas supplies, MPS design, and economic analysis; and the development of detailed cost estimates for the design and construction of the MPS. An MPS specification and quotation assembly drawings were also prepared.

Fink, C.; Wright, S.; Jackson, I.; Booras, P.

1995-12-01T23:59:59.000Z

428

Enhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat  

E-Print Network [OSTI]

to achieve the neat-methanol operation is to passively transport the water produced at the cathode throughEnhancement of water retention in the membrane electrode assembly for direct methanol fuel cells operating with neat methanol Q.X. Wu, T.S. Zhao*, R. Chen, W.W. Yang Department of Mechanical Engineering

Zhao, Tianshou

429

Effect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating  

E-Print Network [OSTI]

significantly increase the methanol-crossover rate, producing an unfavorable * Corresponding author. DepartmentEffect of water concentration in the anode catalyst layer on the performance of direct methanol fuel cells operating with neat methanol Q.X. Wu a , S.Y. Shen a , Y.L. He b , T.S. Zhao a

Zhao, Tianshou

430

Correlating catalytic methanol oxidation with the structure and oxidation state of size-1 selected Pt nanoparticles2  

E-Print Network [OSTI]

in the performance of direct methanol fuel cells (DMFC), which produce electricity from11 liquid fuel without1 Correlating catalytic methanol oxidation with the structure and oxidation state of size-1 * Corresponding author: roldan@ucf.edu9 Keywords: platinum; methanol oxidation; operando; XAS; EXAFS; alumina

Kik, Pieter

431

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed Rate  

E-Print Network [OSTI]

Abrupt Decline in the Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed and Technology, Clear Water Bay, Kowloon, Hong Kong, China The open-circuit voltage OCV of a direct methanol fuel cell DMFC was measured by varying the cathode oxygen flow rate OFR while keeping the methanol

Zhao, Tianshou

432

Deuteration Can Impact Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane  

SciTech Connect (OSTI)

The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyrene-block-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems.

Winoto, Winoto [University of Wyoming, Laramie; Shen, Youqin [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

433

Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects  

SciTech Connect (OSTI)

In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

Green, Jade [University of Wyoming, Laramie; Tyrrell, Zachary [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

434

Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition  

SciTech Connect (OSTI)

We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

Michon, A.; Vezian, S.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Ouerghi, A. [CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2010-10-25T23:59:59.000Z

435

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

436

Understanding the use of natural gas storage for generators of electricity  

SciTech Connect (OSTI)

Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

437

Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition  

SciTech Connect (OSTI)

Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France)] [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)] [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2013-05-28T23:59:59.000Z

438

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

439

Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor  

SciTech Connect (OSTI)

The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

2009-05-15T23:59:59.000Z

440

SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

Murph, S.

2012-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The environment of the strongest galactic methanol maser  

E-Print Network [OSTI]

The high-mass star-forming site G009.62-00.20E hosts the 6.7 GHz methanol maser source with the greatest flux density in the Galaxy which has been flaring periodically over the last ten years. We performed high-resolution astrometric measurements of the CH3OH, H2O, and OH maser emission and 7 mm continuum in the region. The radio continuum emission was resolved in two sources separated by 1300 AU. The CH3OH maser cloudlets are distributed along two north-south ridges of emission to the east and west of the strongest radio continuum component. This component likely pinpoints a massive young stellar object which heats up its dusty envelope, providing a constant IR pumping for the Class II CH3OH maser transitions. We suggest that the periodic maser activity may be accounted for by an independent, pulsating, IR radiation field provided by a bloated protostar in the vicinity of the brightest masers. We also report about the discovery of an elliptical distribution of CH3OH maser emission in the region of periodic v...

Sanna, A; Carrasco-Gonzalez, C; Reid, M J; Ellingsen, S P; Brunthaler, A; Moscadelli, L; Cesaroni, R; Krishnan, V

2015-01-01T23:59:59.000Z

442

MTBE will be a boon to U. S. gas processors  

SciTech Connect (OSTI)

This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

1993-01-11T23:59:59.000Z

443

Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4  

SciTech Connect (OSTI)

The oxidative dehydrogenation of propane to propene was investigated over a series of novel vanadia-based catalysts supported on high-surface-area magnesium spinel. A mesoporous MgAl2O4 support was synthesized via a low-temperature sol gel process involving the heterobimetallic alkoxide precursor, Mg[Al(O iPr)4]2. A high-purity catalyst support was obtained after calcination at 1173 K under O2 atmosphere and active vanadia catalysts were prepared from the thermolysis of OV(O tBu)3 after grafting onto the spinel support. MgAl2O4-supported catalysts prepared in this manner have BET surface areas of 234 245 m2/g. All of the catalysts were characterized by X-ray powder diffraction, and Raman, solid-state NMR, and diffuse-reflectance UV vis spectroscopy. At all vanadium loadings the vanadia supported on MgAl2O4 exist as a combination of isolated monovanadate and tetrahedral polyvanadate species. As the vanadium surface density increases for these catalysts the ratio of polyvanadate species to isolated monovanadate species increases. In addition, as the vanadium surface density increases for these catalysts, the initial rate of propane ODH per V atom increases and reaches a maximum value at 6 VOx/nm2. Increasing the vanadium surface density past this point results in a decrease in the rate of propane ODH owing to the formation of multilayer species in which subsurface vanadium atoms are essentially rendered catalytically inactive. The initial propene selectivity increases with increasing vanadium surface density and reaches a plateau of {approx}95 percent for the V/MgAl catalysts. Rate coefficients for propane ODH (k1), propane combustion (k2), and propene combustion (k3) were calculated for these catalysts. The value of k1 increases with increasing VOx surface density, reaching a maximum at about 5.5 VOx/nm2. On the other hand, the ratio (k2/k1) for V/MgAl decreases with increasing VOx surface density. The ratio (k3/k1) for both sets of catalysts shows no dependence on the vanadia surface density. The observed trends in k1, (k2/k1), and (k3/k1) are discussed in terms of the surface structure of the catalyst.

Evans, Owen R.; Bell, Alexis T.; Tilley, T. Don

2004-06-01T23:59:59.000Z

444

Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps  

SciTech Connect (OSTI)

Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2011-01-01T23:59:59.000Z

445

Design of high-ionic conductivity electrodes for direct methanol fuel cells  

E-Print Network [OSTI]

Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

Schrauth, Anthony J

2011-01-01T23:59:59.000Z

446

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network [OSTI]

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

447

Conversion of methanol to light olefins on SAPO-34: kinetic modeling and reactor design  

E-Print Network [OSTI]

design of an MTO reactor, accounting for the strong exothermicity of the process. Multi-bed adiabatic and fluidized bed technologies show good potential for the industrial process for the conversion of methanol into olefins....

Al Wahabi, Saeed M. H.

2005-02-17T23:59:59.000Z

448

E-Print Network 3.0 - agaricus blazei methanolic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

direct methanol fuel cell DMFC and show that the overall mass... current density of an in-house-fabricated DMFC with different flow fields for various ... Source: Zhao, Tianshou -...

449

Methane Oxidation to Methanol without CO2 Emission: Catalysis by Atomic Negative Ions  

E-Print Network [OSTI]

The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.

Tesfamichael, Aron; Felfli, Zineb; Msezane, Alfred Z

2014-01-01T23:59:59.000Z

450

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

SciTech Connect (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

451

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

SciTech Connect (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

452

Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams  

SciTech Connect (OSTI)

Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

2007-04-01T23:59:59.000Z

453

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

SciTech Connect (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL; ,

2005-07-11T23:59:59.000Z

454

Development of microprocessor control for a V-6 engine fueled by prevaporized methanol  

E-Print Network [OSTI]

DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

Schneider, Donald F.

1985-01-01T23:59:59.000Z

455

Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment  

SciTech Connect (OSTI)

A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

Fishkind, H.H.

1982-04-01T23:59:59.000Z

456

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

457

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

458

U.S. Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1Sales (Billion

459

U.S. State Offshore Natural Gas Gross Withdrawals and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1Sales (Billion653,704

460

U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption of

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S.

462

High octane ethers from synthesis gas-derived alcohols  

SciTech Connect (OSTI)

The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H[sub 2]/CO/CO[sub 2] coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-l-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been demonstrated by us to occur over superacid catalysts to yield methyl isobutyl ether (MIBE) at moderate pressures and a mixture of methanol and isobutene at low pressures. MIBE is an isomer of MTBE and a process is proposed whereby MTBE from the two alcohols is maximized and MIBE is minimized. This will be achieved by the proper choice of reaction conditions, i.e. intermediate pressures, and of inorganic acid catalysts that are stable at temperatures higher than 200[degree]C, at which the carbonium ion reaction coupling of the two alcohols to MTBE is more effective than the oxonium ion or ester reaction coupling to MIBE. Both organic and inorganic catalysts will be investigated, and the better catalysts of these classes will be subjected to long term performance studies. The long term performance studies of the combined process will extend to 1000 hr and detailed analytical data for all products will be provided.

Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

1992-07-01T23:59:59.000Z

463

A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane  

SciTech Connect (OSTI)

A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

Chen Miao, E-mail: chenmiao@sinochem.com [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); Wu Jialing; Liu Yongmei [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Cao Yong, E-mail: yongcao@fudan.edu.cn [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Guo Li [Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); He Heyong; Fan Kangnian [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China)

2011-12-15T23:59:59.000Z

464

Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack  

E-Print Network [OSTI]

) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

Berning, Torsten

465

Quantifying Sustainable Development with Sustainable Costs  

E-Print Network [OSTI]

.6 Synthesis Gas Methane reforming 17.2 Propylene Propane dehydrogenation 4.3 Propylene Propane dehydrogenation · Syngas from CO2 and CH4 · Propane dehydrogenation · Propylene from propane and CO2 · Styrene from

Pike, Ralph W.

466

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

467

Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction  

SciTech Connect (OSTI)

Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

Vishnivetskaya, Tatiana A [ORNL; Brandt, Craig C [ORNL; Madden, Andrew [University of Oklahoma, Norman; Drake, Meghan M [ORNL; Kostka, Joel [Florida State University; Akob, Denise M. [Florida State University; Kusel, Kirsten [Friedrich Schiller University Jena, Jena Germany; Palumbo, Anthony Vito [ORNL

2010-01-01T23:59:59.000Z

468

Development of Alaskan gas hydrate resources. Final report  

SciTech Connect (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

469

SaltRx HT -Scoring Sheet A1. 0.1 M Bis-Tris Propane pH 7.0, 1.8 M Sodium Acetate pH 7.0  

E-Print Network [OSTI]

SaltRx HT - Scoring Sheet A1. 0.1 M Bis-Tris Propane pH 7.0, 1.8 M Sodium Acetate pH 7.0 A2. 0.1 M Bis-Tris Propane pH 7.0, 2.8 M Sodium Acetate pH 7.0 A3. 0.1 M Sodium Acetate pH 4.6, 1.5 M Ammonium Chloride A4. 0.1 M Bis-Tris Propane pH 7.0, 1.5 M Ammonium Chloride A5. 0.1 M Tris pH 8.5, 1.5 M Ammonium

Hill, Chris

470

Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol  

SciTech Connect (OSTI)

The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

Piccoli, R.L. (Copesul-Cia Petroquimica do Sul, Triunfo (Brazil)); Lovisi, H.R. (Petroflex-Ind. e Comercio, Duque de Caxias (Brazil))

1995-02-01T23:59:59.000Z

471

Vapor-liquid equilibria for the system benzene-thiophene-methanol  

SciTech Connect (OSTI)

Isothermal vapor pressure data over the whole range of composition were obtained for the system benzene-thiophene-methanol. Data were taken at temperatures of 35, 40, and 45 /sup 0/C by using a static equilibrium cell. The systems benzene-methanol and thiophene-methanol are highly nonideal, while the system benzene-thiophene shows a very small deviation from ideality. The models suggested by Wilson and by Renon and Prausnitz (NRTL) and the modified equation of Abrams and Prausnitz (UNIQUAC) were used in the reduction of data. Physical parameters of these equations obtained from the binary data were used to predict the ternary system. The Wilson equation gives the best fit for the binary as well as the ternary data. Also, this equation gives the best prediction for the ternary system.

Triday, J.O.; Rodriguez, P.

1985-01-01T23:59:59.000Z

472

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

473

Kinetics of liquid phase catalytic dehydration of methanol to dimethyl ether  

SciTech Connect (OSTI)

This paper reports the kinetics of the liquid phase catalytic dehydration of methanol to dimethyl ether investigated. The experiments were carried out under low concentrations of feed in a 1-L stirred autoclave, according to a statistical experimental design. The inert liquid phase used for this investigation was a 78:22 blend of paraffinic and naphthenic mineral oils. A complete thermodynamic analysis was carried out in order to determine the liquid phase concentrations of the dissolved species. A global kinetic model was developed for the rate of dimethyl ether synthesis in terms of the liquid phase concentration of methanol. The activation energy of the reaction was found to be 18,830 cal/gmol. Based on a step-wise linear regression analysis of the kinetic data, the order of the reaction which gave the best fit was 0.28 with respect to methanol.

Gogate, M.R.; Lee, B.G.; Lee, S. (Akron Univ., OH (USA). Dept. of Chemical Engineering); Kulik, C.J. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

474

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

475

Low energy synthesis gas systems - New technology  

SciTech Connect (OSTI)

Natural gas steam reforming today covers more than 70% of synthesis gas production. The gas specific consumption has been largely improved during the last thirty years. It has now reached 32 GJ/metric ton of NH/sub 3/ on HHV, from 45 in the sixties. Ammonia is still the major user of synthesis gas. The successive improvements are: thermal energy recovery from the combustion gases at the outlet of the tubular reformer, where only 40% of the energy input is absorbed by the endothermal reaction; better quality of the reforming and conversion catalysts; better CO/sub 2/ removal processes; improved catalyst for ammonia and methanol synthesis and recovery of the H/sub 2/ from the purge gas. One of these processes has been successfully experimented. It involves the suppression of the tubular steam reforming, replaced by a simpler autothermal catalytic reactor and the new REGATE reheater of reactant gases to 1500/sup 0/C under pressure (air + steam for NH/sub 3/, recycled gas + steam for H/sub 2/ and CH/sub 3/OH). No oxygen is needed. The system is simpler, more efficient (27,0 GJ/metric ton of NH/sub 3/ HHV) and safer.

Julemont, V.; Ribesse, J.

1988-01-01T23:59:59.000Z

476

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

477

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,

478

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propanepropane

479

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price decreases The

480

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price decreases

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price

482

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropane price

483

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropane

484