Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

2

Propane gas: Handle with care  

SciTech Connect

Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

Fernald, D. [Plant Systems, Inc., Berea, OH (United States)

1996-04-01T23:59:59.000Z

3

New Mexico Natural Gas Supplemental Gas - Propane Air (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Supplemental Gas - Propane Air (Million Cubic Feet) New Mexico Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

4

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

5

Alternative Fuels Data Center: Propane and Natural Gas Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Natural Propane and Natural Gas Safety to someone by E-mail Share Alternative Fuels Data Center: Propane and Natural Gas Safety on Facebook Tweet about Alternative Fuels Data Center: Propane and Natural Gas Safety on Twitter Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Google Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Delicious Rank Alternative Fuels Data Center: Propane and Natural Gas Safety on Digg Find More places to share Alternative Fuels Data Center: Propane and Natural Gas Safety on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane and Natural Gas Safety The Railroad Commission of Texas regulates the safety of the natural gas and propane industries. (Reference Texas Statutes, Natural Resources Code

6

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

7

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

8

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

9

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

10

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

11

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

12

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

13

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

14

Alternative Fuels Data Center: Natural Gas and Propane Reports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reports to someone by E-mail Reports to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Reports on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Reports on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Reports on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Reports on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Reports The Florida Office of Program Policy Analysis and Government Accountability (Office) must complete a report that analyzes the taxation and use of

15

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) and Propane Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

16

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

17

National propane safety week caps fifth anniversary of GAS Check  

SciTech Connect

This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

Prowler, S.

1990-09-01T23:59:59.000Z

18

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

19

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

20

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) and Propane Tax and User Permit to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on AddThis.com...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

22

Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Rebates - Western Propane Gas Association (WPGA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on AddThis.com...

23

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

24

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network (OSTI)

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically conducted to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection for the light Minas crude oil. The steam-propane experiments involved injecting steam or a mixture of steam and propane into a cell in which was tamped a mixture of sand, oil and water. The cell was placed inside a vacuum jacket set at a reservoir temperature of 200?F. Superheated steam at 490?F was injected at 4.5 ml/min (cold-water equivalent) while the cell outlet pressure was maintained at 450 psig. A total of four runs were successfully performed with two different propane:steam mass ratios, namely, 0:100 (pure steam) and 5:100 (steam-propane). Produced liquids were collected from the bottom of the cell and analyzed to determined oil and water volumes as well as oil density and viscosity after being treated to break the emulsion. The gas injection experiments involved injecting reconstituted Minas field production gas or Minas gas enriched with propane into a cell saturated with live Minas oil. The live oil was prepared in an oil-gas recombination apparatus, and closely replicated oil properties at current reservoir conditions (solution GOR of 134 SCF/STB, bubble-point pressure of 280 psig.) Minas gas was injected at 500 ml/min into the cell set at reservoir temperature of 200?F. A total of four runs were successfully performed with two different propane:gas mass ratios, namely, 0:100 (pure lean gas) and 5:100 (enriched gas). The main results of the study are as follows. First, with steam-propane injection, no improvement on production acceleration time, oil recovery or steam injectivity was observed compared with pure steam injection. Second, with enriched gas injection, oil recovery increased from 61% OOIP with lean gas injection up to 74% OOIP with enriched gas (5:100 propane:gas mass ratio). Analysis of produced oil gravity and viscosity indicate little change in values compared to that of the original oil. Of the processes investigated (pure steam, steam-propane, lean gas, and enriched gas injection), enriched gas injection appears to be technically the most feasible EOR method for Minas field. It is recommended therefore to conduct research on possible application of water-alternating-gas (WAG) injection with propane-enriched Minas gas to enhance production from the Minas field.

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

25

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

26

Propane fear  

SciTech Connect

A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. The US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.

Begley, R.

1992-02-12T23:59:59.000Z

27

Methanol production from biomass and natural gas as transportation fuel  

Science Conference Proceedings (OSTI)

Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (1) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the US, (2) minimizes emissions of criteria pollutants, (3) reduces greenhouse gas emissions from production and use, (4) is cost-competitive with petroleum fuel, and (5) is compatible with the emerging vehicle technologies, especially those powdered by fuel cells. The methanol yield, production cost, and potential for reduction of overall fuel-cycle CO{sub 2} emissions were evaluated and compared to those of reformulated gasoline. The results show that a process utilizing natural gas and biomass as cofeedstocks can meet the five requirements more effectively than individual processes utilizing those feedstocks separately. When end-use efficiencies are accounted for, the cost per vehicle mile traveled would be less than that of gasoline used in current vehicles. CO{sub 2} emissions from the vehicle fleet would be reduced 66% by methanol used in fuel cell vehicles and 8--36% in flexible-fuel or dedicated-methanol vehicles during the transition period. Methanol produced from natural gas and biomass, together in one process, and used in fuel cell vehicles would leverage petroleum displacement by a factor of about 5 and achieve twice the overall CO{sub 2} emission reduction obtainable from the use of biomass alone.

Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.

1998-09-01T23:59:59.000Z

28

Propane Outlook  

Gasoline and Diesel Fuel Update (EIA)

4 of 24 4 of 24 Notes: EIA expects lower residential propane prices this winter compared to the high prices seen last winter. As of now, it appears that propane inventories will be more than adequate going into this winter. Although inventories in the Midwest remain low, there is still time for the ample inventories in the Gulf Coast to make their way up into the Midwest before heating season begins in earnest. As always, the major uncertainties affecting demand this winter are the weather and the economy. Other uncertainties affecting the propane market this winter are crude oil and natural gas prices. If natural gas prices this winter are around what EIA expects them to be, we will likely see very little, if any, propane production shut-in at gas plants. However, as the current situation with the TET shows, there could be short

29

Propane Production by Source  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: So where do we get our supplies of propane? Well, propane comes from both gas plants and refineries. Here we see data through May which shows that production at both gas...

30

Methanol synthesis gas from catalytic steam reforming of wood  

DOE Green Energy (OSTI)

Laboratory studies were successful in developing catalyst systems and operating conditions for generation of a methanol synthesis gas, a mixture of hydrogen, carbon monoxide and carbon dioxide. Some methane remained in the gas mixture. Wood was reacted with steam at a steam-to-wood weight ratio of about 0.9 and a temperature of 750/sup 0/C (1380/sup 0/F) in the presence of several catalysts. Results are presented for two different catalyst systems.

Mudge, L.K.; Mitchell, D.H.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

1981-01-01T23:59:59.000Z

31

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact on the United States chemical industry and present many opportunities for new capital investments and industry growth. As in conventional natural gas, shale gas contains primarily methane, but some formations contain significant amounts of higher molecular weight hydrocarbons and inorganic gases such as nitrogen and carbon dioxide. These differences present several technical challenges to incorporating shale gas with current infrastructure designed to be used with natural gas. However, each shale presents opportunities to develop novel chemical processes that optimize its composition in order to more efficiently and profitably produce valuable chemical products. This paper is aimed at process synthesis, analysis, and integration of different processing pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process simulation and published data were used to construct a base-case scenario in Aspen Plus. The impact of different processing pathways was analyzed. Key performance indicators were assessed. These include overall process targets for mass and energy, economic performance, and environmental impact. Finally, the impact of several factors (e.g., feedstock composition, design and operating variables) is studied through a sensitivity analysis. The results show a profitable process above a methanol selling price of approximately $1.50/gal. The sensitivity analysis shows that the ROI depends much more heavily on the selling price of methanol than on the operating costs. Energy integration leads to a savings of $30.1 million per year, or an increase in ROI of 2% points. This also helps offset some of the cost required for the oxygen necessary for syngas generation through partial oxidation. For a sample shale gas composition with high levels of impurities, preprocessing costs require a price differential of $0.73/MMBtu from natural gas. The process is also environmentally desirable because shale gas does not lead to higher GHG emissions than conventional natural gas. More water is required for hydraulic fracturing, but some of these concerns can be abated through conservation techniques and regulation.

Ehlinger, Victoria M.

2013-05-01T23:59:59.000Z

32

Alternative Fuels Data Center: Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Prices Find propane fuel prices and trends. Propane, also known as liquefied petroleum gas (LPG) or autogas, has been used worldwide as a vehicle fuel for decades. It is stored as a liquid, and

33

WesternGovernors’Asociation Transportation Fuels for the Future Natural Gas and Propane WGA Hydrogen Team  

E-Print Network (OSTI)

1 The following report is based on the contributions of the individuals and organizations listed below. The Team members were chosen for their breadth of knowledge and industry or policy experience. The group was assembled with the goal of having a wide scope of interests including industry, academia and environmental analysis. The group also worked towards consensus viewpoints on the critical issues impacting the development of natural gas and propane as commercially available alternative fuels. This consensus model helped to achieve a balanced perspective on the challenges and potential solutions to further commercial development of this alternative transportation fuel.

Tom Brotherton Weststart/calstart; Curtis Donaldson; Cleanfuel Usa

2008-01-01T23:59:59.000Z

34

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

35

Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility  

DOE Green Energy (OSTI)

The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

Lyke, S.E.; Moore, R.H.

1981-01-01T23:59:59.000Z

36

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background....

37

Influence of support material on Ni catalysts for propane dry reforming to synthesis gas.  

E-Print Network (OSTI)

??Ni/SiO2 and Ni/Mg(Al)O catalysts with difference metal loadings have been prepared. The activity, selectivity and stability of supported Ni catalysts for propane dry reforming to… (more)

Dai, Xin

2008-01-01T23:59:59.000Z

38

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

39

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: Propane spot prices at the major trading hubs remained relatively close through October 2000, but uncoupled in California as natural gas prices rose rapidly during...

40

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24 pounds per gallon of liquid at 60 degrees Fahrenheit per GGE. Propane is taxed at a rate of $0.20 per GGE. (Reference

42

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

43

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

44

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

45

Propane Market Status Report  

Gasoline and Diesel Fuel Update (EIA)

Propane Market Status Report 07272000 Click here to start Table of Contents Propane Market Status Report Propane Prices Follow Crude Oil Propane Demand by Sector Demand Impacted...

46

Propane Assessment  

Gasoline and Diesel Fuel Update (EIA)

03-09), Table 2; and data for August through September 1996, EIA, Form EIA-807 "Propane Telephone Survey." Sources: Data for 1989 through 1995, Energy Information...

47

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

48

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

49

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

50

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

51

Using Rare Gas Permeation to Probe Methanol Diffusion near the Glass Transition Temperature  

DOE Green Energy (OSTI)

The permeation of rare-gas atoms through deeply supercooled metastable liquid methanol films is used to probe the diffusivity. The technique allows for measurement of supercooled liquid self-diffusion at temperatures just above the glass transition. The diffusivity near the glass transition is characterized by an activation energy and prefactor that are seven and 1030 times greater, respectively, than those of the room temperature liquid. The temperature dependence of the diffusivity is well-described by a Vogel-Fulcher-Tamman (VFT) equation. These new measurements, their kinetic parameters, and temperature dependence provide clear evidence that methanol is a fragile liquid.

Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

2009-12-11T23:59:59.000Z

52

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

53

Method for making methanol  

DOE Patents (OSTI)

Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

1986-01-01T23:59:59.000Z

54

Method for making methanol  

DOE Patents (OSTI)

Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

1987-01-01T23:59:59.000Z

55

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

56

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

57

propane | OpenEI  

Open Energy Info (EERE)

propane propane Dataset Summary Description The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) maintains data on the energy use and efficiency of water heaters for its members. The FTC does not necessarily endorse the views expressed on that site or guarantee the accuracy or completeness of the information on it. Please note that the site you link to may track visitor viewing habits. This spreadsheet contains data on Bosch, Noritz, Paloma and Takagi manufacturing companies. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords energy use Natural Gas propane Water heater Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Combined.xlsx (xlsx, 12.7 KiB)

58

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

19 Notes: Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices....

59

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

9 Notes: Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices....

60

Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission  

DOE Green Energy (OSTI)

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hynol Corp., New York, NY (United States)

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1995 world methanol conference  

Science Conference Proceedings (OSTI)

The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

62

Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1995  

SciTech Connect

The contract objectives are: to design a catalytic material for the synthesis of isobutanol with a productivity of 200 g isoalcohols/g-cat-h and a molar isobutanol/methanol ratio near unity; and to develop structure-function rules for the design of catalysts for the selective conversion of synthesis gas to isoalcohols. Several catalyst samples have been prepared by controlled co-precipitation from aqueous mixtures of metal nitrates. The composition of these materials is based on reports of best available catalysts for methanol synthesis, for isobutanol synthesis, and for methanol coupling reactions. The mechanical construction and pressure testing of the microreactor system has been completed. The in-situ infrared spectrophotometer equipped with a nitrogen purge is fully operational. The temperature-programmed surface reaction (TPSR) unit has been designed; construction will begin during the third quarter FY`95. Air Products and Chemicals has provided us with a sample of a BASF isobutanol synthesis catalyst and with catalytic data obtained on this catalyst in a LaPorte test run. This catalyst will serve as a benchmark for the certification of our new microreactor system.

Iglesia, E.

1995-04-24T23:59:59.000Z

63

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - SchagrinGAS to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on AddThis.com... More in this section...

64

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

65

Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Rebate Propane Vehicle Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on AddThis.com...

66

Alternative Fuels Data Center: Propane Safety and Liability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Safety and Propane Safety and Liability to someone by E-mail Share Alternative Fuels Data Center: Propane Safety and Liability on Facebook Tweet about Alternative Fuels Data Center: Propane Safety and Liability on Twitter Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Google Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Delicious Rank Alternative Fuels Data Center: Propane Safety and Liability on Digg Find More places to share Alternative Fuels Data Center: Propane Safety and Liability on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Safety and Liability An individual involved in installing liquefied petroleum gas (propane) systems or manufacturing, distributing, selling, storing, or transporting

67

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

68

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

69

propane - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

70

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

71

EIA improves its monthly propane imports series - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

72

Propane - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

73

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

74

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network (OSTI)

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

75

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

76

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

77

Alternative Fuels Data Center: Methanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol to someone by Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Methanol Methanol (CH3OH), also known as wood alcohol, is an alternative fuel under the Energy Policy Act of 1992. As an engine fuel, methanol has chemical and physical fuel properties similar to ethanol. Methanol use in vehicles has declined dramatically since the early 1990s, and automakers no longer

78

Winter Distillate .and Propane Outlook  

U.S. Energy Information Administration (EIA)

Winter Distillate .and Propane Outlook. Joanne Shore Energy Information Administration State Heating Oil and Propane Program August 2000

79

Propane on Titan  

E-Print Network (OSTI)

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

80

Propane as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

refrigerating food, clothes drying, powering farm and industrial equipment, and drying corn. Rural areas that do not have natural gas service commonly rely on propane. The...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Average Weekly Propane Spot Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices.

82

Average Weekly Propane Spot Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propane spot prices at the major trading hubs remained relatively close through October 2000, but uncoupled in California as natural gas prices rose rapidly during ...

83

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak pre-heating season level since 1986. Although propane inventories were expected to remain within the normal range for the duration of the 2000-01 heating season, cold weather in November and December, along with recently high natural gas prices that discouraged propane production from gas processing, resulted in stocks falling below the normal range by the end of December. However, if the weather remains seasonally normal, and the recent decline in natural gas prices holds, EIA expects the propane inventory drawdown to slow. This is reflected in the data for January 19, which showed a draw of only 2.1 million barrels, compared to more than twice that

84

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

85

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

86

Catalytic conversion of oxygenated compounds to low molecular weight olefins. Progress report, January 1-July 31, 1979. [Methanol from synthesis gas from coal gasification  

DOE Green Energy (OSTI)

An attractive route for producing ethylene and propylene from coal is to gasify the coal to produce synthesis gas, convert the synthesis gas to methanol, and then convert methanol to the olefins. During this report period the reactions of methanol over chabazite ion exchanged with rare earth chlorides have been studied at reciprocal liquid hourly space velocities of 1.5 to 15, at temperatures of 259, 271, 304, 352, and 427/sup 0/C, and at pressure 2.7 atm. At 259 and 271/sup 0/C the principle product was dimethyl ether. As the temperature was increased the conversion of methanol to olefins and alkanes increased to 54% and 32%, respectively. A mixture of dimethyl ether, water, and methanol was fed to the Berty reactor. This mixture was near the equilibrium concentrations for converting pure methanol to dimethyl ether and water at 275/sup 0/C. The Berty reactor temperature was 427/sup 0/C. Initially the yields were similar to those obtained when feeding pure methanol. However, the catalyst activity decreased at a faster rate. Rate models are being developed to correlate the catalyst activity and rate as a function of time on stream and partial pressures. A promising model is presented.

Anthony, R.G.

1979-07-31T23:59:59.000Z

87

Retail Propane Prices  

Gasoline and Diesel Fuel Update (EIA)

19 Notes: Residential propane prices rose fairly strongly during the 1999-2000 heating season, gaining nearly 25 cents per gallon between October and March. Unfortunately,...

88

Catalytic Dehydrogenation of Propane.  

E-Print Network (OSTI)

?? The dehydrogenation of propane has a great interest, due to a global growing demand in propene. This reaction needs a catalyst, high temperature and… (more)

Herauville, Virginie Marie Therese

2012-01-01T23:59:59.000Z

89

Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle  

DOE Green Energy (OSTI)

On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

NONE

1995-07-01T23:59:59.000Z

90

Why am I being charged more for propane than the price on EIA's ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

91

Revised Propane Stock Levels for 6/7/13 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

92

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

93

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

94

Retail Propane Prices  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: Consistent with spot prices, residential propane prices have been higher all winter than during the past several years. The recent surge is mainly the result of the surge...

95

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

96

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

97

Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, October 1--December 31, 1995  

DOE Green Energy (OSTI)

A series of Cu{sub 0.5}CeMe(II)O{sub x} catalysts (Me refers to Group II alkali earth elements) have been prepared by coprecipitating the corresponding metal nitrates with potassium carbonate. The bulk composition of the catalyst has been determined by atomic absorption (AA) analysis. High-pressure isobutanol synthesis studies have been carried out over a standard BASF Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst. At a CO conversion level of 32%, the isobutanol carbon selectivity is about 5%; whereas that of methanol is 40.2%. A 100% selectivity sum has now been obtained as a result of using response factors measured by the laboratory. The reactions of ethanol and acetic acid over a number of catalysts have been investigated using a temperature programmed surface reaction (TPSR) technique. Ethanol and acetone are the only desorption products observed over Cs-promoted Cu/ZnO/Al{sub 2}O{sub 3} catalysts. Surface acetate ion is believed to be the precursor for acetone formation. Over calcined hydrotalcites, i.e., MgO/Al{sub 2}O{sub 3}, ethylene is formed instead of acetone. The amount of ethylene formed decreases as Mg/Al ratio increases, suggesting a role of aluminum ions in ethanol dehydration reactions.

Iglesia, E.

1996-01-10T23:59:59.000Z

98

Isobutanol-methanol mixtures from synthesis gas. Quarterly report, July 1 - September 30, 1996  

DOE Green Energy (OSTI)

A series of CuMgCeO{sub x} catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. The bulk composition of the catalyst has been measured by atomic absorption (AA) analysis and the Cu dispersion has been determined by N{sub 2}O titration at 90 {degrees}C. CeO{sub x} does not contribute to the measured copper dispersion in K-CuO{sub 0.5}Mg{sub 5}CeO{sub x} samples and the high dispersion value indeed reflects the presence of Cu metal small crystallites. Kinetic studies of methanol and propionaldehyde coupling reactions on K-Cu/MgO/CeO{sub 2} and MgO/CeO{sub 2} catalysts indicate that Cu enhances the rates of alcohol dehydrogenation. High-pressure isobutanol synthesis from CO/H{sub 2} has been studied on CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts at 593 K and 4.5 MPa. CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts show high hydrocarbon and low isobutanol selectivities compared to K-CuO{sub 0.5}Mg{sub 5}CeO{sub x}, suggesting the presence of residual acidity in CuO{sub 0.5}Mg{sub 5}O{sub x}.

Iglesia, E.

1996-12-01T23:59:59.000Z

99

The Development of Methanol Industry and Methanol Fuel in China  

Science Conference Proceedings (OSTI)

In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

2009-07-01T23:59:59.000Z

100

Propane Vehicle Demonstration Grant Program  

Science Conference Proceedings (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Richards, and L. Aruoux, "CNG Market DevelopmentStudy," Pub.with compressed natural gas (CNG). Weconclude that methanolrelative to methanol and CNG. ) )ASCENDANCE OF METHANOL

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

102

Alternative Fuels Data Center: Propane Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicles on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicles Related Information Availability Conversions Emissions Incentives & Laws

103

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

104

U.S. Propane Production  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: The chart provides a picture of propane production over the past three years compared to the five-year average. Total propane production in the first five months of this...

105

Heating Oil and Propane Update  

Annual Energy Outlook 2012 (EIA)

to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No....

106

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

107

Heating Oil Propane Natural Gas  

E-Print Network (OSTI)

NYSERDA’s mission- help New York meet its energy goals: reducing energy consumption, promoting the use of renewable energy sources, and protecting the environment. Energy R&DPurpose: Support policy-relevant research to enhance understanding of energyrelated environmental issuesAir Quality and Health Effects Chain of accountability. Each box represents a link between regulatory action and human health response to air pollution. Arrows connecting the linksNew York State Primary Consumption of Energy for Electric Generation,

Ellen Burkhard Ph. D; Cord Wood

2013-01-01T23:59:59.000Z

108

Propane: A Mid-heating Season Assessment - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration

109

Alternative Fuels Data Center: Natural Gas Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

110

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

111

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

112

Alternative Fuels Data Center: Propane Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Availability on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives

113

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - Boulden Propane to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on AddThis.com...

114

Conceptual design of a coal-to-methanol-to-gasoline commercial plant. Volume V. Alternate design studies. Second interim final report, August 31, 1977-March 1, 1979  

SciTech Connect

Three design cases have been investigated for converting methanol to gasoline using the Mobil process. These are defined as Case A, which produces gasoline and byproduct LPG; Case B, which produces gasoline, high Btu gas, and byproduct LPG; and Case C which produces gasoline only. The LPG includes propane LPG and high purity isobutane. Base Case B is described in Volumes I and IV of this report. Alternate Cases A and C are described in part I of Volume V. Part II of this volume (V) contains additional process studies. Under Contract EX-76-C-01-2416 Modification No. A006, item (4) of the General Requirements requires economy of scale evaluations, and item (24) of the Scope of Work includes studies of Lurgi methanol synthesis recommendations, integration of Methanol-to-Gasoline facilities with a refinery, and recovery of aromatics from stabilized synthetic gasoline.

1979-03-01T23:59:59.000Z

115

H.R. 1514: A Bill to authorize and facilitate a program to enhance safety, training, research and development, and safety education in the propane gas industry for the benefit of propane customers and the public, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This act is known as the Propane Education and Research Act of 1995. This report contains: the findings, definitions, referenda, assessments, compliances, lobbying restrictions, market survey and consumer protection, pricing, reports required, and a discussion of the propane education and research council.

NONE

1995-12-31T23:59:59.000Z

116

Alternative Fuels Data Center: Propane Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find More places to share Alternative Fuels Data Center: Propane Related Links on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Related Links This list includes links related to propane. The Alternative Fuels Data

117

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

118

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells A direct methanol fuel cell...

119

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

120

Liquid phase low temperature method for production of methanol ...  

Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor United States Patent

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

122

Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 April--30 June 30 1996  

DOE Green Energy (OSTI)

A series of CuMgCeO{sub x} catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. Kinetic studies of methanol and ethanol coupling reactions on K-Cu/MgO/CeO{sub 2} and MgO/CeO{sub 2} catalysts indicate that Cu enhances the rates of alcohol dehydrogenation. The cross-coupling reactions of acetaldehyde and {sup 13}C-labeled methanol produce singly-labeled propionaldehyde, suggesting that it forms by the condensation of acetaldehyde and a reactive intermediate derived from methanol. Isobutyraldehyde, a precursor to isobutanol, forms via the condensation of propionaldehyde and a reactive C{sub 1} intermediate resulting from methanol. CO{sub 2}, one of the reaction products, poisons both basic and metal sites on Ce-containing CuMgO{sub x} catalysts, resulting in decreases in the rates of both alcohol dehydrogenation (Cu sites) and chain-growth condensation reactions (basic sites). CO{sub 2} inhibits ethanol dehydrogenation on both low-Cu and high-Cu CuMgCeO{sub x} catalysts; however, CO{sub 2} has no effect on the activity of low-Cu Ce-free Cu-MgO{sub x} catalysts, suggesting that the Cu on CuMgCeO{sub x} catalysts is more likely to be oxidized by CO{sub 2} to Cu{sup +} species that can be subsequently stabilized by CeO{sub 2}. CO{sub 2} effects on high-pressure isobutanol synthesis from CO/H{sub 2} have been studied on low- and high-Cu CuMgCeO{sub x} catalysts at 320{degrees}C and 4.5 MPa. CO{sub 2} addition and removal on low- and high-Cu catalysts show similar directional effects on CO conversion. CO conversion is lower at all space velocities in the presence of CO{sub 2}, and removal Of CO{sub 2} from the feed partially recovers CO conversion. CO{sub 2} decreases methanol and isobutanol productivities on both catalysts. Addition of 1-propanol to CO/H{sub 2} feed increases isobutanol production, suggesting that 1-propanol is a precursor to isobutanol.

NONE

1996-07-25T23:59:59.000Z

123

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

124

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network (OSTI)

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

125

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

126

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. (Reference Texas Statutes, Tax Code 162.305

127

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

128

U.S. Propane Stocks  

Gasoline and Diesel Fuel Update (EIA)

worry about short-term supply availability and bid prices up. As of the end of July, propane inventories in the United States were 61.9 million barrels, 41 percent higher than...

129

Propane Prices Follow Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

of the first signals in deciphering what is happening in the market. This chart shows propane prices (both spot and retail) as well as WTI. As you can see, most prices track the...

130

U.S. Propane Imports  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Another source of supply of propane is from imports. Imports for the first five months of this year have decreased about 8 percent (about 13 thousand barrels per day)...

131

Propane Market Assessment for Winter  

Reports and Publications (EIA)

1997-1998 Final issue of this report. This article reviews the major components of propane supply and demand in the United States and their status entering the 1997-1998 heating season.

Information Center

1997-12-01T23:59:59.000Z

132

Rapid starting methanol reactor system  

DOE Patents (OSTI)

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

133

International Natural Gas Production - 2003  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

134

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

135

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

136

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

137

Measuring Diffusivity in Supercooled Liquid Nanoscale Films using Inert Gas Permeation: II. Diffusion of AR, KR, Xe, and CH4 through Methanol  

DOE Green Energy (OSTI)

We present an experimental technique to measure the diffusivity of supercooled liquids at temperatures near their Tg. The approach uses the permeation of inert gases through supercooled liquid overlayers as a measure of the diffusivity of the supercooled liquid itself. The desorption spectra of the probe gas is used to extract the low temperature supercooled liquid diffusivities. In the preceding companion paper, we derived equations using ideal model simulations from which the diffusivity could be extracted using the desorption peak times for isothermal or peak temperatures for TPD experiments. Here, we discuss the experimental conditions for which these equations are valid and demonstrate their utility using amorphous methanol with Ar, Kr, Xe, and CH4 as probe gases. The approach offers a new method by which the diffusivities of supercooled liquids can be measured in the experimentally challenging temperature regime near the glass transition temperature.

Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.

2010-11-07T23:59:59.000Z

138

Hotel gets 1-yr. payback from propane-fired cogenerator  

SciTech Connect

A Philadelphia Ramada Inn recovered the costs of a $150,000 propane-fired cogenerator system within a year. The system reduced the energy consumed for hot water and air conditioning by 35% and reversed the high energy costs the hotel incurred when it was forced to shift from natural gas to electricity. The 170 horsepower system, which handles a variety of liquid and gaseous fuels as well as propane, replaces two boilers that were used to heat water. The hotel supplements cogenerated power with purchases from the utility. Waste heat is recaptured for space and water heating. The system's overall efficiency is 96%.

Barber, J.

1983-08-22T23:59:59.000Z

139

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

140

Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies  

Science Conference Proceedings (OSTI)

The MC2–CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas ...

M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

142

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

143

Propane Watch, historical - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Historical. Propane stocks and prices available weekly during October through March and monthly during the rest of the year.

144

Markets indicate possible natural gas pipeline constraints ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

145

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

146

Propane Market Model documentation report  

SciTech Connect

The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

1993-12-01T23:59:59.000Z

147

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

148

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network (OSTI)

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

149

State heating oil and propane program  

SciTech Connect

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-01-01T23:59:59.000Z

150

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

151

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

152

Natural Gas Plant Field Production: Propane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

153

Supplies of Propane-Air Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

1,169 670 838 401 299 309 1980-2012 1,169 670 838 401 299 309 1980-2012 Alabama 1980-2003 Arizona 1980-1998 Arkansas 1980-1998 Colorado 3 2 3 4 21 99 1980-2012 Connecticut 0 0 1 1980-2009 Delaware 5 2 2 1 1980-2010 Florida 1980-1998 Georgia 2 0 0 1980-2012 Hawaii 4 5 9 6 25 20 2004-2012 Illinois 11 15 20 17 1 1 1980-2012 Indiana 81 30 1 1 5 1 1980-2012 Iowa 2 24 3 2 1 1980-2011 Kentucky 124 15 18 5 8 1 1980-2012 Maine 1980-2003 Maryland 245 181 170 115 89 116 1980-2012 Massachusetts 15 13 10 0 1980-2010 Michigan 1980-1998 Minnesota 54 46 47 12 20 9 1980-2012 Missouri 60 6 10 18 0 1980-2012 Nebraska 33 28 18 12 9 4 1980-2012 Nevada 1980-1998 New Hampshire 9 1980-2007 New Jersey 0 1980-2012 New Mexico

154

U.S. Propane Demand Sectors (1996)  

U.S. Energy Information Administration (EIA)

The residential and commercial sector and the chemical sector are the largest end users of propane in the U.S., accounting for 34% and 41% ...

155

U.S. Propane Production by Source  

U.S. Energy Information Administration (EIA)

Propane comes primarily from two units in a refinery -- the reformer and fluid catalytic cracking unit -- which are important units in the production ...

156

Comparison of Hydrogen and Propane Fuels (Brochure)  

Science Conference Proceedings (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

157

Average Stock Levels: Crude Market & Propane  

U.S. Energy Information Administration (EIA)

This graph shows that propane was not alone in experiencing excess supply in 1998 and extraordinary stock builds. Note that the graph shows average stock levels ...

158

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The… (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

159

Retail Propane Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Residential propane prices rose fairly strongly during the 1999-2000 heating season, gaining nearly 25 cents per gallon between October and March.

160

Comparison of Hydrogen and Propane Fuels (Brochure)  

DOE Green Energy (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

International Collaborations to Improve the Accuracy of Gas ...  

Science Conference Proceedings (OSTI)

During the past two years comparisons have taken place for sulfur dioxide, ethanol, propane, and hydrocarbon gas standards. ...

2012-11-16T23:59:59.000Z

162

North America leads the world in production of shale gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

163

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

164

Natural gas production in Middle Eastern and North African ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

165

New England and New York have largest natural gas price ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

166

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1991-02-12T23:59:59.000Z

167

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1990-01-01T23:59:59.000Z

168

Propane as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as a Transportation Fuel Propane as a Transportation Fuel July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane,...

169

Natural Gas Annual Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

170

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

171

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

172

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

173

Vermont Propane Retail Sales by Refiners (Thousand Gallons per Day)  

U.S. Energy Information Administration (EIA)

Referring Pages: Propane (Consumer Grade) Sales to End Users Refiner Sales Volumes; Vermont Propane (Consumer Grade) Refiner Sales Volumes; Vermont Sales to End Users ...

174

Alternative Fuels Data Center: Propane Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production and Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Propane Production and Distribution on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Production and Distribution

175

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation  

E-Print Network (OSTI)

Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using seven-component synthetic oil consisting of equal weights of the following alkanes: n-C5, n-C6, n-C7, n-C8, n-C9, nC10, and n-C15. For comparison purposes, three distillation processes were investigated: dry-, steam-, and steam-propane-distillation, the latter at a propane:steam mass ratio of 0.05. The injection rate of nitrogen during dry-and steam-distillation was the same as that of propane during steam-propane distillation, 0.025 g/min, with steam injection rate kept at 0.5 g/min. The distillation temperatures ranged from 115°C to 300°C and were increased in steps of 10°C. The cell was kept at each temperature plateau (cut) for 30 minutes. Distillation pressures ranged from 0 psig for dry distillation to 998 psig for steam-and steam-propane distillation. The temperature-pressure combination used represented 15°C superheated steam conditions. Distillate samples were collected at each cut, and the volume and weight of water and hydrocarbon measured. In addition, the composition of the hydrocarbon distillate was measured using a gas chromatograph. Main results of the study may be summarized as follows. First, the hydrocarbon yield at 125°C is highest with steam-propane distillation (74 wt%) compared to steam distillation (58 wt%), and lowest with dry distillation (36 wt%). This explains in part the oil production acceleration observed in steam-propane displacement experiments. Second, the final hydrocarbon yield at 300°C however is the same for the three distillation processes. This observation is in line with the fact that oil recoveries were very similar in steam- and steam-propane displacement experiments. Third, based on the yields of individual hydrocarbon components, steam-propane distillation lowers the apparent boiling points of the hydrocarbons significantly. This phenomenon may be the most fundamental effect of propane on hydrocarbon distillation, which results in a higher yield during steam-propane distillation and oil production acceleration during steam-propane displacement. Fourth, experimental K-values are higher in distillations with steam-propane for the components n-hexane, n-heptane, n-octane, and n-nonane. Fifth, vapor fugacity coefficients for each component are higher in distillations with steam-propane than with steam. Finally, Gibbs excess energy is overall lower in distillations with steam-propane than with steam. The experimental results clearly indicate the importance of distillation on oil recovery during steam-or steam-propane injection. The experimental procedure and method of analysis developed in this study (for synthetic oil) will be beneficial to future researchers in understanding the effect of propane as steam additive on actual crude oils.

Ramirez Garnica, Marco Antonio

2003-05-01T23:59:59.000Z

176

Alternative Fuels Data Center: Propane Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Propane Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Propane Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and Incentives on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Laws and Incentives

177

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

178

What is the total working gas capacity in underground natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

179

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

180

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

1984-01-01T23:59:59.000Z

182

Development of alternative fuels from coal-derived synthesis gas: Final topical report, demonstration of one-step slurry-phase process for the co-production of methanol and isobutanol  

DOE Green Energy (OSTI)

Liquid phase co-production of methanol and isobutanol (LPIBOH) was de, demonstrated at DOE`s Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Methanol and isobutanol are key intermediates in a synthesis gas-based route to methyl t-butyl ether (MTBE). The technology was demonstrated in a new 18 in. slurry bubble-column reactor that was designed to demonstrate higher pressures and temperatures,higher gas superficial velocities, and lower gas hourly space velocities--all of which are conducive to obtaining optimal isobutanol yield. The integration of the new reactor into the AFDU included the addition of a high-pressure synthesis gas compressor, a high-pressure hydrogen feed source, and a closed-loop methanol- solvent absorption system to remove CO{sub 2} from the unconverted synthesis gas. These modifications were completed in January 1994. The LPIBOH run followed after a short turnaround. It employed a cesium- promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst developed in Air Products` laboratories and subsequently scaled up to a production- sized batch. Over a thirteen day campaign on simulated Shell gasifier gas, the catalyst and reactor system were tested at a matrix of pressures (750, 1300, 1735 psig) and space velocities (3000, 5000, 8200 sL/kg-hr), representing numerous first-of-a-kind run conditions for the AFDU. Inlet gas superficial velocities spanned an impressive 0.16 to 1.0 ft/sec. Stable reactor performance for a full twelve-hour data period at 1.0 ft/sec was another significant milestone for the liquid phase technology program. Apart from the catalyst deactivation, the run successfully demonstrated mixed alcohol synthesis in a slurry bubble-column reactor, as well as all of the new equipment installed for the trial. Although the full capabilities of the new oxygenates system will not be tested until future runs, the design objectives for the modifications were met with respect to the LPIBOH run.

NONE

1996-06-01T23:59:59.000Z

183

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

184

Hydrogen production from the steam reforming of Dinethyl Ether and Methanol  

SciTech Connect

This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

Semelsberger, T. A. (Troy A.); Borup, R. L. (Rodney L.)

2004-01-01T23:59:59.000Z

185

Propane vehicles : status, challenges, and opportunities.  

Science Conference Proceedings (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

186

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Converts Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Delicious Rank Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Digg Find More places to share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on AddThis.com... April 27, 2013

187

Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Mower Commercial Mower Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on AddThis.com...

188

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

189

Assessment of methanol electro-oxidation for direct methanol-air fuel cells  

DOE Green Energy (OSTI)

The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

Fritts, S.D.; Sen, R.K.

1988-07-01T23:59:59.000Z

190

Alternative Fuels Data Center: Propane Excise Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Excise Tax Propane Excise Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Excise Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Excise Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Excise Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Excise Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Excise Tax Exemption Propane is exempt from the state excise tax when it is used to operate motor vehicles on public highways provided that vehicles are equipped with

191

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

192

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

193

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

194

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

195

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

DOE Green Energy (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

196

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network (OSTI)

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

197

Propane Vehicles: Status, Challenges, and Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane Vehicles: Propane Vehicles: Status, Challenges, and Opportunities ANL/ESD/10-2 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

198

Economic impact of an improved methanol catalyst. [Forecasting to 2000  

DOE Green Energy (OSTI)

The economic future of methanol is reviewed in light of its potential uses as a substitute for traditional hydrocarbon fuels and feedstocks as well as some evolving new uses. Methanol's future market position will depend strongly on its production cost in comparison with competitive products. One promising way to reduce the production cost is by use of an improved catalyst in the process by which methanol is obtained from the feedstock - which can be either natural gas or a similar product such as synthesis gas from coal gasification. To estimate the potential cost savings with an improved catalyst, we have based our analysis on a recent study which assumed use of synthesis gas from underground coal gasification as a feedstock for making methanol. The improved catalyst we studied was an actinide oxide whose features include high tolerance to sulfur and heat, and a yield of about 4 mol% methanol per pass with a 2/1 mixture of H/sub 2//CO. We calculated the effect of this catalyst on methanol production costs in a 12,000-bbl/day plant. The result was a saving of from 1 cent to 2.5 cent per gallon on the total methanol synthesis cost of 23 cents per gallon (i.e., a saving in the conversion process of 4.4% to 10.9%), excluding the cost of the raw feed gas. We conclude from this study that the improved catalyst could bring important savings in methanol production. The estimated savings range from 4.4% to 10.9% in the cost of methanol synthesis from the feedstock material. Another possibility for lowering methanol production costs in the future may lie in switching from a natural-gas-based feedstock to a coal-based feedstock - for example, using synthesis gas from underground coal gasification as the raw material. Our projections suggest that coal will eventually become a less expensive feedstock than natural gas.

Grens, J.; Borg, I.; Stephens, D.; Colmenares, C.

1983-06-23T23:59:59.000Z

199

U.S. boosts natural gas output and use since 2005, while OECD ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

200

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of Propane and Propylene (Thousand Barrels per Day)

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

How much shale gas is produced in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

202

Natural Gas Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

203

International Natural Gas Information - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

204

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

205

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

206

Online service improves public access to petroleum and natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

207

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

208

Natural Gas - U.S. Energy Information Administration (EIA) - U ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

209

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

210

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

211

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

212

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

213

Natural gas generation lower than last year because of differences ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

214

Natural Gas - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Unconventional Dry Natural Gas Production Release Date: August 1, 2013. Coalbed Methane; Shale Gas :

215

Norway's natural gas exports to continental Europe fell in spring ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

216

Study on Catalytic Experiments of Methanol Synthesis from Cornstalk Syngas  

Science Conference Proceedings (OSTI)

Biomass energy is a renewable and potential resource. In order to research the conversion of cornstalk biomass (the agricultural residues) into the fuel methanol and the effective utilization of biomass energy, the low-heat-value cornstalk gas was produced ... Keywords: Cornstalk, Syngas, Catalyst, Methanol, Synthesis

Zhu Lingfeng; Gao Ruqin; Liu Lili; Wang Yan; Wang Yangyang

2011-01-01T23:59:59.000Z

217

methanol.qxd  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol One in a series of fact sheets United States Environmental Protection Agency EPA420-F-00-040 March 2002 www.epa.gov Transportation and Air Quality Transportation and Regional Programs Division C L E A N A L T E R N A T I V E F U E L S C L E A N E R A I R Because of the environ- mental advantages and cost savings, Arizona Checker Leasing Company purchased its first methanol-fueled vehicles in 1993 and cur- rently counts 300 in its fleet of nearly 450 automobiles. The company leases its M85 fuel-flexible vehicles to two cab companies in the Phoenix area. The company purchases its methanol from the California Energy Com- mission, which sells it at a lower, subsidized price. According to the company, methanol has performed just as well as gasoline, providing a safe, reliable, and cost- effective fuel source for the

218

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

219

Stocks of Propane/Propylene  

U.S. Energy Information Administration (EIA)

Stocks held at natural gas processing plants are included in "Other Oils" and in totals. All stock levels are as of the end of the period.

220

Alternative Fuels Data Center: Missouri Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Colorado Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Propane (LPG)

222

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Powers Airport Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Digg Find More places to share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on AddThis.com... Feb. 19, 2011 Propane Powers Airport Shuttles in New Orleans D iscover how the New Orleans airport displaced over 139,000 gallons of

223

Alternative Fuels Data Center: Arizona Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Propane (LPG)

224

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

225

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

226

Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Propane (LPG)

227

Alternative Fuels Data Center: Washington Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Propane (LPG)

228

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

229

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Propane (LPG)

230

Alternative Fuels Data Center: California Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Propane (LPG)

231

Alternative Fuels Data Center: Michigan Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Propane (LPG)

232

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

233

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

234

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

235

Alternative Fuels Data Center: Illinois Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Propane (LPG)

236

Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Propane (LPG)

237

Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Propane (LPG)

238

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Propane (LPG)

239

Alternative Fuels Data Center: Montana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Propane (LPG)

240

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

242

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

243

Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Propane (LPG)

244

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

245

Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Propane (LPG)

246

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

247

Alternative Fuels Data Center: Maryland Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Propane (LPG)

248

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Propane (LPG)

249

Alternative Fuels Data Center: Virginia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Propane (LPG)

250

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

Paris-Sud XI, Université de

251

Feasibility analysis of ternary feed mixtures of methane with oxygen, steam, and carbon dioxide for the production of methanol synthesis gas  

SciTech Connect

The feasibility of ternary feed mixtures of CH{sub 4} with O{sub 2}, H{sub 2}O, and CO{sub 2} is analyzed in relation to the production of methanol syngas. Stoichiometric constraints are formulated in terms of three parameters characterizing the steam, partial oxidation, and carbon dioxide reforming reactions of methane. The equilibrium analysis is conducted using the methanol balance ratio {mu} and methane slip fraction {chi} as explicit design parameters. General results are derived for the feasibility of each ternary feed combination as a function of pressure and temperature in the range 1 < {mu} < 3 under carbon-free conditions. Numerical calculations indicate that CH{sub 4}/O{sub 2}/CO{sub 2} feeds can be used in single-stage adiabatic reformers at low values of {mu}, but the produced syngas requires further treatment. Reforming based on CH{sub 4}/O{sub 2}/H{sub 2}O feeds is endothermic at {mu} {ge} 2 under typical reaction conditions, thus requiring the application of a two-stage process involving primary and secondary reformers. Utilization of CH{sub 4}/O{sub 2}/H{sub 2}O feeds in single-stage adiabatic reactors is feasible for {mu} = 1.7--1.9, yielding syngas which can be upgraded by partial CO{sub 2} removal. The endothermic CH{sub 4}/CO{sub 2}/H{sub 2}O feed combination is always feasible for 1 < {mu} < 3.

Tjatjopoulos, G.J. [Chemical Process Engineering Research Inst., Thessaloniki (Greece). Foundation for Research and Technology; Vasalos, I.A. [Aristotle Univ. of Thessaloniki (Greece). Chemical Engineering Dept.

1998-04-01T23:59:59.000Z

252

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

253

Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell  

Science Conference Proceedings (OSTI)

The products of methanol crossover through the acid-doped polybenzimidazole polymer electrolyte membrane (PBI PEM) to the cathode of a prototype direct methanol fuel cell (DMFC) were analyzed using multipurpose electrochemical mass spectrometry (MPEMS) coupled to the cathode exhaust gas outlet. It was found that the methanol crossing over reacts almost quantitatively to CO{sub 2} at the cathode with the platinum of the cathode acting as a heterogeneous catalyst. The cathode open-circuit potential is inversely proportional to the amount of CO{sub 2} formed. A poisoning effect on the oxygen reduction also was found. Methods for the estimation of the methanol crossover rate at operating fuel cells are suggested.

Wang, J.T.; Wasmus, S.; Savinell, R.F. [Case Western Reserve Univ., Cleveland, OH (United States)

1996-04-01T23:59:59.000Z

254

An Analysis of U.S. Propane Markets Winter 1996-97  

Gasoline and Diesel Fuel Update (EIA)

OOG/97-01 OOG/97-01 Distribution Category UC-950 An Analysis of U.S. Propane Markets Winter 1996-97 June 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Energy Information Administration (EIA) under the direction of Dr. John Cook, Director, Petroleum Marketing Division, Office of Oil and Gas, (202) 586-5214, jcook@eia.doe.gov. Questions for this report can be directed to: Propane Supply and Demand David Hinton (202) 586-2990, dhinton@eia.doe.gov Propane Markets

255

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

256

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

in the U.S. were coal, oil shale, and biomass. Natural gas (produced from coal and oil shale, methanol produced frommethanol was rated below oil shale and other coal-liquid

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

257

No. 2 heating oil/propane program  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

258

Catalytic conversion of methanol to low molecular weight hydrocarbons. [Dissertation  

DOE Green Energy (OSTI)

The recent demands on the available energy have stimulated the search for alternatives to oil. Methanol, because of its abundance and the availability of technology to produce it from coal, is projected as an alternative source for producing low molecular weight olefins. Utilizing chabazite ion exchanged with ammonium and rare earth chlorides, methanol is converted to ethylene, propylene and propane with carbon yields of 70 to 90% at reaction temperatures of 633 to 723/sup 0/K and pressures from 1 to 18 atmospheres. X-ray diffraction studies, using Cu-K radiation, show no permanent structural changes after a long use. No permanent deactivation was observed even though the catalyst was overheated once, and have been deactivated and regenerated as many as 21 times. The ammonium exchange coupled with the water at high temperature suggest the formation of an ultrastable zeolite. Ethylene yields increase as the temperature increases from 633/sup 0/K to 723/sup 0/K.

Singh, B.B.

1979-12-01T23:59:59.000Z

259

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

260

Energy Information Administration – International Natural Gas Price  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas ... imports and exports, production, prices, sales ... Europe ...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

262

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

263

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

264

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

265

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

266

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Reduces Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Delicious Rank Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Digg Find More places to share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on AddThis.com... Dec. 11, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys

267

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

268

Rhode Island Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 3.540: 3.534: 3.540: 3.515: 3.511: 3.514: 1990-2013

269

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renzenberger Inc Saves Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Digg Find More places to share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on AddThis.com... June 22, 2012 Renzenberger Inc Saves Money With Propane Vans L earn how Renzenberger Incorporated fuels its road service vans with

270

U.S. Exports of Propane and Propylene (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Propane/Propylene Exports; Propane/Propylene Supply and Disposition; U.S. Exports of Crude Oil and Petroleum Products ...

271

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

Science Conference Proceedings (OSTI)

This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

272

Iowa Propane Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Iowa Propane (Consumer Grade) Refiner Sales Volumes; Iowa Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

273

Alabama Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Alabama Propane (Consumer Grade) Refiner Sales Volumes; Alabama Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

274

Opportunities for coal to methanol conversion  

DOE Green Energy (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

275

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

276

This Week In Petroleum Propane Section  

Gasoline and Diesel Fuel Update (EIA)

and Wholesale Propane Prices (Dollars per Gallon) and Wholesale Propane Prices (Dollars per Gallon) Residential Propane Prices Petroleum Data Tables more data Note: Due to updated weighting methodology, national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published. We have created an excel file that shows the differences between the original and revised published data for your convenience. Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 Average 2.450 2.482 2.506 2.542 2.566 2.621 2.712 2.243 East Coast (PADD 1) 3.044 3.073 3.090 3.141 3.165 3.246 3.315 2.930 New England (PADD 1A) 3.033 3.047 3.064 3.121 3.172 3.257 3.314 3.063 Central Atlantic (PADD 1B) 3.095 3.122 3.145 3.204 3.213 3.307

277

Portland Public School Children Move with Propane  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

278

Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Converts Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Delicious Rank Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Digg Find More places to share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on AddThis.com...

279

What is the volume of world natural gas reserves? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

280

Natural Gas - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

282

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

283

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

284

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

285

EIA for gas prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

286

Current natural gas forward prices signal rising—but still low ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

287

2012 Brief: Natural gas liquids prices down in 2012 - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

288

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

289

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

290

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

291

Propane education and research. Hearing before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundred Third Congress, Second Session on H.R. 3546, June 8, 1994  

SciTech Connect

The hearing addresses H.R. 3546 a bill to provide for the establishment of a program for safety, development and education in the Propane Gas Industry for the benefit of propane consumers and the public. Statement of witnesses and documents submitted for the record are included. The proposed legislative text is provided.

NONE

1994-12-31T23:59:59.000Z

292

An analysis of US propane markets, winter 1996-1997  

SciTech Connect

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

1997-06-01T23:59:59.000Z

293

Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels  

DOE Green Energy (OSTI)

As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

Anderson, D.N.

1977-01-01T23:59:59.000Z

294

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers  

DOE Green Energy (OSTI)

The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) ''Renugas'' gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

Bain, R. L.

1992-01-01T23:59:59.000Z

295

Determination of usage patterns and emissions for propane/LPG in California. Final report  

SciTech Connect

The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

Sullivan, M.

1992-05-01T23:59:59.000Z

296

Real-Time Fuel Gas Composition Sensor - Energy Innovation Portal  

... is that the composition of the gas from these sources varies widely. Fuel burns differently with differing ratios of methane, propane, and other combustible gases.

297

National Grid (Gas) - Residential EnergyWise Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit through National Grid's Weatherization or...

298

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

299

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

300

Propane inventories end third quarter at record level ...  

U.S. Energy Information Administration (EIA)

... in the United States finished September 2012 at a ... Propane supply in the United States ... million barrels per day. The United States has not ...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 34. Propane (Consumer Grade) Prices by Sales Type and ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly January 2012 88 Table 34. Propane (Consumer Grade) Prices by Sales Type and PAD ...

302

Massachusetts Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Massachusetts Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 ... No.1 and No. 2 ...

303

Propane Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Propane Outlook Conclusion. Lower residential prices possible this winter U.S. inventories likely to be ample prior to the heating season. However, Midwest ...

304

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

305

Heating Oil and Propane Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

However, EIA does publish spot prices for heating oil and propane throughout the year which can be accessed by clicking here. In addition, ...

306

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

307

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

308

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

309

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

310

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network (OSTI)

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables… (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

311

Investigation of Dithiolenes for Propylene/Propane Membrane Separations .  

E-Print Network (OSTI)

??Polyimide membranes containing nickel dithiolenes were investigated for the separation of propylene and propane. Permeation and sorption experiments were conducted as well thermal property analyses.… (more)

Sejour, Hensley

2007-01-01T23:59:59.000Z

312

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

313

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

314

North Carolina Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

315

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

316

Massachusetts Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

317

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

318

Propane demand hits a record high for November - Today in ...  

U.S. Energy Information Administration (EIA)

... Minnesota, Montana, Nebraska, South Dakota, and Wisconsin have declared states of emergency to allow for more delivery of propane throughout the ...

319

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

320

Catalytic gasification of bagasse for the production of methanol  

DOE Green Energy (OSTI)

The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

Baker, E.G.; Brown, M.D.; Robertus, R.J.

1985-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

safety or the safety of methane and propane. The codesand propane and how these properties may relate to safetyCompared To Safety Issues with Methane and Propane Michael

Green, Michael A.

2005-01-01T23:59:59.000Z

322

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network (OSTI)

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

323

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is...

324

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage Containers and Piping: Storage Container Pressure Relief Devices and Venting: Production Storage Systems: Production Process Safety: Pipelines: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards

325

Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane  

SciTech Connect

The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

Green, Michael A.

2005-08-20T23:59:59.000Z

326

Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane  

DOE Green Energy (OSTI)

The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

Green, Michael A.

2005-08-20T23:59:59.000Z

327

Crude Oil, Heating Oil, and Propane Market Outlook 2001  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2001/02. It was given by Doug MacIntyre at the 2001 State Heating Oil and Propane Program Conference held in Wilmington, DE on August 13, 2001.

Information Center

2001-08-01T23:59:59.000Z

328

Crude Oil, Heating Oil, and Propane Market Outlook 2003  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2003/04. It was given at the 2003 State Heating Oil and Propane Program Conference held in Asheville, NC on August 11, 2003.

Information Center

2003-04-01T23:59:59.000Z

329

Crude Oil, Heating Oil, and Propane Market Outlook  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2002/03. It was given at the 2002 State Heating Oil and Propane Program Conference held in Kennebunkport, ME on August 12, 2002.

Information Center

2002-08-21T23:59:59.000Z

330

Thermophilic Methanol Utilization by  

E-Print Network (OSTI)

: acetate ADH: alcohol dehydrogenase Bio-FGD: biological flue-gas desulfurization COD: chemical oxygen desulfurization In sub-section 1.1.1, sulfur dioxide emission and general aspects of the flue gas desulfurization heaters, metallurgical operations, roasting and sintering, coke oven plants, processing of titanium

Groningen, Rijksuniversiteit

331

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

332

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

333

A methanol sensor for portable direct methanol fuel cells  

Science Conference Proceedings (OSTI)

An aqueous methanol sensor for portable direct methanol fuel cell applications is demonstrated. The design is based on current output limited by methanol diffusion through a Nafion 117 perfluorosulfonic acid membrane. Steady-state polarization measurements demonstrate sensitivity to concentrations of 0 to 4 M over a temperature range of 40 to 80C. Furthermore, a correlation that is first order in concentration and temperature is demonstrated for concentrations of 0 to 3 M, with an accuracy of {+-}0.1 M. Measurements of transient response to step concentration change indicate a response time of about 10 to 50 s, depending primarily on temperature.

Barton, S.A.C.; West, A.C. [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering and Applied Chemistry; Murach, B.L.; Fuller, T.F. [International Fuel Cells, South Windsor, CT (United States)

1998-11-01T23:59:59.000Z

334

Emissions results for dedicated propane Chrysler minivans: the 1996 propane vehicle challenge  

DOE Green Energy (OSTI)

The U.S. Department of Energy (US DOE), through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition , 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan. The University of Windsor`s minivan had the lowest emissions attaining ULEV levels with a gaseous-injected engine. The Texas A&M vehicle, which had a gaseous-fuel injection system, and the GMI Engineering and Management Institute`s vehicle, which had a liquid-injection system both reached LEV levels. Vehicles with an injection fuel system (liquid or gaseous) performed better in terms of emissions than carbureted systems. Liquid injection appeared to be the best option for fuel metering and control for propane, but more research and calibration are necessary to improve the reliability and performance of this design.

Buitrago, C.; Sluder, S.; Larsen, R.

1997-02-01T23:59:59.000Z

335

Plenary lecture 6: influence of gasoline-methanol mixtures in a two-stroke engine  

Science Conference Proceedings (OSTI)

One of the alternative fuels that are used is methanol. Methanol (CH3OH) is an alcohol that is produced from natural gas, biomass, coal and also municipal solid wastes and sewage. It is quite corrosive and poisonous and has lower volatility compared ...

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

336

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

337

Methanol fuel cell model: Anode  

Science Conference Proceedings (OSTI)

An isothermal, steady-state model of an anode in a direct methanol feed, polymer electrolyte fuel cell is presented. The anode is considered to be a porous electrode consisting of an electronically conducting catalyst structure that is thinly coated with an ion-selective polymer electrolyte. The pores are filled with a feed solution of 2 M methanol in water. Four species are transported in the anode: water, methanol, hydrogen ions, and carbon dioxide. All four species are allowed to transport in the x-direction through the depth of the electrode. Species movement in the pseudo y-direction is taken into account for water, methanol, and carbon dioxide by use of an effective mass-transfer coefficient. Butler-Volmer kinetics are observed for the methanol oxidation reaction. Predictions of the model have been fitted with kinetic parameters from experimental data, and a sensitivity analysis was performed to identify critical parameters affecting the anode`s performance. Kinetic limitations are a dominant factor in the performance of the system. At higher currents, the polymer electrolyte`s conductivity and the anode`s thickness were also found to be important parameters to the prediction of a polymer electrolyte membrane fuel cell anode`s behavior in the methanol oxidation region 0.5--0.6 V vs. a reversible hydrogen electrode.

Baxter, S.F. [Argonne National Lab., IL (United States); Battaglia, V.S.; White, R.E. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

1999-02-01T23:59:59.000Z

338

How much natural gas is consumed (used) in the U.S.? - FAQ ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... In 2012, the U.S. consumed ... How much natural gas does the ...

339

How much natural gas does the United States have and how ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including ... How much natural gas does the United States have and how ... 2012. Other ...

340

NIST: X-Ray Mass Atten. Coef. - Tissue-Equivalent Gas ...  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 4 Tissue-Equivalent Gas (Propane Based) HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). ...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Mileage of 1984 Vehicles by Import Foreign Auto Sales Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Economy Videos Fuel Cell Links Alternative Fuels Alternative Fuels Ethanol Natural Gas Propane Hydrogen Tax Incentives About EPA Ratings New Window Sticker About the New...

342

Air Breathing Direct Methanol Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Available for thumbnail of Feynman Center (505) 665-9090 Email Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol

343

Propane/Propylene Natural Gas Processing Plant Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 View History; U ...

344

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

345

VEE-0040- In the Matter of Western Star Propane, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

346

Connecticut Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.967: 3.925: 3.945: 3.943: 3.943 ...

347

Maine Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.569: 3.575: 3.559: 3.561: 3.559 ...

348

California Propane Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

California Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

349

Tennessee Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Tennessee Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ... No.1 and No. 2 ...

350

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

351

Propane Prices Follow Crude Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Prices are one of the first signals in deciphering what is happening in the market. This chart shows propane prices (both spot and retail) as well as spot heating oil ...

352

Propane Demand is Highly Seasonal, But Fresh Supply is Not  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Propane, like heating oil, has a highly seasonal demand pattern. Demand increases about 50% from its low point to its peak. Production and net imports, on the other hand,...

353

U.S. Propane Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Another source of supply of propane is from imports. Imports for the first five months of this year have decreased about 8 percent (about 13 thousand barrels per day ...

354

Maryland Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Propane: 3.306: 3.337: 3.363: 3.455: 3.505: 3.512: 1990-2013-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to ...

355

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

DOE Green Energy (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

356

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

357

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

358

2001 Fall Extraction and Process Metallurgy Meeting ... - TMS  

Science Conference Proceedings (OSTI)

spheres, natural gas, propane and cracked methanol. Which gas or gases and how much of each should be used in the furnace is largely based on experience  ...

359

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network (OSTI)

Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

360

Gas Diffusion Electrodes for Fuel Cells - Energy Innovation Portal  

A unique gas diffusion electrode technique resulting in little to no leftover methanol, therefore increasing the overall effectiveness and performance ...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

List of Methanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Methanol Incentives Methanol Incentives Jump to: navigation, search The following contains the list of 22 Methanol Incentives. CSV (rows 1 - 22) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol Methanol No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Biodiesel and Alcohol Fuel Blend Sales Tax Exemption (Washington) Sales Tax Incentive Washington Commercial Ethanol Methanol

362

Results from the second year of operation of the Federal Methanol Fleet at Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory has completed its second year of operation of ten vehicles for the Federal Methanol Fleet Project; five of the vehicles are fueled with methanol. Over 56,000 miles were accumulated on the vehicles in the second year bringing the total to over 152,000 miles. Energy consumption for the methanol cars was slightly higher than that of the gasoline cars again this year, most likely as a result of shorter average trip lengths for the methanol gas. Iron and lead have accumulated at greater rates in the lubricating oil of the methanol cars. Driver's ratings of vehicles reflected some dissatisfaction with the cold-weather performance of the methanol cars, but the cars have no special provisions for cold weather starting, and the fuel vapor pressure has not been tailored to the season as at other test sites. Otherwise, drivers' opinions of the methanol cars have been favorable. 13 refs., 4 figs., 10 tabs.

West, B.H.; McGill (Oak Ridge National Lab., TN (USA)); Hillis, S.L. (Tennessee Univ., Knoxville, TN (USA))

1990-09-01T23:59:59.000Z

363

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

364

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

365

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

366

Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Propane (LPG)

367

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

368

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

369

Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Propane (LPG)

370

Alternative Fuels Data Center: New York Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Propane (LPG)

371

Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Propane (LPG)

372

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

373

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

374

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

375

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

376

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

377

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

378

Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Propane (LPG)

379

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

380

Illinois Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

11 15 20 17 1 1 1967-2012 Synthetic 0 1980-2012 Propane-Air 11 15 20 17 1 1 1980-2012 Refinery Gas 1980-2005 Biomass 0 1999-2012 Other 0 2005...

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Methods of Conditioning Direct Methanol Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods of Conditioning Direct Methanol Fuel Cells Methods of Conditioning Direct Methanol Fuel Cells Methods of Conditioning Direct Methanol Fuel Cells Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. Available for thumbnail of Feynman Center (505) 665-9090 Email Methods of Conditioning Direct Methanol Fuel Cells Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer

382

Air Breathing Direct Methanol Fuel Cell  

DOE Patents (OSTI)

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

383

PROPANE: An Environment for Examining the Propagation of Errors  

E-Print Network (OSTI)

In order to produce reliable software, it is important to have knowledge on how faults and errors may affect the software. In particular, designing efficient error detection mechanisms requires not only knowledge on which types of errors to detect but also the effect these errors may have on the software as well as how they propagate through the software. This paper presents the Propagation Analysis Environment (PROPANE) which is a tool for profiling and conducting fault injection experiments on software running on desktop computers. PROPANE supports the injection of both software faults (by mutation of source code) and data errors (by manipulating variable and memory contents). PROPANE supports various error types out-of-the-box and has support for user-defined error types. For logging, probes are provided for charting the values of variables and memory areas as well as for registering events during execution of the system under test. PROPANE has a flexible design making it useful for development of a wide range of software systems, e.g., embedded software, generic software components, or user-level desktop applications. We show examples of results obtained using PROPANE and how these can guide software developers to where software error detection and recovery could increase the reliability of the software system.

Martin Hiller; Arshad Jhumka; Neeraj Suri

2002-01-01T23:59:59.000Z

384

Enhanced methanol utilization in direct methanol fuel cell  

DOE Patents (OSTI)

The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2001-10-02T23:59:59.000Z

385

Air breathing direct methanol fuel cell  

DOE Patents (OSTI)

An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

Ren, Xiaoming (Los Alamos, NM)

2002-01-01T23:59:59.000Z

386

Selective dehydrogenation of propane over novel catalytic materials  

Science Conference Proceedings (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

387

Selective Dehydrogenation of Propane over Novel Catalytic Materials  

E-Print Network (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices. 4 Acknowledgment The authors thank United Catalysts, Inc. for stimulating technical discussions and for providing samples of commercial ...

Allen Sault Elaine; Elaine P. Boespflug Anthony Martino; Jeffrey S. Kawola

1998-01-01T23:59:59.000Z

388

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, J.W.; Wender, I.; Palekar, V.M.

1995-01-24T23:59:59.000Z

389

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

390

High-pressure vapor-liquid equilibria in the propane-1-propanol system  

SciTech Connect

High-pressure isothermal vapor liquid equilibrium data were measured for the propane-1-propanol system at 81.6, 105.2, and 120.1 C in a static equilibrium cell with liquid-phase sampling by a piston-driven sampling rod and homogenizing the sample with a static jet mixer. The vapor phase was sampled by releasing it into an evacuated manifold, and the gas chromatograph was calibrated with a new variable volumetric device. Satisfactory modeling was achieved with the combined method using the UNIQUAC equation with equations of sate: the group contribution EOS, Peng-Robinson EOS, or the two-parameter Virial EOS. Differences between the measured and calculated vapor-phase mole fractions, however, were significant for the lower pressure regions of the 81.6 and 120.1 C isotherms. UNIQUAC parameters, hitherto unavailable, with fairly strong temperature dependence in the 81.6 to 120.1 C range are proposed for the system. The covariance matrix indicated a significant correlation among the parameters. The classical mixing rule interaction parameters required for the original Peng-Robinson EOS in the combined method were obtained using the direct method and were temperature-independent for the isotherms for which the propane was supercritical. The possibility of propane/1-propanol immiscibility was theoretically examined according to the criteria of Baker et al. The plots of Gibbs energy of mixing vs. phase mole fractions did not indicate liquid-phase splitting, but the inferences are EOS-dependent and must await visual confirmation. The authors earlier vapor-phase thermodynamic consistency test indicated the data for all three data sets not to be inconsistent.

Muehlbauer, A.L.; Raal, J.D. (Univ. of Natal, Durban (South Africa))

1993-04-01T23:59:59.000Z

391

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellow Cab Converts Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on AddThis.com... July 9, 2011 Yellow Cab Converts Taxis to Propane in Columbus, Ohio

392

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

393

Mechanistic aspects of lean NO2 reduction by propane over HZSM-5  

Science Conference Proceedings (OSTI)

This study focuses on the mechanism of lean NO2 reduction by propane. In particular the role of ... KEY WORDS: FTIR; lean NO2 reduction; propane; HZSM- 5. 1.

394

U.S. Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 2.376: 2.405: 2.413: 2.449: 2.486: 2.489: 1990-2013:

395

SYNTHESIS, CHARACTERIZATION AND KINETIC STUDIES OF MIXED METAL Mo-V-Nb-Te OXIDE CATALYSTS FOR PROPANE AMMOXIDATION TO ACRYLONITRILE.  

E-Print Network (OSTI)

??The ample abundance and low cost of propane has recently spurred an interest in the manufacture of acrylic acid and acrylonitrile from propane, both important… (more)

BHATT, SALIL R

2006-01-01T23:59:59.000Z

396

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

Not Available

2011-02-01T23:59:59.000Z

397

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

398

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

DOE Green Energy (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

399

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Heating Oil: 4.392: 4.402: 4.380: 4.312: 4.314: 4.289: 1990-2013: Wholesale Heating Oil : Residential Propane: 2.902: 2.920: 2.931: 2.928: 2.933: 2.935 ...

400

Adsorption equilibria of propane on activated carbon and molecular sieves  

Science Conference Proceedings (OSTI)

Data of adsorption isotherm of propane on activated carbon (AC), molecular sieve carbon (MSC), MS13X and MS5A at 303K, 328K and 353K are acquired using constant volumetric method. Isosteric heats can be obtained indirectly from the isotherms using the ... Keywords: VOCs, adsorption, equilibrium models, isosteric heats, isotherm

Z. Yaakob; S. K. Kamarudin; I. Kamaruzaman; A. Ibrahim

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table C5. Residential Propane Prices by Region and State ...  

U.S. Energy Information Administration (EIA)

Table C5. Residential Propane Prices by Region and State (Cents per Gallon) ... New York 141.9 145.6 146.4 150.4 153.7 162.1 164.5 168.1 169.0 190.2 ...

402

Catalytic steam gasification of bagasse for the production of methanol  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

Baker, E.G.; Brown, M.D.

1983-12-01T23:59:59.000Z

403

Preprint typeset using L ATEX style emulateapj v. 7/15/03 PROPANE ON TITAN  

E-Print Network (OSTI)

We present the first observations of propane (C3H8) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a R = ?/?? ? 10 5 spectrometer (TEXES) to observe propane’s ?26 rotation-vibration band near 748 cm ?1. We find a best-fit fractional abundance of propane in Titan’s stratosphere of (6.2 ± 1.2) × 10 ?7 in the altitude range to which we are sensitive (90-250 km or 13-0.24 mbar). Subject headings: planets and satellites: Titan, infrared: solar system, molecular data

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-01-01T23:59:59.000Z

404

TransForum v6n1 - Hydrogen + Advances in Fuel Cell Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

available, fuel cells could operate on conventional fuels, such as natural gas, propane, gasoline, and diesel, or alternative fuels, such as methanol, ethanol, and...

405

Method of steam reforming methanol to hydrogen  

DOE Patents (OSTI)

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

406

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

407

Methods of Conditioning Direct Methanol Fuel Cells  

while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

408

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

409

Methanol production from eucalyptus wood chips  

DOE Green Energy (OSTI)

The technical feasibility of producing methanol from wood is demonstrated and sufficient cost data is provided to allow an assessment of the economic viability.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

410

Direct Methanol Fuel Cells - Energy Innovation Portal  

Our partners gain access to one of the most advanced and experienced direct methanol fuel cell ... The cured film is then transferred to the SPE ...

411

Solar photocatalytic conversion of CO{sub 2} to methanol  

DOE Green Energy (OSTI)

This report summarizes the three-year LDRD program directed at developing catalysts based on metalloporphyrins to reduce carbon dioxide. Ultimately it was envisioned that such catalysts could be made part of a solar-driven photoredox cycle by coupling metalloporphyrins with semiconductor systems. Such a system would provide the energy required for CO{sub 2} reduction to methanol, which is an uphill 6-electron reduction. Molecular modeling and design capabilities were used to engineer metalloporphyrin catalysts for converting CO{sub 2} to CO and higher carbon reduction products like formaldehyde, formate, and methanol. Gas-diffusion electrochemical cells were developed to carry out these reactions. A tin-porphyrin/alumina photocatalyst system was partially developed to couple solar energy to this reduction process.

Ryba, G.; Shelnutt, J.; Prairie, M.R.; Assink, R.A.

1997-02-01T23:59:59.000Z

412

Propane Assessment for Winter 1995 - 1996  

Gasoline and Diesel Fuel Update (EIA)

Winter Fuels Report Winter Fuels Report Unless otherwise referenced, data in this article are taken from the following: Petroleum Supply Monthly, July 1995, DOE/EIA-0109 (95/09); Petroleum Supply Annual 1994, DOE/EIA-0340, Volumes 1 and 2 and predecessor reports; Petroleum Marketing Annual, July 1994, DOE/EIA-0487 (94); Winter Fuels Report, Week Ending October 6, 1995, DOE/EIA-0538 (95/96-1), and predecessor reports; and Short-Term Energy Outlook, DOE/EIA-0202 (95/3Q) and predecessor reports. All data through 1994 are considered final and are not subject to further revision. *Michael Burdette, an industry analyst on contract to the Energy Information Administration's Office of Oil and Gas, also contributed to this article. 1 Average level and width of average range based on 3 years of monthly data, January 1992 through December 1994. The significance of the

413

EIA Short-Term Outlook for Natural Gas  

Reports and Publications (EIA)

This presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, outlined EIA's July 2006 forecast for natural gas supply, demand, and markets through 2007.

Information Center

2006-08-07T23:59:59.000Z

414

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the composition of volatile hydrocarbons, including methane, ethane, and propane and fixed natural gases (i.e., O2, CO2, and N2+Ar) from headspace void gas and gases...

415

Office of Fossil Energy Oil & Natural Gas Technology DOE Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation,...

416

Conversion of ethane and of propane to higher olefin hydrocarbons  

DOE Green Energy (OSTI)

It has become apparent during the past few months that results obtained in the oxidative coupling of methane cannot be extended to ethane and propane. Good selectivities and yields for the oxydehydrogenation to olefins can be obtained but production of higher hydrocarbons is small. The present report summarizes results of experiments using zeolite based catalysts and compares these with basic oxide catalysts. The oxydehydrogenation of ethane over zeolite based catalysts (H[sup [minus plus

Heinemann, H.; Somorjai, G.A.

1992-09-01T23:59:59.000Z

417

Ford F-250 Fact Sheet: Bi-fuel propane pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. A 1999 F-250 bi-fuel propane pickup was run through a series of tests while operating on LPB and gasoline. The tests are explained briefly in this fact sheet.

Eudy, L.

1999-12-27T23:59:59.000Z

418

ESTIMATED UPPER BOUNDS TO THE HALF-LIFE OF THERMAL DECOMPOSITION OF AMMONIA, HYDROGEN, METHANE, AND PROPANE  

DOE Green Energy (OSTI)

An estimate was made of the upper bound for the half-time of dissociation at 100 atm for ammonia, methane, and propane at 2500 deg K and hydrogen at 5000 deg K. In each case a unimolecular reactron in the homogeneous gas phase was chosen as most suitable for this purpose. Slater's theory has been used to estimate the necessary frequency factors. The upper bounds to the half- time for dissociation range from 3 x 10/sup -7/ to 6 x 10/sup -6/ sec. Extrapolation of decomposition rate data obtained at --1000 deg C and 1 atm pressure gives smaller values for the half-time of dissociation. (auth)

Herschbach, D.

1955-08-01T23:59:59.000Z

419

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network (OSTI)

A thermodynamic cycle simulation of the four-stroke spark-ignition engine was used to determine the effects of variations in engine design and operating parameters on engine performance and emission characteristics. The overall objective was to use the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects of variations in load, speed, combustion duration, spark timing, equivalence ratio, exhaust gas recycle, and compression ratio for a 3.3 liter, Chrysler Minivan, V 6 engine operating on propane. Parameters were selected for the analysis. Variations in the brake specific fuel consumption, brake specific NOx emissions, and mean exhaust temperature were determined for both the propane-fuelled and the iso-octane-fuelled engines. Brake specific fuel consumption and mean exhaust temperature values for the propane-fuelled engine were consistently lower (3 to 5 %) than the corresponding values for the iso-octane-fuelled engine. Fuel structure did not have a significant effect on brake specific nitric oxide emissions. Predictions made from the simulation were compared with some of the available experimental results. Predicted brake torque and brake power showed acceptable quantitative agreement (less than 10 % variation) in the low engine speed range (1,000 to 3,000 rpm) and similar trends with the available experimental data.

Pathak, Dushyant

2005-12-01T23:59:59.000Z

420

THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN  

SciTech Connect

A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of {approx}4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

Deschamps, Frederic [Institute of Geophysics, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besancon Cedex (France); Sanchez-Valle, Carmen [Institute of Geochemistry and Petrology, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Lunine, Jonathan I., E-mail: frederic.deschamps@erdw.ethz.c [Dipartimento di Fisica, Universita degli Studi di Roma 'Tor Vergata', Rome (Italy)

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization and research investigation of methanol and methyl fuels. Final progress report  

DOE Green Energy (OSTI)

Work on several aspects of using pure methanol as an alternate fuel are reported. A stock (OEM) Pinto engine mounted on a dynamometer was used to compare methanol with Indolene in terms of power, efficiency, and emissions for a variety of speeds and loads. Although the engine was designed for use with gasoline, it was found that methanol was generally superior in power, thermal efficiency and reduced emissions with the exception of aldehydes. Three different fuel metering systems were tested for a variety of speeds and loads using the dynamometer mounted engine. They were all found to provide superior steady state performance on methanol when compared with the OEM carburetor system with enlarged fuel jets for methanol. Mileage and emissions from a Pinto vehicle equipped with the various fuel metering systems were computer predicted for the Federal emissions test procedure using laboratory engine measurements. A computer was used to simulate the test engine's thermokinetic combustion events. The computer model predicts power, fuel economy and emissions with air-fuel ratio, compression ratio, spark advance and speed as parameters. A small (60 hp) gas turbine was converted to run on methanol. The conversion was easily accomplished, but atomization of the fuel was found to be important in obtaining a reduction in CO and NO/sub x/ for methanol in comparison with jet engine fuel. Environmental factors of marine and aquatic methanol spills and photochemical smog are under study. Preliminary experimentation relative to marine spills indicates that methanol is naturally present in that environment. It appears at this early stage of investigation that damage to the ecosystem from a major coastal spill may be localized and of short duration.

Pefley, R.K.; Browning, L.H.; Hornberger, M.L.; Likos, W.E.; McCormack, M.C.; Pullman, B.

1977-01-01T23:59:59.000Z

422

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

Science Conference Proceedings (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

423

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Nonprofit Cut Fuel Costs with Propane Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

424

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

425

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

426

Direct Methanol Fuel Cell for Portable Applications  

E-Print Network (OSTI)

A methanol fuel cell stack has at cl f is being incorporated a portable ions. 1 performance and flow rate for cell Water data, transport mechanisms fuel are discussed. Stack response has Implications slack performance and conditions addressed. Introduction 1 development a methanol fuel is presently pursued at 1 sponsorship from Research (1 A five methanol oxidizing stack has at stack incorporates liquiddirect methanol proton exchange membrane [1, 2], methanol (1 by oxidation an solution methanol at reduction at cathode. `1 focus results out stacks. form a n part of 1 cells have as storage but complicated systems to Upon of the methanol fuel many system simpler than before. In the can oxidized at thus is for fuel With the f mixture, electrolytes always at a of operation free-aqueous acid and thus corrosion issues addressed electrode assemblies consist main catalyzed cathode, and a polymer catalyst is the cathode catalyst is as a polymer `1 current state at the for is V at current d...

Narayanan Frank And; T. Valdez; S. R. Narayanan; H Frank; W. Chun

1997-01-01T23:59:59.000Z

427

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-12-31T23:59:59.000Z

428

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network (OSTI)

Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of reservoir heating. Effects of various additives injected simultaneously with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela. The experiments were conducted using an injection cell packed with sandmix containing a mixture of sand, water, and Morichal oil. Experimental runs involved injection of steam, or propane, or a mixture of steam and propane into the cell at constant rate, temperature, and pressure. The injection was kept constant at 5 g/min for all runs. Five experiments were performed, namely, run 1 (50 wt.% steam and 50 wt.% propane), run 2 (100 wt.% steam), run 3 (75 wt.% steam and 25 wt.% propane), run 4 (100 wt.% propane), and run 5 (95 wt.% steam and 5 wt.% propane). Main findings for this study are as follows. First, it appears possible to accelerate recovery of Morichal oil using combined steam and propane injection. Oil recovery at 61% OOIP may be up to 0.23 pore volume faster than using steam injection alone, with gain in ultimate recovery of up to 5% OOIP. Second, with only propane injection, at temperature and pressure conditions tested, practically no oil is recovered. Steam is necessary to reduce interfacial tension and the oil viscosity, thus allowing propane to permeate through the oil. This increases propane miscibility with oil, further reducing the residual oil saturation, and enhances the displacement efficiency. It is recommended that further research be conducted to confirm the technical and economic feasibility of steam-propane injection, particularly for other crude oil types, and at pressure and temperature conditions encountered in the field.

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

429

The Furnace combustion and radiation characteristics of methanol and a methanol/coal slurry  

DOE Green Energy (OSTI)

An experimental facility has been built to study the combustion of methanol and a slurry of methanol plus 5% coal in an environment similar to industrial and utility boilers. The furnace is a horizontal water cooled cylinder, 20 cm in diameter by one meter long, with a firing rate of 60 kW. The measurements taken throughout the furnace include temperature and concentration of carbon monoxide, carbon dioxide, water, oxides of nitrogen, methanol and particulates. Spectral radiation intensity measurements are taken along the axis of the furnace burning methanol and the methanol/coal slurry. The effect of the fuel on flame structure is reported. The temperatures in the pure methanol flame are, in general, higher than in the methanol/coal flame. The levels of the oxides of nitrogen are low in the pure methanol flame (less than 20 ppM NO). Addition of 5% coal to the methanol causes NO concentration to increase to 100 ppM. This represents a conversion of 40% of the coal bound nitrogen to NO. Particulate levels increase from less than .001 g/m/sup 3/ for the pure methanol to over .25 g/m/sup 3/ when pulverized coal is added. The low levels of soot and particulates in the methanol flame have an effect on the spectral intensity. No continuous radiation is measured in the methanol flame, but small amounts of particulate radiation can be seen from the spectra of the methanol/coal flame. The total emittance of the flame is increased from about .10 to .135 with the addition of 5% pulverized coal, but the radiation intensity is reduced because of the lower flame temperatures. A numerical program has been written to calculate the spectral intensity from an inhomogeneous mixture of combustion products. Comparisons are made between the calculated intensity and the measured intensity for both fuel systems. The numerical results are about 25% lower than the measured results. Reasons for this are discussed.

Grosshandler, W.L.

1977-01-01T23:59:59.000Z

430

An Analysis of U.S. Propane Markets Winter 1996-97 June 1997  

U.S. Energy Information Administration (EIA)

Plants Using Propane and E/P Mix Feedstock, 1989-96.....28 Figure 4.4 Wright Killen Ethylene Cash Margin and Ethane Price (Plants ...

431

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

432

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

433

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Annual Energy Outlook 2012 (EIA)

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

434

Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5.  

E-Print Network (OSTI)

??Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5. (Under the direction of Michael R. Hyman.) Cometabolic transformations are unable to support cell growth.… (more)

House, Alan

2009-01-01T23:59:59.000Z

435

Experimental studies of steam-propane injection for the Duri intermediate crude oil.  

E-Print Network (OSTI)

??Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature… (more)

Hendroyono, Arief

2012-01-01T23:59:59.000Z

436

Adsorption of Propane on the Magnesium Oxide (100) Surface and Synthesis of Anodized Aluminum Oxide.  

E-Print Network (OSTI)

??This work is divided into two parts: the adsorption of propane on the magnesium oxide (100) surface and the synthesis of anodized aluminum oxide. The… (more)

Felty, Michael John

2008-01-01T23:59:59.000Z

437

STUDY OF PROPANE ADSORPTION ISOTHERM ON PURIFIED HIPCO SINGLE-WALLED CARBON NANOTUBES.  

E-Print Network (OSTI)

??Isotherms of one atom thick film of adsorption for propane on purified Hipco single-walled carbon nanotube were experimentally studied at 6 different temperatures ranging from… (more)

Furuhashi, Toyohisa

2009-01-01T23:59:59.000Z

438

Advanced direct methanol fuel cells. Final report  

DOE Green Energy (OSTI)

The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

Hamdan, Monjid; Kosek, John A.

1999-11-01T23:59:59.000Z

439

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

1995-01-01T23:59:59.000Z

440

Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol  

DOE Patents (OSTI)

A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

Steinberg, M.; Grohse, E.W.

1995-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Federal Methanol Fleet Project final report  

DOE Green Energy (OSTI)

The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to ``fuel-related`` repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

West, B.H.; McGill, R.N. [Oak Ridge National Lab., TN (United States); Hillis, S.L.; Hodgson, J.W. [Tennessee Univ., Knoxville, TN (United States)

1993-03-01T23:59:59.000Z

442

Federal Methanol Fleet Project final report  

DOE Green Energy (OSTI)

The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to fuel-related'' repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

West, B.H.; McGill, R.N. (Oak Ridge National Lab., TN (United States)); Hillis, S.L.; Hodgson, J.W. (Tennessee Univ., Knoxville, TN (United States))

1993-03-01T23:59:59.000Z

443

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

444

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

445

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

446

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

447

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane  

E-Print Network (OSTI)

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane

Lehraus, Ivan; Tejessy, W

1983-01-01T23:59:59.000Z

448

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network (OSTI)

Measurements of Laminar Flame Velocity for Components of Natural Gas Patricia Dirrenberger1 flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary and tertiary mixtures of these compounds proposed as surrogates for natural gas. These measurements have been

449

Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas  

E-Print Network (OSTI)

dioxide, ethane, propane, and butane. Hydrocarbon seeps havemethane, ethane, propane and butane. Geochim Cosmochim Acta

2010-01-01T23:59:59.000Z

450

Propane extractor could allow small dealers to obtain product as in 'old days'  

SciTech Connect

A growing trend for small natural gas plant operators to install cryogenic demethanizers lets them recover ethane and heavier hydrocarbons as a single raw-make product for pipelining to a central location for fractionation, instead of producing LPG for local sales. The local LPG dealers must then transport LPG a substantial distance from the central fractionator. A possible solution to the dealers' supply problem is proposed: construct small portable processing units (computer-controlled for unattended operation) which would receive a portion of the raw-make liquid from a pipeline, extract propane as LPG, and return the balance of the stream to the pipeline, storing LPG for loading local transports. Not only would transportation costs be reduced, but local key operated loading facilities would be open at all hours of the day or night, seven days a week; the alternative would be long lines of transports waiting to load at central facilties during limited loading times. In Texas, residential LPG usage of about 40,000 bbl/day (10% of estimated raw liquid volumes) would require greater than 80 units of the new Propane Extraction Process. Diagrams are included.

Ainsworth, A.G.; McClanahan, D.N.

1977-12-01T23:59:59.000Z

451

Thermally integrated staged methanol reformer and method  

DOE Green Energy (OSTI)

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

452

Methanol sensor operated in a passive mode  

DOE Patents (OSTI)

A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2002-01-01T23:59:59.000Z

453

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

454

An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by  

E-Print Network (OSTI)

Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. Recently recognized as a drinking water contaminant (19), N-nitrosodimethylamine (NDMA) is now closely monitored by municipal water providers to minimize human exposure (3, 6,

Rhodococcus Sp. Strain Rha; Jonathan O. Sharp; Christopher M. Sales; Justin C. Leblanc; Jie Liu; Thomas K. Wood; Lindsay D. Eltis; William W. Mohn; Lisa Alvarez-cohen

2007-01-01T23:59:59.000Z

455

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

Science Conference Proceedings (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

456

Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell  

Science Conference Proceedings (OSTI)

The performance of a liquid-feed direct methanol fuel cell employing a proton-exchange membrane electrolyte with Pt-Ru/C as anode and Pt/C as cathode is reported. The fuel cell can deliver a power density of ca. 0.2 W/cm{sup 2} at 95 C, sufficient to suggest that the stack construction is well worthwhile. Methanol crossover across the polymer electrolyte at concentrations beyond 2 M methanol affects the performance of the cell which appreciates with increasing operating temperature.

Ravikumar, M.K.; Shukla, A.K. [Indiana Inst. of Science, Bangalore (India). Solid State and Structural Chemistry Unit

1996-08-01T23:59:59.000Z

457

Liquid phase methanol reactor staging process for the production of methanol  

DOE Patents (OSTI)

The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

1988-01-01T23:59:59.000Z

458

Methanol and hydrogen from biomass for transportation  

E-Print Network (OSTI)

Methanol and hydrogen from biomass for transportation [1] Robert H. Williams, Eric D. Larson, Ryan from biomass via indirectly heated gasifiers and their use in fuel cell vehicles would make it possible for biomass to be used for road transportation, with zero or near-zero local air pollution and very low levels

459

Methanol Steam Reformer on a Silicon Wafer  

DOE Green Energy (OSTI)

A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

2004-04-15T23:59:59.000Z

460

Counterflow Extinction of Premixed and Nonpremixed Methanol and Ethanol Flames  

E-Print Network (OSTI)

of methanol. Combustion and Flame, 25:343, 1975. [6] A. Leeand nitrogen. Combustion and Flame, 33:197–215, 1978. [4] T.Methanol and Formaldehyde Flames. Ph.d thesis, University of

Seshadri, Kalyanasundaram

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Membrane reactor advantages for methanol reforming and similar reactions  

Science Conference Proceedings (OSTI)

Membrane reactors achieve efficiencies by combining in one unit a reactor that generates a product with a semipermeable membrane that extracts it. One well-known benefit of this is greater conversion, as removal of a product drives reactions toward completion, but there are several potentially larger advantages that have been largely ignored. Because a membrane reactor tends to limit the partial pressure of the extracted product, it fundamentally changes the way that total pressure in the reactor affects equilibrium conversion. Thus, many gas-phase reactions that are preferentially performed at low pressures in a conventional reactor are found to have maximum conversion at high pressures in a membrane reactor. These higher pressures and reaction conversions allow greatly enhanced product extraction as well. Further, membrane reactors provide unique opportunities for temperature management which have not been discussed previously. These benefits are illustrated for methanol reforming to hydrogen for use with PEM (polymer electrolyte membrane) fuel cells.

Buxbaum, R.E. [REB Research and Consulting Co., Ferndale, MI (United States)

1999-07-01T23:59:59.000Z

462

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

1998-11-01T23:59:59.000Z

463

Methanol production from Eucalyptus wood chips. Final report  

DOE Green Energy (OSTI)

This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

464

A New Reference Correlation for the Viscosity of Methanol  

Science Conference Proceedings (OSTI)

... and pharmaceutical appli- cations. The oldest use of methanol is in the conversion of biomass. This process is gaining ...

2010-04-28T23:59:59.000Z

465

VEE-0060 - In the Matter of Blakeman Propane, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60 - In the Matter of Blakeman Propane, Inc. 60 - In the Matter of Blakeman Propane, Inc. VEE-0060 - In the Matter of Blakeman Propane, Inc. On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Blakeman requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied. vee0060.pdf More Documents & Publications TEE-0060 - In the Matter of 7 Oil Co., Inc. TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. VEE-0080 - In the Matter of Potter Oil Co.

466

Investigation of Propane and Methane Bulk Properties Structure Using Two Different Force Fields  

Science Conference Proceedings (OSTI)

Some structural properties of propane and methane bulk system in liquid phase have been estimated using molecular dynamics calculations on the EGEE Grid infrastucture. The effect of adopting two different force fields, OPLS/AMBER and Dreiding, has been ...

Alessandro Costantini; Antonio Laganà

2008-06-01T23:59:59.000Z

467

An Analysis of U.S. Propane Markets Winter 1996-97  

U.S. Energy Information Administration (EIA)

SR/OOG/97-01 Distribution Category UC-950 An Analysis of U.S. Propane Markets Winter 1996-97 June 1997 Energy Information Administration Washington, DC 20585

468

Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model  

Reports and Publications (EIA)

The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

Information Center

2009-11-09T23:59:59.000Z

469

Simulation studies of steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and… (more)

Venturini, Gilberto Jose

2012-01-01T23:59:59.000Z

470

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

471

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network (OSTI)

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

472

Étude du dopage de catalyseurs de déshydrogénation oxydante de l'éthane et du propane.  

E-Print Network (OSTI)

??Les réactions de déshydrogénation oxydante du propane et de l'éthane ont été étudiées respectivement sur des catalyseurs à base d'oxydes alcalino-terreux (OAT) dopés néodyme et… (more)

Savova, Bistra

2009-01-01T23:59:59.000Z

473

ROLE OF CONSTITUENT ELEMENTS IN PROPANE OXIDATION OVER MIXED METAL OXIDES.  

E-Print Network (OSTI)

??Recently discovered multi-component Mo-V-Te-Nb-O catalysts contain so-called “M1” and “M2” phases with orthorhombic and hexagonal structures, respectively, proposed to be active and selective in propane… (more)

BHANDARI, RISHABH

2005-01-01T23:59:59.000Z

474

Midwest propane markets tighten further on cold weather ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ...

475

New Jersey Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

379 489 454 457 392 139 1967-2012 Synthetic 0 0 1980-2012 Propane-Air 0 1980-2012 Refinery Gas 1980-2005 Biomass 0 1993-2012 Other 379 489 454 457 392 139 1980-2012...

476

The densities and reaction heat of methanol synthesis System from cornstalk syngas  

Science Conference Proceedings (OSTI)

Methanol can be used as possibole replacement for conventional gasoline and Diesel fuel. In order to produce methanol

Ling?feng Zhu; Qing?ling Zhao; Jing Chen; Le Zhang; Run?tao Zhang; Li?li Liu; Zhao?yue Zhang

2010-01-01T23:59:59.000Z

477

A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces  

Science Conference Proceedings (OSTI)

Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

Liu P.; Yang, Y.; White, M.G.

2012-01-12T23:59:59.000Z

478

Vapor--liquid equilibria of nitrogen, methane, ethane, and propane binary mixtures at LNG temperatures from total pressure measurements. [For use in design of equipment for storage and handling of LNG  

SciTech Connect

Vapor-liquid equilibrium data have been measured on four binary mixtures relative to the calculation of phase equilibria at temperatures of liquid natural gas. Measurements at -260/sup 0/F were made by a total pressure method for mixtures of nitrogen-methane, nitrogen-ethane, methane-ethane, and methane-propane. Interaction coefficients were derived for the P-V-T, Inc. Mark V computer program. Good agreement is found with literature data where comparisons can be made.

Wilson, G.M.

1975-01-01T23:59:59.000Z

479

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

480

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

DOE Green Energy (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane methanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Assessment of the risk of transporting propane by truck and train  

SciTech Connect

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

482

Conversion of ethane and of propane to higher olefin hydrocarbons  

DOE Green Energy (OSTI)

Purely thermal reactions for the conversion of ethane were carried out in an empty and in a quartz chip filled reactor over a temperature range of 300--800{degrees}C in the absence and presence of oxygen and oxygen plus water. Ethane alone shows no conversion below 600{degrees}C and some conversion to CH{sub 4} and very little C{sub 2}H{sub 4} at 700{degrees} and 800{degrees}C. Ethane and oxygen produce CO{sub 2} as the major product above 400{degrees}C. The additional presence of water does not appreciably change this picture. Converting ethane with oxygen and water over a Ca{sub 3}Ni{sub 1}K{sub 0.1} catalyst at very low space velocity gave increasing conversion with temperature, primarily CO{sub 2} production and a small amount of C{sub 3+} hydrocarbons. The CO{sub 2} production was decreased and slightly more C{sub 3} hydrocarbons were produced when the potassium concentration of the catalyst was increased. Activation energies have been calculated for the various ethane conversion reactions. It appears that the CaNiK oxide catalyst is not suited for oxidative ethane coupling at the conditions thus far investigated. The indications are that much shorter contact times are required to prevent oxidation of intermediates. Blank runs with propane and oxygen in the absence of a catalyst have shown significant reaction at temperatures as low as 400{degrees}C. 12 figs., 3 tabs.

Heinemann, H.; Somorjai, G.A.

1991-10-01T23:59:59.000Z

483

Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies  

DOE Green Energy (OSTI)

This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

2011-01-01T23:59:59.000Z

484

Investigation of the principle of flame rectification in order to improve detection of the propane flame in absorption refrigerators.  

E-Print Network (OSTI)

?? Electrical properties of a propane flame was investigated to improve detection of the flame in absorption refrigerators. The principle of flame rectification, which uses… (more)

Möllberg, Andreas

2005-01-01T23:59:59.000Z

485

A novel process for methanol synthesis. Final report  

DOE Green Energy (OSTI)

The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH -- the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.

Tierney, J.W.; Wender, I.

1994-01-25T23:59:59.000Z

486

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

487

Lifecycle Analyses of Biofuels  

E-Print Network (OSTI)

sulfur) ICEV, natural gas (CNG) ICEV, LPG (P95/BU5) ICEV,Methanol Ethanol Methane (CNG, LNG) Propane (LPG) Hydrogen (M85 (wood) Natural gas CNG (wood) Note: percentage changes

Delucchi, Mark

2006-01-01T23:59:59.000Z

488

No. 2 heating oil/propane program 1994--1995. Final report  

SciTech Connect

During the 1994--95 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1994 through March 1995. This program augmented the existing Massachusetts data collection system and served several important functions. The information helped the federal and state governments respond to consumer, congressional and media inquiries regarding No. 2 oil and propane. The information also provided policy decision-makers with timely, accurate and consistent data to monitor current heating oil and propane markets and develop appropriate state responses when necessary. In addition, the communication network between states and the DOE was strengthened through this program. This final report begins with an overview of the unique events that had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1994--95 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1995-05-01T23:59:59.000Z

489

Technical-economic assessment of the production of methanol from biomass. Assessment of biomass resource and methanol market. Final research report  

DOE Green Energy (OSTI)

Detailed information is presented on the following: feasibility of biomass feedstocks for methanol production, biomass availability and costs, potential demand for methanol from biomass, comparison of potential methanol demand and supply, and market penetration assessment. (MHR)

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

490

Homeowners: Respond to Natural Gas Disruptions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Disruptions Natural Gas Disruptions Homeowners: Respond to Natural Gas Disruptions Homeowners: Respond to Natural Gas Disruptions Because natural gas is distributed through underground pipelines, delivery disruptions occur less often than electrical outages. Severe storms, flooding, and earthquakes can expose and break pipes, however. When disruptions do occur, it can take weeks or even months to restore. Homeowners should take care in identifying and reporting any problems, as they may pose substantial risk to public health and safety. A break in a natural gas pipeline can lead to fires and/or explosions. Many of the following guidelines would apply if you detect a propane tank leak, as well. Contact your propane retailer or local fire department in an emergency. Detect a problem-A natural gas leak can be detected by smell,

491

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

DOE Green Energy (OSTI)

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

492

Supplemental Gas Supplies  

Gasoline and Diesel Fuel Update (EIA)

. . Supplemental Gas Supplies by State, 1996 (Million Cubic Feet) Table State Synthetic Natural Gas Propane- Air Refinery Gas Biomass Gas Other Total Alabama ...................... 0 18 0 0 0 18 Colorado...................... 0 344 0 0 a 6,443 6,787 Connecticut ................. 0 48 0 0 0 48 Delaware ..................... 0 1 0 0 0 1 Georgia........................ 0 94 0 0 0 94 Hawaii.......................... 2,761 0 0 0 0 2,761 Illinois .......................... 0 488 3,423 0 0 3,912 Indiana......................... 0 539 0 0 b 2,655 3,194 Iowa............................. 0 301 0 0 0 301 Kentucky...................... 0 45 0 0 0 45 Maine........................... 0 61 0 0 0 61 Maryland...................... 0 882 0 0 0 882 Massachusetts ............ 0 426 0 0 0 426 Michigan ...................... 0 0 0 0 c 21,848 21,848 Minnesota.................... 0 709 0 0 0 709 Missouri

493

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

Science Conference Proceedings (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

494

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

495

Quick-start catalyzed methanol partial oxidation reformer  

DOE Green Energy (OSTI)

The catalytic methanol partial oxidation reformer described in this paper offers all the necessary attributes for use in transportation fuel cell systems. The bench-scale prototype methanol reformer developed at Argonne is a cylindrical reactor loaded with copper zinc oxide catalyst. Liquid methanol, along with a small amount of water, is injected as a fine spray into a flowing air stream, past an igniter onto the catalyst bed where the partial oxidation reaction takes place.

Ahmed, S.; Kumar, R.

1995-12-01T23:59:59.000Z

496

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the project will be located. Some jurisdictions also have unique ordinances or regulations that could apply. Learn about codes and standards basics at www.afdc.energy.gov/afdc/codes_standards_basics.html. Find propane vehicle and infrastructure codes and standards in these categories:

497

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

498

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

499

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's...

500

Design on Elevated-Temperature and Methanol-Blocking Proton ...  

Science Conference Proceedings (OSTI)

Presentation Title, Design on Elevated-Temperature and Methanol-Blocking Proton Exchange Membrane for Fuel Cell Application. Author(s), Yan Xiang.