National Library of Energy BETA

Sample records for gas propane electricity

  1. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  2. 2013 Propane Market Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic propane prices will not fully delink from oil prices, and competition against electricity and natural gas in traditional propane markets will remain very challenging....

  3. QER- Comment of National Propane Gas Association

    Broader source: Energy.gov [DOE]

    Ladies and Gentlemen: Please find attached the QER comments of the National Propane Gas Association. Please feel to contact us if we can provide further information. Thank you for your attention to our submission.

  4. Southeast Propane AutoGas Development Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt065_ti_denbigh_2012_o.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program Texas Propane Vehicle Pilot Project

  5. National propane safety week caps fifth anniversary of GAS Check

    SciTech Connect (OSTI)

    Prowler, S.

    1990-09-01

    This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

  6. Southeast Propane AutoGas Development Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt065_ti_jenkins_2011_p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program State of Indiana/Greater IN Clean Cities Alternative Fuels Implementation Plan

  7. Southeast Propane AutoGas Development Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt065_christopher_2010_p.pdf More Documents & Publications Southeast Propane AutoGas Development Program Southeast Propane AutoGas Development Program Technology Integration Overview

  8. U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  9. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions (Conference) | SciTech Connect Conference: Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions Citation Details In-Document Search Title: Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  10. Gas-phase propane fuel delivery system

    SciTech Connect (OSTI)

    Clements, J.

    1991-04-30

    This patent describes a gas-phase fuel delivery system for delivering a vapor phase fuel independent of exterior temperatures. It comprises:a storage tank for storing a volume of fuel; a regulator in fluid communication with the tank for receiving fuel from the tank and for outputting the fuel in a vapor phase; a pressure sensor in fluid communication with the tank for monitoring pressure within the tank, the pressure sensor being operative to generate a pump enable signal when the pressure within the tank is less than a predetermined threshold; a pump in fluid communication with the tank.

  11. Propane-air peakshaving impact on natural gas vehicles. Topical report, August 1993-January 1997

    SciTech Connect (OSTI)

    Richards, M.E.; Shikari, Y.; Blazek, C.F.

    1997-01-01

    Propane-air peakshaving activities can lead to higher-than-normal propane levels in natural gas. Natural gas vehicle (NGV) fueling station operation and NGV performance can be affected by the presence of excess propane in natural gas. To assess the impact on NGV markets due to propane-air peakshaving, a comprehensive survey of gas utilities nationwide was undertaken to compile statistics on current practices. The survey revealed that about half of the responders continue to propane-air peakshave and that nearly two-thirds of these companies serve markets that include NGV fueling stations. Based on the survey results, it is estimated that nearly 13,000 NGVs could be affected by propane-air peakshaving activities by the year 2000.

  12. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  13. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  14. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis...

  15. Natural Gas Weekly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Independence Avenue, SW Washington, DC 20585 . Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  16. Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004. Award-winning accomplishments included KAT's increase in annual ridership

  17. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  18. Minnesota Valley Electric Cooperative -Residential Energy Resource...

    Broader source: Energy.gov (indexed) [DOE]

    installation Heat pump installation Heat pump with high efficient gas furnace Electric heating solutions to supplement propane heat Electric heat product installations (i.e....

  19. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    which summarizes the likely demand, supply, and prices for natural gas, heating oil, propane, and electricity during the upcoming winter (October 2004 - March 2005). According to...

  1. Propane Basics

    SciTech Connect (OSTI)

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  2. Propane Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels » Propane Fuel Basics Propane Fuel Basics July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG), or autogas, is a clean-burning, high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As

  3. Propane update

    U.S. Energy Information Administration (EIA) Indexed Site

    update March 23,2016 | Washington, DC (Inventory data as of 31816; residential heating ... Source: EIA, Weekly Petroleum Status Report, data through March 18, 2016 *propane...

  4. Public Service Electric & Gas | Open Energy Information

    Open Energy Info (EERE)

    Electric & Gas Jump to: navigation, search Name: Public Service Electric & Gas Place: Newark, NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  5. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  6. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    which summarizes the likely demand, supply, and prices for natural gas, heating oil, propane, and electricity during the upcoming winter (October 2004 - March 2005). According to...

  7. Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers Natural Gas Connection program to residential customers to switch from electric to natural gas for heat. The program waives connection charge (...

  8. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  9. (Electric and Gas) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    The Energize CT in coordination with participating utilities offers various rebates for energy efficient electric and natural gas equipment.  

  10. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  11. Baltimore Gas & Electric Company (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the energy efficiency of eligible homes. Rebates are available for ENERGY STAR clothes washers,...

  12. Baltimore Gas & Electric Company (Electric)- Commercial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Baltimore Gas and Electric (BGE) offers four different programs for its commercial customers for technical assistance, retrofitting inefficient equipment, purchasing new equipment, and combined...

  13. NIPSCO Prescriptive Electric and Natural Gas Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Prescriptive Natural Gas & Electric Program offers rebates to NIPSCO's large commercial, industrial, non-profit, governmental and institutional customers, who...

  14. Liquefied propane carburetor modification system

    SciTech Connect (OSTI)

    Batchelor, D.R.; Batchelor, W.H.

    1983-01-25

    A system which can be retrofit into an existing conventional gasoline powered vehicle for enabling the vehicle to operate on either gasoline or liquefied propane fuel. The system includes a mixer in the form of an adapter to fit on the top of an existing carburetor. The mixer has a unique spring balanced metering device which controls flow of gaseous propane to the carburetor in proportion to airflow through the carburetor. The mixer is connected to a regulator assembly which receives liquid propane in a first chamber, heats the liquid propane to form a vapor, and feeds the vapor through an idle valve to control idling of the engine. The vapor is also passed to a second chamber of the regulator assembly in response to demand from the metering device which is sensed by a diaphragm actuated gas flow valve. From the second chamber, the gaseous propane is fed to a high speed inlet of the mixer. Engine manifold vacuum is also used to provide additional control for the gas flow valve to increase efficiency of the system. Other features include a special purpose fuel tank and an optional exhaust system oxygen sensor for further regulating gas flow to the engine.

  15. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $2.30 per gallon, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region, which has the most households that use propane, averaged $1.89 a gallon. This is Marcela Rourk, with EIA, in Washington. The EIA has expanded its propane price survey to include 14 more states located mostly in the South and the West. The survey now looks at propane prices in 38

  16. Alternative Fuels Data Center: Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on

  17. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 8-tenths of a cent from last week, and down 44.4 cents

  18. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.29 per gallon, down 3.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.80 per gallon, down 2.4 cents from last week

  19. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.32 per gallon, down 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.82 per gallon, down 2.4 cents from last week. This is Marcela Rourk,

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.01 per gallon, up 1.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, up 9-tenths of a cent from last week, and down 44.8

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenth of a cent from last week, and down 43

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.03 per gallon, up 1 cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 9-tenths of a cent from last week, and down 40.7

  3. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.43 per gallon, up 1.3 cents from last week, and down 51.7

  4. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.97 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 7-tenths of a cent from last week, and down 50.

  5. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.44 per gallon, up 4-tenths of a cent from last week, and down 49.7

  6. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    propane prices available The average retail price for propane is $1.94 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon. This is Marcela Rourk, with EIA, in Washington.

  7. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.91 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.39 per gallon, up 1 cent from last week, and down 55.3

  8. Biomass Gas Electric LLC BG E | Open Energy Information

    Open Energy Info (EERE)

    Gas Electric LLC BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer...

  9. Hawaii Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    312015 Next Release Date: 01292016 Referring Pages: Natural Gas Delivered to Electric Power Consumers Hawaii Natural Gas Consumption by End Use Electric Power Consumption of...

  10. Pacific Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    PG&E) Jump to: navigation, search Name: Pacific Gas & Electric Co Abbreviation: PGE Place: California Service Territory: California Phone Number: 800-743-5002 Website: www.pge.com...

  11. EA-160 Rochester Gas and Electric Corporation | Department of Energy

    Energy Savers [EERE]

    60 Rochester Gas and Electric Corporation EA-160 Rochester Gas and Electric Corporation Order authorizing Rochester Gas and Electric Corporation to export electric energy to Canada. PDF icon EA-160 Rochester Gas and Electric Corporation More Documents & Publications EA-162 PP&L, Inc EA-159 Cincinnati

  12. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    Midwest and Northeast propane prices much higher this winter than last year Households that heat with propane will pay for that propane at prices averaging 39 percent higher in the Midwest and 14 percent higher in the Northeast this winter compared with last winter.....as much colder temperatures this winter boosts heating fuel demand. Midwest residential propane is expected to average $2.41 per gallon over the winter, while propane in the Northeast will average $3.43 per gallon, according to

  13. EA-159 Cincinnati Gas and Electric Corporation | Department of Energy

    Energy Savers [EERE]

    59 Cincinnati Gas and Electric Corporation EA-159 Cincinnati Gas and Electric Corporation Order authorizing Cincinnati Gas and Electric Corporation to export energy to Canada. PDF icon EA-159 Cincinnati Gas and Electric Corporation More Documents & Publications EA-162 PP&L, Inc EA-160 Rochester

  14. How to Read Residential Electric and Natural Gas Meters | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo...

  15. Comments of Baltimore Gas & Electric Company | Department of Energy

    Energy Savers [EERE]

    Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company BGE comments to DOE addressing policy and logistical challenges PDF icon Comments of Baltimore Gas & Electric Company More Documents & Publications NBP RFI: Data Access, Third Party Use and Privacy- Comments of Baltimore Gas & Electric Company NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company The Need for Essential Consumer Protections: Smart Metering Proposals

  16. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    SciTech Connect (OSTI)

    Rachel Henderson; Robert Fickes

    2007-12-31

    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

  17. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.92 per gallon, down 3-tenths of a cent from last week, and down 47.9 cents

  18. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.39 per gallon, up 3.9 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 8-tenths of a cent from last week, and down 63.1 cents

  19. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    propane price decrease The average retail price for propane is $2.37 per gallon, down 1.3 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down 3-tenths of a cent from last week, and down 39.6 cents

  20. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.38 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.91 per gallon, down 4-tenths of a cent from last week, and down $2.29 cents

  1. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.37 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.4 cents from last week, and down $1.93 cents

  2. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 4-tenths of a cent from last week, and down $1.67 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  3. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.89 per gallon, down 1.1 cents from last week, and down $1.43 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  4. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.35 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 3-tenths of a cent from last week, and down $1.18 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  5. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.36 per gallon, down 1.1 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.86 per gallon, down 1.6 cents from last week, and down 72.7 cents from a year ago. This is Marcela Rourk,

  6. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price decreases The average retail price for propane is $2.34 per gallon, down 1.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.85 per gallon, down 1.2 cents from last week, and down 63.2

  7. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    6, 2014 Residential propane price decreases The average retail price for propane fell to $3.48 per gallon, down 15.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.06 a gallon, down 24.8 cents from last week, but up $1.28 from a year ago. This is Marcela Rourk, with EIA, in Washington.

  8. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    05, 2014 Residential propane price decreases The average retail price for propane fell to $2.40 per gallon, down 1.2 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 8-tenths of a cent from last week, and down 1.9

  9. Residential propane price decreases

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.39 per gallon, down 2.2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 1.3 cents from last week, and down 17.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  10. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.00 per gallon, up 7-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 4-tenths of a cent from last week, and down 46.2

  11. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, up 7-tenths of a cent from last week, and down 43.3

  12. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.02 per gallon, up 4-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 2-tenths of a cent from last week, and down 41.9

  13. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price virtually unchanged The average retail price for propane is $2.03 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 1-tenths of a cent from last week, and down 39.8

  14. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.48 per gallon, down 6-tenths of a cent from last week, and down 40 cents

  15. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.03 per gallon, down 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.47 per gallon, down 6-tenths of a cent from last week, and down 41 cents

  16. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $2.36 per gallon, up half of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.88 per gallon, down 1-tenth of a cent from last week, and down 90.5

  17. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $2.02 per gallon, down 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, down 7-tenths of a cent from last week, and down 40 cents

  18. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane virtually unchanged The average retail price for propane is $2.02 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.46 per gallon, up 1-tenth of a cent from last week, and down 38.8

  19. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.96 per gallon, up 1.8 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 6-tenths of a cent from last week, and down 52.9 cents

  20. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $2.41 per gallon, up 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 2-tenths of a cent from last week, and down 12.7 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  1. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.98 per gallon, up 5-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 6-tenths of a cent from last week, and down 48.2

  2. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    propane price increases The average retail price for propane is $1.99 per gallon, up 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.45 per gallon, up 2-tenths of a cent from last week, and down 47.6

  3. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.91 per gallon, down 6.7 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.6 cents from last week, and down 49.5 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  4. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    1, 2015 Residential propane price increases The average retail price for propane is $1.90 per gallon, up 2-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.38 per gallon, up 1.1 cents from last week, and down 53 cents from a year ago. This is Marcela Rourk

  5. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    4, 2015 Residential propane price increases The average retail price for propane is $1.92 per gallon, up 1.4 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 2.6 cents from last week, and down 53.2

  6. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane price decreases The average retail price for propane is $1.92 per gallon, down 6-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.40 per gallon, down 1.2 cents from last week, and down 54.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  7. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    8, 2015 Residential propane price increases The average retail price for propane is $1.94 per gallon, up 2 cents from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.42 per gallon, up 1 cent from last week, and down 52.8 cents from a year ago.

  8. Residential propane prices decreases

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane prices decreases The average retail price for propane fell to $3.89 per gallon, that's down 11.9 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.83 a gallon, down 36.8 cents from last week, but up $2.05 from a year ago. This is Amerine Woodyard

  9. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.9 cents from a week ago to $2.80 per gallon. That's up 53.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.32 a gallon, up 3.8 cents from last week, and up 59

  10. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.5 cents from a week ago to $2.83 per gallon. That's up 56 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.36 a gallon, up 3.9 cents from last week, and up 62.3

  11. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose to $2.40 per gallon, up 1.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 a gallon, up 2.9 cents from last week, and up 2.6 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  12. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 5.5 cents per gallon from last week to $2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.11 per gallon, up 3.4 cents per gallon from last week, and up 39.6

  13. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 9.1 cents from a week ago to $2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.22 a gallon, up 11 cents from last week, and up 50.8 cents from a year ago

  14. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 4.8 cents from a week ago to $2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.28 a gallon, up 6.3 cents from last week, and up 56.4

  15. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane prices stable The average retail price for propane is $2.37 per gallon. That's down 4-tenths of a penny from a week ago, based on the U.S. Energy Information Administration's weekly residential heating fuel survey. Propane prices in the Midwest region averaged $1.89 a gallon. Down 2-tenths of a cent from last week. This is Amerine Woodyard, with EIA, in Washington.

  16. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases The average retail price for propane is $2.40 per gallon, down 9-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from . last week, and down 8.7 cents from a year ago This is Marcela Rourk, with EIA, in Washington.

  17. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    5, 2014 Residential propane price decreases The average retail price for propane fell to $3.30 per gallon, down 17.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.78 a gallon, down 27.9 cents from last week, but up 99.3

  18. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price decreases The average retail price for propane fell to $3.17 per gallon, down 13.1 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.60 a gallon, down 18.5 cents from last week, but up 88.1

  19. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    9, 2014 Residential propane price decreases The average retail price for propane fell to $3.08 per gallon, down 8.6 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.48 a gallon, down 10.7 cents from last week, but up 69.7

  20. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  1. Auto propane -- Some technical considerations

    SciTech Connect (OSTI)

    1998-12-31

    This booklet reviews some of the facts about propane as a vehicle fuel. It describes propane fuel properties, propane vehicle fuel systems and their components, propane vehicles and engines obtainable as original equipment from the vehicle manufacturer, after-market propane fuel system installations, propane vehicle operational characteristics, propane-fueled vehicle maintenance, government regulations and safety measures related to propane vehicles, and the environmental benefits of propane and propane-fueled vehicles. The final sections discuss the economics of propane vehicle ownership and the factors to be considered when estimating annual or lifetime savings or payback periods. Appendices include a directory of information sources, a sample worksheet for calculating payback, and examples of success stories relating the positive experiences of vehicle fleets with propane fueling.

  2. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy costs, (2) lower building peak electric load, (3) increase energy efficiency, and (4) provide standby power. This new hybrid product is designed to allow the engine to generate electricity or drive the chiller's compressor, based on the market price and conditions of the available energy sources. Building owners can minimize cooling costs by operating with natural gas or electricity, depending on time of day energy rates. In the event of a backout, the building owner could either operate the product as a synchronous generator set, thus providing standby power, or continue to operate a chiller to provide air conditioning with support of a small generator set to cover the chiller's electric auxiliary requirements. The ability to utilize the same piece of equipment as a hybrid gas/electric chiller or a standby generator greatly enhances its economic attractiveness and would substantially expand the opportunities for high efficiency cooling products.

  3. NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric

    Office of Environmental Management (EM)

    Company | Department of Energy Baltimore Gas & Electric Company NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company Comments of Baltimore Gas & Electric Company on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy PDF icon NBP RFI: Communications Requirements- Comments of Baltimore Gas & Electric Company More Documents & Publications Comments of

  4. Requirements for Petitions to Construct Electric and Gas Facilities...

    Open Energy Info (EERE)

    requirements for petitions to construct electric generation, electric transmission, and natural gas facilities pursuant to 30 V.S.A. 248. In addition, the rule clarifies...

  5. West Virginia Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) West Virginia Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. Wisconsin Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Wisconsin Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  7. Kentucky Natural Gas Deliveries to Electric Power Consumers ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  8. Minnesota Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  9. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  10. State heating oil and propane program. Final report, 1996--1997

    SciTech Connect (OSTI)

    Hunton, G.

    1997-08-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  11. Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle

    SciTech Connect (OSTI)

    1995-07-01

    On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

  12. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  13. Bath Electric Gas & Water Sys | Open Energy Information

    Open Energy Info (EERE)

    Electric Gas & Water Sys Jump to: navigation, search Name: Bath Electric Gas & Water Sys Place: New York Phone Number: (607) 776-3072 Website: www.villageofbath.orgBEGWS.ht Outage...

  14. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 3.2 cents from a week ago to $2.86 per gallon. That's up 59.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 2.40 a gallon, up 3.2 cents from last week, and up 65.8 cents from a year ago. This is Marcela Rourk, with EIA, in Washington.

  15. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 10.3 cents from a week ago to $2.96 per gallon. That's up 68.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest single week increase since the heating season started in October. Propane prices in the Midwest region averaged 2.55 a gallon, up 14.9 cents from last week, and up 79.1 cents from a year ago. This is Marcela Rourk, with EIA, in

  16. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    propane prices increase The average retail price for propane rose 2.3 cents per gallon from last week to $2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price for propane in the Midwest region averaged 2.08 per gallon, up 2.4 cents per gallon from last week, and up 36.9 cents from a year earlier. This is Marlana Anderson, with EIA, in Washington.

  17. Residential propane prices surges

    Gasoline and Diesel Fuel Update (EIA)

    propane prices surges The average retail price for propane rose to an all-time high of $4.01 a gallon, that's up $1.05 from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. This is the largest weekly increase since the survey began in 1990. Propane prices in the Midwest region averaged 4.20 a gallon, up $1.66 from last week, and up $2.43 from a

  18. Interdependence of Electricity System Infrastructure and Natural Gas

    Energy Savers [EERE]

    Infrastructure - EAC 2011 | Department of Energy Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Recommendations from the Electricity Advisory Committee on actions to be taken by the Department of Energy given the interdependence of the Nation's electric infrastructure and natural gas infrastructure. PDF icon EAC - Interdependence of Electricity System

  19. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    The Anaerobic Digester Gas-to-Electricity program is designed to support small-sized electricity generation where the energy generated is used primarily at the electric customer's location (third...

  20. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-06-15

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.

  1. Electrical swing adsorption gas storage and delivery system

    DOE Patents [OSTI]

    Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  2. Workplace Charging Challenge Partner: Pacific Gas & Electric Company |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company Workplace Charging Challenge Partner: Pacific Gas & Electric Company In keeping with its strong support for clean transportation, PG&E employees now have an opportunity to charge plug-in electric vehicles (PEVs) at seven locations, including the main office in San Francisco, Oakland airport, several sites in San Ramon, and one in San Luis Obispo starting

  3. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  4. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  5. Vermont Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Vermont Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  6. Alaska Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Alaska Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  7. Maine Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Maine Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  8. Iowa Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Iowa Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  9. Florida Natural Gas Deliveries to Electric Power Consumers (Million...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Florida Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

  10. Residential propane price decreases slightly

    Gasoline and Diesel Fuel Update (EIA)

    propane price decreases slightly The average retail price for propane is $2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.93 per gallon, down one cent from last week, and down 35.5

  11. Holyoke Gas & Electric- Residential Energy Conservation Loan Program

    Broader source: Energy.gov [DOE]

    The Holyoke Gas & Electric (HG&E) Residential Energy Conservation Program provides residential customers with loans to help make energy saving improvements to eligible homes. The loan...

  12. San Diego Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    Company) Jump to: navigation, search Name: San Diego Gas & Electric Co Place: San Diego, California Service Territory: California Website: www.sdge.com Green Button Access:...

  13. Mid-South Metallurgical Makes Electrical and Natural Gas System...

    Broader source: Energy.gov (indexed) [DOE]

    University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace...

  14. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  15. Holyoke Gas & Electric- Commercial Energy Conservation Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Holyoke Gas & Electric's Commercial Energy Conservation Program offers zero interest loans to its commercial customers who are making energy efficiency improvements to facilities. The...

  16. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  17. Holyoke Gas & Electric - Commercial Energy Efficiency Loan Program...

    Broader source: Energy.gov (indexed) [DOE]

    Utility Administrator Holyoke Gas and Electric Department Website http:www.hged.comhtmlincentiveprograms.htmlCommercialAssist State Massachusetts Program Type Loan...

  18. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"Hawaii Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  20. ,"North Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  1. ,"West Virginia Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  2. ,"New Hampshire Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  3. ,"Rhode Island Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  4. ,"New York Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  5. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  6. ,"New Jersey Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  7. ,"New York Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  8. ,"Indiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  9. ,"South Carolina Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  10. ,"Connecticut Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  11. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  12. ,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  13. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  14. ,"Rhode Island Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  15. ,"Colorado Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  16. ,"Maryland Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  17. ,"West Virginia Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  18. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. ,"Alaska Natural Gas Price Sold to Electric Power Consumers ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  20. ,"New Jersey Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  1. ,"South Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  2. ,"New Hampshire Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  3. ,"North Carolina Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  4. Pacific Gas and Electric Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: Pacific Gas and Electric Company Address: PO Box 770000 Place: San Francisco Zip: 94177 Region: United States Sector: Marine and...

  5. Gas storage and separation by electric field swing adsorption

    DOE Patents [OSTI]

    Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

    2013-05-28

    Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

  6. Alternative Fuels Data Center: Propane Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share

  7. Alternative Fuels Data Center: Propane Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production &

  8. Alternative Fuels Data Center: Propane Benefits

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics

  9. Alternative Fuels Data Center: Propane Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find

  10. Case Study - Propane School Bus Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  11. Texas Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane-Air 1981-2005 Refinery Gas 1981-2005 Other 1999-2005

  12. RECS Propane Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457D OMB No. 1905-0092 Expires 1/31/13 2009 RECS Propane (Bottled Gas or LPG) Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / /

  13. Availability of Canadian imports to meet U.S. demand for ethane, propane and butane

    SciTech Connect (OSTI)

    Hawkins, D.J.

    1996-12-31

    Historically, Canada has had a surplus of ethane, propane and butane. Almost all of the available propane and butane in Canadian natural gas streams is recovered. While there is significant ethane recovery in Canada, ethane that cannot be economically sold is left in the gas streams. All of the surplus Canadian ethane and most of the Canadian surplus propane and butane is exported to the US. Some volumes of Canadian propane and butane have been moved offshore by marine exports to the Asia-Pacific region or South America, or directly to Mexico by rail. Essentially all of the Canadian ethane, 86% of the propane and 74% of the butane are recovered by gas processing. Canadian natural gas production has increased significantly over the last 10 years. Canadian gas resources in the Western Canadian Sedimentary Basin should permit further expansion of gas exports, and several gas pipeline projects are pending to expand the markets for Canadian gas in the US. The prospective increase in Canadian gas production will yield higher volumes of ethane, propane and butane. While there is a potential to expand domestic markets for ethane, propane and butane, a significant part of the incremental production will move to export markets. This paper provides a forecast of the expected level of ethane, propane and butane exports from Canada and discusses the supply, demand and logistical developments which may affect export availability from Canada.

  14. Residential propane price is unchanged

    Gasoline and Diesel Fuel Update (EIA)

    13, 2014 Residential propane price is unchanged The average retail price for propane is $2.40 per gallon, down one-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, down 7-tenths of a cent from last week, and down 6

  15. EA-137 NYSEG New York State Electric and Gas Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-137 NYSEG New York State Electric and Gas Corporation EA-137 NYSEG New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to...

  16. PP-79 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 San Diego Gas & Electric Company PP-79 San Diego Gas & Electric Company Presidential Permit authorize San Diego Gas & Electric Company to construct, operate, and maintain transmission facilities at the U.S. - Mexico Border. PDF icon PP-79 San Diego Gas & Electric Company More Documents & Publications PP-49-1 San Diego Gas & Electric Company PP-68-2 San Diego Gas & Electric Company PP-48-3 El Paso Eelctric

  17. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: U.S. Dollars per Physical Units. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than

  18. Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than NAICS Total

  19. Method for minimizing contaminant particle effects in gas-insulated electrical apparatus

    DOE Patents [OSTI]

    Pace, M.O.; Adcock, J.L.; Christophorou, L.G.

    1984-01-01

    Electrical breakdown of a gas insulator in high voltage apparatus is prevented by placing an electrical insulative coating on contaminant particles in the gas insulator.

  20. San Diego Gas and Electric | OpenEI Community

    Open Energy Info (EERE)

    Graham7781(2017) Super contributor 16 January, 2013 - 11:09 SDG&E Customers Can Connect Home Area Network Devices With Smart Meters OpenEI San Diego Gas and Electric Smart Meters...

  1. ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 10:57:50 AM" "Back to Contents","Data 1: Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  2. Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas and Electric (LGE) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps...

  3. VEA-0008- In the Matter of Cincinnati Gas & Electric Company

    Broader source: Energy.gov [DOE]

    This Decision and Order considers an Appeal filed by Cincinnati Gas & Electric Company (CG&E) from a determination issued on December 8, 1997, by the Office of Energy Efficiency and...

  4. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  5. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane

  6. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  7. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on

  8. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance PDF icon deer11_meisner.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  9. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635

  10. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Broader source: Energy.gov (indexed) [DOE]

    miles of transmission lines, 72,000 miles of distribution lines, and 6,300 miles of natural gas pipelines. Our over 8,600 employees are committed to our mission to deliver...

  11. Case Study … Propane School Bus Fleets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane ................................................................................................................................... 4 Financial Benefits ........................................................................................................................................................... 4 Environmental and Energy Benefits ........................................................................................................................... 6 Project-Specific

  12. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  13. Propane Market Assessment for Winter

    Reports and Publications (EIA)

    1997-01-01

    1997-1998 Final issue of this report. This article reviews the major components of propane supply and demand in the United States and their status entering the 1997-1998 heating season.

  14. Propane Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles » Propane Vehicle Basics Propane Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 147,000 on-road propane vehicles in the United States. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce fewer harmful emissions. The availability of new light- and medium-duty propane vehicles has surged in

  15. QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Denver, CO: Gas-Electricity Interdependencies QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies Meeting Date and Location July, 28 2014 - 9:00 AM MDT Metropolitan State University of Denver Auraria Campus - St. Cajetan's Center 1190 9th Street Denver, CO 80204 Click Here to view the live stream of this public meeting begining at 9:00 AM MDT Meeting Information Federal Register Notice Agenda (See link below to download PDF) Background Memo (See link

  16. District of Columbia Natural Gas Deliveries to Electric Power Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Million Cubic Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) District of Columbia Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008

  17. PP-49-1 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9-1 San Diego Gas & Electric Company PP-49-1 San Diego Gas & Electric Company Presidential Permit authorizing San Diego Gas & Electric Company to construct, operate, and maintain electric transmission facilities at the U.S. - Mexico Border. PDF icon PP-49-1 San Diego Gas & Electric Company More Documents & Publications PP-79 San Diego Gas & Electric Company PP-68-2 San Diego Gas & Electric Company PP-48-3 El Paso Eelctric

  18. PP-68-2 San Diego Gas & Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8-2 San Diego Gas & Electric Company PP-68-2 San Diego Gas & Electric Company Presidential Permit authorizes San Diego Gas & Electric Company to construct, operate, and maintain electric transmissison facilities at the U.S. - Mexico Border. PDF icon PP-68-2 San Diego Gas & Electric Company More Documents & Publications PP-49-1 San Diego Gas & Electric Company PP-79 San Diego Gas & Electric Company PP-48-3 El Paso Eelctric Company

  19. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon

    SciTech Connect (OSTI)

    Milkov, Alexei V.; Claypool, G E.; Lee, Young-Joo; Torres, Marta E.; Borowski, W S.; Tomaru, H; Sassen, Roger; Long, Philip E.

    2004-07-02

    The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge Offshore Oregon (ODP Sites 1244, 1245 and 1247).

  20. EA-137-A New York State Electric and Gas Corporation | Department of Energy

    Energy Savers [EERE]

    -A New York State Electric and Gas Corporation EA-137-A New York State Electric and Gas Corporation Order authorizing New York State Electric and Gas Corporation to export electric energy to Canada. PDF icon EA-137-A New York State Electric and Gas Corporation More Documents & Publications EA-157-A Consolidated Edison Company of New York, Inc EA-227-A New York Independent System Operator EA-345-A New Brunswick Energy Marketing Corporation

  1. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas...

  2. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Users Q1: Why are data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey is to collect prices for these fuels as they are used for heating purposes. For the purposes of the survey, the winter heating season extends from October through March. However, EIA does publish spot prices for heating oil and propane throughout the year. In addition, some State Energy Offices

  3. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs for Respondents Q1: What is the purpose of this survey? The U.S. Energy Information Administration (EIA) Form EIA-877, "Winter Heating Fuels Telephone Survey," is designed to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No. 2 heating oil during the heating season, and to report to the Congress and others when requested. Q2: How does the survey work? The

  4. Propane - A Mid-Heating Season Assessment

    Reports and Publications (EIA)

    2001-01-01

    This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

  5. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  6. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  7. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection ...

  8. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Reports and Publications (EIA)

    2001-01-01

    This report addresses the potential impact of rotating electrical outages on petroleum product and natural gas supply in California.

  9. Microsoft Word - Gas-Electricity Briefing Memo 072414 FINAL

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Washington, DC 20585 Date: July 24, 2014 To: Members of the Public From: Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, United States Department of Energy Re: July 28 Stakeholder Meeting on Natural Gas - Electricity Interdependence 1. Introduction On January 9, 2014, President Obama issued a Presidential Memorandum establishing a Quadrennial Energy Review (QER). The Secretary of Energy provides support to the QER Task

  10. State Heating Oil and Propane Program Expansion of Propane Data Collection

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Expansion of Propane Data Collection Marcela Rourk April 14, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC April 14, 2014 2 * Overview and history of State Heating Oil and Propane Program (SHOPP) * Expansion of propane data collection * What is expected of SEOs that participate? * Benefits of participation What is SHOPP? Marcela Rourk, Washington, DC April 14, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data

  11. Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector

    Broader source: Energy.gov [DOE]

    This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use.

  12. EERE Success Story-Nationwide: Southeast Propane Autogas Development

    Energy Savers [EERE]

    Program Brings 1200 Propane Vehicles to the Road | Department of Energy Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road EERE Success Story-Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road February 10, 2014 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to

  13. Nationwide: Southeast Propane Autogas Development Program Brings 1200

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane Vehicles to the Road | Department of Energy Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road February 10, 2014 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013.

  14. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements PDF icon deer11_johnson.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions

  15. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  16. Table 7.7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  17. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Louisiana Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 14,443 11,997 14,142 21,746 20,692 21,707 32,832 38,346 25,901 19,391 10,270 11,549 2002 20,006 19,396 24,864 27,662 28,456 34,039 40,542 41,790 32,420 23,674 16,204 14,750 2003 19,955 15,360 14,860 18,716 20,153 22,791 26,663 28,685 20,590 18,689 15,461 14,484 2004 17,038 17,344 19,280

  19. Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Kansas Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 754 698 1,011 922 1,178 1,864 7,234 5,034 1,476 1,137 1,096 863 2002 883 776 1,531 957 755 2,829 5,491 4,045 1,984 683 781 672 2003 801 700 976 716 791 1,107 2,804 3,758 738 533 775 789 2004 406 361 533 787 636 1,212 902 1,827 2,267 662 440 442 2005 707 621 682 865 1,011 1,814 2,632 2,083

  20. Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Missouri Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 485 658 1,414 2,191 2,151 3,045 6,959 7,272 2,925 2,000 1,841 1,864 2002 1,904 1,622 2,117 2,584 1,530 3,437 6,710 5,248 3,221 543 576 418 2003 1,631 669 810 2,434 1,315 1,287 5,317 6,247 809 112 476 671 2004 1,676 1,666 936 1,570 3,470 2,644 3,916 2,985 3,072 1,133 592 914 2005 1,600 1,015

  1. Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2 1 5 2 9 20 62 48 5 3 2 2 2002 2 1 1 1 12 35 29 20 10 1 1 4 2003 7 20 21 2 11 37 26 63 11 15 11 34 2004 16 16 16 16 16 16 16 16 16 16 16 16 2005 13 11 14 14 13 24 32 32 19 14 12 15 2006 7 8 12 8 11 68 114 101 59 68 44 44 2007 73 60 49 58 83 99 119 118 102 87 73 79 2008 65 38 26 43 46 48 27

  2. Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Maryland Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 369 496 1,321 862 1,062 1,330 2,607 4,377 2,319 1,555 525 698 2002 573 490 607 1,253 843 1,972 4,207 6,572 2,957 1,098 769 932 2003 811 691 439 732 630 1,740 1,851 1,639 680 548 609 624 2004 691 523 490 770 1,891 1,669 1,400 1,334 1,184 579 718 796 2005 813 673 731 693 827 2,767 3,162 4,809

  3. Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Massachusetts Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,015 4,464 6,921 4,553 6,846 8,389 8,716 11,433 11,686 10,562 8,428 9,281 2002 10,482 6,633 9,702 6,925 10,459 10,846 13,254 14,505 13,386 11,693 9,628 11,339 2003 8,619 8,909 9,871 13,235 11,504 15,307 19,958 19,177 16,909 18,511 14,243 13,008 2004 11,387 10,037 13,270 17,193

  4. Electricity production levelized costs for nuclear, gas and coal

    Office of Scientific and Technical Information (OSTI)

    Levelized costs for nuclear, gas and coal for Electricity, under the Mexican scenario. Javier C. Palacios, Gustavo Alonso, Ramón Ramírez, Armando Gómez, Javier Ortiz, Luis C. Longoria. Instituto Nacional de Investigaciones Nucleares México palacios@nuclear.inin.mx, galonso@nuclear.inin.mx . ABSTRACT In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and

  5. Energy Cost Calculator for Electric and Gas Water Heaters | Department of

    Office of Environmental Management (EM)

    Energy Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of

  6. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  7. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  8. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  9. Residential propane price continues to decrease

    Gasoline and Diesel Fuel Update (EIA)

    2, 2014 Residential propane price continues to decrease The average retail price for propane fell to $3.76 per gallon, down 13.4 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.54 a gallon, down 28.5 cents from last week, but up $1.76 from a year ago. This is Marcela Rourk,

  10. Residential propane price continues to decrease

    Gasoline and Diesel Fuel Update (EIA)

    0, 2014 Residential propane price decreases The average retail price for propane fell to $3.64 per gallon, down 12.7 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged 3.31 a gallon, down 24.5 cents from last week, but up $1.53 from a year ago. This is Marcela Rourk,

  11. Residential propane price decreases slightly decreases slightly

    Gasoline and Diesel Fuel Update (EIA)

    7, 2014 Residential propane price decreases slightly The average retail price for propane is $2.38 per gallon, down 3-tenths of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.94 per gallon, the same price as last week, and down 28.1 cents from a year ago. This is Marcela Rourk

  12. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry

  13. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  14. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  15. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  16. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 12, 2015 October 15, 2015 Thursday 1:00 p.m. Columbus November 9, 2015 November 12, 2015 Thursday 1:00 p.m.

  17. Table 7.3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 20

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Prices of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  18. Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  19. Table N8.3. Average Prices of Purchased Electricity, Natural Gas, and Steam,

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Average Prices of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: U.S. Dollars per Physical Units." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  20. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  1. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  2. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  3. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  4. Midwest Energy (Gas and Electric)- How$mart Energy Efficiency Finance Program

    Broader source: Energy.gov [DOE]

    Midwest Energy offers its residential and small commercial electricity and natural gas customers in good standing a way to finance energy efficiency improvements on eligible properties. Under the...

  5. Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Shortage in California: Issues for Petroleum and Natural Gas Supply 1. Summary 2. Electricity Reliability Issues in California 3. Petroleum Refineries 4. Constraints Outside the Refinery Gate 5. Petroleum Product Prices and Supply Disruptions 6. Natural Gas 7. End Notes 8. Contacts 1. Summary Industry electric reliability organizations, the California Energy Commission, and the California Independent System Operator, expect California to be subject to rotating electricity outages in

  6. To: U.S. Department of Energy From: San Diego Gas & Electric Company

    Energy Savers [EERE]

    Via email To: U.S. Department of Energy From: San Diego Gas & Electric Company Date: October 17, 2014 Comments of San Diego Gas & Electric Company on the Department of Energy's National Electric Transmission Congestion Study - Draft for Public Comment I. Introduction On August 19, 2014, the Department of Energy ("Department") issued a Notice 1 inviting public comment on the draft National Electric Transmission Congestion Study. 2 The Draft Study is the third congestion study

  7. Alternative Fuels Data Center: Propane Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Propane Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Delicious Rank Alternative Fuels Data Center:

  8. Alternative Fuels Data Center: Airport Shuttles Run on Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Airport Shuttles Run on Propane to someone by E-mail Share Alternative Fuels Data Center: Airport Shuttles Run on Propane on Facebook Tweet about Alternative Fuels Data Center: Airport Shuttles Run on Propane on Twitter Bookmark Alternative Fuels Data Center: Airport Shuttles Run on Propane on Google Bookmark Alternative Fuels Data Center: Airport Shuttles Run on Propane on Delicious Rank Alternative Fuels Data Center: Airport Shuttles Run on Propane on Digg Find More places to share Alternative

  9. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in

  10. Alternative Fuels Data Center: Propane Powers Fleets Across the Nation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Powers Fleets Across the Nation to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Fleets Across the Nation on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Fleets Across the Nation on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Fleets Across the Nation on Google Bookmark Alternative Fuels Data Center: Propane Powers Fleets Across the Nation on Delicious Rank Alternative Fuels Data Center: Propane Powers Fleets Across the

  11. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg

  12. Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Colorado Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,024 6,704 8,509 7,506 6,875 7,181 8,212 7,998 6,696 8,071 5,554 6,624 2002 5,071 4,419 7,141 6,739 5,962 7,198 8,964 7,515 6,242 7,059 5,672 6,190 2003 6,527 6,160 5,955 4,403 5,813 4,759 9,648 10,010 6,344 5,751 6,145 6,380 2004 6,382 5,235 4,767 5,363 6,967 6,707 9,675 7,902 6,481 7,046

  13. Connecticut Natural Gas Deliveries to Electric Power Consumers (Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Connecticut Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,038 1,552 2,452 614 1,179 1,891 2,476 4,089 5,913 4,880 2,279 3,798 2002 4,423 3,978 4,703 3,922 5,828 5,560 7,982 8,302 7,282 4,687 4,165 4,227 2003 2,459 2,060 4,165 3,486 3,226 2,869 3,891 4,415 4,211 3,757 4,363 3,666 2004 2,696 3,977 3,888 4,214 5,821 5,783 6,418 6,918 6,399

  14. Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.91 2.62 3.09 3.32 3.51 3.41 3.43 3.44 3.72 3.86 4.23 5.03 2003 5.35 6.65 6.64 5.48 W 5.83 5.46 5.02 4.99 5.04 4.89 6.22 2004 10.06 6.26 6.02 6.05 6.51 6.66 6.44 6.04 5.39 6.39 6.69 7.46 2005 8.70 6.99 7.70 7.82 7.33 7.83 8.31 10.00 12.87

  15. GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open...

    Open Energy Info (EERE)

    FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE:...

  16. Heating Oil and Propane Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. ...

  17. How to Read Residential Electric and Natural Gas Meters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How to Read Residential Electric and Natural Gas Meters How to Read Residential Electric and Natural Gas Meters An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha An electromechanical electric meter on the side of a house. | Photo courtesy of ©iStockphoto/epantha A digital electric meter on the side of a house. | Photo courtesy of ©iStockphoto/nbehmans A digital electric meter on the side of a house. | Photo courtesy of

  18. Gas-Fired Boilers and Furnaces | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    natural gas meter. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels....

  19. San Diego Gas & Electric Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Diego Gas & Electric Video (Text Version) San Diego Gas & Electric Video (Text Version) Narrator: Having a workplace charging stations is a great way to encourage employees to switch to electric vehicles but there are a few things you may want to consider. There are several companies offering charging equipment and there's a wide range of costs but generally the faster the system charges the higher the cost. Time of day also affects charging costs and it's important to understand how

  20. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

  1. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  2. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T. (Cottage Grove, MN); Gilbert, James R. (Maplewood, MN)

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  3. QER- Comment of Propane Education & Research Council

    Broader source: Energy.gov [DOE]

    I plan to attend and ask a question of the Secretary regarding propane supply for the upcoming winter. Please do not hesitate to call or email if you have questions. Tucker Perkins

  4. This Week In Petroleum Propane Section

    Gasoline and Diesel Fuel Update (EIA)

    Residential propane prices (dollars per gallon) Average Regional U.S. residential propane prices graph Regional residential propane prices graph Residential propane prices (dollars per gallon) more price data › Year ago Most recent 03/16/15 03/14/16 03/07/16 02/29/16 02/22/16 02/15/16 02/08/16 02/01/16 Average 2.342 2.021 2.020 2.026 2.028 2.034 2.032 2.022 East Coast (PADD 1) 3.042 2.763 2.761 2.766 2.760 2.768 2.768 2.750 New England (PADD 1A) 3.094 2.811 2.799 2.793 2.770 2.771 2.760 2.746

  5. Alternative Fuels Data Center: Federal Laws and Incentives for Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Propane to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for

  6. Alternative Fuels Data Center: Maine Fleets Make Progress with Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maine Fleets Make Progress with Propane to someone by E-mail Share Alternative Fuels Data Center: Maine Fleets Make Progress with Propane on Facebook Tweet about Alternative Fuels Data Center: Maine Fleets Make Progress with Propane on Twitter Bookmark Alternative Fuels Data Center: Maine Fleets Make Progress with Propane on Google Bookmark Alternative Fuels Data Center: Maine Fleets Make Progress with Propane on Delicious Rank Alternative Fuels Data Center: Maine Fleets Make Progress with

  7. Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    out Greener Future Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses

  8. Alternative Fuels Data Center: Propane Buses Save Money for Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data

  9. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  10. Alternative Fuels Data Center: Propane Mowers Help National Park Cut

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative

  11. Alternative Fuels Data Center: Propane Powers Airport Shuttles in New

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Orleans Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels

  12. Alternative Fuels Data Center: Propane Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to

  13. Alternative Fuels Data Center: Propane School Buses Launched in Gloucester

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    County Schools Propane School Buses Launched in Gloucester County Schools to someone by E-mail Share Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Facebook Tweet about Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Twitter Bookmark Alternative Fuels Data Center: Propane School Buses Launched in Gloucester County Schools on Google Bookmark Alternative Fuels Data Center: Propane School Buses Launched

  14. Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Company Rolling Propane Vans Keep Kansas City Transportation Company Rolling to someone by E-mail Share Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Facebook Tweet about Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Twitter Bookmark Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation Company Rolling on Google Bookmark Alternative Fuels Data Center: Propane Vans Keep

  15. Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data

  16. Madison Gas & Electric- Clean Power Partner Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Annual green energy purchases must be at least as large as the AC output of the PV system. This arrangement requires that the customer have two electricity meters: one to measure electricity...

  17. Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector

    Broader source: Energy.gov [DOE]

    This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this analysis, the U.S. Department of Energy commissioned Deloitte MarketPoint to examine scenarios in its North American Integrated Model (NAIM), which simultaneously models the electric power and the natural gas sectors. This study concludes that, under scenarios in which natural gas demand from the electric power sector increases, the incremental increase in interstate natural gas pipeline expansion is modest, relative to historical capacity additions. Similarly, capital expenditures on new interstate pipelines in the scenarios considered here are projected to be significantly less than the capital expenditures associated with infrastructure expansion over the last 15 years.

  18. TEA-0013 - In the Matter of Madison Gas and Electric Company | Department

    Energy Savers [EERE]

    of Energy 3 - In the Matter of Madison Gas and Electric Company TEA-0013 - In the Matter of Madison Gas and Electric Company This Decision and Order considers an Appeal filed by the Madison Gas and Electric Company (MGE) from a determination issued on September 17, 2009, on behalf of the Assistant Secretary for Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under the provisions of 10 C.F.R. Part 490. In its determination, EE denied a request filed by MGE for

  19. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  20. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  1. Low Interest Energy Efficiency Loan Program (Electric and Gas)

    Broader source: Energy.gov [DOE]

    Energize CT offers low interest loans for commercial and industrial customers for investments in energy efficiency improvements. Electric customers of Connecticut Light & Power, United...

  2. Madison Gas and Electric Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    installation of advanced metering infrastructure (AMI), deployment of a new distribution management system, and installation of electric vehicle charging stations. These...

  3. EA-137 NYSEG New York State Electric and Gas Corporation | Department...

    Office of Environmental Management (EM)

    New York State Electric and Gas Corporation More Documents & Publications EA-220-A NRG Power Marketing, Inc EA-232 OGE Energy Resources Inc EA-122-A Dynegy Power Marketing,...

  4. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Broader source: Energy.gov [DOE]

    The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300º F) geothermal resources in oil and gas settings.

  5. ,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12292015 2:58:40 AM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

  6. QER Public Meeting in Denver, CO: Gas-Electricity Interdependencies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President and CEO, Public Service Company of Colorado - Written Statement PDF icon Curtis Moffatt, Deputy General Counsel and Vice President - Gas Legal, Kinder Morgan, Inc. -...

  7. "Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)"

  8. Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Energy Use and Achieve Cost Savings | Department of Energy Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at

  9. DOE/EA-1752 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC COMPANY (PG&E) COMPRESSED AIR ENERGY STORAGE (CAES) COMPRESSION TESTING PHASE PROJECT, SAN JOAQUIN COUNTY, CALIFORNIA U.S. Department of Energy National Energy Technology Laboratory May 2014 DOE/EA-1752 FINAL ENVIRONMENTAL ASSESSMENT FOR THE PACIFIC GAS AND ELECTRIC COMPANY (PG&E) COMPRESSED AIR ENERGY STORAGE (CAES) COMPRESSION TESTING PHASE PROJECT, SAN JOAQUIN COUNTY, CALIFORNIA U.S. Department of Energy National

  10. Electricity price impacts of alternative Greenhouse gas emission cap-and-trade programs

    SciTech Connect (OSTI)

    Edelston, Bruce; Armstrong, Dave; Kirsch, Laurence D.; Morey, Mathew J.

    2009-07-15

    Limits on greenhouse gas emissions would raise the prices of the goods and services that require such emissions for their production, including electricity. Looking at a variety of emission limit cases and scenarios for selling or allocating allowances to load-serving entities, the authors estimate how the burden of greenhouse gas limits are likely to be distributed among electricity consumers in different states. (author)

  11. Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",,"

  12. Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",,"

  13. Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, April 2014 | Department of Energy Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 The University of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green & Abrahamson (HGA), integrated a biomass gasifier and a reciprocating engine generator

  14. Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector

    Broader source: Energy.gov (indexed) [DOE]

    Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page i Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector U.S. Department of Energy Page iii Table of Contents Executive Summary ....................................................................................................................................... v 1. Introduction

  15. District of Columbia Natural Gas Price Sold to Electric Power Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Dollars per Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- -- -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- --

  16. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  17. Propane-induced biodegradation of vapor phase trichloroethylene (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Propane-induced biodegradation of vapor phase trichloroethylene Citation Details In-Document Search Title: Propane-induced biodegradation of vapor phase trichloroethylene Microbial degradation of trichloroethylene (TCE) has been demonstrated under aerobic conditions with propane. The primary objective of this research was to evaluate the feasibility of introducing a vapor phase form of TCE in the presence of propane to batch bioreactors containing a liquid phase

  18. Liquid Propane Injection Technology Conductive to Today's North American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification | Department of Energy Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil PDF icon deer09_arnold.pdf More Documents & Publications Liquid Propane Injection Applications Liquid Propane Injection Applications Transportation Fuels: The

  19. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  20. Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reducing Emissions Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to

  1. Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Trolleys Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With

  2. Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spotsylvania County Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts

  3. Texas Propane Fleet Pilot Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fleet Pilot Program Texas Propane Fleet Pilot Program 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt058_kelly_2010_p.pdf More Documents & Publications Texas Propane Vehicle Pilot Project Texas Propane Vehicle Pilot Project

  4. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  5. Portland Public School Children Move with Propane

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

  6. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.

    1996-03-26

    A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

  7. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

    1996-01-01

    A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

  8. Delaware Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    2 1 0 * * 6 1967-2014 Propane-Air 2 1 0 0 6 1980-2014 Refinery Gas 1980-2005 Other 0 1999-2014

  9. Indiana Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    1 5 1 6 69 1967-2014 Propane-Air 1 1 5 1 6 69 1980-2014 Refinery Gas 1980-2005

  10. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Broader source: Energy.gov [DOE]

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years.

  11. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  12. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  13. Gas separation device based on electrical swing adsorption

    DOE Patents [OSTI]

    Judkins, Roddie R. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    1999-10-26

    A method and apparatus for separating one constituent, especially carbon dioxide, from a fluid mixture, such as natural gas. The fluid mixture flows through an adsorbent member having an affinity for molecules of the one constituent, the molecules being adsorbed on the adsorbent member. A voltage is applied to the adsorbent member, the voltage imparting a current flow which causes the molecules of the one constituent to be desorbed from the adsorbent member.

  14. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3. Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  15. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  16. " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Number of Establishments by Quantity of Purchased Electricity, Natural Gas, and Steam, 2006;" " Level: National Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Establishment Counts." ,,,"Electricity","Components",,,"Natural","Gas","Components",,"Steam","Components"

  17. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Broader source: Energy.gov [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  18. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  19. Electric and gas utility marketing of residential energy conservation case studies

    SciTech Connect (OSTI)

    1980-05-01

    The objective of this research was to obtain information about utility conservation marketing techniques from companies actively engaged in performing residential conservation services. Many utilities currently are offering comprehensive services (audits, listing of contractors and lenders, post-installation inspection, advertising, and performing consumer research). Activities are reported for the following utilities: Niagara Mohawk Power Corporation; Tampa Electric Company; Memphis Light, Gas, and Water Division; Northern States Power-Wisconsin; Public Service Company of Colorado; Arizona Public Service Company; Pacific Gas and Electric Company; Sacramento Municipal Utility District; and Pacific Power and Light Company.

  20. Comments of San Diego Gas & Electric Company | Department of Energy

    Office of Environmental Management (EM)

    submits these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the Southern

  1. Comments of San Diego Gas & Electric Company | Department of Energy

    Office of Environmental Management (EM)

    files these comments in response to the above-enumerated Request for Information noticed by the Department on May 11, 2010. SDG&E is a regulated public electric and gas utility operating pursuant to authorities granted to it by the Federal Energy Regulatory Commission and the State of California. SDG&E serves 3.4 million consumers in the San Diego and southern Orange County areas of California via 1.4 million electric meters and 830,000 gas meters. SDG&E's sister company, the

  2. DOE Report to Congress„Energy Efficient Electric and Natural Gas Utilities

    Office of Environmental Management (EM)

    AND REGIONAL POLICIES THAT PROMOTE ENERGY EFFICIENCY PROGRAMS CARRIED OUT BY ELECTRIC AND GAS UTILITIES A REPORT TO THE UNITED STATES CONGRESS PURSUANT TO SECTION 139 OF THE ENERGY POLICY ACT OF 2005 MARCH 2007 U.S. DEPARTMENT OF ENERGY Sec. 139. Energy Efficient Electric and Natural Gas Utilities Study. a) IN GENERAL.-Not later than 1 year after the date of enactment of this Act, the Secretary, in consultation with the National Association of Regulatory Utility Commis- sioners and the National

  3. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  4. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  5. An analysis of US propane markets, winter 1996-1997

    SciTech Connect (OSTI)

    1997-06-01

    In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

  6. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  7. Implications of Lower Natural Gas Prices for Electric Generators in the Southeast, The

    Reports and Publications (EIA)

    2009-01-01

    This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows.

  8. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  9. "Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  10. State Commission electricity regulation under Federal Greenhouse gas cap-and-trade policy

    SciTech Connect (OSTI)

    Keeler, Andrew G.

    2008-05-15

    Given the current uncertainty about the timing and severity of greenhouse gas constraints on electric generation that will result from a federal program, commissions need to begin crafting strategies and procedures to best serve the public interest in this new environment. (author)

  11. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  12. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  13. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  14. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  15. Natural gas will account for biggest share of U.S. electricity for first time in 2016

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas will account for biggest share of U.S. electricity for first time in 2016 For the first time on an annual basis, the amount of U.S. electricity generated by natural gas- fired power plants is expected to exceed coal-fired generation. In its new monthly forecast, the U.S. Energy Information Administration said 33% of U.S. electricity will come from natural gas this year while 32% will come from coal. The electric power sector's use of coal this year is expected to decline by 29

  16. Determination of usage patterns and emissions for propane/LPG in California. Final report

    SciTech Connect (OSTI)

    Sullivan, M.

    1992-05-01

    The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

  17. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  18. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  19. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  20. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  1. Metallurgical failure analysis of a propane tank boiling liquid...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE). Citation Details In-Document Search Title: Metallurgical failure...

  2. Gas-Fired Boilers and Furnaces | Department of Energy

    Energy Savers [EERE]

    Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces A residential natural gas meter. A residential natural gas meter. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline

  3. Alternative Fueling Station Locator App Provides Info at Your...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy ... that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy ...

  4. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave

    2005-08-15

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  5. Analytical investigation of electrical breakdown properties in a nitrogen-SF{sub 6} mixture gas

    SciTech Connect (OSTI)

    Uhm, Han S.; Byeon, Yong S.; Song, Ki B.; Choi, Eun H.; Ryu, Han-Yong; Lee, Jaimin

    2010-11-15

    The electrical breakdown properties in nitrogen gas mixed with SF{sub 6} are analytically investigated in this article by making use of the ionization and attachment coefficients of the mixed gas. The ionization coefficients of nitrogen and SF{sub 6} gas are obtained in terms of the electron temperature T{sub e} by assuming a Maxwellian distribution of the electron energy. The attachment coefficient of SF{sub 6} gas is also obtained in terms of the gas temperature T{sub e}. An algebraic equation is obtained, relating explicitly the electron breakdown temperature T{sub b} in terms of the SF{sub 6} mole fraction {chi}. It was found from this equation that the breakdown temperature T{sub b} increases from approximately 2 to 5.3 eV as the mole fraction {chi} increases from zero to unity. The breakdown temperature T{sub b} of the electrons increases very rapidly from a small value and then approaches 5.3 eV slowly as the SF{sub 6} mole fraction increases from zero to unity. This indicates that even a small mole fraction of SF{sub 6} in the gas dominates the electron behavior in the breakdown system. The breakdown electric field E{sub b} derived is almost linearly proportional to the breakdown electron temperature T{sub b}. The experimental data agree remarkably well with the theoretical results. Therefore, it is concluded that even a small fraction of SF{sub 6} gas dominates nitrogen in determining the breakdown field. In this context, nearly 25% of the SF{sub 6} mole fraction provides a reasonable enhancement of the breakdown field for practical applications.

  6. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect (OSTI)

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  7. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOE Patents [OSTI]

    Fenstermacher, Charles A. (Los Alamos, NM); Boyer, Keith (Los Alamos, NM)

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  8. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect (OSTI)

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  9. Electric Power Generation from Coproduced Fluids from Oil and Gas Wells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Principal Investigator Will Gosnold University of North Dakota Low Temperature Demonstration Projects May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov - Timeline * Start date: 1/29/2010 * End date: 1/31/2013 * Percent complete: ~ 5% - Budget * Total project funding: $3,467, 057 * DOE

  10. Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Rolls on as Reliable Fleet Fuel to someone by E-mail Share Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Facebook Tweet about Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Twitter Bookmark Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Google Bookmark Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel on Delicious Rank Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet

  11. Method for the removal of carbonyl sulfide from liquid propane

    SciTech Connect (OSTI)

    McClure, G.

    1980-06-17

    A method for the removal of carbonyl sulfide from liquid propane under liquid-liquid contact conditions by mixing liquid propane containing carbonyl sulfide as an impurity with 2-(2-aminoethoxy) ethanol as the principal agent for the carbonyl sulfide removal. The 2(2-aminoethoxy) ethanol is reclaimed and reused for further carbonyl sulfide removal. 5 claims.

  12. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  13. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  14. -South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings After receiving an energy assessment from the U.S. Department of Energy's (DOE's) Industrial Assessment Center (IAC) at Tennessee Technological University, Mid-South Metallurgical implemented several resulting recommendations, which included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace

  15. Emissions results for dedicated propane Chrysler minivans: the 1996 propane vehicle challenge

    SciTech Connect (OSTI)

    Buitrago, C.; Sluder, S.; Larsen, R.

    1997-02-01

    The U.S. Department of Energy (US DOE), through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition , 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan. The University of Windsor`s minivan had the lowest emissions attaining ULEV levels with a gaseous-injected engine. The Texas A&M vehicle, which had a gaseous-fuel injection system, and the GMI Engineering and Management Institute`s vehicle, which had a liquid-injection system both reached LEV levels. Vehicles with an injection fuel system (liquid or gaseous) performed better in terms of emissions than carbureted systems. Liquid injection appeared to be the best option for fuel metering and control for propane, but more research and calibration are necessary to improve the reliability and performance of this design.

  16. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  17. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

  18. Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W W W W W W W W W W 2007 W W W W W W W W W W W W 2008 W W W 11.01 W W W W W W W W 2009 W W W W W W W W W W W W 2010 W W W W W W

  19. U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers

    U.S. Energy Information Administration (EIA) Indexed Site

    (BTU per Cubic Foot) Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,027 1,028 1,028 1,027 1,027 1,025 2010's 1,022 1,021 1,022 1,025 1,029 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date:

  20. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W

  1. Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W -- W W W W W W W W 2005 W W W W W -- W W W W W W 2006 W W W -- W W W W W W W W 2007 W W W W W W W W W W W W 2008 W W W W W W W W W W W W 2009 W 4.87 W 3.77 W W W W W W W W 2010 W W W W W W

  2. Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W W W W W W W W W W 2007 W W W W W W W W W W W W 2008 8.10 W W W W W W W W W W W 2009 W W W W 6.88 W W W 4.13 4.80 6.65 6.41 2010

  3. Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Missouri Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W 4.73 W W 2004 W W W W W W W W W W W W 2005 W 5.46 W W W W W W W 10.83 8.54 12.69 2006 11.67 7.98 W W W W W W W W W W 2007 W 8.30 W W W W W W W W W 7.13 2008 W W W W W W W W W W W W 2009 W W W W W W W W W

  4. Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows

    SciTech Connect (OSTI)

    Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi

    2014-04-11

    Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

  5. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department...

    Energy Savers [EERE]

    saving on fuel costs," he said. "If these law enforcement vehicles were running great on propane autogas in such a demanding environment, then this was the fuel for my fleet."...

  6. VEE-0040- In the Matter of Western Star Propane, Inc.

    Broader source: Energy.gov [DOE]

    On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

  7. Revised Propane Stock Levels for 6/7/13

    Gasoline and Diesel Fuel Update (EIA)

    Revised Propane Stock Levels for 6713 Release Date: June 19, 2013 Following the release of the Weekly Petroleum Status Report (WPSR) for the week ended June 7, 2013, EIA...

  8. Advisory on the reporting error in the combined propane stocks...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Advisory on the reporting error in the combined propane stocks for PADDs 4 and 5 Release Date: June 12, 2013 The U.S. Energy Information Administration issued the following...

  9. Can propane school buses save money and provide other benefits...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

  10. VEE-0060- In the Matter of Blakeman Propane, Inc.

    Broader source: Energy.gov [DOE]

    On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  11. Microsoft Word - Joe Rose - Providence remarks.propane.JUR -...

    Broader source: Energy.gov (indexed) [DOE]

    and the greater Northeast. These include: The critical need for additional primary storage in the Northeast New England sells 7% of the nation's propane but has only 1% of the...

  12. Lower oil prices also cutting winter heating oil and propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in ...

  13. Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    County Schools Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel

  14. Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Michigan School Buses Get Rolling on Propane to someone by E-mail Share Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Facebook Tweet about Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Twitter Bookmark Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Google Bookmark Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Delicious Rank Alternative Fuels Data Center: Michigan

  15. Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Columbus, Ohio Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in

  16. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles

    SciTech Connect (OSTI)

    Sonawane, Yogesh S.; Kanade, K.G.; Kale, B.B. Aiyer, R.C.

    2008-10-02

    Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

  17. Series 50 propane-fueled Nova bus: Engine development, installation, and field trials

    SciTech Connect (OSTI)

    Smith, B.

    1999-01-01

    The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

  18. Selective adsorption of ethylene over ethane and propylene over propane in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) Previous Next List Stephen J. Geier, Jarad A. Mason, Eric D. Bloch, Wendy L. Queen, Matthew R. Hudson, Craig M. Brown and Jeffrey R. Long, Chem. Sci., 4, 2054-2061 (2013) DOI: 10.1039/c3sc00032j Abstract: A

  19. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of its commitment to reducing fuel use and emissions, the United Parcel Service (UPS) operates more than 2,500 natural gas, propane, electric, and hybrid-electric vehicles worldwide. The company uses these advanced vehicles as a "rolling laboratory" to learn how such technologies can best serve its large delivery fleet. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has a long history of helping UPS determine the impact of hybrid technology on fuel

  20. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov [DOE]

    The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

  1. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Broader source: Energy.gov [DOE]

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

  2. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  3. Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 2.44 2.48 2.57 2.66 2.70 2.79 2.84 2.92 3.04 3.16 3.25 3.36 3.51 3.60 3.77 3.91 3.97 4.08 AEO 1995 1993 2.39 2.48 2.42 2.45 2.45 2.53 2.59 2.78 2.91 3.10 3.24 3.38 3.47 3.53 3.61 3.68

  4. "Table 7a. Natural Gas Price, Electric Power Sector, Actual vs. Projected"

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Natural Gas Price, Electric Power Sector, Actual vs. Projected" "Projected Price in Constant Dollars" " (constant dollars per million Btu in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,2.44,2.48,2.57,2.66,2.7,2.79,2.84,2.92,3.04,3.16,3.25,3.36,3.51,3.6,3.77,3.91,3.97,4.08 "AEO

  5. CO{sub 2} Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors

    SciTech Connect (OSTI)

    Burtraw, Dallas; Kahn, Danny; Palmer, Karen

    2006-03-01

    The Regional Greenhouse Gas Initiative among Northeastern states is expected to lead to an increase in the price of electricity in the region and beyond. In the RGGI region, changes in the value of electricity-generating assets may be positive or negative, while changes outside the Northeast are virtually always positive. For stakeholders in the industry, the change depends on the portfolio of assets held by affected firms. (author)

  6. Nationwide: Southeast Propane Autogas Development Program Brings...

    Broader source: Energy.gov (indexed) [DOE]

    freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. Addthis Related Articles Nevada Deploys Grid-Connected Electricity from...

  7. EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

  8. Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.16 2.97 3.50 3.86 4.07 3.68 3.40 3.48 3.84 4.47 4.10 5.07 2003 5.56 7.58 7.56 5.87 W 6.28 5.68 5.64 5.24 5.77 5.28 6.66 2004 6.66 5.83 W 6.27 7.03 7.25 6.78 6.10 5.53 6.44 7.46 7.77 2005 7.19 W 7.48 7.75 7.03 7.62 8.56 10.70 15.82 15.24 11.35 15.31

  9. Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Colorado Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.86 2.56 2.92 2.91 2.71 2.11 1.91 2.22 2.06 2.36 3.01 3.25 2003 3.30 3.80 5.12 3.46 W 5.13 4.64 4.56 4.49 4.52 3.97 5.08 2004 5.73 5.49 4.59 4.67 5.59 5.85 5.66 6.16 4.82 5.05 6.80 6.45 2005 W W 5.70 W W W 6.43 6.77 8.46 10.31 10.13 9.77 2006 8.93

  10. Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Florida Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.44 3.29 3.61 4.17 4.21 4.05 3.95 3.88 4.12 4.79 4.55 5.57 2003 5.25 6.33 6.59 5.77 W 6.71 6.16 5.88 5.83 5.67 5.55 5.90 2004 6.28 6.04 6.01 6.11 6.59 6.65 6.56 6.33 6.53 6.88 6.76 6.86 2005 7.28 7.29 7.39 7.77 7.28 7.41 8.14 9.01 12.20 11.69 9.80

  11. Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.89 2.75 3.66 4.17 4.05 4.07 3.71 3.59 4.02 4.49 W W 2003 W W 9.01 6.12 W W W W W W 5.21 W 2004 W W W W 6.80 6.82 6.51 6.37 5.72 W W W 2005 W 7.08 7.91 7.77 6.95 7.66 8.17 9.89 W 13.87 10.21 13.64 2006 9.41 8.68 7.72 7.71 6.84 6.94 7.02 7.97 5.56

  12. Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.44 2.91 3.18 4.34 4.20 3.89 3.73 3.28 3.78 4.52 5.15 4.89 2003 5.79 6.22 6.25 5.97 W 6.79 6.18 5.80 6.24 4.40 5.77 6.30 2004 7.52 8.03 6.76 6.95 7.79 7.51 7.03 6.59 6.21 6.95 5.44 7.75 2005 7.42 10.29 7.31 7.67 8.12 7.80 8.16 9.14 10.75 4.53 12.65

  13. Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W 3.61 3.49 3.34 W W W W 2003 5.86 7.31 7.89 5.81 W 6.47 5.74 5.45 5.29 5.20 4.92 W 2004 6.74 6.22 5.99 6.14 6.81 6.91 6.51 6.17 5.49 6.77 7.11 7.48 2005 6.74 6.70 7.20 7.78 7.15 7.46 7.96 9.15 13.07 W 12.25 13.64 2006 11.64 8.69 8.11 7.77

  14. Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kansas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.26 2.27 2.94 3.45 3.39 3.24 3.04 2.97 3.09 3.38 4.17 4.22 2003 4.93 6.50 8.26 4.96 W 5.78 5.30 5.00 4.94 4.51 4.28 5.04 2004 5.84 5.54 5.00 5.54 5.91 6.15 5.88 5.49 4.73 5.39 6.68 6.49 2005 6.14 6.03 6.37 6.95 6.27 6.71 7.10 7.97 9.61 10.98 9.63

  15. Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Illinois Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.81 2.69 3.45 3.36 3.86 3.62 3.23 3.44 3.81 4.05 4.76 5.64 2003 5.72 6.71 7.56 6.68 W 6.48 5.82 5.65 6.24 4.99 5.04 5.92 2004 6.60 6.20 6.02 6.26 6.62 7.06 6.74 6.37 6.18 6.35 7.57 7.84 2005 6.88 6.88 7.47 7.45 7.26 7.54 8.36 9.16 11.79 12.99 11.13

  16. Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Indiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W 3.18 3.53 3.82 3.38 3.23 3.22 3.46 W W W 2003 5.61 W W W W 7.74 8.08 5.79 W W W W 2004 W W W W 6.40 W 6.41 6.20 5.63 5.67 W W 2005 W 6.70 7.32 7.50 6.79 7.72 7.52 9.64 11.99 13.88 11.30 13.08 2006 9.29 8.93 7.37 7.04 6.64 6.99 7.21 8.65 7.67 6.47

  17. Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 2.61 2.39 2.92 W W 3.53 3.33 3.32 3.71 4.25 W W 2003 6.02 W 6.44 5.69 W W 5.48 5.39 5.06 5.16 4.79 W 2004 6.48 5.74 5.67 W 6.71 6.11 6.14 5.77 5.21 6.74 6.38 7.20 2005 6.90 6.62 7.32 7.64 6.87 7.54 7.94 9.49 13.23 W 10.65 W 2006 9.46 8.57 7.68

  18. Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W 4.69 4.82 W W W W W W 3.84 5.21 6.12 2003 5.60 6.12 5.71 W W W W W 6.41 W W 8.96 2004 W W W W W W W W 8.14 6.87 11.65 10.69 2005 9.68 W W 9.50 8.70 W W W W 11.90 12.94 W 2006 14.19 W W W 8.24 W W W 7.74 W W 9.70 2007 W W W W W W W W W W W W 2008 W W

  19. Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.19 3.07 3.81 3.89 4.05 3.78 3.46 3.69 4.21 4.71 4.87 6.42 2003 7.81 8.43 7.30 5.96 W 6.05 5.50 5.45 5.46 5.39 5.12 6.54 2004 8.33 7.56 5.88 6.25 W W W W W 6.58 6.76 7.74 2005 9.24 7.35 W W W W W W 12.96 W W W 2006 W W W W W W W W W W W W 2007 W W W W

  20. Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Maryland Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.39 3.45 3.59 4.11 4.16 4.11 3.81 3.97 3.93 4.72 4.52 5.75 2003 5.77 7.47 6.88 5.45 W 5.98 5.74 5.41 W W W W 2004 W 5.13 W W 6.40 6.24 5.78 5.43 4.81 5.53 5.38 5.68 2005 5.84 7.22 7.91 8.32 7.23 8.31 8.50 9.82 14.33 14.85 12.48 14.62 2006 10.80 9.15

  1. Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Michigan Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 3.43 3.29 3.48 3.60 3.49 3.67 3.49 3.42 3.68 3.65 3.69 3.74 2003 3.97 3.56 W W W 4.02 4.24 4.43 3.55 3.35 W W 2004 4.28 W 4.11 4.09 4.57 4.71 4.75 4.62 4.73 W 4.25 W 2005 W 3.65 4.15 4.28 4.73 5.87 6.32 6.39 5.29 6.57 5.16 6.92 2006 6.17 5.75 5.86

  2. Electrical probe diagnostics for the laminar flame quenching distance

    SciTech Connect (OSTI)

    Karrer, Maxime; Makarov, Maxime; Bellenoue, Marc; Labuda, Sergei; Sotton, Julien

    2010-02-15

    A simplified theory, previously developed for the general case of weakly ionized gas flow, is used to predict electrical probe response when the flame is quenched on the probe surface. This theory is based on the planar model of space charge sheaths around the measuring electrode. For the flame quenching case, by assuming that the sheath thickness is comparable with the thermal boundary layer thickness, probe current can be related to flame quenching distance. The theoretical assumptions made to obtain the analytical formulation of probe current were experimentally proved by using direct visualization and high-frequency PIV. The direct visualization method was also used to validate the results of flame quenching distance values obtained with electrical probe. The electrical probe diagnostics have been verified for both head-on and sidewall flame quenching regimes and for stoichiometric methane/air and propane/air mixtures in a pressure range of 0.05-0.6 MPa. (author)

  3. Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-04-20

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  4. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  5. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process. A Case Study of Pacific Gas and Electric

    SciTech Connect (OSTI)

    Ardani, Kristen; Margolis, Robert

    2015-09-01

    As of the end of 2014, Pacific Gas and Electric (PG&E) had connected over 130,000 DG PV systems in its service territory, more than any other utility in the U.S. In this case study, we examine how PG&E achieved a faster, more efficient interconnection approval process despite rising application volumes.

  6. Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Secretary Steven Chu today announced that four new corporate partners Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia are joining the Energy Departments National Clean Fleets Partnership, a broad public-private partnership that assists the nations largest fleet operators in reducing the amount of gasoline and diesel they use nationwide.

  7. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    DOE Patents [OSTI]

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Verbael, D.J.

    1995-10-17

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.

  8. Metal spray apparatus with a U-shaped electric inlet gas heater and a one-piece electric heater surrounding a nozzle

    DOE Patents [OSTI]

    Glovan, Ronald J. (Butte, MT); Tierney, John C. (Butte, MT); McLean, Leroy L. (Butte, MT); Johnson, Lawrence L. (Butte, MT); Verbael, David J. (Butte, MT)

    1995-01-01

    An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.

  9. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles ...

  10. Pennsylvania Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    205 4 2 2 3 20 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 205 4 2 2 3 20 1980-2014 Refinery Gas 1980-2005

  11. Maryland Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    70 115 89 116 107 809 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 170 115 89 116 107 809 1980-2014 Refinery Gas 1980-2005 Other 0 0 1980

  12. Massachusetts Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 * 0 * 3 8 1967-2014 Synthetic 0 1980-2014 Propane-Air 10 0 0 3 8 1980-2014 Refinery Gas 1980-2005 Other 0 2005...

  13. ,,,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" ,,,,"Electricity",,,"Natural Gas",,,"Steam" ,,,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources" ,,"Electricity","from Local","Other

  14. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  15. Evaluation of Public Service Electric & Gas Company`s standard offer program, Volume I

    SciTech Connect (OSTI)

    Goldman, C.A.; Kito, M.S.; Moezzi, M.M.

    1995-07-01

    In May 1993, Public Service Electric and Gas (PSE&G), the largest investor-owned utility in New Jersey, initiated the Standard Offer program, an innovative approach to acquiring demand-side management (DSM) resources. In this program, PSE&G offers longterm contracts with standard terms and conditions to project sponsors, either customers or third-party energy service companies (ESCOs), on a first-come, first-serve basis to fill a resource block. The design includes posted, time-differentiated prices which are paid for energy savings that will be verified over the contract term (5, 10, or 15 years) based on a statewide measurement and verification (M&V) protocol. The design of the Standard Offer differs significantly from DSM bidding programs in several respects. The eligibility requirements and posted prices allow ESCOs and other energy service providers to market and develop projects among customers with few constraints on acceptable end use efficiency technologies. In contrast, in DSM bidding, ESCOs typically submit bids without final commitments from customers and the utility selects a limited number of winning bidders who often agree to deliver a pre-specified mix of savings from various end uses in targeted markets. The major objectives of the LBNL evaluation were to assess market response and customer satisfaction; analyze program costs and cost-effectiveness; review and evaluate the utility`s administration and delivery of the program; examine the role of PSE&G`s energy services subsidiary (PSCRC) in the program and the effect of its involvement on the development of the energy services industry in New Jersey; and discuss the potential applicability of the Standard Offer concept given current trends in the electricity industry (i.e., increasing competition and the prospect of industry restructuring).

  16. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  17. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  18. Table 7b. Natural Gas Price, Electric Power Sector, Actual vs. Projected

    Gasoline and Diesel Fuel Update (EIA)

    b. Natural Gas Price, Electric Power Sector, Actual vs. Projected Projected Price in Nominal Dollars (nominal dollars per million Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2.49 2.60 2.76 2.93 3.05 3.24 3.39 3.60 3.86 4.15 4.40 4.70 5.08 5.39 5.85 6.27 6.59 7.01 AEO 1995 2.44 2.61 2.61 2.70 2.78 2.95 3.11 3.44 3.72 4.10 4.43 4.78 5.07 5.33 5.64 5.95 6.23 AEO 1996 2.08 2.19 2.20 2.39 2.47 2.54 2.64 2.74 2.84 2.95 3.09

  19. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  20. Microsoft PowerPoint - Propane_Briefing_140312.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    situation update March 12, 2014 | Washington, DC By Energy Information Administration NOAA forecast shows below normal temperatures across most of the Midwest for March 10 through March 18 U.S. Energy Information Administration 2 Source: National Oceanic and Atmospheric Administration Climate Prediction Center, made March 11 6-10 day outlook 8-14 day outlook Natural gas and electricity are the major heating fuels for most of the United States U.S. Energy Information Administration 3 Source: U.S.

  1. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOE Patents [OSTI]

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  2. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines, Minerals, and Energy led the project, with support

  3. Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Market Outlook Key Market Trends, Opportunities, and Threats Facing the Consumer Propane Industry Through 2025 Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Author: Mr. Michael Sloan msloan@icfi.com P R E S E N T E D B Y : Propane Market Outlook at a Glance ¡ ICF projects consumer propane sales to grow by about 800 million gallons (9 percent) between 2014 and

  4. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  5. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  6. Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decreasing Soft Costs for Solar Photovoltaics by Improving the Interconnection Process: A Case Study of Pacific Gas and Electric Kristen Ardani and Robert Margolis National Renewable Energy Laboratory Technical Report NREL/TP-7A40-65066 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  7. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  8. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    SciTech Connect (OSTI)

    Wang, M.Q.; Marr, W.W.

    1994-02-10

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations.

  9. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  10. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  11. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  12. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  13. Washington Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane-Air 1980-1998 Other

  14. Wisconsin Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Synthetic 1980-1998 Propane-Air

  15. Wyoming Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Propane-Air 1980-1998 Other

  16. Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas George Alcorn Jr. Universal GeoPower May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov * DOE-FOA-0000109 * Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas *

  17. Implications of High Renewable Electricity Penetration in the U.S. for Water Use, Greenhouse Gas Emissions, Land-Use, and Materials Supply

    Broader source: Energy.gov [DOE]

    Recent work found that renewable energy could supply 80% of electricity demand in the contiguous United States in 2050 at the hourly level. This paper explores some of the implications of achieving such high levels of renewable electricity for supply chains and the environment in scenarios with renewable supply up to such levels. Transitioning to high renewable electricity supply would lead to significant reductions in greenhouse gas emissions and water use, with only modest land-use implications. While renewable energy expansion implies moderate growth of the renewable electricity supply chains, no insurmountable long-term constraints to renewable electricity technology manufacturing capacity or materials supply are identified.

  18. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect (OSTI)

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  19. Hawaii Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 -- -- -- -- -- -- -- -- -- -- -- -- 2003 -- -- -- -- W -- -- -- -- -- -- -- 2004 -- -- -- -- -- -- -- -- -- -- -- -- 2005 -- -- -- -- -- -- -- -- -- -- -- -- 2006 -- -- -- -- -- -- -- -- -- -- -- -- 2007 -- -- -- -- -- -- -- -- -- -- -- -- 2008 -- -- -- -- -- -- -- -- -- -- -- -- 2009 -- -- -- -- -- -- -- -- -- -- -- -- 2010 -- -- -- -- -- --

  20. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications (EIA)

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  1. VEE-0044- In the Matter of Public Service Electric and Gas Company (New Jersey)

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 14, 1997, the Office of Hearings and Appeals received from the Energy Information Administration (EIA) a letter of appeal that had been filed with the EIA by the Public Service Electric...

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  3. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  4. Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

  5. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

  6. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  7. High voltage capability electrical coils insulated with materials containing SF.sub.6 gas

    DOE Patents [OSTI]

    Lanoue, Thomas J. (Muncie, IN); Zeise, Clarence L. (Penn Township, Allegheny County, PA); Wagenaar, Loren (Muncie, IN); Westervelt, Dean C. (Acme, PA)

    1988-01-01

    A coil is made having a plurality of layers of adjacent metal conductor windings subject to voltage stress, where the windings have insulation therebetween containing a small number of minute disposed throughout its cross-section, where the voids are voids filled with SF.sub.6 gas to substitute for air or other gaseous materials in from about 60% to about 95% of the cross-sectional void volume in the insulation, thus incorporating an amount of SF.sub.6 gas in the cross-section of the insulation effective to substantially increase corona inception voltages.

  8. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas

    Broader source: Energy.gov [DOE]

    Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

  9. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

  10. EERE Success Story-Nevada Deploys Grid-Connected Electricity from

    Energy Savers [EERE]

    Enhanced Geothermal Systems | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems EERE Success Story-Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines,

  11. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  12. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  13. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  14. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect (OSTI)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  15. Limited Electricity Generation Supply and Limited Natural Gas Supply Cases (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Development of U.S. energy resources and the permitting and construction of large energy facilities have become increasingly difficult over the past 20 years, and they could become even more difficult in the future. Growing public concern about global warming and CO2 emissions also casts doubt on future consumption of fossil fuels -- particularly coal, which releases the largest amount of CO2 per unit of energy produced. Even without regulations to limit greenhouse gas emissions in the United States, the investment community may already be limiting the future use of some energy options. In addition, there is considerable uncertainty about the future availability of, and access to, both domestic and foreign natural gas resources.

  16. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect (OSTI)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  17. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated

    Reports and Publications (EIA)

    2001-01-01

    To assist reporters in estimating emissions and emission reductions, The Energy Information Administration (EIA) has made available in the instructions to Forms EIA-1605 and EIA-1605EZ emission coefficients for most commonly used fossil fuels and electricity. These coefficients were based on 1992 emissions and generation data. In 1999, updated coefficients were prepared based on the most recent data (1998) then available; however, the updated coefficients were not included in the instructions for the 1999 data year. This year, they have been updated again, but based on three years worth of data (1997, 1998, and 1999) rather than a single year.

  18. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2013 Table 1. 2013 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,652 34 Electric...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2013 Table 1. 2013 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 39,918 6 Electric...

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2013 Table 1. 2013 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 109,584 1 Electric...

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2013 Table 1. 2013 Summary statistics (Alaska) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 2,384 48 Electric...

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2013 Table 1. 2013 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 23,300 17 Electric...

  4. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  5. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  6. Effect of temperature and pressure on the dynamics of nanoconfined propane

    SciTech Connect (OSTI)

    Gautam, Siddharth Liu, Tingting Welch, Susan; Cole, David; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene

    2014-04-24

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  7. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine. PDF icon p-18_servati.pdf More Documents & Publications Active DPF for Off-Road Particulate Matter (PM) Control Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology DPF for a Tractor Auxiliary Power Unit

  8. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  9. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  10. Untitled Document

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  11. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  12. This Week In Petroleum Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis Briefs Environment...

  13. Untitled Document

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels | Prices | States | International | Country Analysis Briefs Environment...

  14. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  15. Influence of hydrogen patterning gas on electric and magnetic properties of perpendicular magnetic tunnel junctions

    SciTech Connect (OSTI)

    Jeong, J. H.; Endoh, T.; Kim, Y.; Kim, W. K.; Park, S. O.

    2014-05-07

    To identify the degradation mechanism in magnetic tunnel junctions (MTJs) using hydrogen, the properties of the MTJs were measured by applying an additional hydrogen etch process and a hydrogen plasma process to the patterned MTJs. In these studies, an additional 50?s hydrogen etch process caused the magnetoresistance (MR) to decrease from 103% to 14.7% and the resistance (R) to increase from 6.5?k? to 39?k?. Moreover, an additional 500?s hydrogen plasma process decreased the MR from 103% to 74% and increased R from 6.5?k? to 13.9?k?. These results show that MTJs can be damaged by the hydrogen plasma process as well as by the hydrogen etch process, as the atomic bonds in MgO may break and react with the exposed hydrogen gas. Compounds such as MgO hydrate very easily. We also calculated the damaged layer width (DLW) of the patterned MTJs after the hydrogen etching and plasma processes, to evaluate the downscaling limitations of spin-transfer-torque magnetic random-access memory (STT-MRAM) devices. With these calculations, the maximum DLWs at each side of the MTJ, generated by the etching and plasma processes, were 23.8?nm and 12.8?nm, respectively. This result validates that the hydrogen-based MTJ patterning processes cannot be used exclusively in STT-MRAMs beyond 20?nm.

  16. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime

    SciTech Connect (OSTI)

    Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M.; Bourque, G.

    2008-04-15

    The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

  17. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  18. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    - W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

  19. School Districts Move to the Head of the Class with Propane

    SciTech Connect (OSTI)

    2016-01-01

    Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many school districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.

  20. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Burkhardt, J. J.; Heath, G.; Cohen, E.

    2012-04-01

    In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

  1. School Districts Move to the Head of the Class with Propane (Brochure), Clean Cities, U.S. Department of Energy (DOE), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane's School Bus History While propane has been used in buses for decades, recent technologi- cal advancements have made it more reliable than ever. Prior to 2007, all propane vehicles used vapor injection technology. In 2007, Blue Bird rolled out a propane school bus using direct liquid injection for the first time, and this was followed by Thomas Built Buses and Navistar. Liquid injection technology makes propane buses a more reliable option. Since 2007, vehicle emissions standards have

  2. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  3. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Propane Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects. To determine which codes and standards apply to a specific project, identify the codes and standards currently in effect within the jurisdiction where the

  4. K VS I,,'o Aledrs Fleet Surveys

    Gasoline and Diesel Fuel Update (EIA)

    choose to operate more economical natural gas vehicles until electric vehicle technol- Propane Electric Natural Gas ogy improves, and that the sample includes corn- Providers...

  5. Safety issues relating to the liquefied petroleum gas, compressed natural gas and liquefied natural gas

    SciTech Connect (OSTI)

    Petru, T.D.

    1995-12-31

    The Railroad Commission of Texas, LP-Gas Division, is statutorily responsible for the safety aspects of liquefied petroleum gas (LPG) most commonly known as LP-gas or propane, compressed natural gas (CNG) and liquefied natural gas (LNG). This presentation will address the safety issues relating to their use as alternative fuels. The paper discusses the safety of pressure vessels used for storage of the fuels at refueling facilities and the containers mounted in vehicles. Other topics include the lack of odorants in LNG, the use of protective clothing when handling cryogenic fluids, and where to obtain a copy of the safety regulations for handling these three fuels.

  6. Gas Swimming Pool Heaters | Department of Energy

    Energy Savers [EERE]

    Gas Swimming Pool Heaters Gas Swimming Pool Heaters Gas Swimming Pool Heaters Gas-fired pool heaters remain the most popular system for heating swimming pools. Today you can find new gas-fired heater models with much higher efficiencies than older models. Still, depending on your climate and pool use, they may not be the most energy-efficient option when compared to heat pump and solar pool heaters. How They Work Gas pool heaters use either natural gas or propane. As the pump circulates the

  7. Griffiss AFB integrated resource assessment. Volume 2, Electric baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  8. Assessment of the risk of transporting propane by truck and train

    SciTech Connect (OSTI)

    Geffen, C.A.

    1980-03-01

    The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

  9. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    (B20 and above) CNG Compressed Natural Gas E85 Ethanol (E85) ELEC Electric HY Hydrogen LNG Liquefied Natural Gas LPG Liquefied Petroleum Gas (Propane) stationname Type:...

  11. FleetAtlas | Open Energy Information

    Open Energy Info (EERE)

    includes E85 ethanol, biodiesel, compressed natural gas, liquefied natural gas, liquefied propane gas, hydrogen, and electricity. This information can be used to answer questions...

  12. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    Relative Standard Errors for Table 7.1;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  13. ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 7.2;" " Unit: Percents." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" " "," ",,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues",,,," " " "," ","

  14. A study of partially premixed unconfined propane flames

    SciTech Connect (OSTI)

    Roekke, N.A.; Hustad, J.E.; Soenju, O.K. )

    1994-04-01

    Unconfined turbulent partially premixed propane/air flames issuing from a straight tube into quiescent air at atmospheric pressure and temperature are investigated. Experiments on lifted flames are performed. Flame height and liftoff are reported together with emission indices for oxides of nitrogen (NO[sub 3]). The degree of partially premixing has been varied between a fuel mass fraction of 1.0 to 0.15. Six different nozzle diameters, d[sub 0], of 3.2, 6, 10, 20.5, 23.3, and 29.5 mm have been used. This resulted in outlet velocities, u[sub 0], varying from 1 to 130 m/s, flame heights up to 2.5 m, Froude numbers, Fr, from 3 to 3 [times] 10[sup 5], and thermal heat releases up to 350 kW. Flame height and liftoff show a strong dependence upon the ratio of the nozzle outlet velocity to the outlet diameter, the Froude number, and the fuel mass fraction Y[sub f]. Both modified, simplified, and newly developed expressions for height, liftoff and NO[sub x] emissions are presented and discussed. All the proposed expressions scale with Y[sub f][sup a]Fr[sup b] or Y[sub r][sup a]f(u[sub 0], d[sub 0]). The emission index for NO[sub x] scales very well with a previously developed expression based on the buoyant flame volume. The agreement between predictions and experimental data is generally good and well within the underlying experimental and theoretical uncertainties. The results from this study contain new data, as very little focus has previously been directed toward lifted partially premixed free flames of this size.

  15. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect (OSTI)

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  16. New Jersey Supplemental Supplies of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    454 457 392 139 255 530 1967-2014 Synthetic 0 0 0 1980-2014 Propane-Air 0 0 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1993-2014 Other 454 457 392 139 255 530 1980-2014...

  17. New Jersey Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    454 457 392 139 255 530 1967-2014 Synthetic 0 0 0 1980-2014 Propane-Air 0 0 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1993-2014 Other 454 457 392 139 255 530 1980-2014

  18. Illinois Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    20 17 1 1 * 63 1967-2014 Synthetic 0 0 1980-2014 Propane-Air 20 17 1 1 0 63 1980-2014 Refinery Gas 1980-2005 Biomass 0 0 1999-2014 Other 0 0 2005

  19. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  20. Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy

    SciTech Connect (OSTI)

    Waslylenko, Walter; Frei, Heinz

    2007-01-31

    Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.