Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic Feet) U.S.Propane

2

National propane safety week caps fifth anniversary of GAS Check  

SciTech Connect (OSTI)

This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

Prowler, S.

1990-09-01T23:59:59.000Z

3

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

4

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

5

Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993  

SciTech Connect (OSTI)

Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

Liss, W.E.; Moulton, D.S.

1994-06-01T23:59:59.000Z

6

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

7

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network [OSTI]

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

8

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect (OSTI)

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

9

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

10

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

11

Published in Journal de Physique IV, vol 11, pp. Pr3-101 ---Pr3-108 Kinetic modelling of gas-phase decomposition of propane : correlation with pyrocarbon deposition  

E-Print Network [OSTI]

-phase decomposition of propane : correlation with pyrocarbon deposition CĂ©dric Descamps, Gerard L. Vignoles , Olivier : A chemical kinetic model for gas-phase pyrolysis of propane has been set up, partially reduced, and validated the notion of "maturation" from propane to lighter hydrocarbons, then to aromatic compounds and PAHs. The gas

Boyer, Edmond

12

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect (OSTI)

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

13

Enduring use of city gas keeps N. H. utility reminiscent of a simpler age  

SciTech Connect (OSTI)

This article reports on a gas distribution company which produces and pipes a propane/air mixture. The distribution of this mixture is detailed.

Not Available

1991-01-01T23:59:59.000Z

14

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect (OSTI)

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

15

Alternative Fuel Tool Kit How to Implement: Propane  

E-Print Network [OSTI]

, colorless gas that is a byproduct of natural gas production and crude oil refining. Propane autogas What is Liquefied Petroleum Gas? Liquefied petroleum gas (LPG) is commonly referred to as propane energy storage, propane is stored as a liquid in a pressurized tank onboard the vehicle, typically at 100

16

The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions.  

E-Print Network [OSTI]

~ Ths writer is izntebteg to pr, P G~ ~och Tor his assistance azsi guidance in this work aC to Br~ J+ 9 Kinds Tor his aery. suggestions eel Succor~ a The oxidation cf propane~ propylene and prcya~cregyimm mbetccres ctver a ~ aiucdna ~st in a flew... formation of aldehyde fran pure grade propane The ~ce of Within the range of variables of this investigation and with propylene ~& aldehyde pr~cn was f'ennd to bs independent of" residence Qorrcgations relating aldehyde pressure to ~ and cncygsn pressure...

Looney, Franklin Sittig

1950-01-01T23:59:59.000Z

17

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

18

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

19

Natural Gas Heat Pump and Air Conditioner | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Heat Pump and Air Conditioner Natural Gas Heat Pump and Air Conditioner Lead Performer: Thermolift - Stony Brook, NY Partners: -- New York State Energy Research &...

20

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network [OSTI]

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Clearing the air with natural gas engines  

SciTech Connect (OSTI)

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

O'Connor, L.

1993-10-01T23:59:59.000Z

22

Study of the Low Temperature Oxidation of Propane Maximilien Cord  

E-Print Network [OSTI]

Study of the Low Temperature Oxidation of Propane Maximilien Cord , Benoit Husson , Juan of China, Hefei, Anhui 230029, P. R. China Abstract The lowtemperature oxidation of propane oxidation of propane in the gas phase has been the subject of very few experimental studies, mainly

Paris-Sud XI, Université de

23

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

24

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

25

Propane situation update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.9 MMbbls PADD 2 propane inventories million barrels Source: EIA, Weekly Petroleum Status Report, data through April 11 April 11 8.9 MMbbls PADD 2 (Midwest) propane inventories...

26

Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor  

SciTech Connect (OSTI)

The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

2009-05-15T23:59:59.000Z

27

Propane on Titan  

E-Print Network [OSTI]

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

28

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers [EERE]

Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane...

29

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

4: Modeling Emissions from Natural Gas-Related Sources 4.1Penetration of Liquefied Natural Gas Table ES2: Impacts ontypical summer demand of natural gas in the South Coast Air

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

30

Coaxial fuel and air premixer for a gas turbine combustor  

DOE Patents [OSTI]

An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

York, William D; Ziminsky, Willy S; Lacy, Benjamin P

2013-05-21T23:59:59.000Z

31

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

32

PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

Choi, Kyu Yong

33

Saving Money with Air and Gas Leak Surveys  

E-Print Network [OSTI]

uncorrected air leaks and gas leaks cost your businesses time and money as well as being environmentally unfriendly. ? Air Leak Surveys ? Nitrogen Leak Surveys ? Gas Leak Survey (H2, O2, Natural Gas) ? Steam Leak Surveys ? Steam Trap Surveys ? Safe... costly problems ? Are caused by dozens, perhaps hundreds of hard to pinpoint outflows which are caused by vibrations and a corrosive atmosphere. ?We can find your leaks in areas that that would be unnoticed and undetected to the human ear ? Details...

Woodruff, D.

2010-01-01T23:59:59.000Z

34

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

35

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network [OSTI]

used either natural gas or propane for cooktop fuel. Of the1302 Cooktop Fuel Type Gas Propane Electric - ResistanceFuel Type Gas Electric Propane Cooktop and Oven Together

Less, Brennan

2012-01-01T23:59:59.000Z

36

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network [OSTI]

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although...

Phillips, J. N.

1996-01-01T23:59:59.000Z

37

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

SciTech Connect (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

38

air-sea gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 49 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

39

The catalytic oxidation of propane  

E-Print Network [OSTI]

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

1949-01-01T23:59:59.000Z

40

Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review  

E-Print Network [OSTI]

Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air

Jackson, Robert B.

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Determining Air Quality and Greenhouse Gas Impacts of  

E-Print Network [OSTI]

Determining Air Quality and Greenhouse Gas Impacts of Hydrogen Infrastructure and Fuel Cell of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen

Dabdub, Donald

42

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5, 201449,propane

43

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane price

44

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane

45

Residential propane price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane

46

Residential propane prices available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices

47

Residential propane prices decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices5,

48

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane

49

Clean Fuel Advanced Technology Public Education Campaign: Billboards According to the U.S. Department of Energy's July 2013 alternative fuel price report, the price of propane  

E-Print Network [OSTI]

.S. Department of Energy's July 2013 alternative fuel price report, the price of propane (LPG) in North Carolina at least $1,000 in yearly fuel costs by driving on natural gas or propane. · According to the U

50

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

51

Chapter Four Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Many states and localities are exploring or implementing clean energy policies to achieve greenhouse gas (GHG) and criteria air pollutant1 emission reductions. Document map • Chapter one

unknown authors

52

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network [OSTI]

linked with gas transfer. Microbreaking, or the breakdown of small-scale waves that do not entrain airEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems; accepted 5 April 2007; published 17 May 2007. [1] Air-water gas transfer influences CO2 and other

Ho, David

53

Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times  

SciTech Connect (OSTI)

The autothermal production of olefins from propane or n-butane by oxidative dehydrogenation and cracking in air or oxygen at atmospheric pressure over noble metal coated ceramic foam monoliths at contact times of {approximately}5 milliseconds has been studied. On Pt, synthesis gas (CO and H{sub 2}) dominates near its stoichiometry, while olefin production dominates at higher fuel-to-oxygen ratios. No carbon buildup is observed, and catalysts exhibit no deactivation over at least several days. On Rh, primarily synthesis gas is produced under these conditions, while on Pd, carbon deposition rapidly deactivates the catalyst. The authors observed up to 65% selectivity to olefins at nearly 100% conversion of propane or n-butane with a catalyst contact time of 5 ms. Ethylene selectivity is maximized by increasing the reaction temperature, either by preheating the reactants or by using oxygen enriched air. Propylene selectivity is maximized by lower temperature and shorter catalyst contact time. Very small amounts alkanes and higher molecular weight species are obtained, suggesting that a homogeneous pyrolysis mechanism is not occurring. A very simple reaction mechanism appears to explain the observed product distribution. Reactions are initiated by oxidative dehydrogenation of the alkane by adsorbed oxygen to form a surface alkyl. On Pt, {beta}-hydrogen and {beta}-alkyl elimination reactions of adsorbed alkyl dominate which lead to olefin production rather than cracking to C{sub s} and H{sub s}. 24 refs., 14 figs., 4 tabs.

Huff, M.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)] [Univ. of Minnesota, Minneapolis, MN (United States)

1994-09-01T23:59:59.000Z

54

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network [OSTI]

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

55

Natural Gas Ethanol Flex-Fuel  

E-Print Network [OSTI]

Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

56

Alternative Fuels Data Center: Propane Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAboutPropane

57

Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable is the use of the LHV? What is the dewpoint of the reaction products?  

E-Print Network [OSTI]

Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable temperature we can achieve with a propane-and-air blowtorch? We repeat this calculation for several different

58

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

59

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation  

E-Print Network [OSTI]

Adaptive Air Charge Estimation for Turbocharged Diesel Engines without Exhaust Gas Recirculation an adaptive observer for in-cylinder air charge estimation for turbocharged diesel engines without exhaust gas (734) 764-4256 1 #12;Storset et al.- Adaptive Air Charge Est. for TC Diesel Engines 2 1 Introduction

Stefanopoulou, Anna

60

Use of exhaust gas as sweep flow to enhance air separation membrane performance  

DOE Patents [OSTI]

An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

Dutart, Charles H. (Washington, IL); Choi, Cathy Y. (Morton, IL)

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

62

Propane - A Mid-Heating Season Assessment  

Reports and Publications (EIA)

This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

2001-01-01T23:59:59.000Z

63

1, 2341, 2001 OH + propane and  

E-Print Network [OSTI]

ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract Introduction Conclusions #12;ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract

Paris-Sud XI, Université de

64

Volcanic gas emissions and their effect on ambient air character  

SciTech Connect (OSTI)

This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

Sutton, A.J. [Geological Survey, Menlo Park, CA (United States); Elias, T. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

1994-01-01T23:59:59.000Z

65

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

Gas Industrial Natural Gas Combustion (Unspecified) CO lb/MMcf Commercial Natural Gas Combustion - Water HeatingCommercial Natural Gas Combustion - Space Heating NO X CO

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

66

Estimation of Air-Sea Gas Transfer Using Conically Scanning SeaWinds Scatterometer Normalized Backscatter  

E-Print Network [OSTI]

Backscatter David M. Glover Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic 2001 -- 31 March 2005 FINAL REPORT #12;Estimation of Air-Sea Gas Transfer from Scatterometry; Glover et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-23 #12;Estimation of Air-Sea Gas Transfer from Scatterometry; Glover et al. ii B Daily Non

Glover, David M.

67

Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements  

E-Print Network [OSTI]

of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient 1970s, while less attention has been paid to IAQ. Insufficient venting of indoor air pollutantsSeasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements Marie

Hansen, René Rydhof

68

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network [OSTI]

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

69

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network [OSTI]

Emissions 7.3 Impacts of LNG on Air Quality 8. References 9.El Paso at Blythe. Chapter 3: Air Quality Impact AssessmentRespect to the South Coast Air Quality Management District

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

70

Air-sea gas exchange of CO 2 and DMS in the North Atlantic by eddy covariance  

E-Print Network [OSTI]

measurements of the air/sea flux of dimethylsulfide over the2008a), Open ocean DMS air/sea fluxes over the eastern SouthE. S. Saltzman (2008b), DMS air/sea flux and gas transfer

Miller, Scott D; Marandino, Christa A; De Bruyn, Warren; Saltzman, Eric S; McCormick, C.

2009-01-01T23:59:59.000Z

71

Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations  

E-Print Network [OSTI]

August 2006. [1] The SOLAS Air-Sea Gas Exchange (SAGE) Experiment was conducted in the western Pacific of air-sea gas exchange. Globally, the dominant control of air-sea gas exchange is turbulent energy as the primary source of energy for the atmospheric and oceanic molecular boundary layers have been derived from

Ho, David

72

State heating oil and propane program  

SciTech Connect (OSTI)

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-01-01T23:59:59.000Z

73

Direct Gas Fired Air Heating For 40 to 50% Fuel Savings  

E-Print Network [OSTI]

the safety aspects of direct gas fired air heating, the most important qUe~tion is whether there would be a harmful build up of carbon monoxide within the building as a result of!the products of combustion being released directly into the air stream.... The unvented infrared heaterslhave long been proven safe from this standpoint. By looking at the fundamental chemistry of combustion! of natural gas, the direct gas-fired make-up air heaters can be shown to produce lower concentrationsII of carbon monoxide...

Searcy, J. A.

1979-01-01T23:59:59.000Z

74

Air/fuel supply system for use in a gas turbine engine  

SciTech Connect (OSTI)

A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

2014-06-17T23:59:59.000Z

75

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

76

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

77

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect (OSTI)

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

78

E-Print Network 3.0 - air-sea gas transfer Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C 2006 The Authors Journal compilation C 2006 Blackwell Munksgaard Summary: and wind speed dependence of the air-sea gas transfer velocity By NIR Y. KRAKAUER1 , JAMES T....

79

Residential propane price decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price

80

Natural Gas Monthly (NGM) - Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports,...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cooling air recycling for gas turbine transition duct end frame and related method  

DOE Patents [OSTI]

A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

2002-01-01T23:59:59.000Z

82

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

83

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents [OSTI]

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

84

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network [OSTI]

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations...

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

85

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3 of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (9000

Arnold, Frances H.

86

29Counting Atoms in a Molecule The complex molecule Propanal  

E-Print Network [OSTI]

29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

87

Fluorine Gas Management Guidelines Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric  

E-Print Network [OSTI]

Fluorine Gas Management Guidelines Overview Fluorine is a highly toxic, pale yellow gas about 1.3 times as heavy as air at atmospheric temperature and pressure. Fluorine gas is the most powerful oxidizing agent known, reacting with practically all organic and inorganic substances. Fluorine gas

de Lijser, Peter

88

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

89

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

90

Flame holding tolerant fuel and air premixer for a gas turbine combustor  

DOE Patents [OSTI]

A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

2012-11-20T23:59:59.000Z

91

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

92

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

93

Electric, Gas, and Electric/Gas Energy Options for Cold-Air HVAC Systems  

E-Print Network [OSTI]

and incorporated into HVAC design for medium-to-large buildings, it is possible to structure system arrangements that reduce energy operating costs very significantly compared to conventional all-air VAV systems and also to all-air VAV ice thermal storage systems...

Meckler, G.

1989-01-01T23:59:59.000Z

94

Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndiana Natural Gas Powers MilkSaveQuality

95

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

1952-01-01T23:59:59.000Z

96

A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas  

E-Print Network [OSTI]

. Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

Jaehne, Bernd

97

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

98

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

99

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network [OSTI]

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

100

A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern  

E-Print Network [OSTI]

and hydrogen storage in salt caverns. Compressed Air Energy Storage (CAES) is experiencing a rise in interest-form solutions of the blow-out problem. These solutions are applied to the cases of compressed air storageA Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern Pierre BĂ©rest

Boyer, Edmond

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

No. 2 heating oil/propane program  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

102

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

103

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

104

Influence of rain on air-sea gas exchange: Lessons from a model ocean David T. Ho,1,2  

E-Print Network [OSTI]

Influence of rain on air-sea gas exchange: Lessons from a model ocean David T. Ho,1,2 Christopher J-sea gas exchange: Lessons from a model ocean, J. Geophys. Res., 109, C08S18, doi:10.1029/2003JC001806. 1; published 1 July 2004. [1] Rain has been shown to significantly enhance the rate of air-water gas exchange

Ho, David

105

Heating Oil and Propane Update - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for last year (2013-2014 season) for the U.S., PADD 1, PADD 1C, and PADD 2 averages. Wholesale propane graphs Wholesale Propane (dollars per gallon)more price data change from...

106

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

107

Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation  

E-Print Network [OSTI]

1 Comparative Life-cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity from the LNG life-cycle. Notice that local distribution of natural gas falls outside our analysis boundary. Figure 1S: Domestic Natural Gas Life-cycle. Figure 2S: LNG Life-cycle. Processing Transmission

Jaramillo, Paulina

108

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported  

E-Print Network [OSTI]

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

109

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T hydroxylase (P450BM3) to a laboratory-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic

Arnold, Frances H.

110

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

111

Preliminary Investigation of Tracer Gas Reaeration Method for Shallow Bays  

E-Print Network [OSTI]

was used with propane for the tracer gas and Rhodamine-WT, a fluorescent dye, for the "conservative" tracer. The propane was injected through porous tile diffusers, and the dye was released simultaneously. The propane acts as a model for the surface...

Baker, Sarah H.; Holley, Edward R.

112

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

SciTech Connect (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

113

Portland Public School Children Move with Propane  

SciTech Connect (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

114

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station  

SciTech Connect (OSTI)

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01T23:59:59.000Z

115

GHPs Save Heating Cost and Improve Air Quality in Poultry Farm  

E-Print Network [OSTI]

§ Propane vs natural gas § Fuel management § Utility company § Capacity, NEVADA 7 § High energy baseline (propane) § Open space for underground loop, 2013 ¢ LAS VEGAS, NEVADA 8 ENVIRONMENTAL IMPACT 1 gallon propane 0.8 gallon water CO, NO, SO2

116

International Lige Colloquium on Ocean Dynamics, GAS TRANSFER AT WATER SURFACES, May 2 -6 2005 Estimation of air-sea gas and heat fluxes from infrared imagery and  

E-Print Network [OSTI]

2005 Estimation of air-sea gas and heat fluxes from infrared imagery and surface wave measurements and much higher heat fluxes. In addition, the infrared imagery analysis reveals potentially significant the infrared images. It is also shown that the difference in the surface boundary conditions for heat and gas

Jaehne, Bernd

117

Potential Air Contamination During CO{sub 2} Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography  

SciTech Connect (OSTI)

Purpose. To assess air contamination in the hand-held syringes currently used for CO{sub 2} delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO{sub 2} and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO{sub 2} at 0.1599 cm{sup 2}/sec (9.594 cm{sup 2}/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO{sub 2} when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

Cho, David R. [Samsung Austin Semiconductor (United States); Cho, Kyung J. [University of Michigan Medical Center, FACR, B1D 530C/0030, Department of Radiology (United States)], E-mail: kyungcho@umich.edu; Hawkins, Irvin F. [University of Florida College of Medicine, Department of Radiology (United States)

2006-08-15T23:59:59.000Z

118

Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health  

SciTech Connect (OSTI)

Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range of costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.

West, Jason; Smith, Steven J.; Silva, Raquel; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zacariah; Fry, Meridith M.; Anenberg, Susan C.; Horowitz, L.; Lamarque, Jean-Francois

2013-10-01T23:59:59.000Z

119

Alternative Fuels Data Center: Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAbout

120

An analysis of US propane markets, winter 1996-1997  

SciTech Connect (OSTI)

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen Minimum Zone (OMZ) systems"  

E-Print Network [OSTI]

of SOLAS and to the Workshop Véronique Garçon 09:50 Surface (energy and water) fluxes at the air1 SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen

122

Propane Market Outlook Assessment of Key Market Trends, Threats...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

markets have become more pronounced. 2 2010 Propane Market Outlook Update 1 Introduction Energy markets are changing at an unprecedented pace. These changes have had dramatic...

123

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

124

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

125

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

126

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

127

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

be combined with storage WH) N N N Propane Don't know/blan kstorage water heater) __ Other (describe) K.2 Is this water heater powered by natural gas, electricity or propane? [Propane __ Electric! Skip to §L K.3 Do you have more than one storage

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

128

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect (OSTI)

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

129

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect (OSTI)

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

130

Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1993-02-18T23:59:59.000Z

131

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

132

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

133

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network [OSTI]

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

134

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides  

E-Print Network [OSTI]

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

Iglesia, Enrique

135

This Week In Petroleum Propane Section  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068 -Vanadium andResidential propane

136

Residential propane price decreases slightly decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price7,

137

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid propane

138

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report  

SciTech Connect (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

139

Studies of n-Propanol, iso-Propanol, and Propane Flames  

SciTech Connect (OSTI)

The phenomena of propagation and extinction of flames of saturated C{sub 3} alcohols and propane were studied experimentally and numerically in order to assess the effects of the presence and location of the hydroxyl radical in the fuel molecular structure. The experiments were carried out in the counterflow configuration under atmospheric pressure and for unreacted fuel-carrying stream temperature of 343 K. The simulations included detailed descriptions of molecular transport and chemical kinetics using a recently developed kinetic model for C{sub 3} alcohols. The experimental results revealed that the laminar flame speeds and extinction strain rates of n-propanol/air and propane/air flames are close to each other whereas those of iso-propanol/air flames are consistently lower. Similar behavior was observed also for the extinction strain rates of non-premixed n-propanol and iso-propanol flames. It was shown through sensitivity and reaction path analyses that there are two major differences between the intermediates of n-propanol/air and iso-propanol/air flames. In iso-propanol/air flames there are notably higher concentrations of propene whose consumption pathway results in the relatively unreactive allyl radicals, retarding thus the overall reactivity. In n-propanol/air flames there are notably higher concentrations of formaldehyde that reacts readily to form formyl radicals whose subsequent reactions enhance the overall reactivity. The kinetic model used in this study was found to overpredict the experimental results for rich n-propanol/air and propane/air flames. Analysis revealed that those discrepancies are most likely caused by deficiencies in the C{sub 3} alkane kinetics. Through sensitivity analysis, it was determined also that the propagation and extinction of n-propanol/air and iso-propanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 3} kinetics and not to fuel-specific reactions. Finally, the relative sooting propensities of flames of these three fuels were assessed computationally.

Veloo, Peter S.; Egolfopoulos, Fokion N.

2011-01-01T23:59:59.000Z

140

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect (OSTI)

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

142

Ultrahigh Sensitivity Heavy Noble Gas Detectors for Long-Term Monitoring and for Monitoring Air  

SciTech Connect (OSTI)

The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. Effective 1/4/99, the UC PI (John Valentine) became an Associate Professor in the Nuclear and Radiological Engineering Program of the George W. Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. Consequently, this project was transferred to Georgia Tech (GT) with the PI. UC funding extended to 1/31/99 and GT funding became active 4/26/99. Due to this transfer, we will refer to the research team as the GT/UC/ANL Team for this Annual Report. Subsequently, we will use GT/ANL Team. DOE needs that are ad dressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

Valentine,John D.; Gross, Kenny

1999-06-01T23:59:59.000Z

143

Thermo-fluidal behavior of the air in a cavern for the CAES-G/T[Compressed Air Energy Storage Gas Turbine  

SciTech Connect (OSTI)

In this paper, a numerical analysis was performed to gain the detailed features of the thermo-fluidal behavior of the air inside the cavern for the compressed air storage gas turbine (CAES-G/T). The CAES-G/T, a peak shave power plant is now on the installation in Japan, where energy is stored in off peak period by compressed air in an underground cavern at pressure up to 80 atm abs. In the present work, an analytical model based on the two-dimensional laminar flow on the cross-section of the circular cavern was developed to quantify the effect of the transient process occurring in the cavern and wall during injection, storage and release of compressed air in the experimental circular cavern. the air was introduced until the required pressure inside the cavern is reached, then it was released outside after the storage period. It was found that the stratified temperature distribution was maintained in the cavern during compression and expansion periods. The wall temperature varied together with the variation of the air temperature with time, leading to the heat storage in the wall.

Tada, Shigeru; Yoshida, Hideo; Echigo, Ryozo; Oishi, Yasushi

1999-07-01T23:59:59.000Z

144

TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS  

SciTech Connect (OSTI)

This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

DOUGLAS, J.G.

2006-07-06T23:59:59.000Z

145

Versatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department of Aerospace and Mechanical Engineering  

E-Print Network [OSTI]

temperature (250°C ­ 400°C), a catalyst is required. Breakdown products of chemical-agent molecules eitherVersatile, fuel-powered active gas mask or room air purifier Paul D. Ronney, Department Number: CBDIF-2006-PRO01 (Individual Protection) Motivation and approach Practically all chemical

146

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

147

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

148

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

on the impact of hydrogen production on urban air quality.in ambient air quality: (1) onsite hydrogen production; (2)centralized hydrogen production with gaseous hydrogen

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

149

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network [OSTI]

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen walls. Air Products tasked our team to design an insert to place in the tubes of the WHB to increase flow velocity, thereby reducing fouling of the WHB. Objectives Air Products wishes that our team

Demirel, Melik C.

150

B.Jhne and E. Monahan (eds.), Air-Water GasTransfer, 1995 by AEON Verlag I Physical and Chemical Mechanisms  

E-Print Network [OSTI]

W. K. Melville E. Terrill L. Ding Field Measurements of Air Entrainment by Breaking Waves D. FarmerB.Jähne and E. Monahan (eds.), Air-Water GasTransfer, © 1995 by AEON Verlag I Physical and Chemical Mechanisms B. Jähne Impact of Quantitative Visualization and Image Processing on the Study of Small-Scale Air

Jaehne, Bernd

151

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Sherman, Max H.

2014-01-01T23:59:59.000Z

152

Can propane school buses save money and provide other benefits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

153

VEE-0040- In the Matter of Western Star Propane, Inc.  

Broader source: Energy.gov [DOE]

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

154

VEE-0060- In the Matter of Blakeman Propane, Inc.  

Broader source: Energy.gov [DOE]

On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

155

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect (OSTI)

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

156

Indoor Air Quality Poor indoor air quality comes from many sources. It can lead to having  

E-Print Network [OSTI]

Indoor Air Quality Fact Sheet Poor indoor air quality comes from many sources. It can lead Indoor Air Pollutants · Molds · Pollen · Dander from pet fur · Secondhand smoke · Formaldehyde · Carbon monoxide that comes from burning propane, other gases and fuels, and charcoal · Household products

157

Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)  

SciTech Connect (OSTI)

The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

Armstrong, P.R.; Katipamula, S.

1996-10-01T23:59:59.000Z

158

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

DOE Patents [OSTI]

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

159

A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources  

SciTech Connect (OSTI)

Nanoparticle aggregates collected by thermophoretic precipitation from natural gas-air and propane-air kitchen stove top flame exhausts, natural gas-air water heater roof-top exhausts, and other common fuel-gas combustion sources were observed by transmission electron microscopy to consist of occasional aggregates of mostly turbostratic carbon spherules, aggregates of crystalline graphite nanoparticles mixed with other fullerene nanoforms; and aggregates of various sizes of multiwall carbon nanotubes and other multishell, fullerene polyhedra for optimal blue-flame combustion. The carbon nanotube structures and end cap variations as well as fullerene polyhedral structures were observed to be the same as those for arc-evaporation produced nanoaggregates. Nanoparticle aggregation or the occurrence of carbon nanoforms always occurred as aggregates with nominal sizes ranging from about 0.5 {mu}m to 1.5 {mu}m.

Murr, L.E. [Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: fekberg@utep.edu; Soto, K.F. [Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

2005-07-15T23:59:59.000Z

160

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1 DOE

162

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1

163

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents [OSTI]

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

164

air-cooled gas turbine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan) 2003-01-01 57 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

165

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

166

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

167

Selective dehydrogenation of propane over novel catalytic materials  

SciTech Connect (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

168

Microsoft PowerPoint - Propane_Briefing_140205_nn.pptx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

add to 100%) Propane share of space heating demand by key regions and states U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

169

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)  

E-Print Network [OSTI]

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

Kushner, Mark

170

Experimental studies of steam-propane injection for the Duri intermediate crude oil  

E-Print Network [OSTI]

Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection...

Hendroyono, Arief

2003-01-01T23:59:59.000Z

171

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,  

E-Print Network [OSTI]

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

Li, Jing

172

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane  

E-Print Network [OSTI]

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

GĂĽlder, Ă?mer L.

173

E-Print Network 3.0 - air-gas mixture khitinsoderzhashchie Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for three or more standard gas mixtures ... Source: Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center, Global Ocean Data Analysis Project (GLODAP)...

174

Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and for monitoring air. Technical status report  

SciTech Connect (OSTI)

The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

Valentine, J.D.

1999-01-31T23:59:59.000Z

175

Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station  

SciTech Connect (OSTI)

DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

Armstrong, P.R.; Schmelzer, J.R.

1997-01-01T23:59:59.000Z

176

Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season  

SciTech Connect (OSTI)

In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

Armstrong, P.R.; Conover, D.R.

1993-05-01T23:59:59.000Z

177

Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane  

SciTech Connect (OSTI)

In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

2013-09-01T23:59:59.000Z

178

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network [OSTI]

generation of electricity in California, which resulted in more air pollution than central power plants [electricity-intensive liquid hydrogen truck pathway, emis- sions from diesel truck delivery and electric generation at power plants

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

179

Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations  

E-Print Network [OSTI]

ARTICLE Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using propane monooxygenase prepared by directed evolu- tion [P450PMOR2; Fasan et al. (2007); Angew Chem Int Ed of the energy source (glucose) in the propane biotransformation com- pared to the native E. coli strain. Using

Arnold, Frances H.

180

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor  

E-Print Network [OSTI]

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

Walker, Lawrence R.

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Dehydrogenation of Propane to Propylene over Supported Model NiAu Catalysts  

E-Print Network [OSTI]

Dehydrogenation of Propane to Propylene over Supported Model Ni­Au Catalysts Zhen Yan · Yunxi Yao 2012 � Springer Science+Business Media, LLC 2012 Abstract Hydrogenolysis and dehydrogenation of propane. For the conversionofpropane in the presence of hydrogen, the dehydrogenation of propane to propylene was observed onthe Ni

Goodman, Wayne

182

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing  

E-Print Network [OSTI]

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

Sessions, Alex L.

183

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic  

E-Print Network [OSTI]

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic and propane isotherms measured at ambient temperatures and ideal adsorption solution theory (IAST) calculations revealed increasing propylene/propane selectivities with increasing pressures. The eld of highly

184

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a  

E-Print Network [OSTI]

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a , Georges and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane

Iglesia, Enrique

185

Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by  

E-Print Network [OSTI]

ARTICLE Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by Two: Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells

Alvarez-Cohen, Lisa

186

Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,  

E-Print Network [OSTI]

, Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

Hudlicky, Tomas

187

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation  

E-Print Network [OSTI]

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between] in interaction with propane. Two complexes have been found as minima coordinated through either a methyl the methylene complex of propane into a methyl complex of pro- pane. This latter reaction has a much lower

Jones, William D.

188

Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane{  

E-Print Network [OSTI]

of propane{ Christian, Michael Mitchell and Paul J. A. Kenis* Received 31st May 2006, Accepted 10th August of propane into hydrogen at temperatures between 800 and 1000 uC. We characterized these microreactors. Kinetic analysis using a power law model showed reaction orders of 0.50 and 20.23 with respect to propane

Kenis, Paul J. A.

189

Selective adsorption of ethylene over ethane and propylene over propane in the metalorganic  

E-Print Network [OSTI]

Selective adsorption of ethylene over ethane and propylene over propane in the metal in the energy costs associated with the cryogenic separation of ethylene­ethane and propylene­propane mixtures adsorption data for ethylene, ethane, propylene, and propane at 45, 60, and 80 C for the entire series

190

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane  

E-Print Network [OSTI]

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

Iglesia, Enrique

191

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam

Paris-Sud XI, Université de

192

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts  

E-Print Network [OSTI]

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum of propane over ZrO2-supported MoOx catalysts. Competitive reactions of C3H6 and CH3 13 CH2CH3 showed combustion of propene, or by direct combustion of propane. A mixture of C3H8 and C3D8 undergoes oxidative

Iglesia, Enrique

193

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational Preference  

E-Print Network [OSTI]

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass- analyzed thresholdV and 9.9516 ( 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral

Kim, Sang Kyu

194

CONTRIBUTION A L'TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET ACTYLNE  

E-Print Network [OSTI]

CONTRIBUTION A L'�TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET AC�TYL�NE Par MM. JEAN VAN DER POLL du propane et de l'acétylène qui ont montré que, dans certains cas, les flammes oxy-propane et oxy

Paris-Sud XI, Université de

195

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network [OSTI]

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers in comparison to cases without the spiral. Tests through a range of cycle frequencies up to 20 Hz in oxygen-propane spiral in a pulsed detonation engine operating with propane and oxygen. A high-energy igniter is used

Texas at Arlington, University of

196

Layering and orientational ordering of propane on graphite: An experimental and simulation study  

E-Print Network [OSTI]

Layering and orientational ordering of propane on graphite: An experimental and simulation study 2002; accepted 30 July 2002 We report the results of an experimental and theoretical study of propane and experiments show that propane adsorbs in a layer-by-layer fashion and exhibits continuous growth beyond

Borguet, Eric

197

Zeolitic imidazolate frameworks for kinetic separation of propane and propene  

DOE Patents [OSTI]

Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

Li, Jing; Li, Kunhao; Olson, David H.

2014-08-05T23:59:59.000Z

198

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

SciTech Connect (OSTI)

This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William; Fisk, William J.

2007-08-01T23:59:59.000Z

199

Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings  

SciTech Connect (OSTI)

This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William J.

2006-05-01T23:59:59.000Z

200

Understanding the use of natural gas storage for generators of electricity  

SciTech Connect (OSTI)

Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil  

E-Print Network [OSTI]

, attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

Nesse, Thomas

2005-02-17T23:59:59.000Z

202

Primary zone air proportioner  

DOE Patents [OSTI]

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

203

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect (OSTI)

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

204

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense Membrane  

E-Print Network [OSTI]

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense of propane under OCV and under electrical bias. The propane conversion remained constantly equal to 12 by partial oxidation and oxidative dehydrogenation of propane, respectively. An anodic polarisation led

Paris-Sud XI, Université de

205

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique unlabeled products from mixtures of propene and propane-2-13C reactants. Aromatic products of propane-2-13C-Parmer) that allowed differential reactor operation (propane reactions were

Iglesia, Enrique

206

E-Print Network 3.0 - air methane vam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reagents Methane (99.99 v.%, Air Products and Chemicals, Inc.) and propane (99.0 v.%, Praxair) were used... of carbon catalyst activation on the rate of methane decomposition...

207

Costs Associated With Propane Vehicle Fueling Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNatural Gas UsageCosmic

208

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

SciTech Connect (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

209

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network [OSTI]

of incorporating the NGEDAC performance data directly into their overall energy management control system. All Army industrial installations will be screened for technology application. Technology transfer will be coordinated with Air Force, Navy, and Defense... Technology & Management Paul A. Wenner Laboratory Services, Inc. XENERGY, Inc. Champaign, Illinois Gaithersburg, Maryland Worthington, Ohio ABSTRACT Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity...

Lin, M.; Aylor, S. W.; Van Ormer, H.

210

Gas separation with oligomer-modified inorganic membranes  

E-Print Network [OSTI]

-based separation are presented. Alumina membranes with average pore sizes near 5 nm and 10 run were treated with various n-alkyl trichlorosilanes. Pure gas permeation studies using nitrogen, methane, and propane were performed to investigate the effects...

Javaid, Asad

1999-01-01T23:59:59.000Z

211

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety

212

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro's estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

213

Mechanical characterization of metallic materials for high-temperature gas-cooled reactors in air and in helium environments  

SciTech Connect (OSTI)

In the French R and D program for high-temperature gas-cooled reactors (HTGRs), three metallic alloys were studied: steel Chromesco-3 with 2.25% chromium, alloy 800H, and Hastelloy-X. The Chromesco-3 and alloy 800H creep behavior is the same in air and in HTGR atmosphere (helium). The tensile tests of Hastelloy-X specimens reveal that aging has embrittlement and hardening effects up to 700/sup 0/C, but the creep tests at 800/sup 0/C show opposite effects. This particular behavior could be due to induced precipitation by aging and the depletion of hardening elements from the matrix. Tests show a low influence of cobalt content on mechanical properties of Hastelloy-X.

Sainfort, G.; Cappelaere, M.; Gregoire, J.; Sannier, J.

1984-07-01T23:59:59.000Z

214

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

Hagan, Colin R.

2012-01-01T23:59:59.000Z

215

The interior concentration distribution of a contaminant gas resulting from the ventilating effect of a jet augmented local exhaust (JALE) booth  

E-Print Network [OSTI]

q I I I y X 229 114 Front View Figure 1 ? Top and front view of the booth. A11 dimensions are in mi 11imeters (mm). FAN 36 2 135 56 46 46 AIR IN I. D. DUCT A 10 cm (4 in. ) B 15 cm (6 in. ) C 23 cm (9 in. ) B e JET ASSEMBLY ROTAMETER... to see if there is any leakage of propane gas, (9) draw another sample from the exhaust, ( 10) note the room temperature, and ( 11) purge the Mi ran and zero. Before an absorbance reading was recorded, the M1ran output had to stabilize. Stabilization...

Pazyra, Laurence Paul

2012-06-07T23:59:59.000Z

216

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal-Organic Framework mmen-Mg2(dobpdc)  

E-Print Network [OSTI]

, stationary sources like coal-fired power plants, carbon capture and sequestration (CCS) has been proposed.4Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine- Appended Metal-Organic Framework viable absorbents for carbon capture under the aforementioned conditions, and they are presently used

217

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

218

Absorption du rayonnement 12 et 8 millimtres par les vapeurs de propane sous pression  

E-Print Network [OSTI]

Absorption du rayonnement 12 et 8 millimètres par les vapeurs de propane sous pression A. Battaglia des pertes diélectriques (03B5") présentées par le propane gazeux aux fréquences de 24 et 36 GHz, à la Birnbaum. Abstract. 2014 Experimental study of dielectric losses (03B5") presented by gaseous propane

Boyer, Edmond

219

Microsoft PowerPoint - Propane_Briefing_140131_summary_v2_nn...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of space heating demand by key regions and states Adam Sieminski, Administrator U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

220

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

222

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

223

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

224

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

SciTech Connect (OSTI)

The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

2013-12-01T23:59:59.000Z

225

Will cheap gas and efficient cars imperil air-quality goals under relaxed emission standards  

SciTech Connect (OSTI)

Long-term trends, to the year 2000, of urban household travel were forecast for prototype metropolitan areas under several sets of energy prices, auto fuel economy, and emission standards. Dramatic improvements in air quality were forecast due to redistribution of travel and lowered emissions. The exception to this trend to rapidly growing cities, such as those in the west and southwest experiencing sprawl development that characterized many urbanized areas in the industrial northeast and midwest during the 1950's and 1960's. In one test city, where the rate of urbanization has slowed significantly, analysis indicated that relaxation of the light-duty-vehicle NO/sub x/ standard from 1.0 gm/mi to 2.0 gm/mi would not severely threaten attainment of the ambient NO/sub x/ standards by 1987 owing to redistribution of population and activities. The difference in total energy impacts was determined to be negligible, assuming moderate increase in petroleum prices through 1995 (3.1%/year). In another policy test, without changing emission standards, an increase in fuel price of 3.75%/year from 1980 to 2000 reduced travel and provided a 4% decrease in energy use and a corresponding decrease in CO, HC and NO/sub x/. Virtually all of the reduction in travel and emissions was due to non-work travel, which fell 9%. The price increase damped the increase in auto travel per person that would occur as autos become cheaper to operate and as household wealth increases, making the answer to the title a cautious yes, given steady or slowly rising fuel prices.

LaBelle, S.J.; Saricks, C.L.; Moses, D.O.

1983-04-01T23:59:59.000Z

226

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

SciTech Connect (OSTI)

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01T23:59:59.000Z

227

Propane cold neutron source: creation and operation experience  

SciTech Connect (OSTI)

In most cold neutron sources, utilized until recently, liquid hydrogen, liquid deuterium and their mixtures were used as a moderating medium. The sources with the liquid hydrogen moderator offer the most specific effectiveness of cold neutron generation. But they are complicated in design, require special safety measures in the course of operation and are very expensive. In this connection, it is of undoubted interest to create a source which, although it yields the specific generation of cold neutrons comparable to the liquid hydrogen one, is safer in operation and simple in design. We assume such a source may be one which uses as a moderator liquid propane cooled to liquid nitrogen temperature.

Zemlyanov, M. G.

1997-09-01T23:59:59.000Z

228

RECS Propane Usage Form_v1 (Draft).xps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 Media Contact: Rick30propane

229

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane Buses

230

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane

231

Alternative Fuels Data Center: Propane Fueling Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropaneStation

232

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvaniaOrleans Propane

233

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety Advisory to someone by

234

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank OverfillSan

235

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnail WorkplacePropane inReducing

236

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

Hagan, Colin R.

2012-01-01T23:59:59.000Z

237

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect (OSTI)

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

238

Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system  

E-Print Network [OSTI]

structure has all four heavy atoms coplanar, with the water center of mass lying on or near the C, axisFourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed

Cohen, Ronald C.

239

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network [OSTI]

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

240

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Propane Buwe  

E-Print Network [OSTI]

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Scheme 111 Propane Buwe X =CHI and Y = H lossofH2 Z = H-82-8; ethane, 74- 84-0; propane, 74-98-6;butane, 106-97-8. (28) The heats of formation for C3H2are the scaled

Schlegel, H. Bernhard

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network [OSTI]

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2000-01-01T23:59:59.000Z

242

Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine  

SciTech Connect (OSTI)

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

2011-10-05T23:59:59.000Z

243

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

control technology.1 46 sions from the list of regulated hazardous air pollutantsAir Act includes "only those pollutants subject to a statutory or regulatory provision that requires actual control

Hagan, Colin R.

2012-01-01T23:59:59.000Z

244

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1  

E-Print Network [OSTI]

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1 , A. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized in a combustion apparatus which can easily be modeled, a laminar premixed flame of propane at atmospheric pressure

Paris-Sud XI, Université de

245

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane  

E-Print Network [OSTI]

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n for ethane, propane, and neopentane involvesthe cleavage of a single carbon-carbon bond, resulting

Goodman, Wayne

246

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional dynamics of the hydrogen  

E-Print Network [OSTI]

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional 1993) The far-infrared laservibration-rotation-tunneling (FIR-VRT) spectrumof the propane-water complex calculations. In the present paper and in its counterpart,13we present our results for the water-propane

Cohen, Ronald C.

247

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane) and R407C  

E-Print Network [OSTI]

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane with propane as refrigerant are analyzed in terms of the compressor model developed by [E. Navarro, E. Granryd. In addition, a comparison study between propane and R407C was carried out for one compressor and the observed

Fernández de Córdoba, Pedro

248

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia* Department rates during propane conversion at 773 K on Zn/Na-ZSM5 are about ten times higher than on Zn/H-ZSM5 catalysts with similar Zn content. The total rate of propane conversion is also higher on Zn/Na-ZSM5

Iglesia, Enrique

249

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5  

E-Print Network [OSTI]

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H Co/H-ZSM5 catalyzes propane dehydrogenation and aromatization reactions. Initial product selectivities, product site-yields, and the 13C content and distribution in the products of 2-13C-propane show

Iglesia, Enrique

250

Prediction of gas-hydrate formation conditions in production and surface facilities  

E-Print Network [OSTI]

such as methane, ethane, propane, carbon dioxide and hydrogen sulfide to binary, ternary, and natural gas mixtures. I used the Statistical Analysis Software (SAS) to find the best correlations among variables such as specific gravity and pseudoreduced pressure...

Ameripour, Sharareh

2006-10-30T23:59:59.000Z

251

SciTech Connect: Effects of Propane/Natural Gas Blended Fuels on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatronAerogelDistances

252

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

253

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

SciTech Connect (OSTI)

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

254

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network [OSTI]

Gas furnace Air-to-air heat pump Gas fireplace (primarywith their air-to-air heat pumps, such as nighttimeSystem Type None Air-to-air heat pump Night ventilative

Less, Brennan

2012-01-01T23:59:59.000Z

255

Effect of temperature and pressure on the dynamics of nanoconfined propane  

SciTech Connect (OSTI)

We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

Gautam, Siddharth, E-mail: gautam.25@osu.edu; Liu, Tingting, E-mail: gautam.25@osu.edu; Welch, Susan; Cole, David [School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210 (United States); Rother, Gernot [Geochemistry and Interfacial Science Group, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jalarvo, Niina [Jülich Center for Neutron Sciences (JCNS-1), Forschungszentrum Jülich Outstation at Spallation Neutron Source(SNS), Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mamontov, Eugene [Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-24T23:59:59.000Z

256

Backward Raman amplification in a partially ionized gas A. A. Balakin,1  

E-Print Network [OSTI]

was accessed 10,11 . The experimental success was achieved using a gas jet of propane, subse- quently ionized that would be most desired. Using the pro- pane gas jet, as opposed to pure hydrogen, eased conditions on the gas jet nozzle, since a lower gas pressure could pro- duce a higher density target. However, the use

257

Air ejector augmented compressed air energy storage system  

DOE Patents [OSTI]

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

258

A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime  

SciTech Connect (OSTI)

The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Bourque, G. [Rolls-Royce Canada, Montreal (Canada)

2008-04-15T23:59:59.000Z

259

Glass flask air sample analysis through Gas Chromatography in India: Implications for constraining CO2 surface fluxes  

E-Print Network [OSTI]

for an air inlet (equipped with a 7µm filter), a pump and a battery placed below the ON/OFF button, a flow to the site measurements, they are prepared and evacuated. We pump and heat the flasks. During pumping the temperature is +60 dc. Flasks are pumped for 72 hours. Outlook Air sampling started at two new stations, Cape

260

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect (OSTI)

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

NONE

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network [OSTI]

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

262

Analysis of tank deformation from fire induced ruptures and BLEVEs of 400 l propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400 liter ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. the resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called Boiling Liquid Expanding Vapour Explosions (BLEVE). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. this paper presents the measured data from the tanks and a step by step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1996-12-01T23:59:59.000Z

263

Analysis of fire-induced ruptures of 400-L propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400-L ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. The resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called boiling liquid expanding vapor explosions (BLEVEs). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. This paper presents the measured data from the tanks and a step-by-step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1997-08-01T23:59:59.000Z

264

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

265

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network [OSTI]

with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

266

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation  

E-Print Network [OSTI]

EXPERIMENTAL AND ANALYTICAL STUDIES OF HYDROCARBON YIELDS UNDER DRY-, STEAM-, AND STEAM-WITH- PROPANE DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University...-WITH- PROPANE-DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

Jaiswal, Namit

2007-09-17T23:59:59.000Z

267

Knowledge Partnership for Measuring Air Pollution and Greenhouse...  

Open Energy Info (EERE)

Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia...

268

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network [OSTI]

the energy events of the 1970s, in whose wake we are still reeling. Julian Darley has done far more than just, as well as a meticulously researched warning about our next potentially catastrophic energy crisis. Did due to the looming NG crisis? HIGH NOON FOR NATURAL GAS The New Energy Crisis JULIAN DARLEY $18

Keeling, Stephen L.

269

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

Hagan, Colin R.

2012-01-01T23:59:59.000Z

270

Assessment of the risk of transporting propane by truck and train  

SciTech Connect (OSTI)

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

271

Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2011-12-31T23:59:59.000Z

272

Compressed Air System Optimization  

E-Print Network [OSTI]

Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

Aegerter, R.

273

Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems  

E-Print Network [OSTI]

In Review J. Indoor Air) 2007 LBNL-63193 Tarantola, Albert,Gas Measurement to Determine Air Movements in a House,Measurement Techniques”, Air Infiltration and Ventilation

Sherman, Max H.

2008-01-01T23:59:59.000Z

274

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

SciTech Connect (OSTI)

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

275

Combustion Air Control  

E-Print Network [OSTI]

calibration and tune-up: ? A measure of combustion efficiency must be selected as a target operating goal for the combustion control system. Possible measures and typical targets include: Stack Gas Excess Air, 15% Stack Gas Opacity, 0.3 RN Stack Gas CO... Fuel Flows ? Preheater Inlet Temperature ? Btu Flow (Fuel Flow ? Preheater Outlet Temperature Controller Measurement) ? Ambient Temperature ? Oxygen in the Stack ? Boiler Master Controller Output ? Opac i ty Normalize the steam, air and fuel flow...

Hughart, C. L.

1979-01-01T23:59:59.000Z

276

ITP Industrial Distributed Energy: CHP GUIDE #1 - Q & A ON COMBINED...  

Broader source: Energy.gov (indexed) [DOE]

CHP systems can combust propane, fuel oil, hydrogen, landfill or anaerobic digester gas--providing a hedge against rising natural gas costs. * Improved Indoor Air Quality...

277

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

278

Robins Air Force Base Integrated Resource Assessment. Volume 2, Baseline Detail  

SciTech Connect (OSTI)

This report documents the assessment of baseline energy use at Robins Air Force Base (AFB), a US Air Force Materiel Command facility located near Macon, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins AFB. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Robins AFB. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year 1991. The results include energy-use intensities for the facilities at Robins AFB by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

1993-08-01T23:59:59.000Z

279

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect (OSTI)

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

280

No. 2 heating oil/propane program. Final report, 1992/93  

SciTech Connect (OSTI)

During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

282

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

1955-01-01T23:59:59.000Z

283

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

284

E-Print Network 3.0 - air temperature air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measured as 74 per of air flowing through the turbine. The turbine operates... the ideal gas model for air, determine the turbine efficiency. Problem 2 ... Source: Bahrami, Majid -...

285

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

286

Simulation studies of steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

Venturini, Gilberto Jose

2002-01-01T23:59:59.000Z

287

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

288

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation  

SciTech Connect (OSTI)

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

2011-10-28T23:59:59.000Z

289

Vandenberg Air Force Base integrated resource assessment. Volume 2, Baseline detail  

SciTech Connect (OSTI)

The US Air Force Space Command has tasked the Pacific Northwest Laboratory, as the lead laboratory supporting the US Department of Energy Federal Energy Management Program, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is a model program PNL is designing for federal customers served by the Pacific Gas and Electric Company (PG and E). The primary goal of the VAFB project is to identify all electric energy efficiency opportunities, and to negotiate with PG and E to acquire those resources through a customized demand-side management program for its federal clients. That customized program should have three major characteristics: (1) 100% up-front financing; (2) substantial utility cost-sharing; and (3) utility implementation through energy service companies under contract to the utility. A similar arrangement will be pursued with Southern California Gas for non-electric resource opportunities if that is deemed desirable by the site and if the gas utility seems open to such an approach. This report documents the assessment of baseline energy use at VAFB located near Lompoc, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Resource Assessment. This analysis examines the characteristics of electric, natural gas, fuel oil, and propane use for fiscal year 1991. It records energy-use intensities for the facilities at VAFB by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A more complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, and applicable losses.

Halverson, M.A.; Richman, E.E.; Dagle, J.E.; Hickman, B.J.; Daellenbach, K.K.; Sullivan, G.P.

1993-06-01T23:59:59.000Z

290

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network [OSTI]

, BP 20451, 1 Rue Grandville, 54001 Nancy, France 2 Division of Combustion Physics, Lund University flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure

Paris-Sud XI, Université de

291

Catalytic study of SOFC electrode materials in engine exhaust gas Pauline Briaulta  

E-Print Network [OSTI]

1 Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere Pauline Briaulta. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water

Paris-Sud XI, Université de

292

Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion  

E-Print Network [OSTI]

110.6 million barrels per day by 2030 [1]. One possible source of alternative fuel, biodiesel, can be derived from biomass feedstocks (e.g., soybean). This bio-based diesel can augment or replace petroleum based diesel with little to no modifications...

Pickett, Derek

2013-12-31T23:59:59.000Z

293

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanolNatural Gas

294

Microsoft PowerPoint - Propane_Briefing_140312.pptx  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 2011

295

Propane (Consumer Grade) Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural Gas Exports2. Types of77

296

U.S. Propane (Consumer Grade) Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (MillionElements)2009 2010

297

Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region  

E-Print Network [OSTI]

that are generally associated with chemical compounds. Gas hydrates of interest to the natural gas industry are made up of lattices containing water molecules in different ratios with methane, nitrogen, ethane, propane, iso-butane, normal butane, carbon dioxide... or carbon dioxide. 7 Transporting gas in the form of a gas hydrate can prove to be very useful in the supply chain of natural gas to meet future energy demand. Thus major challenges exist in effectively capturing, storing, transporting...

Rajnauth, Jerome Joel

2012-02-14T23:59:59.000Z

298

Questions and Answers For PON-10-604  

E-Print Network [OSTI]

Questions and Answers For PON-10-604 Buy Down Incentives for Natural Gas and Propane Vehicles May Vehicles 2. QUESTION: Are vehicles that are retrofitted with after-market CNG and propane conversion kits-road natural gas and propane vehicles that meet all emission requirements of the Air Resources Board (ARB

299

Thermophysical property predictions of propane, propylene and their mixtures by Benedict-Webb-Rubin type equations of state  

E-Print Network [OSTI]

THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis by PRAMOD KUMAR BENGANI Submitted to the Office of Graduate Studies of Texas A & M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis...

Bengani, Pramod Kumar

1990-01-01T23:59:59.000Z

300

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Natural Gas Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U N C L A S S I F I E D Gas Hydrate Experimental Capabilities at the Los Alamos  

E-Print Network [OSTI]

investigating synthesized (both in-situ and ex-situ) gas hydrates (methane, ethane, propane, CO2 and H2) using-host interactions that drive structure and dynamics. Lee et al., Science 2005 ·Storage of hydrogen in molecular form. ·Tetrahydrofuran (THF)-containing gas hydrate has been proposed as a storage material. THF + D2 clathrates

Downs, Robert T.

302

Transportation Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

natural gas, and propane-can help reduce reliance on imported oil while also reducing air pollution and improving the environment. DOE Resources: Alternative Fuels Data Center...

303

Gas only nozzle  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (15 Olde Coach Rd., Scotia, NY 12302); Fitts, David Orus (286 Sweetman Rd., Ballston Spa, NY 12020); DeLeonardo, Guy Wayne (60 St. Stephens La., Glenville, NY 12302)

2002-01-01T23:59:59.000Z

304

Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition  

E-Print Network [OSTI]

Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative species Steamed Fe-zeolites Mössbauer spectroscopy UV­Vis FTIR H2-TPR N2O decomposition Propane oxidative of propane to propene with N2O. The evacuated non-steamed FeH-ZSM-5 contained high concentration of Brønsted

Sklenak, Stepan

305

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ă?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

306

SUR LA POSSIBILIT D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'TUDE DES RACTIONS NUCLAIRES  

E-Print Network [OSTI]

175 A. SUR LA POSSIBILIT� D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'�TUDE DES R�ACTIONS. - Mise au point et étude des caractéristiques du fonctionnement d'une chambre à bulles à propane de 6 135 MeV. Abstract. 2014 Adjustment and studies of some characteristics of a 6 litre propane bubble

Boyer, Edmond

307

Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data...

308

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion,” SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

309

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network [OSTI]

Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

310

affect gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

311

affects gas exchange: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were Ho, David 15 AIR-WATER GAS EXCHANGE: MECHANISMS GOVERNING THE COMBINED EFFECTS OF WIND AND RAIN ON THE GAS TRANSFER Geosciences Websites Summary: AIR-WATER GAS EXCHANGE:...

312

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network [OSTI]

X Gas furnace X X Geothermal Combisystem Solar X X Air-to-Solar Combisystem Heating Equipment Type Gas boiler Gas furnace

Less, Brennan

2012-01-01T23:59:59.000Z

313

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information

314

Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:BasicsPropane

315

Gas turbine premixing systems  

DOE Patents [OSTI]

Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through premixing zone to form a fuel-air mixture. The combustor includes a downstream mixing panel configured to mix additional combustion fuel with the fule-air mixture to form a combustion mixture.

Kraemer, Gilbert Otto; Varatharajan, Balachandar; Evulet, Andrei Tristan; Yilmaz, Ertan; Lacy, Benjamin Paul

2013-12-31T23:59:59.000Z

316

Gas hydrates in the Gulf of Mexico  

E-Print Network [OSTI]

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

317

MSU Extension Publication Archive Archive copy of publication, do not use for current recommendations. Up-to-date  

E-Print Network [OSTI]

of 12-17 cents/bu (drying 25.5-15.5% moisture with propane). Propane is the most common fuel for drying into the air used for drying. However, propane prices will rise as natural gas is deregulated. It is possible

318

air bag system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an advanced gas engine... Lindsay, B. B.; Koplow, M. D. 1988-01-01 46 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

319

Shock tube and theoretical studies on the thermal decomposition of propane : evidence for a roaming radical channel.  

SciTech Connect (OSTI)

The thermal decomposition of propane has been studied using both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for propane have been measured at high temperatures behind reflected shock waves using high-sensitivity H-ARAS detection and CH{sub 3} optical absorption. The two major dissociation channels at high temperature are C{sub 3}H{sub 8} {yields} CH{sub 3} + C{sub 2}H{sub 5} (eq 1a) and C{sub 3}H{sub 8} {yields} CH{sub 4} + C{sub 2}H{sub 4} (eq 1b). Ultra high-sensitivity ARAS detection of H-atoms produced from the decomposition of the product, C{sub 2}H{sub 5}, in (1a), allowed measurements of both the total decomposition rate constants, k{sub total}, and the branching to radical products, k{sub 1a}/k{sub total}. Theoretical analyses indicate that the molecular products are formed exclusively through the roaming radical mechanism and that radical products are formed exclusively through channel 1a. The experiments were performed over the temperature range 1417-1819 K and gave a minor contribution of (10 {+-} 8%) due to roaming. A multipass CH{sub 3} absorption diagnostic using a Zn resonance lamp was also developed and characterized in this work using the thermal decomposition of CH{sub 3}I as a reference reaction. The measured rate constants for CH{sub 3}I decomposition agreed with earlier determinations from this laboratory that were based on I-atom ARAS measurements. This CH{sub 3} diagnostic was then used to detect radicals from channel 1a allowing lower temperature (1202-1543 K) measurements of k1a to be determined. Variable reaction coordinate-transition state theory was used to predict the high pressure limits for channel (1a) and other bond fission reactions in C{sub 3}H{sub 8}. Conventional transition state theory calculations were also used to estimate rate constants for other tight transition state processes. These calculations predict a negligible contribution (<1%) from all other bond fission and tight transition state processes, indicating that the bond fission channel (1a) and the roaming channel (1b) are indeed the only active channels at the temperature and pressure ranges of the present experiments. The predicted reaction exo- and endothermicities are in excellent agreement with the current version of the Active Thermochemical Tables. Master equation calculations incorporating these transition state theory results yield predictions for the temperature and pressure dependence of the dissociation rate constants for channel 1a. The final theoretical results reliably reproduce the measured dissociation rate constants that are reported here and in the literature. The experimental data are well reproduced over the 500-2500 K and 1 x 10{sup -4} to 100 bar range (errors of {approx}15% or less) by the following Troe parameters for Ar as the bath gas: k{sub {infinity}} = 1.55 x 10{sup 24}T{sup -2.034} exp(-45490/T) s{sup -1}, k{sub 0} = 7.92 x 10{sup 53}T{sup -16.67} exp(-50380/T) cm{sup 3} s{sup -1}, and F{sub c} = 0.190 exp(-T/3091) + 0.810 exp(-T/128) + exp(-8829/T).

Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.; Klippenstein, S. J.; Harding, L. B.; Ruscic, B. (Chemical Sciences and Engineering Division)

2011-04-21T23:59:59.000Z

320

State Heating Oil and Propane Program, 1990--1991 heating season. Final technical report  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

State Heating Oil and Propane Program, 1990--1991 heating season  

SciTech Connect (OSTI)

The following discussion summarizes the survey approach and results of the Department of Public Service's survey of retail fuel oil and propane prices during the 1990--91 heating season. The semi-monthly phone surveys were conducted in cooperation with the US Department of Energy's State Fuel Oil and Propane Program, which coordinated surveys of heating fuel prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail price information over the course of the heating season. For the 1990--91 heating season, the Minnesota Department of Public Service (MN/DPS) expanded the scope of its survey effort to include regional price data. Surveys were conducted with 160 retailers, including 59 respondents from the DOE samples, to provide a reasonable sample size for each region. Fuel oil retailers were also asked for updates on their secondary inventory levels.

Not Available

1991-06-06T23:59:59.000Z

322

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network [OSTI]

monoxide and nitrogen dioxide from gas appliances;health, indoor air quality, nitrogen dioxide, radon The workin residen- (CO), nitrogen dioxide (NOz), formaldehyde (

Hollowell, C.D.

2012-01-01T23:59:59.000Z

323

iccs-air | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Allentown,...

324

COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980  

E-Print Network [OSTI]

a rear- ward facing step. Propane/air mixtures were employedis used with the added propane concentration to detennineratio is increased by propane addition" For propane

Authors, Various

2013-01-01T23:59:59.000Z

325

Serial cooling of a combustor for a gas turbine engine  

DOE Patents [OSTI]

A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

Abreu, Mario E. (Poway, CA); Kielczyk, Janusz J. (Escondido, CA)

2001-01-01T23:59:59.000Z

326

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating flow include minimizing combustion air, preheating combustion air, minimizing ventilation air from minimizing combustion air accounts for improvement in efficiency from increased combustion

Kissock, Kelly

327

Exhaust gas recirculation apparatus  

SciTech Connect (OSTI)

Apparatus is disclosed for recirculating combustion exhaust gases to the burner region of a Stirling cycle hot-gas engine to lower combustion temperature and reduct NO/sub x/ formation includes a first wall separating the exhaust gas stream from the inlet air stream, a second wall separating the exhaust gas stream from the burner region, and low flow resistance ejectors formed in the first and second walls for admitting the inlet air to the burner region and for entraining and mixing with the inlet air portion of the exhaust gas stream. In a preferred embodiment the ejectors are arranged around the periphery of a cylindrical burner region and oriented to admit the air/exhaust gas mixture tangentially to promote mixing. In another preferred embodiment a single annular ejector surrounds and feeds the air/exhaust gas mixture to a cylindrical burner region. The annular ejector includes an annular plate with radially-directed flow passages to provide an even distribution of the air/exhaust gas mixture to the burner region.

Egnell, R.A.; Hansson, B.L.

1981-07-14T23:59:59.000Z

328

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-01-01T23:59:59.000Z

329

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling. Revision 1  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-01T23:59:59.000Z

330

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added in amounts up to 25% of the fuel to propane-oxygen-argon mixtures in shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenius parameters of E{sub a}{approximately}40 kcal/mol and log (A){approximately} 9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified.

Gray, J.A. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States)

1991-12-31T23:59:59.000Z

331

High-temperature ignition of propane with MTBE as an additive: Shock-tube experiments and modeling  

SciTech Connect (OSTI)

Ignition of propane has been studied in a shock tube and by computational modeling to determine the effect of methyl tert-butyl ether (MTBE) as a fuel additive. MTBE and isobutene were added to amounts up to 25% of the fuel to propane-oxygen-argon mixtures to shock-tube experiments covering a range of temperatures between 1450 and 1800 K. Ignition delays were measured from chemiluminescence at 432 nm due to excited CH radicals. The temperature dependence of the ignition rates was analyzed to yield Arrhenium parameters of E{sub a}{sup {minus}}40 kcal/mol and log(A) {sup {minus}}9.0 sec{sup {minus}1} for the overall reaction. Reactions involving MTBE and its decomposition products were combined with an established propane mechanism in a numerical model to describe the kinetic interaction of this additive with a typical hydrocarbon fuel. The experiments and the kinetic model both show that MTBE and isobutene retard propane ignition with nearly equal efficiency. The kinetic model demonstrates that isobutene kinetics are responsible for inhibition by both MTBE and isobutene, and the specific elementary reactions which produce this behavior are identified. 19 refs., 1 fig., 3 tabs.

Gray, J.A. (Sandia National Labs., Livermore, CA (United States)); Westbrook, C.K. (Lawrence Livermore National Lab., CA (United States))

1991-12-01T23:59:59.000Z

332

Gas venting system  

DOE Patents [OSTI]

A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

2010-06-29T23:59:59.000Z

333

Cross sections for electron scattering by propane in the low- and intermediate-energy ranges  

SciTech Connect (OSTI)

We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R. [Departamento de Quimica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Departamento de Fisica, UFSCar, 13565-905 Sao Carlos, SP (Brazil); Instituto de Fisica 'Gleb Wataghin', UNICAMP, 13083-970 Campinas, SP (Brazil); Departamento de Fisica, UFSC, 88010-970 Florianopolis, SC (Brazil); Department of Chemistry, Texas A and M University, College Station, Texas 7784-3255 (United States)

2010-07-15T23:59:59.000Z

334

Transfer function characteristics of bluff-body stabilized, conical V-shaped premixed turbulent propane-air flames  

SciTech Connect (OSTI)

The response of bluff-body stabilized conical V-shaped premixed flames to periodic upstream velocity oscillations was characterized as a function of oscillation frequency, mean flow velocity, and equivalence ratio. The flame heat release response to the imposed velocity oscillations was determined from the CH* chemiluminescence captured by two photomultiplier (PMT) detectors at a wavelength of 430 nm. One of the PMTs viewed flame radiation in a 10-mm horizontal slice, 50 mm above the bluff-body. The second PMT observed the overall flame radiation. The flame transfer function characteristics were determined from the spectral analysis of the velocity and PMT signals. It was found that the flame heat release amplitude response is confined to low-frequency excitation below a Strouhal number of 4. The phase relationship of the transfer function for these turbulent flames was evaluated using the signal from the spatially masked PMT. The transfer function estimate based on these data exhibits second-order characteristics with a phase lag between the velocity and heat release signals. The localized heat-release response contains frequencies that are multiples of the excitation frequency, suggesting splitting and tilting of flame structures as well as some nonlinear effects. Increase of flame equivalence ratio from lean toward stoichiometric resulted in slight amplification of the high-frequency response. (author)

Chaparro, Andres; Landry, Eric; Cetegen, Baki M. [Mechanical Engineering Department, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3139 (United States)

2006-04-15T23:59:59.000Z

335

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California  

Broader source: Energy.gov [DOE]

DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

336

EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York  

Broader source: Energy.gov [DOE]

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

337

Wyoming Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand CubicPropane-Air

338

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14Thousand CubicPropane-Air98,448

339

Texas Supplemental Supplies of Natural Gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667 28,167 4 3Propane-Air

340

Pollutant Emission Factors from Residential Natural Gas Appliances: A Literature Review  

E-Print Network [OSTI]

related to natural gas combustion and air pollution wereemitted from natural gas combustion are predominately lessGas- fired Appliances," Proceedings: How Significant Are Residential Combustion

Traynor, G.W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural gas transport by plastic pipes. (Latest citations from the Compendex database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 88 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

342

Gas/solvent-induced transformation and expansion of a nonporous solid to 1:1 host guest form  

SciTech Connect (OSTI)

Herein we report the gas (CO2, N2O and propane) and solvent (CS2 and acetone) induced transformation and expansion of guest free thermodynamic form of a p-tert-butylcalix [4]arene to 1:1 host guest form.

Thallapally, Praveen K.; McGrail, B. Peter; Dalgarno, Scott J.; Atwood, Jerry L.

2008-07-01T23:59:59.000Z

343

CSP Tower Air Brayton Combustor  

Broader source: Energy.gov [DOE]

This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000şC and achieve energy conversion efficiencies greater than 50%.

344

Gas only nozzle fuel tip  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozzle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

345

The Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigerati...  

Open Energy Info (EERE)

Greenhouse Gas Protocol Initiative: GHG Emissions from Refrigeration and Air Conditioning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol...

346

E-Print Network 3.0 - air cushion technology Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oldenburg and Pan CO2 as Cushion Gas for CAES 1 CO2 as Cushion Gas for Compressed Air Energy... gas has been used in natural gas storage (specifically, N2). Use of...

347

Gas turbine combustor transition  

DOE Patents [OSTI]

A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

Coslow, B.J.; Whidden, G.L.

1999-05-25T23:59:59.000Z

348

Gas turbine combustor transition  

DOE Patents [OSTI]

A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

1999-01-01T23:59:59.000Z

349

E-Print Network 3.0 - air bags compared Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

secondary air to the center of the vortex. Air follows... in the flue gas. The present vortex incinerator was ... Source: Columbia University - Waste-to-Energy Research and...

350

Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings  

E-Print Network [OSTI]

indoor pollutant source control measures and air cleaningof indoor pollutant source control measures or gas phase aircontrol indoor pollutants, by allowing lower energy costs from reduced outdoor air

Dutton, Spencer M.

2014-01-01T23:59:59.000Z

351

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network [OSTI]

the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

Pathak, Dushyant

2006-04-12T23:59:59.000Z

352

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

Rivero Diaz, Jose Antonio

2002-01-01T23:59:59.000Z

353

Propane tank explosion (2 deaths, 7 injuries) at Herrig Brothers Feather Creek Farm, Albert City, Iowa, April 9, 1998. Investigation report  

SciTech Connect (OSTI)

This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.

NONE

1999-09-01T23:59:59.000Z

354

Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst  

SciTech Connect (OSTI)

The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

Govindasamy, Agalya [University of Cincinnati; Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2010-01-01T23:59:59.000Z

355

Application of microturbines to control emissions from associated gas  

DOE Patents [OSTI]

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

356

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, Paul B. (Maple Grove, MN); Baldner, Richard (Minnetonka, MN)

1982-01-01T23:59:59.000Z

357

Regenerative air heater  

DOE Patents [OSTI]

A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

Hasselquist, P.B.; Baldner, R.

1980-11-26T23:59:59.000Z

358

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

359

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

360

Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane  

SciTech Connect (OSTI)

Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

Deo, M.D.; Hwang, J.; Hanson, F.V.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Super critical fluid extraction of a crude oil bitumen-derived liquid and bitumen by carbon dioxide and propane  

SciTech Connect (OSTI)

Supercritical fluid extraction of complex hydrocarbon mixtures is important in separation processes, petroleum upgrading and enhanced oil recovery. In this study, a paraffinic crude oil, a bitumen- derived liquid and bitumen were extracted at several temperatures and pressures with carbon dioxide and propane to assess the effect of the size and type of compounds that makeup the feedstock on the extraction process. It was observed that the pure solvent density at the extraction conditions was not the sole variable governing extraction, and that the proximity of the extraction conditions to the pure solvent critical point affected the extraction yields and the compositions of the extracts. Heavier compounds reported to the extract phase as the extraction time increased at constant temperature and pressure and as the extraction pressure increased at constant temperature and extraction time for both the paraffin crude-propane and the bitumen-propane systems. This preferential extraction was not observed for the bitumen-derived liquid. The non-discriminatory extraction behavior of the bitumen-derived liquid was attributed to its thermal history and to the presence of the olefins and aromatics in the liquid. Phase behavior calculations using the Peng-Robinson equation of state and component lumping procedures provided reasonable agreement between calculated and experimental results for the crude oil and bitumen extractions, but failed in the prediction of the phase compositions for the bitumen-derived liquid extractions.

Deo, M.D.; Hwang, J.; Hanson, F.V.

1991-12-31T23:59:59.000Z

362

Preparation of ammonia synthesis gas  

SciTech Connect (OSTI)

Ammonia synthesis gas having excess nitrogen is produced in a reactor-exchanger primary reformer followed by an autothermal secondary reformer wherein process air for the latter is preheated by heat exchange with gas turbine exhaust and the primary reformer is heated by synthesis gas from the secondary reformer.

Shires, P.J.; van Dijk, C.P.; Cassata, J.R.; Mandelik, B.G.

1984-10-30T23:59:59.000Z

363

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

364

Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.  

SciTech Connect (OSTI)

Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

2009-03-01T23:59:59.000Z

365

Modeling of the formation of short-chain acids in propane flames  

E-Print Network [OSTI]

In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

Battin-Leclerc, Frédérique; Jaffrezo, J L; Legrand, M

2009-01-01T23:59:59.000Z

366

Natural gas transport by plastic pipes. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the use of plastic piping to transport natural gas or liquid propane gas. The interaction between gas odorants and plastic pipe, the effects of aging on plastic pipe used to transport gas, and pipe failure analyses are examined. Bending, joining, and repair methods are discussed. Composite reinforced plastic pipes and plastic coated pipes are considered. Polyethylene and epoxy composites are among the materials discussed. Gas main upgrading projects that replaced old pipes with plastic ones are briefly cited. (Contains a minimum of 89 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

367

Stirling Air Conditioner for Compact Cooling  

SciTech Connect (OSTI)

BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

None

2010-09-01T23:59:59.000Z

368

A Self-Consistent Method to Assess Air Quality Co-Benefits from US Climate Policies  

E-Print Network [OSTI]

Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, while many studies of the cost of greenhouse gas mitigation model the full macroeconomic welfare impacts, most studies of air ...

Saari, R.

369

Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Catalytic Function  

E-Print Network [OSTI]

Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural of stoichiometric reduction in H2, and the oxidative dehydrogenation of propane. VOx domains on Al2O3 modified The oxidative dehydrogenation (ODH) of propane provides an attractive route for the synthesis of propene.1

Bell, Alexis T.

370

Fault Tolerant Oxygen Control of a Diesel Engine Air System  

E-Print Network [OSTI]

Fault Tolerant Oxygen Control of a Diesel Engine Air System Rainer Nitsche Matthias Bitzer control problem of a Diesel engine air system having a jammed Exhaust Gas Recirculation (EGR) valve of the air system. Keywords: Fault tolerant control, Diesel engine, Air system, Model-based trajectory

Paris-Sud XI, Université de

371

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

Beer, Janos (Winchester, MA); Dowdy, Thomas E. (Orlando, FL); Bachovchin, Dennis M. (Delmont, PA)

1997-01-01T23:59:59.000Z

372

DIRECT USE OF NATURAL GAS: ANALYSIS AND POLICY OPTIONS  

E-Print Network [OSTI]

heating with various electric and gas systems. The gas requirements for the electric systems shows that forced-air electric heating systems require about twice as much gas as a gas-fired forced-air system. Zonal electric heating systems, where rooms are independently heated without central furnace

373

Field Measurements of Efficiency and Duct Effectiveness in Residential Forced Air Distributions Systems  

E-Print Network [OSTI]

power for air conditioning, heat pumps and electricwith 13 air conditioners, eight heat pumps (one house hadPre Post * A C : air conditioning, HP : heat pump, GF : gas

Jump, D.A.

2011-01-01T23:59:59.000Z

374

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

Economy on Transportation, Energy Use, and Air Emissions fossil fuel imports such as natural gas.Economy on Transportation, Energy Use, and Air Emissions penetration of H 2 -FCVs could increase the use of natural gasEconomy on Transportation, Energy Use, and Air Emissions With the most cost-effective sources of hydrogen likely to be natural gas

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

375

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Flammability Limits in Pure O 2 (%) Heat of combustion (kJg ) Liquid heat of combustion (MJ perliter) Gas heat of combustion (MJ m @ STP) Peak combustion

Green, Michael A.

2005-01-01T23:59:59.000Z

376

Polyport atmospheric gas sampler  

DOE Patents [OSTI]

An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

Guggenheim, S. Frederic (Teaneck, NJ)

1995-01-01T23:59:59.000Z

377

ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation  

SciTech Connect (OSTI)

Energy-Dispersive X-ray Absorption Spectroscopy (ED-XAS) data combined with UV/Vis, Raman, and mass spectrometry data on alumina- and silica-supported molybdenum oxide catalysts under propane dehydrogenation conditions have been previously reported. A novel {delta}{mu} adsorbate isolation technique was applied here to the time-resolved (0.1 min) Mo K-edge ED-XAS data by taking the difference of absorption, {mu}, at t>1 against the initial time, t=0. Further, full multiple scattering calculations using the FEFF 8.0 code are performed to interpret the {delta}{mu} signatures. The resulting difference spectra and interpretation provide real time propane coverage and O depletion at the MoOn surface. The propane coverage is seen to correlate with the propene and/or coke production, with the maximum coke formation occurring when the propane coverage is the largest. Combined, these data give unprecedented insight into the complicated dynamics for propane dehydrogenation.

Ramaker, David; Gatewood, Daniel [Department of Chemistry, George Washington University, Washington D.C. 20052 (United States); Beale, Andrew M.; Weckhuysen, Bert M. [Inorganic Chemistry and Catalysis, Dept. of Chem., Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands)

2007-02-02T23:59:59.000Z

378

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.

Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.

1996-05-07T23:59:59.000Z

379

High gas flow alpha detector  

DOE Patents [OSTI]

An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.

Bolton, Richard D. (Los Alamos, NM); Bounds, John A. (Los Alamos, NM); Rawool-Sullivan, Mohini W. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

380

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect (OSTI)

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High accuracy p-rho-t measurements up to 200 MPa between 200 K and 500 K using a compact single sinker magnetic suspension densimeter for pure and natural gas like mixtures  

E-Print Network [OSTI]

-74]. ............................................................. 90 FIGURE 54. Literature carbon dioxide deviations from NIST-12 database for temperatures between 240 K and 313 K [76]. ............................................ 91 FIGURE 55. Literature carbon dioxide deviations from NIST-12 database... based fuels such as coal, oil and natural gas. Among these, natural gas is the cleanest, safest, and most useful. Natural gas is a mixture of predominantly methane and other paraffinic hydrocarbons such as ethane, propane, butane, pentane etc...

Atilhan, Mert

2009-06-02T23:59:59.000Z

382

Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone  

SciTech Connect (OSTI)

The objective of this work is to investigate the effectiveness of steady air injection near the flame anchoring zone in suppressing thermoacoustic instabilities driven by flame-vortex interaction mechanism. We perform a systematic experimental study which involves using two different configurations of air injection in an atmospheric pressure backward-facing step combustor. The first configuration utilizes a row of micro-diameter holes allowing for air injection in the cross-stream direction just upstream of the step. The second configuration utilizes an array of micro-diameter holes located on the face of the step, allowing for air injection in the streamwise direction. The effects of each of these configurations are analyzed to determine which one is more effective in suppressing thermoacoustic instabilities at different operating conditions. The tests are conducted while varying the equivalence ratio and the inlet temperature. The secondary air temperature is always the same as the inlet temperature. We used pure propane or propane/hydrogen mixtures as fuels. Combustion dynamics are explored through simultaneous pressure and heat release-rate measurements, and high-speed video images. When the equivalence ratio of the reactant mixture is high, it causes the flame to flashback towards the inlet channel. When air is injected in the cross-stream direction, the flame anchors slightly upstream of the step, which suppresses the instability. When air is injected in the streamwise direction near the edge of step, thermoacoustic instability could be eliminated at an optimum secondary air flow rate, which depends on the operating conditions. When effective, the streamwise air injection prevents the shedding of an unsteady vortex, thus eliminating the flame-vortex interaction mechanism and resulting in a compact, stable flame to form near the step. (author)

Murat Altay, H.; Hudgins, Duane E.; Speth, Raymond L.; Annaswamy, Anuradha M.; Ghoniem, Ahmed F. [Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139 (United States)

2010-04-15T23:59:59.000Z

383

Hybrid air foil bearing with external pressurization  

E-Print Network [OSTI]

used in applications including turbo generators, aircraft air cycle machines[1], automobiles, fuel cell micro-gas turbine(MGT) hybrid systems[2], turbochargers and turbo compressors, etc. One of the critical technical issues related to reliability...

Park, Soongook

2009-05-15T23:59:59.000Z

384

COMBUSTION-GENERATED INDOOR AIR POLLUTION  

E-Print Network [OSTI]

standard I[ o Fig. 2. Nitrogen dioxide concentrations in aCritical Analysis of Nitrogen Dioxide Air Quality Standards,with gas appliances. Nitrogen dioxide levels in kitchens of

Hollowell, C.D.

2011-01-01T23:59:59.000Z

385

High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points  

SciTech Connect (OSTI)

Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Tan, Sugata [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

386

A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion  

SciTech Connect (OSTI)

We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.

Aceves, S M; Flowers, D L; Martinez-Frias, J; Smith, J R; Westbrook, C; Pitz, W; Dibble, R; Wright, J F; Akinyemi, W C; Hessel, R P

2000-11-29T23:59:59.000Z

387

Understanding the dynamics of a two-phase flow (liquid and gas) has been studied quite extensively over the past. This problem is indeed of direct relevance for many areas such  

E-Print Network [OSTI]

be trapped on the ground because of the presence of an obstacle. The studied products were propane, butane set-up, and pressure storage. 1 INTRODUCTION In many chemical and process plants, gas are stored for the understanding of the flow inside the pipe. The net of pipes linking the storage and the nozzle are composed

Paris-Sud XI, Université de

388

AT 560 (2 Credits) Air Pollution Measurement  

E-Print Network [OSTI]

AT 560 (2 Credits) Air Pollution Measurement Spring 2013 Instructor: Jeff Collett, 491 Resolution and Student Conduct Services." #12;ATS 560 - Air Pollution Measurement Spring 2013 Schedule Useful. 11, 13 Atmospheric Aero- sols/Sampling Lab #2: Aerosol and trace gas sampling; 5 Feb. 18, 20 Intro

389

6, 1120911246, 2006 Relation of air mass  

E-Print Network [OSTI]

are formed via gas phase condensation, and 11210 #12;ACPD 6, 11209­11246, 2006 Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis L. Sogacheva 1 , A. Hamed 2 , M. C of air mass to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectory analysis. Our

Boyer, Edmond

390

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect (OSTI)

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

391

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network [OSTI]

Fundamentals of Gas Combustion. 2001: Washington, DC. 131Components A gas appliance combustion system accomplishestransfers energy from hot combustion gases to water or air

Lekov, Alex

2010-01-01T23:59:59.000Z

392

A KINETIC STUDY OF AEROBIC PROPANE UPTAKE AND COMETABOLIC DEGRADATION OF CHLOROFORM,  

E-Print Network [OSTI]

and LEWIS SEMPRINI2 1Department of Chemical and Mining Engineering and Environmental Technologies., 1994; Wilcox et al., 1995; Wackett et al., 1989). These studies report longer lag Water, Air, and Soil Pollution: Focus 3: 285­298, 2003. © 2003 Kluwer Academic Publishers. Printed in the Netherlands. #12;286 D

Semprini, Lewis

393

Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgendaConditioning AirWhy » Air

394

Compressed gas fuel storage system  

DOE Patents [OSTI]

A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

2001-01-01T23:59:59.000Z

395

Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation  

E-Print Network [OSTI]

Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

Plazas Garcia, Joyce Vivia

2002-01-01T23:59:59.000Z

396

An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane  

SciTech Connect (OSTI)

A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de [Ghent University, Department of Solid State Sciences, Krijgslaan 281 S1, B-9000 Gent (Belgium); Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B. [Ghent University, Laboratorium voor Petrochemische Techniek, Krijgslaan 281 S5, B-9000 Gent (Belgium)

2007-02-02T23:59:59.000Z

397

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Clean Air Amendments helped lower the cost of natural gas turbines vis-a-vis coal based technologies.

Ishii, Jun

2004-01-01T23:59:59.000Z

398

Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*,  

E-Print Network [OSTI]

Dynamic Air Layer on Textured Superhydrophobic Surfaces Ivan U. Vakarelski,*, Derek Y. C. Chan that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured super- hydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type

Chan, Derek Y C

399

Air Quality: Construction Project Air Permit Requirements  

E-Print Network [OSTI]

Air Quality: Construction Project Air Permit Requirements Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 All manager or operator must submit the completed form to the air quality program manager before the project

Wechsler, Risa H.

400

ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORT 1975-76  

E-Print Network [OSTI]

of a) soot particles from propane-benzene combustion in air;tempera­ downstream from a propane Photoelectron spectraand carbon (Is) regions of propane soot particles produced

Novakov, T.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

402

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

403

The preliminary result from spectra of $K^0_s ?^-$ in reaction p+propane at 10 GeV/c  

E-Print Network [OSTI]

The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

P. Zh. Aslanyan

2006-05-04T23:59:59.000Z

404

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect (OSTI)

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

405

Compressible Solution Properties of Amorphous Polystyrene-block-Polybutadiene, Crystalline Polystyrene-block-Poly(Hydrogenated Polybutadiene) and Their Corresponding Homopolymers: Fluid-Fluid, Fluid-Solid and Fluid-Micelle Phase Transitions in Propane and Propylene  

SciTech Connect (OSTI)

Abstract Polystyrene, polybutadiene, hydrogenated polybutadiene, and styrene diblock copolymers of these homopolymers can form homogenous solutions in compressible solvents, such as propane and propylene, which separate into two bulk phases upon reducing pressure. The cloud and micellization pressures for homopolymer and diblock copolymers are generally found to be higher in propane than in propylene, except for hydrogenated polybutadiene and polystyrene-block-(hydrogenated polybutadiene). Hydrogenated polybutadiene homopolymers and copolymers exhibit relatively pressure-independent crystallization and melting observed in both propane and propylene solutions.

Hong, Kunlun [ORNL; Mays, Jimmy [ORNL; Winoto, Winoto [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie

2009-01-01T23:59:59.000Z

406

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins8:Energy Chu IssuesClean Air

407

www.solas-int.org //00//00 surface ocean -lower atmosphere study Mid-Term Strategy theme: Air-sea gas fluxes at Eastern boundary Upwelling and Oxygen Minimum Zone (OMZ) systems  

E-Print Network [OSTI]

www.solas-int.org //00//00 surface ocean - lower atmosphere study Mid-Term Strategy theme: Air at the SOLAS workshop on "Air-sea fluxes at the Eastern Boundary Upwelling and OMZ systems" 8-10 November 2010

408

Closed-loop air cooling system for a turbine engine  

DOE Patents [OSTI]

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

409

Small Break Air Ingress Experiment  

SciTech Connect (OSTI)

The small break air-ingress experiment, described in this report, is designed to investigate air-ingress phenomena postulated to occur in pipes in a very high temperature gas-cooled reactor (VHTRs). During this experiment, air-ingress rates were measured for various flow and break conditions through small holes drilled into a pipe of the experimental apparatus. The holes were drilled at right angles to the pipe wall such that a direction vector drawn from the pipe centerline to the center of each hole was at right angles with respect to the pipe centerline. Thus the orientation of each hole was obtained by measuring the included angle between the direction vector of each hole with respect to a reference line anchored on the pipe centerline and pointing in the direction of the gravitational force. Using this reference system, the influence of several important parameters on the air ingress flow rate were measured including break orientation, break size, and flow velocity . The approach used to study the influence of these parameters on air ingress is based on measuring the changes in oxygen concentrations at various locations in the helium flow circulation system as a function of time using oxygen sensors (or detectors) to estimate the air-ingress rates through the holes. The test-section is constructed of a stainless steel pipe which had small holes drilled at the desired locations.

Chang Oh; Eung Soo Kim

2011-09-01T23:59:59.000Z

410

MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization  

E-Print Network [OSTI]

of Propane Gas . . . . . . . . . . . . . . . . . . . . k-B.2.2 Model Propane Spectrum for TemperatureSpectra of Propylene and Propane ALTADENA Polarized Images

Burt, Scott R

2008-01-01T23:59:59.000Z

411

Natural gas repowering experience  

SciTech Connect (OSTI)

Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

Bautista, P.J.; Fay, J.M. [Gas Research Institute, Chicago, IL (United States); Gerber, F.B. [BENTEK Energy Research, DeSoto, TX (United States)

1995-12-31T23:59:59.000Z

412

Louisville Gas and Electric- Residential Energy Efficiency Rebate Program (Kentucky)  

Broader source: Energy.gov [DOE]

Louisville Gas and Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

413

Heavy-Duty Natural Gas Drayage Truck Replacement Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Natural Gas Drayage Truck Replacement Program Principal Investigator: Vicki White South Coast Air Quality Management District May 16, 2012 Project ID ARRAVT045 This...

414

CALIFORNIA ENERGY COMMISSION SEPTEMBER 2012  

E-Print Network [OSTI]

use, improve air quality, and stimulate the sustainable production and use of alternative fuels including electricity, natural gas, biomethane, propane, hydrogen, ethanol, renewable diesel, and biodiesel percent ethanol and 15 percent gasoline), and electronic vehicle supply equipment. Assembly Bill 118

415

Gasification Evaluation of Gas Turbine Combustion  

SciTech Connect (OSTI)

This report provides a preliminary assessment of the potential for use in gas turbines and reciprocating gas engines of gases derived from biomass by pyrolysis or partial oxidation with air. Consideration was given to the use of mixtures of these gases with natural gas as a means of improving heating value and ensuring a steady gas supply. Gas from biomass, and mixtures with natural gas, were compared with natural gas reformates from low temperature partial oxidation or steam reforming. The properties of such reformates were based on computations of gas properties using the ChemCAD computational tools and energy inputs derived from known engine parameters. In general, the biomass derived fuels compare well with reformates, so far as can be judged without engine testing. Mild reforming has potential to produce a more uniform quality of fuel gas from very variable qualities of natural gas, and could possibly be applied to gas from biomass to eliminate organic gases and condensibles other than methane.

Battelle

2003-12-30T23:59:59.000Z

416

Design of a diesel exhaust-gas purification system for inert-gas drilling  

SciTech Connect (OSTI)

To combat the serious oxygen corrosion of drill pipe when a low density drilling fluid (air or mist) is used in geothermal drilling, a system has been designed that produces an inert gas (essentially nitrogen) to be substituted for air. The system fits on three flatbed trailers, is roadable and produces 2000 scfm of gas. The projected cost for gas is slightly less than $2.00 per thousand standard cubic feet.

Caskey, B.C.

1982-01-01T23:59:59.000Z

417

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas Vehicle andMany

418

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural Gas Vehicle andMany NREL

419

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network [OSTI]

#12;Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump use of buildings Gas Heat Pump Solution #12;Gas Heat Pump - deserves special attention due to its source in addition to the outside air ·A further essential component of Gas Heat Pump air conditioning

Oak Ridge National Laboratory

420

Oldenburg and Pan CO2 as Cushion Gas for CAES 1  

E-Print Network [OSTI]

Oldenburg and Pan CO2 as Cushion Gas for CAES 1 CO2 as Cushion Gas for Compressed Air Energy Compressed Air Oldenburg, C.M., Energy&Fuels, 17(1), 240­246, 2003. #12;Oldenburg and Pan CO2 as Cushion Gas as Cushion Gas for CAES 3 Renewables Need Energy Storage Source: Samir Succar, IAC Workshop, October 2005

Eisen, Michael

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

SciTech Connect (OSTI)

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

422

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect (OSTI)

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

Not Available

1990-12-01T23:59:59.000Z

423

Gas turbine topping combustor  

DOE Patents [OSTI]

A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

1997-06-10T23:59:59.000Z

424

Deuteration Can Impact Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane  

SciTech Connect (OSTI)

The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyrene-block-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems.

Winoto, Winoto [University of Wyoming, Laramie; Shen, Youqin [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2009-01-01T23:59:59.000Z

425

Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects  

SciTech Connect (OSTI)

In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

Green, Jade [University of Wyoming, Laramie; Tyrrell, Zachary [University of Wyoming, Laramie; Radosz, Maciej [University of Wyoming, Laramie; Hong, Kunlun [ORNL; Mays, Jimmy [ORNL

2011-01-01T23:59:59.000Z

426

Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition  

SciTech Connect (OSTI)

We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

Michon, A.; Vezian, S.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Ouerghi, A. [CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2010-10-25T23:59:59.000Z

427

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

428

Impact of unsteady secondary air flow interaction with main flow on loss generation in axial turbines  

E-Print Network [OSTI]

Secondary air, often called purge air, is injected through the endwall gap between stationary vanes and rotating rotors in axial turbines to prevent ingestion of the hot working gas into the endwall cavities. Three-dimensional ...

Clifton, David (David Madison)

2014-01-01T23:59:59.000Z

429

Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition  

SciTech Connect (OSTI)

Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France)] [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)] [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2013-05-28T23:59:59.000Z

430

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

431

Synergies in Natural Gas and Hydrogen Fuels  

Broader source: Energy.gov (indexed) [DOE]

F presentation slides: synergies in Natural Gas and hydrogen Fuels Brian Bonner, Air Products and Chemicals, Inc. 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary...

432

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

433

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

Critical Analysis of Nitrogen Dioxide Air Quality Standards.contaminants-. ;--- ---- nitrogen dioxide from gas stoves,buildings: nitrogen dioxide (N02), formaldehyde (HCHO), and

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

434

E-Print Network 3.0 - air quality metrics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(annually) 2. Particulate matter (PM10) a. Health hazard b. Visibility air quality 3. Dioxins... . Greenhouse gas b. Heating agent c. 40 million metric tons of carbon emissions...

435

Air temperature thresholds for indoor comfort and perceived air quality  

E-Print Network [OSTI]

in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

Zhang, Hui; Edward, Arens; Pasut, Wilmer

2012-01-01T23:59:59.000Z

436

MTBE will be a boon to U. S. gas processors  

SciTech Connect (OSTI)

This paper reports that the advent of methyl tertiary butyl ether (MTBE) as the primary oxygenate blending component for oxygenated and reformulated motor fuels promises significant benefits for the U.S. gas-processing industry. Increased demand for isobutane as MTBE-plant feedstock will buoy both normal butane and isobutane pricing in U.S. gulf Coast during the 1990s. Elimination of the need to crack normal butane in U.S. olefin plants will also strengthen competitive feedstocks somewhat, including ethane and propane. And increased use of normal butane as isomerization feedstock will result in wider recognition of the premium quality of gas plant normal butane production compared to most refinery C[sub 4] production.

Otto, K.W. (Purvin and Gertz, Inc. Dallas, TX (United States))

1993-01-11T23:59:59.000Z

437

Oxidative dehydrogenation of propane over vanadia-based catalysts supported on high-surface-area mesoporous MgAl2O4  

SciTech Connect (OSTI)

The oxidative dehydrogenation of propane to propene was investigated over a series of novel vanadia-based catalysts supported on high-surface-area magnesium spinel. A mesoporous MgAl2O4 support was synthesized via a low-temperature sol gel process involving the heterobimetallic alkoxide precursor, Mg[Al(O iPr)4]2. A high-purity catalyst support was obtained after calcination at 1173 K under O2 atmosphere and active vanadia catalysts were prepared from the thermolysis of OV(O tBu)3 after grafting onto the spinel support. MgAl2O4-supported catalysts prepared in this manner have BET surface areas of 234 245 m2/g. All of the catalysts were characterized by X-ray powder diffraction, and Raman, solid-state NMR, and diffuse-reflectance UV vis spectroscopy. At all vanadium loadings the vanadia supported on MgAl2O4 exist as a combination of isolated monovanadate and tetrahedral polyvanadate species. As the vanadium surface density increases for these catalysts the ratio of polyvanadate species to isolated monovanadate species increases. In addition, as the vanadium surface density increases for these catalysts, the initial rate of propane ODH per V atom increases and reaches a maximum value at 6 VOx/nm2. Increasing the vanadium surface density past this point results in a decrease in the rate of propane ODH owing to the formation of multilayer species in which subsurface vanadium atoms are essentially rendered catalytically inactive. The initial propene selectivity increases with increasing vanadium surface density and reaches a plateau of {approx}95 percent for the V/MgAl catalysts. Rate coefficients for propane ODH (k1), propane combustion (k2), and propene combustion (k3) were calculated for these catalysts. The value of k1 increases with increasing VOx surface density, reaching a maximum at about 5.5 VOx/nm2. On the other hand, the ratio (k2/k1) for V/MgAl decreases with increasing VOx surface density. The ratio (k3/k1) for both sets of catalysts shows no dependence on the vanadia surface density. The observed trends in k1, (k2/k1), and (k3/k1) are discussed in terms of the surface structure of the catalyst.

Evans, Owen R.; Bell, Alexis T.; Tilley, T. Don

2004-06-01T23:59:59.000Z

438

Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps  

SciTech Connect (OSTI)

Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

Muthukumar, Kaliappan [University of Cincinnati; Yu, Junjun [University of Cincinnati; Xu, Ye [ORNL; Guliants, Vadim V. [University of Cincinnati

2011-01-01T23:59:59.000Z

439

Integrated flue gas processing method  

SciTech Connect (OSTI)

A system and process for flue gas processing to remove both gaseous contaminants such as sulfur dioxide and particulate matter such as flyash integrates spray scrubbing apparatus and wet electrostatic precipitation apparatus and provides for the advantageous extraction and utilization of heat present in the flue gas which is being processed. The integrated system and process utilizes a spray scrubbing tower into which the flue gas is introduced and into which aqueous alkali slurry is introduced as spray for sulfur dioxide removal therein. The flue gas leaves the tower moisture laden and enters a wet electrostatic precipitator which includes a heat exchanger where flyash and entrained droplets in the flue gas are removed by electrostatic precipitation and heat is removed from the flue gas. The cleaned flue gas exits from the precipitator and discharges into a stack. The heat removed from the flue gas finds use in the system or otherwise in the steam generation plant. The wet electrostatic precipitator of the integrated system and process includes a portion constructed as a cross flow heat exchanger with flue gas saturated with water vapor moving vertically upwards inside tubes arranged in a staggered pattern and ambient air being pulled horizontally across the outside of those tubes to cool the tube walls and thereby remove heat from the flue gas and cause condensation of water vapor on the inside wall surfaces. The condensate washes the electrostatically collected flyash particles down from the inside tube walls. The heat that is extracted from the saturated flue gas in the wet electrostatic precipitator heat exchanger may be utilized in several different ways, including: (1) for flue gas reheat after the wet electrostatic precipitator; (2) for preheating of combustion air to the steam generator boiler; and, (3) for heating of buildings.

Bakke, E.; Willett, H.P.

1982-12-21T23:59:59.000Z

440

Diagnosis of Effectiveness of HVAC System and Energy Performance of Osaka-Gas Building through Retro-Commissioning Part 1 Outline of HVAC Systems and Diagnosis of Energy Efficiency of Air Systems  

E-Print Network [OSTI]

-22b AC-22a AC-22b INV Output 97% (58.2Hz) 84% (50.4Hz) 70% (40.8Hz) Air volume at the outlet duct 87,848 m3/h 56,968 m3/h 42,635 m3/h Power consumption 70.0kW 46.8kW 20.6kW Outlet static pressure 854Pa 798Pa 802Pa 5F MD... 2013 Note 1: Circles (?) in Figure 6.1 represent operating points of the fans alone. Triangles (?) represent operating air volumes calculated based on the fan’s static pressure. Note 2: Numbers in boxes ??? represent air volume measurement...

Hatanaka,T.; Aoki,K; Matsuda, N.; Yamaha,M.; Tanaka,H.; Nakahara,N.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Moving air for comfort  

E-Print Network [OSTI]

Brager, L. Zagreus. 2007, “Air movement preferences observed709-731. 9. Toftum, J. 2004. “Air movement – good or bad? ”Indoor Air 14, pp 40-45. 10. Gong, N. , K. Tham, A. Melikov,

Arens, Edward; Turner, Stephen; Zhang, Hui; Paliaga, Gwelen

2009-01-01T23:59:59.000Z

442

Feasibility of air capture  

E-Print Network [OSTI]

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

443

air sacs add: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: area so gas exchange can easily take place. Absence or reduction of these natural lung surfactants and eventually reaching the alveoli or air sacs. Type II cells of...

444

Pressurized solid oxide fuel cell integral air accumular containment  

DOE Patents [OSTI]

A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

2004-02-10T23:59:59.000Z

445

Stevens, Lanning, Anderson, Jacoby, and Chornet Volume 48 October 1998 Journal of the Air & Waste Management Association 979  

E-Print Network [OSTI]

for the control of particulate and gas- eous indoor air pollutants. Removal of particulates uti- lizes fibrous out chemical decomposition reactions with gas-phase pollutants. Although the use of air cleaningStevens, Lanning, Anderson, Jacoby, and Chornet Volume 48 October 1998 Journal of the Air & Waste

446

Method of cooling gas only nozzle fuel tip  

DOE Patents [OSTI]

A diffusion flame nozzle gas tip is provided to convert a dual fuel nozzle to a gas only nozzle. The nozle tip diverts compressor discharge air from the passage feeding the diffusion nozzle air swirl vanes to a region vacated by removal of the dual fuel components, so that the diverted compressor discharge air can flow to and through effusion holes in the end cap plate of the nozzle tip. In a preferred embodiment, the nozzle gas tip defines a cavity for receiving the compressor discharge air from a peripheral passage of the nozzle for flow through the effusion openings defined in the end cap plate.

Bechtel, William Theodore (Scotia, NY); Fitts, David Orus (Ballston Spa, NY); DeLeonardo, Guy Wayne (Glenville, NY)

2002-01-01T23:59:59.000Z

447

Combustion-gas recirculation system  

DOE Patents [OSTI]

A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

Baldwin, Darryl Dean (Lacon, IL)

2007-10-09T23:59:59.000Z

448

High potential recovery -- Gas repressurization  

SciTech Connect (OSTI)

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

449

Combustion Air Preheat on Steam Cracker Furnaces  

E-Print Network [OSTI]

Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 FIGURE 6 TYPICAL SEAL ARRANGEMENT FIGURE 1 TYPICAL CHANGEOVER PATTERN 50 GAS TURBlNEICRACKlNO FOONACE SYSTEM GTE/AIR FLOW VI nME O...-_T.,.;'..;.;,M;,;;;E;.:"? .;;.S...

Kenney, W. F.

1983-01-01T23:59:59.000Z

450

AiR surface: AiR surface 1  

E-Print Network [OSTI]

AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

Tanaka, Jiro

451

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect (OSTI)

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

452

17th DOE nuclear air cleaning conference: proceedings. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

First, M.W. (ed.)

1983-02-01T23:59:59.000Z

453

U.S. Share of Total U.S. Natural Gas Delivered to Consumers  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1Sales (Billion

454

U.S. State Offshore Natural Gas Gross Withdrawals and Production  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1Sales (Billion653,704

455

U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption of

456

U.S. Working Natural Gas Total Underground Storage Capacity (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane,Major U.S.

457

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network [OSTI]

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

458

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect (OSTI)

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

459

Carbon fiber composite molecular sieve electrically regenerable air filter media  

DOE Patents [OSTI]

An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

1998-10-27T23:59:59.000Z

460

Air Pollution Spring 2010  

E-Print Network [OSTI]

ATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants and their effects on health and welfare. Review regulations governing air pollution. 3. Examine the meteorological

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

In-line real time air monitor  

DOE Patents [OSTI]

An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

Wise, Marcus B. (Kingston, TN); Thompson, Cyril V. (Knoxville, TN)

1998-01-01T23:59:59.000Z

462

In-line real time air monitor  

DOE Patents [OSTI]

An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

Wise, M.B.; Thompson, C.V.

1998-07-14T23:59:59.000Z

463

Motorola's Exhaust Optimization Program: Tracer Gas Application for Gas Panel Enclosures  

E-Print Network [OSTI]

of as high as 70% of manufacturer's specifications per gas enclosure. This approach leads to energy conservation and infrastructure cost avoidance for new exhaust fans, ductwork, abatement equipment, and make-up air systems....

Myart, H. R.; Camacho, R.

464

CHARACTERIZATION STUDIES OF THE SELECTIVE REDUCTION OF NO by NH3  

E-Print Network [OSTI]

post combustion gases of propane/air in a laboratory scalepost combustion gases of propane/air in a laboratory scaleThe combustion products of propane and air are diluted by

Brown, N.J.

2013-01-01T23:59:59.000Z

465

PHYSICAL AND CHEMICAL PROPERTIES OF COMBUSTION GENERATED SOOT  

E-Print Network [OSTI]

of Aerosols Produced by a Propane-Air Flame in a Controlledflat flame burner for propane/air mixture Schematic diagramdistribution across a flame of propane/air mixture. Opera

Toossi, Reza

2010-01-01T23:59:59.000Z

466

The SOLAS airsea gas exchange experiment (SAGE) 2004 Mike J. Harvey a,n  

E-Print Network [OSTI]

The SOLAS air­sea gas exchange experiment (SAGE) 2004 Mike J. Harvey a,n , Cliff S. Law a , Murray­sea gas exchange Iron fertilisation Ocean biogeochemistry SOLAS a b s t r a c t The SOLAS air­sea gas

Ho, David

467

Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines  

E-Print Network [OSTI]

An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

Wang, T.; Braquet, L.

2008-01-01T23:59:59.000Z

468

GAS ANALYSIS SYSTEM COMPOSED OF A SOLID-STATE SENSOR ARRAY AND HYBRID NEURAL NETWORK  

E-Print Network [OSTI]

was exposed to various mixtures of air with these four pollutants. The paper deals with the calibration to control a chemical process or to monitor the safety of gas environment in an underground mine means of estimating the flammable gas in the air. One of the main problems with this type of gas sensors

Osowski, Stanislaw

469

A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane  

SciTech Connect (OSTI)

A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

Chen Miao, E-mail: chenmiao@sinochem.com [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); Wu Jialing; Liu Yongmei [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Cao Yong, E-mail: yongcao@fudan.edu.cn [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Guo Li [Zhejiang Chemical Industry Research Institute, Hangzhou 310023 (China); He Heyong; Fan Kangnian [Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China)

2011-12-15T23:59:59.000Z

470

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report  

SciTech Connect (OSTI)

CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

Not Available

1990-07-01T23:59:59.000Z

471

Quantifying Sustainable Development with Sustainable Costs  

E-Print Network [OSTI]

.6 Synthesis Gas Methane reforming 17.2 Propylene Propane dehydrogenation 4.3 Propylene Propane dehydrogenation · Syngas from CO2 and CH4 · Propane dehydrogenation · Propylene from propane and CO2 · Styrene from

Pike, Ralph W.

472

Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?  

E-Print Network [OSTI]

The supply air temperature set point for a singleduct constant air volume air handling unit (AHU) system is often reset based on either return air temperature or outside air temperature in order to reduce simultaneous cooling and heating energy...

Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

2002-01-01T23:59:59.000Z

473

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

474

Methods developed for detecting hazardous elements in produced gas  

SciTech Connect (OSTI)

The Institute of Gas Technology, Des Plaines, Ill. has been developing sampling and analytical methods to detect in natural gas various trace constituents that may pose health, safety, or operational risks. The constituents of interest include paraffinic and aromatic hydrocarbons, H[sub 2]S, organic sulfur compounds, arsenic, mercury, radon, and others. Better sampling and analytical techniques for produced natural gas, similar to those developed by IGT for processed gas, will enhance producers and processors' abilities to monitor undesirable constituents in raw gas streams and improve their clean-up processes. The methods developed at IGT were modifications of air sampling and analytical methods that are commonly used for air toxic substances. These monitoring methods, when applied to natural gas, present special challenges because gas has a much more complex matrix than the air. Methods for the analysis of the following are discussed: arsenic, mercury, radon, sulfur compounds, hydrocarbons, and aromatics including BTEX and PAHs.

Chao, S.; Attari, A. (Inst. of Gas Technology, Des Plaines, IL (United States))

1995-01-16T23:59:59.000Z

475

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

476

SaltRx HT -Scoring Sheet A1. 0.1 M Bis-Tris Propane pH 7.0, 1.8 M Sodium Acetate pH 7.0  

E-Print Network [OSTI]

SaltRx HT - Scoring Sheet A1. 0.1 M Bis-Tris Propane pH 7.0, 1.8 M Sodium Acetate pH 7.0 A2. 0.1 M Bis-Tris Propane pH 7.0, 2.8 M Sodium Acetate pH 7.0 A3. 0.1 M Sodium Acetate pH 4.6, 1.5 M Ammonium Chloride A4. 0.1 M Bis-Tris Propane pH 7.0, 1.5 M Ammonium Chloride A5. 0.1 M Tris pH 8.5, 1.5 M Ammonium

Hill, Chris

477

The efficient use of natural gas in transportation  

SciTech Connect (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

478

The efficient use of natural gas in transportation  

SciTech Connect (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

479

Mid-infrared gas sensing using a photonic bandgap fiber  

E-Print Network [OSTI]

. The gas filling process of the air core is described, and qualitative methane concentrations measurements. Introduction Sensing of gas species and their concentrations is widely used for process control [1-proven technique requires a spectrometer and a sensing volume (gas cell) in which the light can interact

480

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

482

Direct imaging of the acoustic waves generated by femtosecond filaments in air  

E-Print Network [OSTI]

Direct imaging of the acoustic waves generated by femtosecond filaments in air J. K. Wahlstrand, N of spatial single- and higher-mode 50 fs, 800 nm pulses in air at 10 Hz and 1 kHz repetition rates. Results in air [9]. They claimed a positive gas density perturba- tion on axis with a microsecond lifetime

Milchberg, Howard

483

Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air  

E-Print Network [OSTI]

Chemical Vapor Deposition of Silicon Dioxide by Direct-Current Corona Discharges in Dry Air, Si4O4(CH3)8) widely used as additives in personal care products. In both photocopiers and air in indoor air, the gas-phase processes limit the rate of deposition. KEY WORDS: Corona plasma; corona

Chen, Junhong

484

1 Copyright 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR  

E-Print Network [OSTI]

1 Copyright © 2006 by ASME A NUMERICAL ANALYSIS OF GROWING WATER DROPLET INSIDE AN AIR SUPPLY is performed to analyze the growth and departure of a water droplet inside a minichannel with air flowing and air coming in through the channel inlet. This is a typical situation encountered in the gas flow

Kandlikar, Satish

485

Optimal Shape Design for Polymer Electrolyte Membrane Fuel Cell Cathode Air Channel: Modelling, Computational and Mathematical Analysis .  

E-Print Network [OSTI]

??Hydrogen fuel cells are devices used to generate electricity from the electrochemical reaction between air and hydrogen gas. An attractive advantage of these devices is… (more)

Al-Smail, Jamal Hussain

2012-01-01T23:59:59.000Z

486

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

487

Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air  

SciTech Connect (OSTI)

A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308?nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

Gulati, P., E-mail: pgulati1512@gmail.com [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India); Prakash, R.; Pal, U. N.; Kumar, M. [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan-333031 (India); Vyas, V. [Department of Physics, Banasthali University, P.O. Banasthali Vidyapith, Rajasthan 304022 (India)

2014-07-07T23:59:59.000Z

488

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,

489

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propanepropane

490

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price decreases The

491

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price decreases

492

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane price

493

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropane price

494

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropane

495

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropanepropane

496

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane pricepropanepropane8,

497

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane

498

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential

499

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014 Residential05,

500

Residential propane price decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014