Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New Mexico Natural Gas Supplemental Gas - Propane Air (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Supplemental Gas - Propane Air (Million Cubic Feet) New Mexico Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

2

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

3

Propane gas: Handle with care  

SciTech Connect

Because of its chemical composition and combustion properties, this liquefied petroleum (LP) gas can be mixed with air and used as a direct replacement for natural gas with no burner or process equipment modifications. One major and growing use of propane is as a vehicle fuel. Growing industrial use of propane also has prompted the National Fire Protection Association (NFPA) to issue new codes. NFPA standard 58-95, Storing and Handling of Liquefied Petroleum Gases, stresses the need to adhere to safe work and handling practices whenever propane is involved. All employees directly handling the gas should be formally trained and certified, and recertified annually. Although the code applies only to those directly handling propane or operating propane equipment such as portable cylinder filling stations, all employees working around or with propane or other LP gases should understand the characteristics of LP gas and be aware of basic safe handling practices. The paper discusses what LP gas is, special safety concerns, the care required in refilling cylinders, and cylinder inspection.

Fernald, D. [Plant Systems, Inc., Berea, OH (United States)

1996-04-01T23:59:59.000Z

4

Propane, Liquefied Petroleum Gas (LPG)  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane: Liquefied Petroleum Gas (LPG) Propane: Liquefied Petroleum Gas (LPG) Ford F-150 (Dual-Fuel LPG) Propane or liquefied petroleum gas (LPG) is a clean-burning fossil fuel that can be used to power internal combustion engines. LPG-fueled vehicles can produce significantly lower amounts of some harmful emissions and the greenhouse gas carbon dioxide (CO2). LPG is usually less expensive than gasoline, it can be used without degrading vehicle performance, and most LPG used in U.S. comes from domestic sources. The availability of LPG-fueled light-duty passenger vehicles is currently limited. A few light-duty vehicles-mostly larger trucks and vans-can be ordered from a dealer with a prep-ready engine package and converted to use propane. Existing conventional vehicles can also be converted for LPG use.

5

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) License to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Petroleum Gas (Propane) License

6

Alternative Fuels Data Center: Propane and Natural Gas Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Natural Propane and Natural Gas Safety to someone by E-mail Share Alternative Fuels Data Center: Propane and Natural Gas Safety on Facebook Tweet about Alternative Fuels Data Center: Propane and Natural Gas Safety on Twitter Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Google Bookmark Alternative Fuels Data Center: Propane and Natural Gas Safety on Delicious Rank Alternative Fuels Data Center: Propane and Natural Gas Safety on Digg Find More places to share Alternative Fuels Data Center: Propane and Natural Gas Safety on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane and Natural Gas Safety The Railroad Commission of Texas regulates the safety of the natural gas and propane industries. (Reference Texas Statutes, Natural Resources Code

7

Alternative Fuels Data Center: Natural Gas and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Tax Effective January 1, 2019, liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas will be subject to an excise tax at

8

Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Natural Gas and Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied

9

Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Petroleum Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity to someone by E-mail Share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Facebook Tweet about Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Twitter Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Google Bookmark Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Delicious Rank Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on Digg Find More places to share Alternative Fuels Data Center: Liquefied Petroleum Gas (Propane) and Natural Gas Liability Immunity on

10

Propane Prices Influenced by Crude Oil and Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Propane prices have been high this year for several reasons. Propane usually follows crude oil prices more closely than natural gas prices. As crude oil prices rose beginning in 1999, propane has followed. In addition, some early cold weather this year put extra pressure on prices. However, more recently, the highly unusual surge in natural gas prices affected propane supply and drove propane prices up. Propane comes from two sources of supply: refineries and natural gas processing plants. The very high natural gas prices made it more economic for refineries to use the propane they normally produce and sell than to buy natural gas. The gas processing plants found it more economic to leave propane in the natural gas streams than to extract it for sale separately.

11

Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane and Compressed Propane and Compressed Natural Gas (CNG) Device Fee to someone by E-mail Share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Facebook Tweet about Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Twitter Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Google Bookmark Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Delicious Rank Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on Digg Find More places to share Alternative Fuels Data Center: Propane and Compressed Natural Gas (CNG) Device Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

12

Alternative Fuels Data Center: Natural Gas and Propane Retailer License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retailer License to someone by E-mail Retailer License to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Retailer License on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Retailer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Retailer License Compressed natural gas, liquefied natural gas, or liquefied petroleum gas

13

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Deregulation to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Deregulation on AddThis.com... More in this section... Federal State Advanced Search

14

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Propane Regulatory Authority to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Regulatory Authority on AddThis.com...

15

Alternative Fuels Data Center: Natural Gas and Propane Reports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reports to someone by E-mail Reports to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Reports on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Reports on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Reports on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Reports on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Reports The Florida Office of Program Policy Analysis and Government Accountability (Office) must complete a report that analyzes the taxation and use of

16

Heating Oil Propane Natural Gas  

E-Print Network (OSTI)

NYSERDA’s mission- help New York meet its energy goals: reducing energy consumption, promoting the use of renewable energy sources, and protecting the environment. Energy R&DPurpose: Support policy-relevant research to enhance understanding of energyrelated environmental issuesAir Quality and Health Effects Chain of accountability. Each box represents a link between regulatory action and human health response to air pollution. Arrows connecting the linksNew York State Primary Consumption of Energy for Electric Generation,

Ellen Burkhard Ph. D; Cord Wood

2013-01-01T23:59:59.000Z

17

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) and Propane Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) and Propane Vehicle Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

18

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer License to someone by E-mail Dealer License to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Dealer License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

19

National propane safety week caps fifth anniversary of GAS Check  

SciTech Connect

This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

Prowler, S.

1990-09-01T23:59:59.000Z

20

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

D. Straub; D. Ferguson; K. Casleton; G. Richards

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax to someone by E-mail Tax to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate

22

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

23

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) and Propane Tax and User Permit to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) and Propane Tax and User Permit on AddThis.com...

24

Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane  

DOE Green Energy (OSTI)

Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

Santini, D.J.; Saricks, C.L.

1998-08-04T23:59:59.000Z

25

Supplies of Propane-Air Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

1,169 670 838 401 299 309 1980-2012 1,169 670 838 401 299 309 1980-2012 Alabama 1980-2003 Arizona 1980-1998 Arkansas 1980-1998 Colorado 3 2 3 4 21 99 1980-2012 Connecticut 0 0 1 1980-2009 Delaware 5 2 2 1 1980-2010 Florida 1980-1998 Georgia 2 0 0 1980-2012 Hawaii 4 5 9 6 25 20 2004-2012 Illinois 11 15 20 17 1 1 1980-2012 Indiana 81 30 1 1 5 1 1980-2012 Iowa 2 24 3 2 1 1980-2011 Kentucky 124 15 18 5 8 1 1980-2012 Maine 1980-2003 Maryland 245 181 170 115 89 116 1980-2012 Massachusetts 15 13 10 0 1980-2010 Michigan 1980-1998 Minnesota 54 46 47 12 20 9 1980-2012 Missouri 60 6 10 18 0 1980-2012 Nebraska 33 28 18 12 9 4 1980-2012 Nevada 1980-1998 New Hampshire 9 1980-2007 New Jersey 0 1980-2012 New Mexico

26

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

Science Conference Proceedings (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

27

Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Rebates - Western Propane Gas Association (WPGA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebates - Western Propane Gas Association (WPGA) on AddThis.com...

28

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network (OSTI)

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically conducted to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection for the light Minas crude oil. The steam-propane experiments involved injecting steam or a mixture of steam and propane into a cell in which was tamped a mixture of sand, oil and water. The cell was placed inside a vacuum jacket set at a reservoir temperature of 200?F. Superheated steam at 490?F was injected at 4.5 ml/min (cold-water equivalent) while the cell outlet pressure was maintained at 450 psig. A total of four runs were successfully performed with two different propane:steam mass ratios, namely, 0:100 (pure steam) and 5:100 (steam-propane). Produced liquids were collected from the bottom of the cell and analyzed to determined oil and water volumes as well as oil density and viscosity after being treated to break the emulsion. The gas injection experiments involved injecting reconstituted Minas field production gas or Minas gas enriched with propane into a cell saturated with live Minas oil. The live oil was prepared in an oil-gas recombination apparatus, and closely replicated oil properties at current reservoir conditions (solution GOR of 134 SCF/STB, bubble-point pressure of 280 psig.) Minas gas was injected at 500 ml/min into the cell set at reservoir temperature of 200?F. A total of four runs were successfully performed with two different propane:gas mass ratios, namely, 0:100 (pure lean gas) and 5:100 (enriched gas). The main results of the study are as follows. First, with steam-propane injection, no improvement on production acceleration time, oil recovery or steam injectivity was observed compared with pure steam injection. Second, with enriched gas injection, oil recovery increased from 61% OOIP with lean gas injection up to 74% OOIP with enriched gas (5:100 propane:gas mass ratio). Analysis of produced oil gravity and viscosity indicate little change in values compared to that of the original oil. Of the processes investigated (pure steam, steam-propane, lean gas, and enriched gas injection), enriched gas injection appears to be technically the most feasible EOR method for Minas field. It is recommended therefore to conduct research on possible application of water-alternating-gas (WAG) injection with propane-enriched Minas gas to enhance production from the Minas field.

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

29

Propane fear  

SciTech Connect

A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. The US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.

Begley, R.

1992-02-12T23:59:59.000Z

30

Propane Outlook  

Gasoline and Diesel Fuel Update (EIA)

4 of 24 4 of 24 Notes: EIA expects lower residential propane prices this winter compared to the high prices seen last winter. As of now, it appears that propane inventories will be more than adequate going into this winter. Although inventories in the Midwest remain low, there is still time for the ample inventories in the Gulf Coast to make their way up into the Midwest before heating season begins in earnest. As always, the major uncertainties affecting demand this winter are the weather and the economy. Other uncertainties affecting the propane market this winter are crude oil and natural gas prices. If natural gas prices this winter are around what EIA expects them to be, we will likely see very little, if any, propane production shut-in at gas plants. However, as the current situation with the TET shows, there could be short

31

Propane Production by Source  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: So where do we get our supplies of propane? Well, propane comes from both gas plants and refineries. Here we see data through May which shows that production at both gas...

32

propane | OpenEI  

Open Energy Info (EERE)

propane propane Dataset Summary Description The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) maintains data on the energy use and efficiency of water heaters for its members. The FTC does not necessarily endorse the views expressed on that site or guarantee the accuracy or completeness of the information on it. Please note that the site you link to may track visitor viewing habits. This spreadsheet contains data on Bosch, Noritz, Paloma and Takagi manufacturing companies. Source Energy Applicance Data - United States Federal Trade Commission, www.ftc.gov Date Released Unknown Date Updated Unknown Keywords energy use Natural Gas propane Water heater Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Combined.xlsx (xlsx, 12.7 KiB)

33

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

34

Alternative Fuels Data Center: Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane to someone by E-mail Share Alternative Fuels Data Center: Propane on Facebook Tweet about Alternative Fuels Data Center: Propane on Twitter Bookmark Alternative Fuels Data Center: Propane on Google Bookmark Alternative Fuels Data Center: Propane on Delicious Rank Alternative Fuels Data Center: Propane on Digg Find More places to share Alternative Fuels Data Center: Propane on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Prices Find propane fuel prices and trends. Propane, also known as liquefied petroleum gas (LPG) or autogas, has been used worldwide as a vehicle fuel for decades. It is stored as a liquid, and

35

WesternGovernors’Asociation Transportation Fuels for the Future Natural Gas and Propane WGA Hydrogen Team  

E-Print Network (OSTI)

1 The following report is based on the contributions of the individuals and organizations listed below. The Team members were chosen for their breadth of knowledge and industry or policy experience. The group was assembled with the goal of having a wide scope of interests including industry, academia and environmental analysis. The group also worked towards consensus viewpoints on the critical issues impacting the development of natural gas and propane as commercially available alternative fuels. This consensus model helped to achieve a balanced perspective on the challenges and potential solutions to further commercial development of this alternative transportation fuel.

Tom Brotherton Weststart/calstart; Curtis Donaldson; Cleanfuel Usa

2008-01-01T23:59:59.000Z

36

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

37

Decharge nanoseconde dans l'air et en melange air / propane. Application au declenchement de combustion.  

E-Print Network (OSTI)

??Cette étude a pour objet les décharges haute-tension nanoseconde dans l'air à des pressions supérieures ou égale à la pression atmosphérique, en géométrie pointe-plan, et… (more)

Moreau, Nicolas

2011-01-01T23:59:59.000Z

38

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background....

39

Oil and Gas Air Heaters  

E-Print Network (OSTI)

Most conventional air heaters adopt indirect heat transfer, which uses combustion gases to indirectly heat fresh air by heating surfaces to generate hot air used for material drying and dehumidification. We call them indirect air heaters. However, they have a higher manufacturing cost and lower thermal efficiency, especially when high temperature air is needed. For this reason, a direct air heater applicable for or feed and industrial raw products is put forward, which has advantages such as less production cost, smaller dimensions and higher thermal efficiency. Their design, working principles, characteristics, structure and applications are presented in this article, and brief comparisons are made between the indirect and direct air heater. Finally, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium.

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

40

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Influence of support material on Ni catalysts for propane dry reforming to synthesis gas.  

E-Print Network (OSTI)

??Ni/SiO2 and Ni/Mg(Al)O catalysts with difference metal loadings have been prepared. The activity, selectivity and stability of supported Ni catalysts for propane dry reforming to… (more)

Dai, Xin

2008-01-01T23:59:59.000Z

42

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air More Documents & Publications Natural Gas from Shale: Questions...

43

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: Propane spot prices at the major trading hubs remained relatively close through October 2000, but uncoupled in California as natural gas prices rose rapidly during...

44

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

45

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax For taxation purposes, liquefied petroleum gas (propane) used as a motor vehicle fuel must be converted to gasoline gallon equivalents (GGE) using the conversion factor of 4.24 pounds per gallon of liquid at 60 degrees Fahrenheit per GGE. Propane is taxed at a rate of $0.20 per GGE. (Reference

46

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

47

Wisconsin Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Wisconsin Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

48

Colorado Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

Colorado Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

49

South Dakota Propane and Propylene Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Propane and Propylene Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

50

Propane Market Status Report  

Gasoline and Diesel Fuel Update (EIA)

Propane Market Status Report 07272000 Click here to start Table of Contents Propane Market Status Report Propane Prices Follow Crude Oil Propane Demand by Sector Demand Impacted...

51

Propane Assessment  

Gasoline and Diesel Fuel Update (EIA)

03-09), Table 2; and data for August through September 1996, EIA, Form EIA-807 "Propane Telephone Survey." Sources: Data for 1989 through 1995, Energy Information...

52

Alternative Fuels Data Center: Propane Benefits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits to Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious Rank Alternative Fuels Data Center: Propane Benefits on Digg Find More places to share Alternative Fuels Data Center: Propane Benefits on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Benefits and Considerations Also known as liquefied petroleum gas (LPG), propane is a domestically produced, well-established, clean-burning fuel. Using propane as a vehicle fuel increases energy security, provides convenience and performance

53

Alternative Fuels Data Center: Propane Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Basics to Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Fuel Basics Propane dispenser Also known as liquefied petroleum gas (LPG) or autogas, propane is a clean-burning, high-energy alternative fuel that's been used for decades to

54

Alternative Fuels Data Center: Propane Supplier Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Supplier Propane Supplier Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Supplier Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Supplier Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Google Bookmark Alternative Fuels Data Center: Propane Supplier Requirements on Delicious Rank Alternative Fuels Data Center: Propane Supplier Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Supplier Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Supplier Requirements A retail supplier may only distribute liquefied petroleum gas (LPG or propane) if the supplier holds a license from the Wisconsin Department of

55

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

56

Shale Gas Development Challenges: Air | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Air Shale Gas Development Challenges: Air Shale Gas...

57

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

58

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

59

Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality  

Science Conference Proceedings (OSTI)

Alkane hydrocarbons (propane, isobutane, and n-butane) from liquefied petroleum gas (LPG) are present in major quantities throughout Mexico City air because of leakage of the unburned gas from numerous urban sources. These hydrocarbons, together with olefinic minor LPG components, furnish substantial amounts of hydroxyl radical reactivity, a major precursor to formation of the ozone component of urban smog. The combined processes of unburned leakage and incomplete combustion of LPG play significant role in causing the excessive ozone characteristic of Mexico City. Reductions in ozone levels should be possible through changes in LPG composition and lowered rates of leakage. 23 refs., 3 tabs.

Blake, D.R.; Rowland, F.S. [Univ. of California, Irvine, CA (United States)

1995-08-18T23:59:59.000Z

60

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

19 Notes: Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices....

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Average Weekly Propane Spot Prices  

Gasoline and Diesel Fuel Update (EIA)

9 Notes: Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices....

62

Hotel gets 1-yr. payback from propane-fired cogenerator  

SciTech Connect

A Philadelphia Ramada Inn recovered the costs of a $150,000 propane-fired cogenerator system within a year. The system reduced the energy consumed for hot water and air conditioning by 35% and reversed the high energy costs the hotel incurred when it was forced to shift from natural gas to electricity. The 170 horsepower system, which handles a variety of liquid and gaseous fuels as well as propane, replaces two boilers that were used to heat water. The hotel supplements cogenerated power with purchases from the utility. Waste heat is recaptured for space and water heating. The system's overall efficiency is 96%.

Barber, J.

1983-08-22T23:59:59.000Z

63

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - SchagrinGAS to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - SchagrinGAS on AddThis.com... More in this section...

64

Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Rebate Propane Vehicle Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Rebate - Minnesota Propane Association (MPA) on AddThis.com...

65

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

66

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

67

Silane-propane ignitor/burner  

DOE Patents (OSTI)

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

68

Alternative Fuels Data Center: Reduced Propane Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Propane Fuel Reduced Propane Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Propane Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Propane Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Google Bookmark Alternative Fuels Data Center: Reduced Propane Fuel Tax on Delicious Rank Alternative Fuels Data Center: Reduced Propane Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Propane Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Propane Fuel Tax The tax imposed on liquefied petroleum gas, or propane, used to operate a motor vehicle is equal to half the tax paid on the sale or use of gasoline,

69

Alternative Fuels Data Center: Propane Safety and Liability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Safety and Propane Safety and Liability to someone by E-mail Share Alternative Fuels Data Center: Propane Safety and Liability on Facebook Tweet about Alternative Fuels Data Center: Propane Safety and Liability on Twitter Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Google Bookmark Alternative Fuels Data Center: Propane Safety and Liability on Delicious Rank Alternative Fuels Data Center: Propane Safety and Liability on Digg Find More places to share Alternative Fuels Data Center: Propane Safety and Liability on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Safety and Liability An individual involved in installing liquefied petroleum gas (propane) systems or manufacturing, distributing, selling, storing, or transporting

70

Gas turbine intake air quality  

SciTech Connect

This report presents the results of preliminary research intended to evaluate the causes and effects of compressor fouling on pipeline gas turbines. A literature search and field-experience survey of pipeline operators provides the basis for the conclusions and recommendations.

Lawson, C.C.

1988-01-01T23:59:59.000Z

71

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

72

propane - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

73

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

74

EIA improves its monthly propane imports series - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

75

Propane - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

76

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

77

Air extraction in gas turbines burning coal-derived gas  

SciTech Connect

In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1993-11-01T23:59:59.000Z

78

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network (OSTI)

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

79

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

80

Alternative Fuels Data Center: Propane Board and Dealer Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Board and Propane Board and Dealer Requirements to someone by E-mail Share Alternative Fuels Data Center: Propane Board and Dealer Requirements on Facebook Tweet about Alternative Fuels Data Center: Propane Board and Dealer Requirements on Twitter Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Google Bookmark Alternative Fuels Data Center: Propane Board and Dealer Requirements on Delicious Rank Alternative Fuels Data Center: Propane Board and Dealer Requirements on Digg Find More places to share Alternative Fuels Data Center: Propane Board and Dealer Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Board and Dealer Requirements The Idaho Liquefied Petroleum Gas (LPG) Public Safety Act established the

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Illinois Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

11 15 20 17 1 1 1967-2012 Synthetic 0 1980-2012 Propane-Air 11 15 20 17 1 1 1980-2012 Refinery Gas 1980-2005 Biomass 0 1999-2012 Other 0 2005...

82

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

83

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

84

Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Street Natural Gas Street Sweepers Improve Air Quality in New York to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Google Bookmark Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Delicious Rank Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on AddThis.com...

85

Experimental and numerical study on characteristics of premixed propane-air flame in rectangular duct with a 90° bend.  

E-Print Network (OSTI)

???Because of accident or man-made causes, combustions or explosions of combustible hydrocarbon gas occur from time to time in the production, transportation and storage processes.… (more)

He, Xuechao (???)

2010-01-01T23:59:59.000Z

86

Propane vehicles : status, challenges, and opportunities.  

Science Conference Proceedings (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

87

Winter Distillate .and Propane Outlook  

U.S. Energy Information Administration (EIA)

Winter Distillate .and Propane Outlook. Joanne Shore Energy Information Administration State Heating Oil and Propane Program August 2000

88

Propane on Titan  

E-Print Network (OSTI)

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

89

Propane as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

refrigerating food, clothes drying, powering farm and industrial equipment, and drying corn. Rural areas that do not have natural gas service commonly rely on propane. The...

90

Average Weekly Propane Spot Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propane spot prices at the major trading hubs remained relatively close through the fall of 2000, even as they were pushed higher by rapidly rising natural gas prices.

91

Average Weekly Propane Spot Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propane spot prices at the major trading hubs remained relatively close through October 2000, but uncoupled in California as natural gas prices rose rapidly during ...

92

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak pre-heating season level since 1986. Although propane inventories were expected to remain within the normal range for the duration of the 2000-01 heating season, cold weather in November and December, along with recently high natural gas prices that discouraged propane production from gas processing, resulted in stocks falling below the normal range by the end of December. However, if the weather remains seasonally normal, and the recent decline in natural gas prices holds, EIA expects the propane inventory drawdown to slow. This is reflected in the data for January 19, which showed a draw of only 2.1 million barrels, compared to more than twice that

93

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

E-Print Network (OSTI)

4: Modeling Emissions from Natural Gas-Related Sources 4.1Penetration of Liquefied Natural Gas Table ES2: Impacts ontypical summer demand of natural gas in the South Coast Air

Carerras-Sospedra, Marc

2012-01-01T23:59:59.000Z

94

Coaxial fuel and air premixer for a gas turbine combustor  

SciTech Connect

An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

York, William D; Ziminsky, Willy S; Lacy, Benjamin P

2013-05-21T23:59:59.000Z

95

Propane: A Mid-heating Season Assessment  

Gasoline and Diesel Fuel Update (EIA)

9, 2001 9, 2001 Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration In early October 2000, the Energy Information Administration (EIA) forecast that heating fuel markets would be expected to start the season with much higher prices and lower inventories than in recent years. While this assessment was true for both the heating oil and natural gas markets, propane markets actually began the season with adequate supplies but with high prices. Since EIA's forecast, propane inventories have plunged nearly 20 million barrels from their peak during the first half of the 2000-01 heating season while propane prices have continued to soar even higher than expected during this same period. This report will analyze some

96

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific...

97

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

98

Retail Propane Prices  

Gasoline and Diesel Fuel Update (EIA)

19 Notes: Residential propane prices rose fairly strongly during the 1999-2000 heating season, gaining nearly 25 cents per gallon between October and March. Unfortunately,...

99

Catalytic Dehydrogenation of Propane.  

E-Print Network (OSTI)

?? The dehydrogenation of propane has a great interest, due to a global growing demand in propene. This reaction needs a catalyst, high temperature and… (more)

Herauville, Virginie Marie Therese

2012-01-01T23:59:59.000Z

100

Hardware assembly and prototype testing for the development of a dedicated liquefied propane gas ultra low emission vehicle  

DOE Green Energy (OSTI)

On February 3, 1994, IMPCO Technologies, Inc. started the development of a dedicated LPG Ultra Low Emissions Vehicle (ULEV) under contract to the Midwest Research Institute National Renewable Energy Laboratory Division (NREL). The objective was to develop a dedicated propane vehicle that would meet or exceed the California ULEV emissions standards. The project is broken into four phases to be performed over a two year period. The four phases of the project include: (Phase 1) system design, (Phase 2) prototype hardware assembly and testing, (Phase 3) full-scale systems testing and integration, (Phase 4) vehicle demonstration. This report describes the approach taken for the development of the vehicle and the work performed through the completion of Phase II dynamometer test results. Work was started on Phase 2 (Hardware Assembly and Prototype Testing) in May 1994 prior to completion of Phase 1 to ensure that long lead items would be available in a timely fashion for the Phase 2 work. In addition, the construction and testing of the interim electronic control module (ECM), which was used to test components, was begun prior to the formal start of Phase 2. This was done so that the shortened revised schedule for the project (24 months) could be met. In this report, a brief summary of the activities of each combined Phase 1 and 2 tasks will be presented, as well as project management activities. A technical review of the system is also given, along with test results and analysis. During the course of Phase 2 activities, IMPCO staff also had the opportunity to conduct cold start performance tests of the injectors. The additional test data was most positive and will be briefly summarized in this report.

NONE

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Determination of usage patterns and emissions for propane/LPG in California. Final report  

SciTech Connect

The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

Sullivan, M.

1992-05-01T23:59:59.000Z

102

Why am I being charged more for propane than the price on EIA's ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

103

Revised Propane Stock Levels for 6/7/13 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

104

Starter systems designed for efficient air/gas comsumption  

Science Conference Proceedings (OSTI)

This paper examines engine starting systems designed by Pow-R-Quik. Pow-R-Quik's most recent product line includes several models that are designed to start most diesel and natural gas engines. Pow-R-Quick also offers air starting systems for a wide range of gas turbine applications. The model DS16, air or gas starter, is designed for engines with a displacement up to 500 cid diesel and up to 1000 cid natural gas. The DS60 model is also an air or gas operated starter with specially designed heavy duty bearings for maximum performance. To prove out starter durability and performance, Pow-R-Quik has installed three fully instrumented diesel engine test cells. The number of starts that can be achieved ranges from zero to 99,000. The system can be set to regulate the air for low or high pressure starts, control the lubricant, etc.

Not Available

1985-05-01T23:59:59.000Z

105

Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas  

Open Energy Info (EERE)

Measuring Air Pollution and Greenhouse Gas Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Agency/Company /Organization Clean Air Asia Partner World Bank Development Grant Facility (DGF), Asian Development Bank (ADB), the German Development Cooperation (GiZ), Energy Foundation, Institute for Global Environmental Strategies (IGES), Institute for Transport Policy Studies (ITPS), Institute for Transportation and Development Policy (ITDP), Transport Research Laboratory (TRL), United Nations Centre for Regional Development (UNCRD), Veolia Energy Sector Climate, Energy, Land Focus Area Greenhouse Gas, Transportation Topics Background analysis, Co-benefits assessment, - Environmental and Biodiversity, - Health, Low emission development planning, -LEDS, -NAMA, -TNA, Pathways analysis, Policies/deployment programs

106

Air–Sea Gas Transfer: Mechanisms and Parameterization  

Science Conference Proceedings (OSTI)

The rate of air–sea gas transfer has been largely parameterized on the basis of studies performed in laboratory tanks: empirical formulas are proposed for three wind-velocity regions. Observed features of the transfer in these regions are ...

Jin Wu

1996-08-01T23:59:59.000Z

107

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

108

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

109

Retail Propane Prices  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: Consistent with spot prices, residential propane prices have been higher all winter than during the past several years. The recent surge is mainly the result of the surge...

110

Monitoring radioactive xenon gas in room air using activated charcoal  

SciTech Connect

A method for monitoring room air for radioactive xenon gas is described. It uses activated charcoal vials, a vacuum source and a well-type scintillation counter. The method may be adapted for detection and identification of any radioactive gas excluding those with ultra-short half-lives. Sampling room air during xenon-133 ({sup 133}Xe) ventilation lung studies was performed using this technique. The results show that low concentrations of {sup 133}Xe in room air can be reliably detected and that staff exposure to {sup 133}Xe at this institution was within ICRP recommendations.

Langford, J.; Thompson, G. (Princess Margaret Hospital for Children, Perth (Australia) Sir Charles Gairdner Hospital, Perth (Australia))

1990-03-01T23:59:59.000Z

111

Propane Vehicle Demonstration Grant Program  

Science Conference Proceedings (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

112

DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS  

Science Conference Proceedings (OSTI)

Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

2012-09-20T23:59:59.000Z

113

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

114

Alternative Fuels Data Center: Propane Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicles to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicles on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicles on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicles on Google Bookmark Alternative Fuels Data Center: Propane Vehicles on Delicious Rank Alternative Fuels Data Center: Propane Vehicles on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicles on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicles Related Information Availability Conversions Emissions Incentives & Laws

115

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

116

U.S. Propane Production  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: The chart provides a picture of propane production over the past three years compared to the five-year average. Total propane production in the first five months of this...

117

Heating Oil and Propane Update  

Annual Energy Outlook 2012 (EIA)

to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No....

118

Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) | Open  

Open Energy Info (EERE)

Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Jump to: navigation, search Tool Summary Name: Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) Agency/Company /Organization: International Institute for Applied Systems Analysis (IIASA) Sector: Energy, Land Topics: Co-benefits assessment, GHG inventory Resource Type: Software/modeling tools User Interface: Website Complexity/Ease of Use: Not Available Website: gains.iiasa.ac.at/index.php/home-page/241-on-line-access-to-gains Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia

119

Propane: A Mid-heating Season Assessment - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Propane - A Mid-Heating Season Assessment by David Hinton and Alice Lippert, Petroleum Division, Office of Oil and Gas, Energy Information Administration

120

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Turbine-meter air calibration proves accurate for gas service  

SciTech Connect

This article presents theory, laboratory verificati*on tests, and field evaluation test data that show that a well-engineered gas-turbine meter (single rotor or tandem rotors) calibrated in air has the same accuracy when operating in natural gas at the same line pressure and flow rate (or the same Reynolds number). The only exception occurs at very low flow rates during which the rotor slip due to mechanical friction is no loner negligible.

Lee, W.F.Z.

1988-04-18T23:59:59.000Z

122

Alternative Fuels Data Center: Natural Gas Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

123

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

124

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

125

Alternative Fuels Data Center: Propane Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Availability on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives

126

Gas Powered Air Conditioning Absorption vs. Engine-Drive  

E-Print Network (OSTI)

It used to be that the only alternative to costly electric air conditioning was the double-effect gas-fired absorption chiller/heaters. Beginning in the 1980's, they were the "star" equipment promoted by gas companies throughout the nation. Although not a new technology at the time, neither was the gas engine. But now in the 19901s, gas engine-drive (GED) chillers have "hit" the air conditioning market with a "bang". In the Lone Star Gas Company area in 1995, GED chillers are now being considered in as many projects as are Absorption. units. Where once the only studies being analyzed were absorption vs. electric chiller operation costs. Now, the choice is: Why, Where, and How to choose between gas fired Absorption and GED chillers. WHY Absorption or Engine ? . Absorption uses the most environmentally friendly refrigerant - water. . Absorption chillers are chiller/heaters Absorption chillers are manufactured by the four US major manufacturers Absorption chillers have few moving parts . Engine chillers provide "free" hot water Engine chillers retrofit with DX systems . Engine chillers use less gas per ton WHERE Do Absorption And Engine Chillers Belong? . Absorption: Office buildings, restaurants, industries, churches, universities . Engine: Hospitals, universities, hotels, apartments, industries HOW To Choose Between Absorption And Engine Chillers? Energy cost Operation and maintenance costs Equipment cost Environmental concerns Thermal requirements . Space requirements Staff experience

Phillips, J. N.

1996-01-01T23:59:59.000Z

127

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA  

SciTech Connect

The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

2011-07-01T23:59:59.000Z

128

Catalysis of Propane Oxidation and Premixed Propane-Air Flames.  

E-Print Network (OSTI)

??Improvements in deriving energy from hydrocarbon fuels will have a large impact on our efforts to transition to sustainable and renewable energy resources. The hypothesis… (more)

Wiswall, James T.

2009-01-01T23:59:59.000Z

129

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

130

Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Infrastructure Propane Infrastructure and Fuel Incentives - Boulden Propane to someone by E-mail Share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Facebook Tweet about Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Twitter Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Google Bookmark Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Delicious Rank Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on Digg Find More places to share Alternative Fuels Data Center: Propane Infrastructure and Fuel Incentives - Boulden Propane on AddThis.com...

131

Alternative Fuels Data Center: Propane Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find More places to share Alternative Fuels Data Center: Propane Related Links on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Related Links This list includes links related to propane. The Alternative Fuels Data

132

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

133

H.R. 1514: A Bill to authorize and facilitate a program to enhance safety, training, research and development, and safety education in the propane gas industry for the benefit of propane customers and the public, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This act is known as the Propane Education and Research Act of 1995. This report contains: the findings, definitions, referenda, assessments, compliances, lobbying restrictions, market survey and consumer protection, pricing, reports required, and a discussion of the propane education and research council.

NONE

1995-12-31T23:59:59.000Z

134

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

135

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

136

Combustion Gas Turbine Power Enhancement by Refrigeration of Inlet Air  

E-Print Network (OSTI)

Combustion gas turbines have gained widespread acceptance for mechanical drive and power generation applications. One key drawback of a combustion turbine is that its specific output and thermal efficiency vary quite significantly with variations in the ambient temperature. On hot days, a machine may experience considerable difficulty in meeting its power demand. One concept that has not received much attention is the cooling down of compressor inlet air. This paper will examine the theoretical and practical implications of concept such as evaporative cooling, intercooling, expansion cooling and compression and absorption refrigeration.

Meher-Homji, C. B.; Mani, G.

1983-01-01T23:59:59.000Z

137

New Jersey Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

379 489 454 457 392 139 1967-2012 Synthetic 0 0 1980-2012 Propane-Air 0 1980-2012 Refinery Gas 1980-2005 Biomass 0 1993-2012 Other 379 489 454 457 392 139 1980-2012...

138

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network (OSTI)

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

139

On Factors Controlling AirWater Gas Exchange in a Large Tidal River  

E-Print Network (OSTI)

and Estuarine Research Federation 2011 Abstract Air­water gas exchange is an important process in aquatic Introduction In rivers and estuaries, knowledge of air­water gas exchange is important for evaluating how floating domes. The opportunistic gas method relies on gases in the water that either occurred naturally (e

Ho, David

140

Alternative Fuels Data Center: Propane Vehicle Training  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Vehicle Propane Vehicle Training to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Training on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Training on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Training on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Training on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Training on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Vehicle Training The Railroad Commission of Texas Alternative Energy Division offers free safety and maintenance training on propane vehicles, buses, and forklifts.

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Propane Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Tax to someone Propane Tax to someone by E-mail Share Alternative Fuels Data Center: Propane Tax on Facebook Tweet about Alternative Fuels Data Center: Propane Tax on Twitter Bookmark Alternative Fuels Data Center: Propane Tax on Google Bookmark Alternative Fuels Data Center: Propane Tax on Delicious Rank Alternative Fuels Data Center: Propane Tax on Digg Find More places to share Alternative Fuels Data Center: Propane Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. (Reference Texas Statutes, Tax Code 162.305

142

Propane Market Assessment for Winter  

Reports and Publications (EIA)

1997-1998 Final issue of this report. This article reviews the major components of propane supply and demand in the United States and their status entering the 1997-1998 heating season.

Information Center

1997-12-01T23:59:59.000Z

143

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

144

U.S. Propane Stocks  

Gasoline and Diesel Fuel Update (EIA)

worry about short-term supply availability and bid prices up. As of the end of July, propane inventories in the United States were 61.9 million barrels, 41 percent higher than...

145

Propane Prices Follow Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

of the first signals in deciphering what is happening in the market. This chart shows propane prices (both spot and retail) as well as WTI. As you can see, most prices track the...

146

U.S. Propane Imports  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Another source of supply of propane is from imports. Imports for the first five months of this year have decreased about 8 percent (about 13 thousand barrels per day)...

147

Small-scale AFBC hot air gas turbine power cycle  

SciTech Connect

The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the US Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW{sub e} plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1,450 F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

Ashworth, R.A. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research and Development Center; Hall, A.W. [USDOE Morgantown Energy Technology Center, WV (United States)

1995-12-31T23:59:59.000Z

148

Emissions with butane/propane blends  

Science Conference Proceedings (OSTI)

This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

NONE

1996-11-01T23:59:59.000Z

149

Air extraction and LBTU coal gas combustion in gas turbines for IGCC systems  

SciTech Connect

The primary objective of the cold flow experiments is to study the effects of air extraction from two sites in a heavy-frame gas turbine: (1) the engine wrapper or manholes and (2) the compressor/combustor prediffuser inlet. The experiments involve a scale model of components of a state-of-the-art, US made gas turbine between the compressor exit and the turbine inlet Specifically, the purpose is to observe and measure how air extraction affects the flow distribution around the combustor cans and the impingement cooling flow rates on transition pieces of the combustor. The experimental data should provide turbine manufacturers the information needed to determine their preferred air extraction site. The secondary objectives for the experiments are as follows: (1) to identify regions with high-pressure losses, (2) to develop a dam base which will validate computational fluid dynamic calculations, and (3) to establish an experimental facility which may be used to assist the US industry in improving the aerodynamic design of nonrotating components of a heavy-frame gas turbine.

Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

1992-01-01T23:59:59.000Z

150

International Natural Gas Production - 2003  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

151

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

Science Conference Proceedings (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

152

Natural Gas Annual Archives  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

153

Liquefied Natural Gas  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

154

'81-'82 peakshaving capacity is gas industry's best ever  

SciTech Connect

During the 1981-82 winter, the US gas industry expected to draw its peakshaving supplies from (1) 58.40 billion CF of underground storage, (2) 5.21 billion CF of propane-air, (3) 8.99 billion CF of LNG, and (4) 0.27 billion CF of other sources. The industry's top peak-day sendout could reach 80-88 billion CF in a single 24-hr period. During 1981, underground-storage capacity continued its rising trend, while LNG-plant deliverability remained static and propane-air plant additions tapered off.

Hale, D.

1981-11-01T23:59:59.000Z

155

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

156

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

157

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

158

Guidelines for Induced Flue Gas Recirculation: Volume 1: Reducing Air/Gas System Resistance and Enhancing Fan Capacity  

Science Conference Proceedings (OSTI)

This document guides users through a logical sequence, or "road map," of activities and decisions for optimizing solutions for fans, ducts, and related equipment in fossil plant combustion air and gas systems.

1999-12-13T23:59:59.000Z

159

Propane Watch, historical - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Historical. Propane stocks and prices available weekly during October through March and monthly during the rest of the year.

160

Modeling of Future-Year Emissions Control Scenarios for the Lower Fraser Valley: Impacts of Natural Gas and Propane Vehicle Technologies  

Science Conference Proceedings (OSTI)

The MC2–CALGRID photochemical modeling system is used to simulate the impact of two fuel substitution scenarios on ozone levels for a future year in the Lower Fraser Valley of British Columbia, Canada. The relative impacts of selected natural gas ...

M. Hedley; W. Jiang; R. McLaren; D. L. Singleton

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Investigation of air supply conditions in the room of a B11type gas appliance  

Science Conference Proceedings (OSTI)

In Hungary, the prevalently used "B11" type gas appliances equipped with atmospheric burner and they have a draught hood beyond the outlet of the appliance. For the appropriate adjustment of the gas boiler to the conditions of the building, ... Keywords: CFD method, air supply, chimney, design requirements, gas appliances, numerical modelling

Lajos Barna; Róbert Goda

2007-05-01T23:59:59.000Z

162

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network (OSTI)

climatically important trace gas fluxes on regional and global scales, yet the magnitude of the transfer-generated turbulence in a shallow tidal sea, Nature, 400, 251­254. Raymond, P. A., and J. J. Cole (2001), Gas exchangeEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems

Ho, David

163

Markets indicate possible natural gas pipeline constraints ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

164

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

165

Effect of room air recirculation delay on the decay rate of tracer gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of room air recirculation delay on the decay rate of tracer gas Effect of room air recirculation delay on the decay rate of tracer gas concentration Title Effect of room air recirculation delay on the decay rate of tracer gas concentration Publication Type Journal Article Year of Publication 2007 Authors Lorenzetti, David M., Astrid H. Kristoffersen, and Ashok J. Gadgil Journal Indoor Air Pagination 7 Keywords recirculating ventilation, tracer decay rate Abstract Tracer gas measurements are used to estimate the flow rate of fresh air into a room or building. These methods commonly account for the decay of tracer gas concentration as the result of ventilation air supply and infiltration, using a well-mixed model of the space. Some researchers also have considered the effect of leakage in the ventilation ductwork. This paper considers the effect of recirculation through ventilation ducts on the calculated fresh air supply rate. Transport delay in the ducts can significantly alter the time evolution of tracer concentration, and hence alter the estimated air change rate.

166

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

167

Guidelines for Fuel Gas Line Cleaning Using Compressed Air or Nitrogen  

Science Conference Proceedings (OSTI)

This document lays a foundation for helping the industry to better understand common practices, design basis, and issues to consider for performing fuel gas line cleaning using compressed air or nitrogen pneumatic blow processes.

2011-12-14T23:59:59.000Z

168

EIA's Testimony on Natural Gas - House Subcommittee on Energy and the Air Quality  

Reports and Publications (EIA)

Statement of Beth Campbell, Energy Information Administration; Department of Energy Before the Subcommittee on Energy and Air Quality; Committee on Energy and Commerce U. S. House of Representatives - Hearing on Natural GasFebruary 28, 2001

Information Center

2001-03-28T23:59:59.000Z

169

Propane Market Model documentation report  

SciTech Connect

The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

1993-12-01T23:59:59.000Z

170

Effect of room air recirculation delay on the decay rate of tracer gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of room air recirculation delay on the decay rate of tracer gas Effect of room air recirculation delay on the decay rate of tracer gas Title Effect of room air recirculation delay on the decay rate of tracer gas Publication Type Conference Proceedings Year of Publication 2004 Authors Kristoffersen, Astrid H., Ashok J. Gadgil, and David M. Lorenzetti Conference Name 9th International Conference on Air Distribution in Rooms - RoomVent 2004, Pagination pp 6 Date Published September 5-8, 2 Conference Location Coimbra, Portugal Abstract Tracer gas measurements are commonly used to estimate the fresh air exchange rate in a room or building. Published tracer decay methods account for fresh air supply, infiltration, and leaks in ductwork. However, the time delay associated with a ventilation system recirculating tracer back to the room also affects the decay rate. We present an analytical study of tracer gas decay in a well-mixed, mechanically-ventilated room with recirculation. The analysis shows that failing to account for delays can lead to under- or over-estimates of the fresh air supply, depending on whether the decay rate calculation includes the duct volume

171

High pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The EFCC cycle is conceptually simple. Air enters the compressor where it is pressurized and becomes the tube-side flow of the ceramic air heater. Heat transferred from the hot combustion gases flowing through the shell-side raises the air temperature to the desired turbine inlet temperature. Internally insulated high pressure piping returns the heated compressor air to the turbine, where it is expanded providing power to drive the electric generator and gas turbine compressor. Exhaust air from the turbine is used as the combustion air for the coal combustor. The EFCC cycle burns pulverized coal in an atmospheric combustion chamber similar to the combustion system in a conventional steam generator. The combustion gas exits the combustor and enters a slag screen, or impact separator, where the larger ash particles are collected to prevent fouling of the heat exchanger. After the slag screen, the combustion gas enters the shell-side of the CerHX where its thermal energy is transferred to the tube side air flow. Shell-side exit temperatures are sufficiently high to provide thermal energy for the bottoming Rankine Cycle through a heat recovery steam generator. Exhaust gas exiting the steam generator passes through a flue gas desulfurization system and a particulate removal system.

LaHaye, P.G.; Briggs, G.F.; Orozxo, N.J.; Seger, J.L.

1993-11-01T23:59:59.000Z

172

Cooling air recycling for gas turbine transition duct end frame and related method  

SciTech Connect

A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

Cromer, Robert Harold (Johnstown, NY); Bechtel, William Theodore (Scotia, NY); Sutcu, Maz (Niskayuna, NY)

2002-01-01T23:59:59.000Z

173

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network (OSTI)

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

174

Inlet Air Chillers for Gas Turbine Capacity Enhancement  

Science Conference Proceedings (OSTI)

This report provides information and analysis to help power generation engineers assess the cost-effectiveness of using inlet air chillers to increase the net output capacity of combustion turbine and combined cycle generating units. It also provides an analysis of integrating the storage of chilled water or ice with the inlet air cooling system as a means of energy storage. This report provides new and updated information and analysis, building on information from previous Electric Power Research ...

2012-12-01T23:59:59.000Z

175

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2003-04-08T23:59:59.000Z

176

Compressor discharge bleed air circuit in gas turbine plants and related method  

DOE Patents (OSTI)

A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

2002-01-01T23:59:59.000Z

177

State heating oil and propane program  

SciTech Connect

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-01-01T23:59:59.000Z

178

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

179

A Ruggedized Ultrasensitive Field Air Sampler for Differentially Determining Tritium Oxide and Gas in Ambient Air Atmosphere  

SciTech Connect

The instrument described is an operational, practical, ruggedized, ultrasensitive, tritium field air sampler assembled for the simultaneous, differential sampling of the environmental air for tritium oxide and elemental tritium. The system uses hardware assembled and packaged in such manner as to facilitate use in the field as well as in the laboratory. The sampling system occupies relatively small space and is simple to operate. The detection sensitivity approaches tritium background levels and is achieved by high volume sampling, efficient removal of tritium oxide and elemental tritium ("tritium gas"), and counting the recovered fractions by liquid scintillation spectrometry.

Brown, R.; Meyer, H. E.; Robinson, B.; Sheehan, W. E.

1971-12-21T23:59:59.000Z

180

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Propane Demand Sectors (1996)  

U.S. Energy Information Administration (EIA)

The residential and commercial sector and the chemical sector are the largest end users of propane in the U.S., accounting for 34% and 41% ...

182

U.S. Propane Production by Source  

U.S. Energy Information Administration (EIA)

Propane comes primarily from two units in a refinery -- the reformer and fluid catalytic cracking unit -- which are important units in the production ...

183

Comparison of Hydrogen and Propane Fuels (Brochure)  

Science Conference Proceedings (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

184

Average Stock Levels: Crude Market & Propane  

U.S. Energy Information Administration (EIA)

This graph shows that propane was not alone in experiencing excess supply in 1998 and extraordinary stock builds. Note that the graph shows average stock levels ...

185

Propane earth materials drying techniques and technologies.  

E-Print Network (OSTI)

??A feasibility study for the use of propane as a subbase drying technique. Michael Blahut (1) Dr. Vernon Schaefer (2) Dr. Chris Williams (3) The… (more)

Blahut, Michael Edward

2010-01-01T23:59:59.000Z

186

Retail Propane Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Residential propane prices rose fairly strongly during the 1999-2000 heating season, gaining nearly 25 cents per gallon between October and March.

187

Comparison of Hydrogen and Propane Fuels (Brochure)  

DOE Green Energy (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

188

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network (OSTI)

Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity to upgrade remaining facilities with more efficient and less polluting equipment. Use of air compressors by the DOD is widespread and the variety of tools and machinery that operate on compressed air is increasing. The energy cost of operating a natural gas engine-driven air compressor (NGEDAC) is usually lower than the cost of operating an electric-driven air compressor. Initial capital costs are offset by differences in prevailing utility rates, efficiencies of partial load operation, reductions in peak demand, heat recovery, and avoiding the cost of back-up generators. Natural gas, a clean-burning fuel, is abundant and readily available. In an effort to reduce its over-all environmental impact and energy consumption, the U.S. Army plans to apply NGEDAC technology in support of fixed facilities compressed air systems. Site assessment and demonstration results are presented in this paper.

Lin, M.; Aylor, S. W.; Van Ormer, H.

2002-04-01T23:59:59.000Z

189

Combatting urban air pollution through Natural Gas Vehicle (NGV) analysis, testing, and demonstration  

DOE Green Energy (OSTI)

Deteriorating urban air quality ranks as a top concern worldwide, since air pollution adversely affects both public health and the environment. The outlook for improving air quality in the world`s megacities need not be bleak, however, The use of natural gas as a transportation fuel can measurably reduce urban pollution levels, mitigating chronic threats to health and the environment. Besides being clean burning, natural gas vehicles (NGVs) are economical to operate and maintain. The current cost of natural gas is lower than that of gasoline. Natural gas also reduces the vehicle`s engine wear and noise level, extends engine life, and decreases engine maintenance. Today, about 700,000 NGVs operate worldwide, the majority of them converted from gasoline or diesel fuel. This article discusses the economic, regulatory and technological issues of concern to the NGV industry.

NONE

1995-03-01T23:59:59.000Z

190

Natural Gas Plant Field Production: Propane  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

191

Propane as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as a Transportation Fuel Propane as a Transportation Fuel July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane,...

192

Natural gas production in Middle Eastern and North African ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

193

International Collaborations to Improve the Accuracy of Gas ...  

Science Conference Proceedings (OSTI)

During the past two years comparisons have taken place for sulfur dioxide, ethanol, propane, and hydrocarbon gas standards. ...

2012-11-16T23:59:59.000Z

194

North America leads the world in production of shale gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

195

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

196

New England and New York have largest natural gas price ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

197

High-pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 [times] 10[sup 6] Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

LaHaye, P.G.; Briggs, G.F.; Vandervort, C.L.; Seger, J.L.

1992-01-01T23:59:59.000Z

198

High-pressure ceramic air heater for indirectly fired gas turbine applications  

SciTech Connect

The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 {times} 10{sup 6} Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

LaHaye, P.G.; Briggs, G.F.; Vandervort, C.L.; Seger, J.L.

1992-12-01T23:59:59.000Z

199

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

200

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vermont Propane Retail Sales by Refiners (Thousand Gallons per Day)  

U.S. Energy Information Administration (EIA)

Referring Pages: Propane (Consumer Grade) Sales to End Users Refiner Sales Volumes; Vermont Propane (Consumer Grade) Refiner Sales Volumes; Vermont Sales to End Users ...

202

Alternative Fuels Data Center: Propane Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production and Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Propane Production and Distribution on AddThis.com... More in this section... Propane Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Propane Production and Distribution

203

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation  

E-Print Network (OSTI)

Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand this phenomenon, distillation experiments were performed using seven-component synthetic oil consisting of equal weights of the following alkanes: n-C5, n-C6, n-C7, n-C8, n-C9, nC10, and n-C15. For comparison purposes, three distillation processes were investigated: dry-, steam-, and steam-propane-distillation, the latter at a propane:steam mass ratio of 0.05. The injection rate of nitrogen during dry-and steam-distillation was the same as that of propane during steam-propane distillation, 0.025 g/min, with steam injection rate kept at 0.5 g/min. The distillation temperatures ranged from 115°C to 300°C and were increased in steps of 10°C. The cell was kept at each temperature plateau (cut) for 30 minutes. Distillation pressures ranged from 0 psig for dry distillation to 998 psig for steam-and steam-propane distillation. The temperature-pressure combination used represented 15°C superheated steam conditions. Distillate samples were collected at each cut, and the volume and weight of water and hydrocarbon measured. In addition, the composition of the hydrocarbon distillate was measured using a gas chromatograph. Main results of the study may be summarized as follows. First, the hydrocarbon yield at 125°C is highest with steam-propane distillation (74 wt%) compared to steam distillation (58 wt%), and lowest with dry distillation (36 wt%). This explains in part the oil production acceleration observed in steam-propane displacement experiments. Second, the final hydrocarbon yield at 300°C however is the same for the three distillation processes. This observation is in line with the fact that oil recoveries were very similar in steam- and steam-propane displacement experiments. Third, based on the yields of individual hydrocarbon components, steam-propane distillation lowers the apparent boiling points of the hydrocarbons significantly. This phenomenon may be the most fundamental effect of propane on hydrocarbon distillation, which results in a higher yield during steam-propane distillation and oil production acceleration during steam-propane displacement. Fourth, experimental K-values are higher in distillations with steam-propane for the components n-hexane, n-heptane, n-octane, and n-nonane. Fifth, vapor fugacity coefficients for each component are higher in distillations with steam-propane than with steam. Finally, Gibbs excess energy is overall lower in distillations with steam-propane than with steam. The experimental results clearly indicate the importance of distillation on oil recovery during steam-or steam-propane injection. The experimental procedure and method of analysis developed in this study (for synthetic oil) will be beneficial to future researchers in understanding the effect of propane as steam additive on actual crude oils.

Ramirez Garnica, Marco Antonio

2003-05-01T23:59:59.000Z

204

DRY FLUE GAS CLEANING PROCESSES FOR ACHIEVING AIR POLLUTANT EMISSIONS  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

205

Natural Gas Annual Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

206

Underground Natural Gas Working Storage Capacity - Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

207

Assessing Air Pollution Control Options at the Hudson Station of Public Service Electric and Gas  

Science Conference Proceedings (OSTI)

This report presents the results of a pilot-scale assessment of air pollutant emission control options at the Hudson Generating Station of Public Service Electric and Gas (PSE&G). Tests over a period of a year and a half evaluated the capabilities of a high air-to-cloth ratio pulse jet baghouse (COHPAC) in controlling particulates, acid gases, and mercury and a tubular electrostatic precipitator (ESP) in controlling mercury emissions.

1998-10-30T23:59:59.000Z

208

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

209

An evaluation of thermal energy storage options for precooling gas turbine inlet air  

SciTech Connect

Several approaches have been used to reduce the temperature of gas turbine inlet air. One of the most successful uses off-peak electric power to drive vapor-compression-cycle ice makers. The ice is stored until the next time high ambient temperature is encountered, when the ice is used in a heat exchanger to cool the gas turbine inlet air. An alternative concept would use seasonal thermal energy storage to store winter chill for inlet air cooling. The objective of this study was to compare the performance and economics of seasonal thermal energy storage in aquifers with diurnal ice thermal energy storage for gas turbine inlet air cooling. The investigation consisted of developing computer codes to model the performance of a gas turbine, energy storage system, heat exchangers, and ancillary equipment. The performance models were combined with cost models to calculate unit capital costs and levelized energy costs for each concept. The levelized energy cost was calculated for three technologies in two locations (Minneapolis, Minnesota and Birmingham, Alabama). Precooling gas turbine inlet air with cold water supplied by an aquifer thermal energy storage system provided lower cost electricity than simply increasing the size of the turbine for meteorological and geological conditions existing in the Minneapolis vicinity. A 15 to 20% cost reduction resulted for both 0.05 and 0.2 annual operating factors. In contrast, ice storage precooling was found to be between 5 and 20% more expensive than larger gas turbines for the Minneapolis location. In Birmingham, aquifer thermal energy storage precooling was preferred at the higher capacity factor and ice storage precooling was the best option at the lower capacity factor. In both cases, the levelized cost was reduced by approximately 5% when compared to larger gas turbines.

Antoniak, Z.I.; Brown, D.R.; Drost, M.K.

1992-12-01T23:59:59.000Z

210

Alternative Fuels Data Center: Propane Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Propane Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Propane Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Propane Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and Incentives on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Propane Laws and Incentives

211

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance  

Science Conference Proceedings (OSTI)

Inverse-dispersion techniques allow inference of a gas emission rate Q from measured air concentration. In “ideal surface layer problems,” where Monin–Obukhov similarity theory (MOST) describes the winds transporting the gas, the application of ...

T. K. Flesch; J. D. Wilson; L. A. Harper

2005-04-01T23:59:59.000Z

212

Flame holding tolerant fuel and air premixer for a gas turbine combustor  

Science Conference Proceedings (OSTI)

A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

2012-11-20T23:59:59.000Z

213

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Release Schedule Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 14, 2013 October 17, 2013 Thursday Cancelled Columbus/EIA Closed November 11, 2013 November 14, 2013 Thursday 1:00 p.m. Veterans December 23, 2013 December 27, 2013 Friday 1:00 p.m. Christmas December 30, 2013 January 3, 2014 Friday 1:00 p.m. New Year's January 20, 2014 January 23, 2014 Thursday 1:00 p.m. Martin Luther King Jr. February 17, 2014 February 20, 2014 Thursday 1:00 p.m. President's

214

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

SHOPP Financial Forms - for State Energy Officials SHOPP Financial Forms - for State Energy Officials The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the U. S. Energy Information Administration. The Application for Federal Assistance, Form SF-424, is required to be submitted annually no later than May 15th in order for the applicant to receive funds for the upcoming season. This form consists of three parts: SF-424 - general funding information SF-424A - annual budget SF-424B - assurance pages The Federal Financial Report, Form SF-425, collects basic data on federal and recipient expenditures related to the SHOPP grant. This form should be submitted by August 1st of each year after the end of the season.

215

Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

216

What is the total working gas capacity in underground natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

217

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Converts Michigan Converts Vehicles to Propane, Reducing Emissions to someone by E-mail Share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Facebook Tweet about Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Twitter Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Google Bookmark Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Delicious Rank Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on Digg Find More places to share Alternative Fuels Data Center: Michigan Converts Vehicles to Propane, Reducing Emissions on AddThis.com... April 27, 2013

218

Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Mower Commercial Mower Rebate - Minnesota Propane Association (MPA) to someone by E-mail Share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Facebook Tweet about Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Twitter Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Google Bookmark Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Delicious Rank Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on Digg Find More places to share Alternative Fuels Data Center: Commercial Mower Rebate - Minnesota Propane Association (MPA) on AddThis.com...

219

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

220

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

GAINS-BI: business intelligent approach for greenhouse gas and air pollution interactions and synergies information system  

Science Conference Proceedings (OSTI)

The Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS)-Model is studied and developed to provide a consistent framework for the analysis of co-benefits reduction strategies from air pollution and greenhouse gas sources. In this ... Keywords: ETL, GAINS, business intelligent, data warehouse

Thanh Binh Nguyen; Wolfgang Schoepp; Fabian Wagner

2008-11-01T23:59:59.000Z

222

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

223

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

224

Alternative Fuels Data Center: Propane Excise Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Excise Tax Propane Excise Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Excise Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Excise Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Excise Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Excise Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Excise Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Excise Tax Exemption Propane is exempt from the state excise tax when it is used to operate motor vehicles on public highways provided that vehicles are equipped with

225

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

226

U.S. Propane Total Stocks  

Gasoline and Diesel Fuel Update (EIA)

7 Notes: U.S. inventories of propane benefited from a late pre-season build that pushed inventories to over 65 million barrels by early November 2000, the second highest peak...

227

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

DOE Green Energy (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

228

Propane Vehicles: Status, Challenges, and Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Propane Vehicles: Propane Vehicles: Status, Challenges, and Opportunities ANL/ESD/10-2 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62

229

Supplemental Gas Supplies  

Gasoline and Diesel Fuel Update (EIA)

. . Supplemental Gas Supplies by State, 1996 (Million Cubic Feet) Table State Synthetic Natural Gas Propane- Air Refinery Gas Biomass Gas Other Total Alabama ...................... 0 18 0 0 0 18 Colorado...................... 0 344 0 0 a 6,443 6,787 Connecticut ................. 0 48 0 0 0 48 Delaware ..................... 0 1 0 0 0 1 Georgia........................ 0 94 0 0 0 94 Hawaii.......................... 2,761 0 0 0 0 2,761 Illinois .......................... 0 488 3,423 0 0 3,912 Indiana......................... 0 539 0 0 b 2,655 3,194 Iowa............................. 0 301 0 0 0 301 Kentucky...................... 0 45 0 0 0 45 Maine........................... 0 61 0 0 0 61 Maryland...................... 0 882 0 0 0 882 Massachusetts ............ 0 426 0 0 0 426 Michigan ...................... 0 0 0 0 c 21,848 21,848 Minnesota.................... 0 709 0 0 0 709 Missouri

230

Extinction Studies of Hydrofluorocarons in Methane/Air and ...  

Science Conference Proceedings (OSTI)

... is a major fire threat in shipboard flammable liquid storage rooms (FLSRs). ... agent volume concentration in air for methane and propane fuels ...

2011-10-13T23:59:59.000Z

231

Closed-Cycle Air Refrigeration Technology: Economic Case ...  

Science Conference Proceedings (OSTI)

... air is in a gaseous state throughout the ... However, ammonia is toxic, propane is explosive, and ... program at a Kodak facility in Rochester, New York. ...

2008-07-28T23:59:59.000Z

232

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

DOE Green Energy (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

233

Georgia Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

* 52 732 701 660 1967-2012 Propane-Air 2 0 0 1980-2012 Biomass 52 732 701 660 1993-2012 Other 0 0 1980...

234

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of Propane and Propylene (Thousand Barrels per Day)

235

How much shale gas is produced in the United States? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

236

U.S. boosts natural gas output and use since 2005, while OECD ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

237

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

238

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream  

E-Print Network (OSTI)

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream T.Funada, D velocity airstream is studied assuming that the flow of the viscous gas and liquid is irrotational for the perturbations which depend on all the material properties of the incompressible liquid and compressible gas

Joseph, Daniel D.

239

Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Propane (LPG)

240

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Illinois Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Propane (LPG)

242

Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Propane (LPG)

243

Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Propane (LPG)

244

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Propane (LPG)

245

Alternative Fuels Data Center: Missouri Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Propane (LPG)

246

Alternative Fuels Data Center: Colorado Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Propane (LPG)

247

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Powers Airport Propane Powers Airport Shuttles in New Orleans to someone by E-mail Share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Facebook Tweet about Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Twitter Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Google Bookmark Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Delicious Rank Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on Digg Find More places to share Alternative Fuels Data Center: Propane Powers Airport Shuttles in New Orleans on AddThis.com... Feb. 19, 2011 Propane Powers Airport Shuttles in New Orleans D iscover how the New Orleans airport displaced over 139,000 gallons of

248

Alternative Fuels Data Center: Arizona Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Propane (LPG)

249

Alternative Fuels Data Center: Alabama Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Propane (LPG)

250

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

251

Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Propane (LPG)

252

Alternative Fuels Data Center: Washington Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Propane (LPG)

253

Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Propane (LPG)

254

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Propane (LPG)

255

Alternative Fuels Data Center: California Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Propane (LPG)

256

Alternative Fuels Data Center: Michigan Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Propane (LPG)

257

Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Propane (LPG)

258

Alternative Fuels Data Center: Montana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Propane (LPG)

259

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Propane (LPG)

260

Alternative Fuels Data Center: Indiana Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Florida Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Propane (LPG)

262

Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Propane (LPG)

263

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

264

Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Propane (LPG)

265

Alternative Fuels Data Center: Vermont Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Propane (LPG)

266

Alternative Fuels Data Center: Maryland Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Propane (LPG)

267

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Propane (LPG)

268

Alternative Fuels Data Center: Virginia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Propane (LPG)

269

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

Paris-Sud XI, Université de

270

Stocks of Propane/Propylene  

U.S. Energy Information Administration (EIA)

Stocks held at natural gas processing plants are included in "Other Oils" and in totals. All stock levels are as of the end of the period.

271

Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass  

DOE Green Energy (OSTI)

The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

Anuar, S.H.; Keener, H.M.

1995-12-31T23:59:59.000Z

272

Natural Gas Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

273

International Natural Gas Information - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

274

Online service improves public access to petroleum and natural gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

275

Natural Gas - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

276

Natural Gas - U.S. Energy Information Administration (EIA) - U ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

277

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

278

Natural gas generation lower than last year because of differences ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

279

Natural Gas - Data - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Unconventional Dry Natural Gas Production Release Date: August 1, 2013. Coalbed Methane; Shale Gas :

280

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

282

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

283

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

284

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

285

Norway's natural gas exports to continental Europe fell in spring ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

286

The impact of natural gas imports on air pollutant emissions in Mexico  

SciTech Connect

This paper analyzes the impact that natural gas imports could have on fuel emissions in northern Mexico. The authors discuss the problem created in the 1980s when a shift from natural gas to residual oil in industrial processes increased emissions of air pollutants significantly. The benefits of substituting leaded for unleaded gasoline in the 1990s are discussed also. In July 1992 the Mexican government announced for the first time since oil nationalization that private companies in Mexico are allowed to directly import natural gas. The transportation of natural gas, however, remains reserved only for Pemex, the national oil company. This opens the possibility of reducing the burning of high-sulfur residual oil in both the industrial and the energy production sectors in Mexico, particularly in the northern region where only 6.7% of the of the country`s natural gas is produced. Natural gas imports have also opened the possibility of using compressed natural gas (CNG) in vehicles in northern Mexico. 15 refs., 13 figs., 3 tabs.

Bustani, A.; Cobas, E. [Center for Environmental Quality, Monterrey (Mexico)

1993-12-31T23:59:59.000Z

287

Proposal to reduce greenhouse gas emissions via landfill gas management in Greater Buenos Aires, Argentina. Final report  

DOE Green Energy (OSTI)

The purpose of this project was to evaluate the feasibility of reducing the emission of greenhouse gases by collection, flaring, and possibly beneficially using the gas from landfills in Greater Buenos Aires, Argentina (GBA). Another purpose was to prepare a proposal to the US Initiative on Joint Implementation (USIJI) for a project to collect and possibly use the landfill gas (LFG). The project was carried out from September 30, 1997 through September 30, 1998. Collection and flaring of gas is feasible provided private firms have sufficient incentive to obtain greenhouse gas emission reduction benefits. The value of those benefits that would be required to motivate funding of an LFG management project was not explicitly determined. However, one independent power producer has expressed an interest in funding the first phase of the proposed project and paid for a detailed feasibility study which was conducted in August and September of 1998. As a result of this project, a proposal was submitted to the USIJI Evaluation Panel in June, 1998. In August, 1998, an office was established for reviewing and approving joint implementation proposals. The proposal is currently under review by that office.

Jones, D.B.

1998-10-01T23:59:59.000Z

288

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network (OSTI)

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

289

An Analysis of U.S. Propane Markets Winter 1996-97  

Gasoline and Diesel Fuel Update (EIA)

OOG/97-01 OOG/97-01 Distribution Category UC-950 An Analysis of U.S. Propane Markets Winter 1996-97 June 1997 Energy Information Administration Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Energy Information Administration (EIA) under the direction of Dr. John Cook, Director, Petroleum Marketing Division, Office of Oil and Gas, (202) 586-5214, jcook@eia.doe.gov. Questions for this report can be directed to: Propane Supply and Demand David Hinton (202) 586-2990, dhinton@eia.doe.gov Propane Markets

290

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

291

No. 2 heating oil/propane program  

SciTech Connect

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

292

STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)  

SciTech Connect

An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air-ingress mitigation methods are proposed in this study. Among them, the following two mitigation ideas are extensively investigated using computational fluid dynamic codes (CFD): (1) helium injection in the lower plenum, and (2) reactor enclosure opened at the bottom. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model is developed based on the GT-MHR 600MWt design. The simulation results showed that the helium replace the air flow into the core and significantly reduce the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully. The idea of the reactor enclosure with an opening at the bottom changes overall air-ingress mechanism from natural convection to molecular diffusion. This method can be applied to the current system by some design modification of the reactor cavity. To validate this concept, this study also uses CFD simulations based on the simplified 2-D geometry. The simulation results showed that the enclosure open at the bottom can successfully mitigate air-ingress into the reactor even after on-set natural circulation occurs.

Chang H. Oh

2011-03-01T23:59:59.000Z

293

Propane-Fueled Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics Propane-Fueled Vehicle Basics August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are used in fleets, including light- and heavy-duty trucks, buses, taxicabs, police cars, and rental and delivery vehicles. Compared with vehicles fueled with conventional diesel and gasoline, propane vehicles can produce significantly fewer harmful emissions. The availability of new light-duty original equipment manufacturer propane vehicles has declined in recent years. However, certified installers can economically and reliably retrofit many light-duty vehicles for propane operation. Propane engines and fueling systems are also available for heavy-duty vehicles such as school buses and street sweepers.

294

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

295

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

296

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Reduces Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Delicious Rank Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Digg Find More places to share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on AddThis.com... Dec. 11, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys

297

Rhode Island Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 3.540: 3.534: 3.540: 3.515: 3.511: 3.514: 1990-2013

298

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

299

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renzenberger Inc Saves Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Digg Find More places to share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on AddThis.com... June 22, 2012 Renzenberger Inc Saves Money With Propane Vans L earn how Renzenberger Incorporated fuels its road service vans with

300

U.S. Exports of Propane and Propylene (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Propane/Propylene Exports; Propane/Propylene Supply and Disposition; U.S. Exports of Crude Oil and Petroleum Products ...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report  

DOE Green Energy (OSTI)

Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

Wong, H. C.

2003-07-01T23:59:59.000Z

302

Iowa Propane Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Iowa Propane (Consumer Grade) Refiner Sales Volumes; Iowa Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

303

Alabama Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Alabama Propane (Consumer Grade) Refiner Sales Volumes; Alabama Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

304

Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)  

Science Conference Proceedings (OSTI)

This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

Not Available

2010-07-01T23:59:59.000Z

305

A New Compact Cryogenic Air Sampler and Its Application in Stratospheric Greenhouse Gas Observation at Syowa Station, Antarctica  

Science Conference Proceedings (OSTI)

To collect stratospheric air samples for greenhouse gas measurements, a compact cryogenic air sampler has been developed using a cooling device called the Joule–Thomson (J–T) minicooler. The J–T minicooler can produce liquefied neon within 5 s ...

Shinji Morimoto; Takashi Yamanouchi; Hideyuki Honda; Issei Iijima; Tetsuya Yoshida; Shuji Aoki; Takakiyo Nakazawa; Shigeyuki Ishidoya; Satoshi Sugawara

2009-10-01T23:59:59.000Z

306

Energy Information Administration – International Natural Gas Price  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas ... imports and exports, production, prices, sales ... Europe ...

307

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

308

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

309

This Week In Petroleum Propane Section  

Gasoline and Diesel Fuel Update (EIA)

and Wholesale Propane Prices (Dollars per Gallon) and Wholesale Propane Prices (Dollars per Gallon) Residential Propane Prices Petroleum Data Tables more data Note: Due to updated weighting methodology, national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published. We have created an excel file that shows the differences between the original and revised published data for your convenience. Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 Average 2.450 2.482 2.506 2.542 2.566 2.621 2.712 2.243 East Coast (PADD 1) 3.044 3.073 3.090 3.141 3.165 3.246 3.315 2.930 New England (PADD 1A) 3.033 3.047 3.064 3.121 3.172 3.257 3.314 3.063 Central Atlantic (PADD 1B) 3.095 3.122 3.145 3.204 3.213 3.307

310

Portland Public School Children Move with Propane  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

311

Clean air program: Liquefied natural gas safety in transit operations. Final report  

SciTech Connect

The report examines the safety issues relating to the use of Liquefied natural Gas (LNG) in transit service. The surveys consisted of: (1) extensive interviews; (2) review of recrods, procedures, and plans relating to safety; (3) examination of facilities and equipment; (4) observations of operations including fueling, maintenance, morning start-up, and revenue service; (5) measurement of methane concentrations in the air where the buses are being fueled or stored. Interviews included all job categories associated with management, operations, safety, maintenance, acquisition, and support. The surveys also included an examination of the occupational hygiene aspects of LNG use.

Friedman, D.M.; Malcosky, N.D.

1996-03-01T23:59:59.000Z

312

Selection of the most advantageous gas turbine air filtration system: Comparative study of actual operating experience  

SciTech Connect

This paper discusses relative merits of three types of air filtration systems used by Sui Northern Gas Pipelines Ltd. (Pakistan), on its gas turbine compressor packages. These Filtration systems are: (i) Two stage inertial plus auto oil bath type multi-duty filters by AAF used on Saturn Mark-1 packages manufactured by Solar Turbines Inc. (ii) Three stage high efficiency barrier filters by AAF used on Centaur packages by Solar. (iii) Single stage pulse-jet self-cleaning filter by Donaldson again used on a Centaur package. The selection is primarily based in package performance data collected over a 15 month period analyzing power loss due to fouling effects and related operation and maintenance costs for the three systems. The Company's operating experience indicates that on new installations the pulse clean system offers the best advantage both in terms of filtration costs as well as availability of additional horse power when operating under moderate to severe environmental conditions.

Gilani, S.I.; Mehr, M.Z.

1985-01-01T23:59:59.000Z

313

Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Converts Virginia Converts Vehicles to Propane in Spotsylvania County to someone by E-mail Share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Facebook Tweet about Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Twitter Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Google Bookmark Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Delicious Rank Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on Digg Find More places to share Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in Spotsylvania County on AddThis.com...

314

Propane education and research. Hearing before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundred Third Congress, Second Session on H.R. 3546, June 8, 1994  

SciTech Connect

The hearing addresses H.R. 3546 a bill to provide for the establishment of a program for safety, development and education in the Propane Gas Industry for the benefit of propane consumers and the public. Statement of witnesses and documents submitted for the record are included. The proposed legislative text is provided.

NONE

1994-12-31T23:59:59.000Z

315

What is the volume of world natural gas reserves? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

316

Natural Gas - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

317

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

318

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

319

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

320

EIA for gas prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

322

Current natural gas forward prices signal rising—but still low ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

323

2012 Brief: Natural gas liquids prices down in 2012 - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

324

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

325

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

326

An analysis of US propane markets, winter 1996-1997  

SciTech Connect

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

1997-06-01T23:59:59.000Z

327

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

328

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

329

Sound speed in liquid–gas mixtures: Water–air and water  

E-Print Network (OSTI)

The sound speed of a two-phase fluid, such as a magma-gas, water-air, or water-steam mixture, is dramatically different from the sound speed of either pure component. In numerous geologic situations the sound speed of such two-phase systems may be of interest: in the search for magma reservoirs, in seismic exploration of geothermal areas, in prediction of P wave velocity decreases prior to earthquakes, and in inversion of crustal and upper mantle seismic records. Probably most dramatically, fluid flow characteristics during eruptions of volcanoes and geysers are strongly dependent on the sound speed of erupting two-phase (or multiphase) fluids. In this paper the sound speeds of water, air, steam, water-air mixtures, and water-steam mixtures are calculated. It is demonstrated that sound speeds calculated from classical acoustic and fluid dynamics analyses agree with results obtained from finite amplitude 'vaporization wave ' theory. To the extent that air and steam are represented as perfect gases with an adiabatic exponent •, independent of temperature, their sound speeds vary in a simple manner directly with the square root of the absolute temperature. The sound speed of pure liquid water is a complex function of pressure and temperature and is given here to 8 kbar, 900øC. In pure water at all pressures the sound speed attains a maximum value near 100øC and decreases at higher temperatures; at high pressures the decrease is continuous, but at pressures below 1 kbar the sound speed reaches a minimum value in the

Susan Werner Kieffer

1977-01-01T23:59:59.000Z

330

Small-scale AFBC-hot air gas turbine power cycle  

SciTech Connect

The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of 3.9:1. The AFBC-HAGT technology can be used to generate power for remote rural communities to replace diesel generators, or can be used for small industrial co-generation applications.

Ashworth, R.C. [Energy and Environmental Research Corp., Orrville, OH (United States); Keener, H.M. [Ohio State Univ., Wooster, OH (United States); Hall, A.W. [Morgantown Energy Technology Center, Morgantown, WV (United States)

1995-02-01T23:59:59.000Z

331

Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels  

DOE Green Energy (OSTI)

As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

Anderson, D.N.

1977-01-01T23:59:59.000Z

332

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 1, Final report  

Science Conference Proceedings (OSTI)

The objective of this study is to develop standardized air blown fixed bed gasification hot gas cleanup integrated gasifier combined cycle (IGCC) systems.

Sadowski, R.S.; Brown, M.J.; Hester, J.C.; Harriz, J.T.; Ritz, G.J.

1991-02-01T23:59:59.000Z

333

High-pressure coal-fired ceramic air heater for gas turbine applications. Technical quarterly progress report, May 1994--July 1994  

SciTech Connect

Progress is reported on the development of a coal-fired ceramic air heater for gas turbine applications. This report describes component development.

1996-02-01T23:59:59.000Z

334

Alpha and gamma radiation effects on air-water systems at high gas/liquid ratios  

SciTech Connect

Radiolysis tests were conducted on air-water systems to examine the effects of radiation on liquid phase chemistry under high gas/liquid volume (G/L) ratios that are characteristic of an unsaturated nuclear waste repository setting. Test parameters included temperatures of 25, 90, and 200{degrees}C; gamma vs. alpha radiation; dose rates of {approximately}3500 and 50,000 rad/h; and G/L ratios of 10 and 100. Formate, oxalate, and total organic carbon contents increased during irradiation of the air-water systems in gamma and alpha tests at low-dose rate ({approximately}3500 rad/h). Increases in organic components were not observed for tests run at 200{degrees}C or high-dose rates (50,000 rad/h). In the tests where increases in organics occurred, the formate and oxalate were preferentially enriched in solutions that were rinsed from the test vessel walls. Nitrate (NO{sub 3}{sup {minus}}) is the dominant anion produced during the radiolysis reactions. Significant nitrite (NO{sub 2}{sup {minus}}) also occurs in some high-dose rate tests, with the reduced form of nitrogen possibly resulting from reactions with the test vessels. These results indicate that nitrogen acids are being produced and concentrated in the limited quantities of solution present in the tests. Nitrate + nitrite production varied inversely with temperature, with the lowest quantities being detected for the higher temperature tests. The G(NO{sub 3}{sup {minus}} + NO{sub 2}{sup {minus}}) values for the 25, 90, and 200{degrees}C experiments with gamma radiation are 3.2 {+-} 0.7, 1.3 {+-} 1.0, and 0.4 {+-} 0.3, respectively. Thus, the elevated temperatures expected early in the life of a repository may counteract pH decreases resulting from nitrogen acid production. Little variation was observed in G values as a function of dose rate or gas/liquid ratio.

Wronkiewicz, D.J.; Bates, J.K.

1993-08-01T23:59:59.000Z

335

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

336

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

337

Propane inventories end third quarter at record level ...  

U.S. Energy Information Administration (EIA)

... in the United States finished September 2012 at a ... Propane supply in the United States ... million barrels per day. The United States has not ...

338

Massachusetts Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Massachusetts Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 ... No.1 and No. 2 ...

339

Propane Outlook - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Propane Outlook Conclusion. Lower residential prices possible this winter U.S. inventories likely to be ample prior to the heating season. However, Midwest ...

340

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Minnesota Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

342

North Carolina Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

343

Virginia Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

344

Massachusetts Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

345

Wisconsin Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

... national and regional residential heating oil and propane prices from October 2009 to March 2013 have been revised since they were first published.

346

Table 34. Propane (Consumer Grade) Prices by Sales Type and ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly January 2012 88 Table 34. Propane (Consumer Grade) Prices by Sales Type and PAD ...

347

Heating Oil and Propane Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

However, EIA does publish spot prices for heating oil and propane throughout the year which can be accessed by clicking here. In addition, ...

348

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

349

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

350

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

351

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

352

Propane demand modeling for residential sectors- A regression analysis.  

E-Print Network (OSTI)

??This thesis presents a forecasting model for the propane consumption within the residential sector. In this research we explore the dynamic behavior of different variables… (more)

Shenoy, Nitin K.

2011-01-01T23:59:59.000Z

353

Investigation of Dithiolenes for Propylene/Propane Membrane Separations .  

E-Print Network (OSTI)

??Polyimide membranes containing nickel dithiolenes were investigated for the separation of propylene and propane. Permeation and sorption experiments were conducted as well thermal property analyses.… (more)

Sejour, Hensley

2007-01-01T23:59:59.000Z

354

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

355

Propane demand hits a record high for November - Today in ...  

U.S. Energy Information Administration (EIA)

... Minnesota, Montana, Nebraska, South Dakota, and Wisconsin have declared states of emergency to allow for more delivery of propane throughout the ...

356

Real-Time Fuel Gas Composition Sensor - Energy Innovation Portal  

... is that the composition of the gas from these sources varies widely. Fuel burns differently with differing ratios of methane, propane, and other combustible gases.

357

National Grid (Gas) - Residential EnergyWise Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit through National Grid's Weatherization or...

358

Lifecycle impacts of natural gas to hydrogen pathways on urban air quality  

E-Print Network (OSTI)

following three natural gas to hydrogen supply pathways areHFCVs. Three natural gas-based hydrogen supply pathways areof the hy- drogen supply pathway: natural gas extraction,

Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

2007-01-01T23:59:59.000Z

359

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

E-Print Network (OSTI)

report electricity, natural gas and propane usage and directfacility natural gas and propane usage. Integrate renewableenergy demand and usage. All water, air, gas, electricity

Lewis, Glen

2010-01-01T23:59:59.000Z

360

Underwater Gas Expansion and Deflagration  

E-Print Network (OSTI)

The underwater combustion of a propane-air mixture in an acrylic cylinder is captured on video from multiple angles. This experiment is designed to provide visual data and pressure time-histories for future CFD validation studies.

Jones, Van; Gilbert, John; McCue-Weil, Leigh

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Analysis of natural gas supply strategies at Fort Drum  

SciTech Connect

This analysis investigates strategies for Fort Drum to acquire a reliable natural gas supply while reducing its gas supply costs. The purpose of this study is to recommend an optimal supply mix based on the life-cycle costs of each strategy analyzed. In particular, this study is intended to provide initial guidance as to whether or not the building and operating of a propane-air mixing station is a feasible alternative to the current gas acquisition strategy. The analysis proceeded by defining the components of supply (gas purchase, gas transport, supplemental fuel supply); identifying alternative options for each supply component; constructing gas supply strategies from different combinations of the options available for each supply component and calculating the life-cycle costs of each supply strategy under a set of different scenarios reflecting the uncertainty of future events.

Stucky, D.J.; Shankle, S.A.; Anderson, D.M.

1992-07-01T23:59:59.000Z

362

Gas fuel in a four-stroke engine  

Science Conference Proceedings (OSTI)

This paper refers to the behavior of a four-stroke gasoline engine that is used for the function of a small generator. The generator functioned at different electrical loads 500W, 1000W, 1500W and 2000W. During the use of gas fuel 80%butane -20%propane ... Keywords: biofuels, gas emissions, gas propane-butane mixture

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

363

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

safety or the safety of methane and propane. The codesand propane and how these properties may relate to safetyCompared To Safety Issues with Methane and Propane Michael

Green, Michael A.

2005-01-01T23:59:59.000Z

364

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network (OSTI)

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

365

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE  

SciTech Connect

This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

2005-12-01T23:59:59.000Z

366

Crude Oil, Heating Oil, and Propane Market Outlook 2001  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2001/02. It was given by Doug MacIntyre at the 2001 State Heating Oil and Propane Program Conference held in Wilmington, DE on August 13, 2001.

Information Center

2001-08-01T23:59:59.000Z

367

Crude Oil, Heating Oil, and Propane Market Outlook 2003  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2003/04. It was given at the 2003 State Heating Oil and Propane Program Conference held in Asheville, NC on August 11, 2003.

Information Center

2003-04-01T23:59:59.000Z

368

Crude Oil, Heating Oil, and Propane Market Outlook  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2002/03. It was given at the 2002 State Heating Oil and Propane Program Conference held in Kennebunkport, ME on August 12, 2002.

Information Center

2002-08-21T23:59:59.000Z

369

Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane  

SciTech Connect

The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

Green, Michael A.

2005-08-20T23:59:59.000Z

370

Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane  

DOE Green Energy (OSTI)

The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.

Green, Michael A.

2005-08-20T23:59:59.000Z

371

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage Containers and Piping: Storage Container Pressure Relief Devices and Venting: Production Storage Systems: Production Process Safety: Pipelines: Building and Fire Code Requirements: Organization Name Standards Development Areas AGA American Gas Association Materials testing standards

372

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

373

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

374

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is...

375

TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS  

SciTech Connect

This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

DOUGLAS, J.G.

2006-07-06T23:59:59.000Z

376

CO2 as Cushion Gas for Compressed Air Energy Storage - Energy ...  

Carbon sequestration; More Information FOR MORE INFORMATION Curtis M. Oldenburg, Carbon Dioxide as Cushion Gas for Natural Gas Storage, Energy and Fuels, 17, ...

377

Emissions results for dedicated propane Chrysler minivans: the 1996 propane vehicle challenge  

DOE Green Energy (OSTI)

The U.S. Department of Energy (US DOE), through Argonne National Laboratory, and in cooperation with Natural Resources-Canada and Chrysler Canada, sponsored and organized the 1996 Propane Vehicle Challenge (PVC). For this competition , 13 university teams from North America each received a stock Chrysler minivan to be converted to dedicated propane operation while maintaining maximum production feasibility. The converted vehicles were tested for performance (driveability, cold- and hot-start, acceleration, range, and fuel economy) and exhaust emissions. Of the 13 entries for the 1996 PVC, 10 completed all of the events scheduled, including the emissions test. The schools used a variety of fuel-management, fuel-phase and engine-control strategies, but their strategies can be summarized as three main types: liquid fuel-injection, gaseous fuel-injection, and gaseous carburetor. The converted vehicles performed similarly to the gasoline minivan. The University of Windsor`s minivan had the lowest emissions attaining ULEV levels with a gaseous-injected engine. The Texas A&M vehicle, which had a gaseous-fuel injection system, and the GMI Engineering and Management Institute`s vehicle, which had a liquid-injection system both reached LEV levels. Vehicles with an injection fuel system (liquid or gaseous) performed better in terms of emissions than carbureted systems. Liquid injection appeared to be the best option for fuel metering and control for propane, but more research and calibration are necessary to improve the reliability and performance of this design.

Buitrago, C.; Sluder, S.; Larsen, R.

1997-02-01T23:59:59.000Z

378

Liquefied Petroleum Gas (LPG) storage facility study Fort Gordon, Georgia. Final report  

SciTech Connect

Fort Gordon currently purchases natural gas from Atlanta Gas Light Company under a rate schedule for Large Commercial Interruptible Service. This offers a very favorable rate for `interruptible` gas service, however, Fort Gordon must maintain a base level of `firm gas`, purchased at a significantly higher cost, to assure adequate natural gas supplies during periods of curtailment to support family housing requirements and other single fuel users. It is desirable to provide a standby fuel source to meet the needs of family housing and other single fuel users and eliminate the extra costs for the firm gas commitment to Atlanta Gas Light Company. Therefore, a propane-air standby fuel system is proposed to be installed at Fort Gordon.

NONE

1992-09-01T23:59:59.000Z

379

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

SciTech Connect

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

380

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy  

Science Conference Proceedings (OSTI)

The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

2010-01-01T23:59:59.000Z

382

How much natural gas is consumed (used) in the U.S.? - FAQ ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... In 2012, the U.S. consumed ... How much natural gas does the ...

383

How much natural gas does the United States have and how ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including ... How much natural gas does the United States have and how ... 2012. Other ...

384

NIST: X-Ray Mass Atten. Coef. - Tissue-Equivalent Gas ...  

Science Conference Proceedings (OSTI)

Table of Contents Back to table 4 Tissue-Equivalent Gas (Propane Based) HTML table format. Energy, ?/?, ? en /?. (MeV), (cm 2 /g), (cm 2 /g). ...

385

Gas Mileage of 1984 Vehicles by Import Foreign Auto Sales Inc  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Economy Videos Fuel Cell Links Alternative Fuels Alternative Fuels Ethanol Natural Gas Propane Hydrogen Tax Incentives About EPA Ratings New Window Sticker About the New...

386

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

387

VEE-0040- In the Matter of Western Star Propane, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

388

California Propane Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

California Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

389

Tennessee Propane Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Tennessee Propane Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ... No.1 and No. 2 ...

390

Maryland Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Propane: 3.306: 3.337: 3.363: 3.455: 3.505: 3.512: 1990-2013-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to ...

391

Connecticut Weekly Heating Oil and Propane Prices (October ...  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.967: 3.925: 3.945: 3.943: 3.943 ...

392

Maine Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.569: 3.575: 3.559: 3.561: 3.559 ...

393

RECS Propane Usage Form_v1 (Draft).xps  

Gasoline and Diesel Fuel Update (EIA)

propane usage for this housing unit between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar...

394

Propane Prices Follow Crude Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Prices are one of the first signals in deciphering what is happening in the market. This chart shows propane prices (both spot and retail) as well as spot heating oil ...

395

Propane Demand is Highly Seasonal, But Fresh Supply is Not  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Propane, like heating oil, has a highly seasonal demand pattern. Demand increases about 50% from its low point to its peak. Production and net imports, on the other hand,...

396

U.S. Propane Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Another source of supply of propane is from imports. Imports for the first five months of this year have decreased about 8 percent (about 13 thousand barrels per day ...

397

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

Science Conference Proceedings (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

398

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

399

Parameterization of the Cool Skin of the Ocean and of the Air-Ocean Gas Transfer on the Basis of Modeling Surface Renewal  

Science Conference Proceedings (OSTI)

Heat and gas transport in molecular sublayers at the air-sea interface is governed by similar laws. A model of renewal type based on the physics of molecular sublayers allows the derivation of a parameterization of the temperature difference ...

Alexander V. Soloviev; Peter Schlüssel

1994-06-01T23:59:59.000Z

400

Ohio Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

23 608 460 522 353 296 1967-2011 Synthetic 0 1980-2011 Propane-Air 11 271 81 66 40 27 1980-2011 Biomass 412 337 379 456 313 269 1993-2011...

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New York Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

13 7 6 2 0 0 1967-2012 Synthetic 1980-2005 Propane-Air 13 7 6 2 1980-2010 Biomass 1993-2005 Other 1980-2005...

402

Ohio Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

608 460 522 353 296 366 1967-2012 Synthetic 0 1980-2012 Propane-Air 271 81 66 40 27 6 1980-2012 Biomass 337 379 456 313 269 360 1993-2012...

403

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

404

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

405

Propane/Propylene Natural Gas Processing Plant Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 View History; U ...

406

Alternative-fuels technology: Natural gas vehicles as a way to curb urban air pollution  

DOE Green Energy (OSTI)

This report describes the use of natural gas as an alternative fuel in various vehicles. Safety and emissions resulting from combustion are briefly discussed.

NONE

1995-02-01T23:59:59.000Z

407

Pacific Gas and Electric Company's Compressed Air Management Program: A Performance Assessment Approach to Improving Industrial Compressed Air System Operation and Maintenance  

E-Print Network (OSTI)

The Compressed Air Management Program (CAMP) provides Pacific Gas and Electric's (PG&E's) large industrial customers with measurement-based performance assessments of their compressed air systems. Under this program, the customer's system is inspected and both short-term, high resolution, and longer-term measurements are taken of power and pressure. These data are used in developing a system simulation based on the US DOE's AIRMaster+ computer model. Model results and professional judgment are used to identify a cost-effective strategy for improving the system. Recommendations are provided to the customer along with technical support for implementing these recommendations. After improvements are complete, the performance measurements are repeated so that PG&E and its customers can judge the effectiveness of the recommendations. The program uses a standardized toolkit (all off-the-shelf components) along with software developed exclusively for this application, to accomplish the required measurements and efficiently analyze and reduce the data for use in the AIRMaster+ model.

Qualmann, R. L.; Zeller, W.; Baker, M.

2002-04-01T23:59:59.000Z

408

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network (OSTI)

This paper presents new experimental measurements of the laminar flame velocity of components of natural gas, methane, ethane, propane, and n?butane as well as of binary and tertiary mixtures of these compounds proposed as surrogates for natural gas. These measurements have been performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure. The composition of the investigated air/hydrocarbon mixtures covers a wide range of equivalence ratios, from 0.6 to 2.1, for which it is possible to sufficiently stabilize the flame. Other measurements involving the enrichment of methane by hydrogen (up to 68%) and the enrichment of air by oxygen (oxycombustion techniques) were also performed. Both empirical correlations and a detailed chemical mechanism have been proposed, the predictions being satisfactorily compared with the newly obtained experimental data under a wide range of conditions.

Patricia Dirrenberger; Hervé Le Gall; Roda Bounaceur; Olivier Herbinet; Re Glaude; Er Konnov

2013-01-01T23:59:59.000Z

409

Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Propane (LPG)

410

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

411

Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Propane (LPG)

412

Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Propane (LPG) The list below contains summaries of all Iowa laws and incentives related

413

Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Propane (LPG) The list below contains summaries of all Utah laws and incentives related

414

Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Propane (LPG)

415

Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Propane (LPG) The list below contains summaries of all Texas laws and incentives related

416

Alternative Fuels Data Center: New York Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Propane (LPG)

417

Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Propane (LPG)

418

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

419

Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Propane (LPG)

420

Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Propane (LPG)

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Propane (LPG)

422

Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Propane (LPG)

423

Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Propane (LPG) The list below contains summaries of all Idaho laws and incentives related

424

Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Propane (LPG)

425

Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Propane (LPG) The list below contains summaries of all Ohio laws and incentives related

426

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

427

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

428

Air quality analysis of the potential impact of offshore oil and gas development in central and northern California. Supplement. Final report  

Science Conference Proceedings (OSTI)

This supplement to the Technical Analysis presents additional results for a study prepared for the Bureau of Land Management on the anticipated air quality impacts of the oil and gas development activities associated with proposed OCS Sale No. 53 off central and northern California. This supplementary analysis examines the new Department of Interior air quality regulations and standards applicable to Sale No. 53 activities, the air emmissions likely to result from the various phase of the proposed development, and their potential impacts on onshore receptor areas. The air quality modeling analysis includes both inert and reactive pollutant modeling.

Not Available

1980-03-01T23:59:59.000Z

429

Air quality analysis of the potential impact of offshore oil and gas development in central and northern California. Technical analysis. Final report  

Science Conference Proceedings (OSTI)

This report presents the detailed results of a study prepared for the Bureau of Land Management on the anticipated air quality impacts of the oil and gas development activities associated with proposed OCS Sale No. 53 off central and northern California. The report examines the air quality regulations and standards applicable to Sale No. 53 activities, the air emmissions likely to result from the various phase of the proposed development, their potential impacts on onshore receptor areas, and mitigating measures and strategies available to minimize perceived impacts. The air quality modeling analysis includes both inert and reactive pollutant modeling.

Not Available

1980-03-01T23:59:59.000Z

430

Air quality analysis of the potential impact of offshore oil and gas development in central and northern California. Executive summary. Final report  

SciTech Connect

This summary presents the significant results of a study prepared for the Bureau of Land Management on the anticipated air quality impacts of the oil and gas development activities associated with proposed OCS Sale No. 53 off central and northern California. The report summarizes the air quality regulations and standards applicable to Sale No. 53 activities, the air emmissions likely to result from the various phases of the proposed development, their potential impacts on onshore receptor areas, and mitigating measures and strategies available to minimize perceived impacts. The air quality modeling analysis includes both and reactive pollutant modeling.

Not Available

1980-03-01T23:59:59.000Z

431

PROPANE: An Environment for Examining the Propagation of Errors  

E-Print Network (OSTI)

In order to produce reliable software, it is important to have knowledge on how faults and errors may affect the software. In particular, designing efficient error detection mechanisms requires not only knowledge on which types of errors to detect but also the effect these errors may have on the software as well as how they propagate through the software. This paper presents the Propagation Analysis Environment (PROPANE) which is a tool for profiling and conducting fault injection experiments on software running on desktop computers. PROPANE supports the injection of both software faults (by mutation of source code) and data errors (by manipulating variable and memory contents). PROPANE supports various error types out-of-the-box and has support for user-defined error types. For logging, probes are provided for charting the values of variables and memory areas as well as for registering events during execution of the system under test. PROPANE has a flexible design making it useful for development of a wide range of software systems, e.g., embedded software, generic software components, or user-level desktop applications. We show examples of results obtained using PROPANE and how these can guide software developers to where software error detection and recovery could increase the reliability of the software system.

Martin Hiller; Arshad Jhumka; Neeraj Suri

2002-01-01T23:59:59.000Z

432

Primary zone air proportioner  

SciTech Connect

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

433

Air Emmissions Trading Program/Regional Greenhouse Gas Initiative (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Regional Greenhouse Gas Initiative is a carbon dioxide emissions budget trading program. The program includes a statewide annual CO2 budget allowance of 8,620,460 tons between...

434

Selective dehydrogenation of propane over novel catalytic materials  

Science Conference Proceedings (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

435

Selective Dehydrogenation of Propane over Novel Catalytic Materials  

E-Print Network (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices. 4 Acknowledgment The authors thank United Catalysts, Inc. for stimulating technical discussions and for providing samples of commercial ...

Allen Sault Elaine; Elaine P. Boespflug Anthony Martino; Jeffrey S. Kawola

1998-01-01T23:59:59.000Z

436

Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity  

SciTech Connect

The gas-diffusion-electrode used in a Li-air cell has been studied in a unique homemade electrochemical cell. Three major obstacles for the development of a feasible Li-air system were discussed with a focus on the development of a functional gas-diffusion-electrode in non-aqueous electrolytes and the way of avoiding the passivation of gas-diffusion-electrodes caused by the deposition of the reduction products. It is the first time that the importance of establishing the 3-phase electrochemical interface in non-aqueous electrolyte is demonstrated by creating air-diffusion paths and an air saturated portion for an air cathode. A model mechanism of electrode passivation by the reaction products was also proposed. Lithium oxides formed during O{sub 2} reduction tend to block small pores, preventing them from further utilization in the electrochemical reaction. On the other hand, lithium oxides would accumulate inside the large pores during the reduction until the density of oxides becomes high enough to choke-off the mass transfer. Carbon materials with a high surface area associated with larger pores should be selected to make the gas-diffusion-electrode for Li-air battery. For the first time, a near linear relationship between the capacity of GDE in a non-aqueous electrolyte and the average pore diameter was demonstrated, which could be used to estimate the capacity of the GDE quantitatively.

Qu, D.; Yang, X.; Tran, C.

2010-04-02T23:59:59.000Z

437

Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings  

SciTech Connect

Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

2009-07-15T23:59:59.000Z

438

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

439

Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellow Cab Converts Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in Columbus, Ohio on AddThis.com... July 9, 2011 Yellow Cab Converts Taxis to Propane in Columbus, Ohio

440

U.S. Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... Residential Propane: 2.376: 2.405: 2.413: 2.449: 2.486: 2.489: 1990-2013:

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mechanistic aspects of lean NO2 reduction by propane over HZSM-5  

Science Conference Proceedings (OSTI)

This study focuses on the mechanism of lean NO2 reduction by propane. In particular the role of ... KEY WORDS: FTIR; lean NO2 reduction; propane; HZSM- 5. 1.

442

High-pressure vapor-liquid equilibria in the propane-1-propanol system  

SciTech Connect

High-pressure isothermal vapor liquid equilibrium data were measured for the propane-1-propanol system at 81.6, 105.2, and 120.1 C in a static equilibrium cell with liquid-phase sampling by a piston-driven sampling rod and homogenizing the sample with a static jet mixer. The vapor phase was sampled by releasing it into an evacuated manifold, and the gas chromatograph was calibrated with a new variable volumetric device. Satisfactory modeling was achieved with the combined method using the UNIQUAC equation with equations of sate: the group contribution EOS, Peng-Robinson EOS, or the two-parameter Virial EOS. Differences between the measured and calculated vapor-phase mole fractions, however, were significant for the lower pressure regions of the 81.6 and 120.1 C isotherms. UNIQUAC parameters, hitherto unavailable, with fairly strong temperature dependence in the 81.6 to 120.1 C range are proposed for the system. The covariance matrix indicated a significant correlation among the parameters. The classical mixing rule interaction parameters required for the original Peng-Robinson EOS in the combined method were obtained using the direct method and were temperature-independent for the isotherms for which the propane was supercritical. The possibility of propane/1-propanol immiscibility was theoretically examined according to the criteria of Baker et al. The plots of Gibbs energy of mixing vs. phase mole fractions did not indicate liquid-phase splitting, but the inferences are EOS-dependent and must await visual confirmation. The authors earlier vapor-phase thermodynamic consistency test indicated the data for all three data sets not to be inconsistent.

Muehlbauer, A.L.; Raal, J.D. (Univ. of Natal, Durban (South Africa))

1993-04-01T23:59:59.000Z

443

SYNTHESIS, CHARACTERIZATION AND KINETIC STUDIES OF MIXED METAL Mo-V-Nb-Te OXIDE CATALYSTS FOR PROPANE AMMOXIDATION TO ACRYLONITRILE.  

E-Print Network (OSTI)

??The ample abundance and low cost of propane has recently spurred an interest in the manufacture of acrylic acid and acrylonitrile from propane, both important… (more)

BHATT, SALIL R

2006-01-01T23:59:59.000Z

444

Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat  

Science Conference Proceedings (OSTI)

This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2013-10-01T23:59:59.000Z

445

Annual Energy Outlook 2007: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

imports. 7 Marketed production (wet) minus extraction losses. 8 Synthetic natural gas, propane air, coke oven gas, refinery gas, biomass gas, air injected for Btu stabilization,...

446

Chemical kinetic modeling of high pressure propane oxidation and comparison to experimental results. Revision 1  

SciTech Connect

A pressure dependent kinetic mechanism for propane oxidation is developed and compared to experimental data from a high pressure flow reactor. Experimental conditions range from 10--15 atm, 650--800 K, and a residence time of 198 ms for propane-air mixtures at an equivalence ratio of 0.4. The experimental results clearly indicate a negative temperature coefficient (NTC) behavior. The chemistry describing this phenomena is critical in understanding automotive engine knock and cool flame oscillations. Results of the numerical model are compared to a spectrum of stable species profiles sampled from the flow reactor. Rate constants and product channels for the reaction of propyl radicals, hydroperoxy-propyl radicals and important isomers (radicals) with O{sub 2} were estimated using thermodynamic properties, with multifrequency quantum Kassel Theory for k(E) coupled with modified strong collision analysis for fall-off. Results of the chemical kinetic model show an NTC region over nearly the same temperature regime as observed in the experiments. Sensitivity analysis identified the key reaction steps that control the rate of oxidation in the NTC region. The model reasonably simulates the profiles for many of the major and minor species observed in the experiments.

Koert, D.N. [Wichita State Univ., KS (United States). Mechanical Engineering Dept.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States); Bozzelli, J.W. [New Jersey Inst. of Tech., Newark, NJ (United States). Chemistry and Chemical Engineering Dept.; Cernansky, N.P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Mechanical Engineering and Mechanics

1996-02-01T23:59:59.000Z

447

Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

Not Available

2011-02-01T23:59:59.000Z

448

ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate...  

Open Energy Info (EERE)

Rebates Central Air Conditioner Unit 14 SEER or above: 350 Central Air Conditioner Unit Energy Star rated: 500 Nicor Gas, Peoples Gas & North Shore Gas Furnace: 200 - 500...

449

Expansion of high pressure gas into air - A more realistic blast wave model  

Science Conference Proceedings (OSTI)

In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock-the expansion region, the nearly uniform region outside ... Keywords: Blast wave, Compressible flow, Explosion, Gas dynamics, Shock wave

Ejanul Haque; Philip Broadbridge; P. L. Sachdev

2009-12-01T23:59:59.000Z

450

Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial  

Science Conference Proceedings (OSTI)

The gas emission rate Q from an artificial 36-m2 surface area source was inferred from line-average concentration CL measured by an open-path laser situated up to 100 m downwind. Using a backward Lagrangian stochastic (bLS) model, a theoretical C...

T. K. Flesch; J. D. Wilson; L. A. Harper; B. P. Crenna; R. R. Sharpe

2004-04-01T23:59:59.000Z

451

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

Greenhouse Gas Emissions of Shale Gas, Nuraral Gas, Coal,Emissions of Marcellus Shale Gas, ENvr_. Ries. LTRs. , Aug.acknowledge, "Marcellus shale gas production is still in its

Hagan, Colin R.

2012-01-01T23:59:59.000Z

452

New York Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Residential Heating Oil: 4.392: 4.402: 4.380: 4.312: 4.314: 4.289: 1990-2013: Wholesale Heating Oil : Residential Propane: 2.902: 2.920: 2.931: 2.928: 2.933: 2.935 ...

453

Adsorption equilibria of propane on activated carbon and molecular sieves  

Science Conference Proceedings (OSTI)

Data of adsorption isotherm of propane on activated carbon (AC), molecular sieve carbon (MSC), MS13X and MS5A at 303K, 328K and 353K are acquired using constant volumetric method. Isosteric heats can be obtained indirectly from the isotherms using the ... Keywords: VOCs, adsorption, equilibrium models, isosteric heats, isotherm

Z. Yaakob; S. K. Kamarudin; I. Kamaruzaman; A. Ibrahim

2008-11-01T23:59:59.000Z

454

Table C5. Residential Propane Prices by Region and State ...  

U.S. Energy Information Administration (EIA)

Table C5. Residential Propane Prices by Region and State (Cents per Gallon) ... New York 141.9 145.6 146.4 150.4 153.7 162.1 164.5 168.1 169.0 190.2 ...

455

Preprint typeset using L ATEX style emulateapj v. 7/15/03 PROPANE ON TITAN  

E-Print Network (OSTI)

We present the first observations of propane (C3H8) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a R = ?/?? ? 10 5 spectrometer (TEXES) to observe propane’s ?26 rotation-vibration band near 748 cm ?1. We find a best-fit fractional abundance of propane in Titan’s stratosphere of (6.2 ± 1.2) × 10 ?7 in the altitude range to which we are sensitive (90-250 km or 13-0.24 mbar). Subject headings: planets and satellites: Titan, infrared: solar system, molecular data

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-01-01T23:59:59.000Z

456

Compressed natural gas fuel may be the future for Phoenix  

Science Conference Proceedings (OSTI)

It's the law: the future must include cleaner air, and alternative fuels for vehicular engines is one way to achieve it. In Phoenix, a city beset by moderate air quality problems, equipment managers of the Public Works Department's (PWD) fleet say their future seems to be with compressed natural gas (CNG). CNG fuels a pair of refuse packer trucks that have been operating for a year with few, if any, problems. The object of buying and running them, was to see if one can run an alternate fuels vehicle on a regular route. Can the trucks adapt, can the drivers adapt So far the answer is yes. The trucks are among an assortment of municipal vehicles running on CNG and propane. CNG makes sense for Phoenix because it's modestly priced and readily available locally.

Berg, T.

1994-08-01T23:59:59.000Z

457

Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs  

Science Conference Proceedings (OSTI)

The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

MaClean, H.L.; Lave, L.B.

2000-01-15T23:59:59.000Z

458

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

acknowledge, "Marcellus shale gas production is still in itsof Marcellus shale gas production may not be fully

Hagan, Colin R.

2012-01-01T23:59:59.000Z

459

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

460

Propane Assessment for Winter 1995 - 1996  

Gasoline and Diesel Fuel Update (EIA)

Winter Fuels Report Winter Fuels Report Unless otherwise referenced, data in this article are taken from the following: Petroleum Supply Monthly, July 1995, DOE/EIA-0109 (95/09); Petroleum Supply Annual 1994, DOE/EIA-0340, Volumes 1 and 2 and predecessor reports; Petroleum Marketing Annual, July 1994, DOE/EIA-0487 (94); Winter Fuels Report, Week Ending October 6, 1995, DOE/EIA-0538 (95/96-1), and predecessor reports; and Short-Term Energy Outlook, DOE/EIA-0202 (95/3Q) and predecessor reports. All data through 1994 are considered final and are not subject to further revision. *Michael Burdette, an industry analyst on contract to the Energy Information Administration's Office of Oil and Gas, also contributed to this article. 1 Average level and width of average range based on 3 years of monthly data, January 1992 through December 1994. The significance of the

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Conversion of ethane and of propane to higher olefin hydrocarbons  

DOE Green Energy (OSTI)

It has become apparent during the past few months that results obtained in the oxidative coupling of methane cannot be extended to ethane and propane. Good selectivities and yields for the oxydehydrogenation to olefins can be obtained but production of higher hydrocarbons is small. The present report summarizes results of experiments using zeolite based catalysts and compares these with basic oxide catalysts. The oxydehydrogenation of ethane over zeolite based catalysts (H[sup [minus plus

Heinemann, H.; Somorjai, G.A.

1992-09-01T23:59:59.000Z

462

Ford F-250 Fact Sheet: Bi-fuel propane pickup  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. A 1999 F-250 bi-fuel propane pickup was run through a series of tests while operating on LPB and gasoline. The tests are explained briefly in this fact sheet.

Eudy, L.

1999-12-27T23:59:59.000Z

463

ESTIMATED UPPER BOUNDS TO THE HALF-LIFE OF THERMAL DECOMPOSITION OF AMMONIA, HYDROGEN, METHANE, AND PROPANE  

DOE Green Energy (OSTI)

An estimate was made of the upper bound for the half-time of dissociation at 100 atm for ammonia, methane, and propane at 2500 deg K and hydrogen at 5000 deg K. In each case a unimolecular reactron in the homogeneous gas phase was chosen as most suitable for this purpose. Slater's theory has been used to estimate the necessary frequency factors. The upper bounds to the half- time for dissociation range from 3 x 10/sup -7/ to 6 x 10/sup -6/ sec. Extrapolation of decomposition rate data obtained at --1000 deg C and 1 atm pressure gives smaller values for the half-time of dissociation. (auth)

Herschbach, D.

1955-08-01T23:59:59.000Z

464

Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine  

E-Print Network (OSTI)

A thermodynamic cycle simulation of the four-stroke spark-ignition engine was used to determine the effects of variations in engine design and operating parameters on engine performance and emission characteristics. The overall objective was to use the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects of variations in load, speed, combustion duration, spark timing, equivalence ratio, exhaust gas recycle, and compression ratio for a 3.3 liter, Chrysler Minivan, V 6 engine operating on propane. Parameters were selected for the analysis. Variations in the brake specific fuel consumption, brake specific NOx emissions, and mean exhaust temperature were determined for both the propane-fuelled and the iso-octane-fuelled engines. Brake specific fuel consumption and mean exhaust temperature values for the propane-fuelled engine were consistently lower (3 to 5 %) than the corresponding values for the iso-octane-fuelled engine. Fuel structure did not have a significant effect on brake specific nitric oxide emissions. Predictions made from the simulation were compared with some of the available experimental results. Predicted brake torque and brake power showed acceptable quantitative agreement (less than 10 % variation) in the low engine speed range (1,000 to 3,000 rpm) and similar trends with the available experimental data.

Pathak, Dushyant

2005-12-01T23:59:59.000Z

465

EIA Short-Term Outlook for Natural Gas  

Reports and Publications (EIA)

This presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, outlined EIA's July 2006 forecast for natural gas supply, demand, and markets through 2007.

Information Center

2006-08-07T23:59:59.000Z

466

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis of the composition of volatile hydrocarbons, including methane, ethane, and propane and fixed natural gases (i.e., O2, CO2, and N2+Ar) from headspace void gas and gases...

467

Office of Fossil Energy Oil & Natural Gas Technology DOE Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation,...

468

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

from coal- or natural gas-fired power plants occur "up-of natural gas is lost before reaching the power plant." 30power plant. Yet, when it comes to upstream emissions, the lifecycle for natural gas

Hagan, Colin R.

2012-01-01T23:59:59.000Z

469

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

to close the gap on unregulated greenhouse gas emissions.a higher lifecycle greenhouse gas content than conventionalIN- FORMATION ON GREENHOUSE GAS EMISSIONs AssocIATEIDn wrri

Hagan, Colin R.

2012-01-01T23:59:59.000Z

470

Chemical kinetic modeling of high pressure propane oxidation and comparison to experimental results  

SciTech Connect

A pressure dependent kinetic mechanism for propane oxidation is developed and compared to experimental data from a high pressure flow reactor. The experiment conditions range from 10--15 atm, 650--800 K, and were performed at a residence time of 200 {micro}s for propane-air mixtures at an equivalence ratio of 0.4. The experimental results include data on negative temperature coefficient (NTC) behavior, where the chemistry describing this phenomena is considered critical in understanding automotive engine knock and cool flame oscillations. Results of the numerical model are compared to a spectrum of stable species profiles sampled from the flow reactor. Rate constants and product channels for the reaction of propyl radicals, hydroperoxy-propyl radicals and important isomers with O{sub 2} were estimated using thermodynamic properties, with multifrequency quantum Kassel Theory for k(E) coupled with modified strong collision analysis for fall-off. Results of the chemical kinetic model show an NTC region over nearly the same temperature regime as observed in the experiments. The model simulates properly the production of many of the major and minor species observed in the experiments. Numerical simulations show many of the key reactions involving propylperoxy radicals are in partial equilibrium at 10--15 atm. This indicates that their relative concentrations are controlled by a combination of thermochemistry and rate of minor reaction channels (bleed reactions) rather than primary reaction rates. This suggests that thermodynamic parameters of the oxygenated species, which govern equilibrium concentrations, are important. The modeling results show propyl radical and hydroperoxy-propyl radicals reaction with O{sub 2} proceeds, primarily, through thermalized adducts, not chemically activated channels.

Koert, D.N. [Wichita State Univ., KS (United States). Mechanical Engineering Dept.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States); Bozzelli, J.W. [New Jersey Inst. of Tech., Newark, NJ (United States). Chemistry and Chemical Engineering Dept.; Cernansky, N.P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Mechanical Engineering and Mechanics

1995-11-08T23:59:59.000Z

471

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

472

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Nonprofit Cut Fuel Costs with Propane Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

473

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

474

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

1991-12-31T23:59:59.000Z

475

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network (OSTI)

Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of reservoir heating. Effects of various additives injected simultaneously with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela. The experiments were conducted using an injection cell packed with sandmix containing a mixture of sand, water, and Morichal oil. Experimental runs involved injection of steam, or propane, or a mixture of steam and propane into the cell at constant rate, temperature, and pressure. The injection was kept constant at 5 g/min for all runs. Five experiments were performed, namely, run 1 (50 wt.% steam and 50 wt.% propane), run 2 (100 wt.% steam), run 3 (75 wt.% steam and 25 wt.% propane), run 4 (100 wt.% propane), and run 5 (95 wt.% steam and 5 wt.% propane). Main findings for this study are as follows. First, it appears possible to accelerate recovery of Morichal oil using combined steam and propane injection. Oil recovery at 61% OOIP may be up to 0.23 pore volume faster than using steam injection alone, with gain in ultimate recovery of up to 5% OOIP. Second, with only propane injection, at temperature and pressure conditions tested, practically no oil is recovered. Steam is necessary to reduce interfacial tension and the oil viscosity, thus allowing propane to permeate through the oil. This increases propane miscibility with oil, further reducing the residual oil saturation, and enhances the displacement efficiency. It is recommended that further research be conducted to confirm the technical and economic feasibility of steam-propane injection, particularly for other crude oil types, and at pressure and temperature conditions encountered in the field.

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

476

An Analysis of U.S. Propane Markets Winter 1996-97 June 1997  

U.S. Energy Information Administration (EIA)

Plants Using Propane and E/P Mix Feedstock, 1989-96.....28 Figure 4.4 Wright Killen Ethylene Cash Margin and Ethane Price (Plants ...

477

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

478

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

479

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

Annual Energy Outlook 2012 (EIA)

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

480

Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5.  

E-Print Network (OSTI)

??Characterizing MTBE Cometabolism and Propane Metabolism by Mycobacterium austroafricanum JOB5. (Under the direction of Michael R. Hyman.) Cometabolic transformations are unable to support cell growth.… (more)

House, Alan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas propane air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Experimental studies of steam-propane injection for the Duri intermediate crude oil.  

E-Print Network (OSTI)

??Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature… (more)

Hendroyono, Arief

2012-01-01T23:59:59.000Z

482

Adsorption of Propane on the Magnesium Oxide (100) Surface and Synthesis of Anodized Aluminum Oxide.  

E-Print Network (OSTI)

??This work is divided into two parts: the adsorption of propane on the magnesium oxide (100) surface and the synthesis of anodized aluminum oxide. The… (more)

Felty, Michael John

2008-01-01T23:59:59.000Z

483

STUDY OF PROPANE ADSORPTION ISOTHERM ON PURIFIED HIPCO SINGLE-WALLED CARBON NANOTUBES.  

E-Print Network (OSTI)

??Isotherms of one atom thick film of adsorption for propane on purified Hipco single-walled carbon nanotube were experimentally studied at 6 different temperatures ranging from… (more)

Furuhashi, Toyohisa

2009-01-01T23:59:59.000Z

484

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

Science Conference Proceedings (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

485

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

Science Conference Proceedings (OSTI)

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01T23:59:59.000Z

486

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

487

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network (OSTI)

ance for new stationary source in the oil and gas industry.standards for new oil-burning stationary sources. 123 Cong.See Oil and Natural Gas Sector: New Source Performance

Hagan, Colin R.

2012-01-01T23:59:59.000Z

488

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

489

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

490

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane  

E-Print Network (OSTI)

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane

Lehraus, Ivan; Tejessy, W

1983-01-01T23:59:59.000Z

491

The real air quality benefits of gaseous-fueled vehicles.  

SciTech Connect

This paper provides a justification for prominent inclusion of currently available gaseous-fueled vehicles (i.e., vehicles powered by propane, sometimes called liquefied petroleum gas [LPG], or natural gas--chiefly, methane--stored onboard the vehicle in gaseous or liquid state but combusted as a gas) in the mix of strategies to (a) reduce public exposure to toxic and fine particulate emissions in the urbanized areas of the developing world and (b) achieve local and regional improvements in ozone air quality. It also presents estimates of associated emission reduction credits into the future. Important considerations discussed are the location of fine particle and toxic emissions in congested urban areas, and the location and timing of ozone precursor emissions, with emphasis on how gaseous-fueled vehicles' role in the relationship among and magnitude of these variables differs from that of their conventionally-fueled counterparts. Efforts to enhance the measurement and quantification of gaseous-fuel benefits are also described.

Saricks, C. L.

2002-03-28T23:59:59.000Z

492

Influence of gas compression on flame acceleration in the early stage of burning in tubes  

E-Print Network (OSTI)

The mechanism of finger flame acceleration at the early stage of burning in tubes has been observed experimentally by Clanet and Searby [Combust. Flame 105: 225 (1996)] for slow propane-air flames, and elucidated analytically and computationally by Bychkov et al. [Combust. Flame 150: 263 (2007)] in the limit of an incompressible flow. We analytically, experimentally and computationally study herein the finger flame acceleration for fast burning flames, when the gas compressibility assumes an important role. Specifically, we have developed a theory through small Mach number expansion up to the first-order terms, demonstrating that gas compression reduces the acceleration rate and thereby moderates the finger flame acceleration noticeably. We have also conducted experiments for hydrogen-oxygen mixtures with considerable initial values of the Mach number, showing finger flame acceleration with the acceleration rate much smaller than those obtained previously for hydrocarbon flames. Furthermore, we have performed...

Valiev, Damir; Kuznetsov, Mikhail; Eriksson, Lars-Erik; Law, Chung K; Bychkov, Vitaly

2012-01-01T23:59:59.000Z

493

Laboratory study of premixed H{sub 2}-air and H{sub 2}-N{sub 2}-air flames in a low-swirl injector for ultralow emissions gas turbines - article no. 031503  

SciTech Connect

The objective of this study is to conduct laboratory experiments on low-swirl injectors (LSIs) to obtain the basic information for adapting LSI to burn H{sub 2} and diluted H{sub 2} fuels that will be utilized in the gas turbines of the integrated gasification combined cycle coal power plants. The LSI is a novel ultralow emission dry-low NOx combustion method that has been developed for gas turbines operating on natural gas. It is being developed for fuel-flexible turbines burning a variety of hydrocarbon fuels, biomass gases, and refinery gases. The adaptation of the LSI to accept H{sub 2} flames is guided by an analytical expression derived from the flow field characteristics and the turbulent flame speed correlation. The evaluation of the operating regimes of nine LSI configurations for H{sub 2} shows an optimum swirl number of 0.51, which is slightly lower than the swirl number of 0.54 for the hydrocarbon LSI. Using particle image velocimetry (PIV), the flow fields of 32 premixed H{sub 2}-air and H{sub 2}-N{sub 2}-air flames were measured. The turbulent flame speeds deduced from PIV show a linear correlation with turbulence intensity. The correlation constant for H{sub 2} is 3.1 and is higher than the 2.14 value for hydrocarbons. The analysis of velocity profiles confirms that the near field flow features of the H{sub 2} flames are self-similar. These results demonstrate that the basic LSI mechanism is not affected by the differences in the properties of H{sub 2} and hydrocarbon flames and support the feasibility of the LSI concept for hydrogen fueled gas turbines.

Cheng, R.K.; Littlejohn, D. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technology Division

2008-05-15T23:59:59.000Z

494

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

495

Gas-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces Gas-Fired Boilers and Furnaces May 16, 2013 - 4:36pm Addthis A residential natural gas meter. A residential natural gas meter. What does this mean for me? Your gas boiler or furnace may be oversized, particularly if you've upgraded the energy efficiency of your home. Your gas boiler or furnace can be retrofitted to improve its energy efficiency. Gas boilers and furnaces can be fueled by either natural gas or propane with simple modifications accounting for the different characteristics of the fuels. Propane is usually more expensive as a fuel, but is available throughout the United States. Natural gas supplies depend on having a natural gas distribution system in your area, and areas at the end of the pipeline (such as the Northeast) tend to pay higher prices for natural gas.

496

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network (OSTI)

Measurements of Laminar Flame Velocity for Components of Natural Gas Patricia Dirrenberger1 flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary and tertiary mixtures of these compounds proposed as surrogates for natural gas. These measurements have been

497

Propane extractor could allow small dealers to obtain product as in 'old days'  

SciTech Connect

A growing trend for small natural gas plant operators to install cryogenic demethanizers lets them recover ethane and heavier hydrocarbons as a single raw-make product for pipelining to a central location for fractionation, instead of producing LPG for local sales. The local LPG dealers must then transport LPG a substantial distance from the central fractionator. A possible solution to the dealers' supply problem is proposed: construct small portable processing units (computer-controlled for unattended operation) which would receive a portion of the raw-make liquid from a pipeline, extract propane as LPG, and return the balance of the stream to the pipeline, storing LPG for loading local transports. Not only would transportation costs be reduced, but local key operated loading facilities would be open at all hours of the day or night, seven days a week; the alternative would be long lines of transports waiting to load at central facilties during limited loading times. In Texas, residential LPG usage of about 40,000 bbl/day (10% of estimated raw liquid volumes) would require greater than 80 units of the new Propane Extraction Process. Diagrams are included.

Ainsworth, A.G.; McClanahan, D.N.

1977-12-01T23:59:59.000Z

498

Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas  

E-Print Network (OSTI)

dioxide, ethane, propane, and butane. Hydrocarbon seeps havemethane, ethane, propane and butane. Geochim Cosmochim Acta

2010-01-01T23:59:59.000Z

499

Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion  

Science Conference Proceedings (OSTI)

Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Kim, K.N.; Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

2009-02-15T23:59:59.000Z

500

An Inducible Propane Monooxygenase Is Responsible for N-Nitrosodimethylamine Degradation by  

E-Print Network (OSTI)

Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. Recently recognized as a drinking water contaminant (19), N-nitrosodimethylamine (NDMA) is now closely monitored by municipal water providers to minimize human exposure (3, 6,

Rhodococcus Sp. Strain Rha; Jonathan O. Sharp; Christopher M. Sales; Justin C. Leblanc; Jie Liu; Thomas K. Wood; Lindsay D. Eltis; William W. Mohn; Lisa Alvarez-cohen

2007-01-01T23:59:59.000Z