Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coalbed Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Environmental Science Division Argonne National Laboratory Observations on a Montana Water Quality Proposal argonne_comments.pdf 585 KB Comments from James A. Slutz Deputy Assistant Secretary Oil and Natural Gas To the Secretary, Board of Environmental Review Montana Department of Environmental Quality BER_Comments_letter.pdf 308 KB ALL Consulting Coalbed Methane Primer: New Source of Natural Gas–Environmental Implications Background and Development in the Rocky Mountain West CBMPrimerFinal.pdf 18,223 KB ALL Consulting Montana Board of Oil & Gas Conservation Handbook on Best Management Practices and Mitigation Strategies for Coal Bed Methane in the Montana Portion of the Powder River Basin April 2002 CBM.pdf 107,140 KB ALL Consulting Montana Board of Oil & Gas Conservation

2

NETL: Shale Gas and Other Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Resources Natural Gas Resources Natural Gas Resources Shale Gas | Environmental | Other Natural Gas Related Resources | Completed NG Projects Project Number Project Name Primary Performer 10122-47 Predicting higher-than-average permeability zones in tight-gas sands, Piceance basin: An integrated structural and stratigraphic analysis Colorado School of Mines 10122-43 Diagnosis of Multi-Stage Fracturing in Horizontal Well by Downhole Temperature Measurement for Unconventional Oil and Gas Wells Texas A&M University 10122-42 A Geomechanical Analysis of Gas Shale Fracturing and Its Containment Texas A&M University 09122-02 Characterizing Stimulation Domains, for Improved Well Completions in Gas Shales Higgs-Palmer Technologies 09122-04 Marcellus Gas Shale Project Gas Technology Institute (GTI)

3

Thailand gas project now operational  

SciTech Connect (OSTI)

Now operational, Phase 1 of Thailand's first major natural gas system comprises one of the world's longest (264 miles) offshore gas lines. Built for the Petroleum Authority of Thailand (PTT), this system delivers gas from the Erawan field in the Gulf of Thailand to two electrical power plants near Bangkok, operated by the Electricity Generating Authority of Thailand (EGAT). The project required laying about 360 miles of pipeline, 34-in., 0.625 in.-thick API-5LX-60 pipe offshore and 28-in., 0.406 in.-thick API-5LX-60 onshore. The offshore pipe received a coal-tar coating, a 3.5-5.0 in. concrete coating, and zinc sacrificial-anode bracelets. The onshore line was coated with the same coal-tar enamel and, where necessary, with concrete up to 4.5 in. thick. Because EGAT's two power plants are the system's only customers, no more pipeline will be constructed until deliveries, currently averaging about 100 million CF/day, reach the 250 million CF/day level. The project's second phase will include additional pipelines as well as an onshore distribution network to industrial customers.

Horner, C.

1982-08-01T23:59:59.000Z

4

NETL: Natural Gas and Petroleum Storage Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Strategic Petroleum Reserve Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-FE0014830 Strategic Petroleum Reserve Core Laboratories Natural Gas Storage There are currently no active storage projects Storage - Completed Projects Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-DT0000358 Strategic Petroleum Reserve Northrop Grumman Missions System DE-FC26-03NT41813 Geomechanical Analysis and Design Criteria Terralog Technologies DE-FC26-03NT41779 Natural Gas Storage Technology Consortium Pennsylvania State University (PSU) DE-FC26-03NT41743 Improved Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Storage Technology Schlumberger Technology Corporation

5

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

6

Flammable gas project topical report  

SciTech Connect (OSTI)

The flammable gas safety issue was recognized in 1990 with the declaration of an unreviewed safety question (USQ) by the U. S. Department of Energy as a result of the behavior of the Hanford Site high-level waste tank 241-SY-101. This tank exhibited episodic releases of flammable gas that on a couple of occasions exceeded the lower flammability limit of hydrogen in air. Over the past six years there has been a considerable amount of knowledge gained about the chemical and physical processes that govern the behavior of tank 241-SY-1 01 and other tanks associated with the flammable gas safety issue. This report was prepared to provide an overview of that knowledge and to provide a description of the key information still needed to resolve the issue. Items covered by this report include summaries of the understanding of gas generation, retention and release mechanisms, the composition and flammability behavior of the gas mixture, the amounts of stored gas, and estimated gas release fractions for spontaneous releases. `Me report also discusses methods being developed for evaluating the 177 tanks at the Hanford Site and the problems associated with these methods. Means for measuring the gases emitted from the waste are described along with laboratory experiments designed to gain more information regarding rates of generation, species of gases emitted and modes of gas storage and release. Finally, the process for closing the USQ is outlined as are the information requirements to understand and resolve the flammable gas issue.

Johnson, G.D.

1997-01-29T23:59:59.000Z

7

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

8

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers [EERE]

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

9

SANBAG Natural Gas Truck Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG Natural Gas Truck Project SANBAG Natural Gas Truck Project 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11,...

10

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish...  

Energy Savers [EERE]

Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana Summary The Federal Energy...

11

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review...

12

SANBAG - Ryder Natural Gas Vehicle Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SANBAG - Ryder Natural Gas Vehicle Project SANBAG - Ryder Natural Gas Vehicle Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review...

13

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Office of Environmental Management (EM)

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17,...

14

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

15

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

16

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Natural Gas Projects & Natural Gas Projects Exploration and Production Technologies Risk Based Data Management System (RBDMS) and Cost Effective Regulatory Approaches (CERA) Related to Hydraulic Fracturing and Geologic Sequestration of CO2 Last Reviewed 12/24/2013 DE-FE0000880 Goal The goal of this project is to enhance the Risk Based Data Management System (RBDMS) by adding new components relevant to environmental topics associated with hydraulic fracturing (HF), and by management of myriad data regarding oil and natural gas well histories, brine disposal, production, enhanced recovery, reporting, stripper wells, and other operations to enhance the protection of ground water resources. The FracFocus website will be maintained to ensure transparent reporting of HF additives. A

17

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

18

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems Probabilistic, Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems DE-FC26-06NT42930 Goal The project goal is the development of modules for a web-based decision support tool that will be used by mid- and small-sized oil and gas exploration and production companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of oil and gas reserves in sensitive areas in the Fayetteville Shale Play in central Arkansas. This decision support tool will rely on creation of a database of existing exploration and production (E&P) technologies that are known to have low ecosystem impact. Performers University of Arkansas, Fayetteville, Arkansas

19

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

20

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma DE-FC26-00NT15125 Project Goal The Hunton formation in Oklahoma has some unique production characteristics, including large water production, initially decreasing gas-oil ratios, and excellent dynamic continuity—but poor geological continuity. The overall goal of the project is to understand the mechanism of gas and oil production from the Hunton Formation in Oklahoma so that similar reservoirs in other areas can be efficiently exploited. An additional goal is to develop methodologies to improve oil recovery using secondary recovery techniques. Performers University of Tulsa, Tulsa, OK Marjo Operating Company, Tulsa, OK University of Houston, Houston, TX Orca Exploration, Tulsa, OK

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

22

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Instrumented Pipeline Initiative The Instrumented Pipeline Initiative DE-NT-0004654 Goal The goal of the Instrumented Pipeline Initiative (IPI) is to address sensor system needs for low-cost monitoring and inspection as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap. This project intends to develop a new sensing and continuous monitoring system with alternative use as an inspection method. Performers Concurrent Technologies Corporation (CTC), Johnstown, PA 15213 Carnegie Melon University (CMU), Pittsburgh, PA 15904 Background Pie Chart showing Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines Figure 1. Pipeline Installation Dates for U.S. Gas Transmission and Distribution Lines

23

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines Explorer II – Wireless Self-powered Visual and NDE Robotic Inspection System for Live Gas Pipelines DE-FC26-04NT42264 Goal The goal of this project is to enhance the reliability and integrity of the Nation’s natural gas infrastructure through the development, construction, integration and testing of a long-range non-destructive evaluation (NDE) inspection capability in a modular robotic locomotion platform (Explorer II). The Explorer II will have an integrated inspection sensor (developed under a separate project) to provide enhanced in-situ, live, and real-time assessments of the status of a gas pipeline infrastructure. The Explorer II system will be capable of operating in 6-inch- and 8-inch-diameter, high-pressure (piggable and non-piggable) distribution and transmission mains. The system will also be enhanced to form an “extended” platform with additional drive and battery modules allowing the system the potential to carry alternative sensors that are heavier or more drag intensive than the current technology.

24

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level DE-FC26-06NT15567 Goal The goal of the project is to assist State governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil through specific project efforts to address current issues. The issues addressed are national in scope. However, significant regional differences among States make “one-size-fits-all” programs unacceptable. One of the strengths of IOGCC is its ability to address these national issues while maintaining more local flexibility. There are two basic thrusts of these efforts: 1) research and 2) transfer of findings to appropriate constituencies. IOGCC is carrying out three projects consistent with the overarching strategies:

25

Detailed Execution Planning for Large Oil and Gas Construction Projects  

E-Print Network [OSTI]

Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

Calgary, University of

26

EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Departments action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

27

NETL: Oil & Natural Gas Projects - Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5/15/2012 DE-NT0005671 Goal The goal of this project is to overcome existing water-related environmental barriers to possible oil shale development in the Uinta Basin, Utah. Data collected from this study will help alleviate problems associated with disposal of produced saline water, which is a by-product of methods used to facilitate conventional hydrocarbon production. Performers Utah Geological Survey, Salt Lake City, Utah, 84114 Collaborators Uinta Basin Petroleum Companies: Questar, Anadarko, Newfield, Enduring Resources, Bill Barrett, Berry Petroleum, EOG Resources, FIML, Wind River Resources, Devon, Rosewood, Flying J, Gasco, Mustang Fuel,

28

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

29

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team  

E-Print Network [OSTI]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage #12;Selected BNL Research · Energy Science and Technology Department Six fully-instrumented hydride stations and complete processing

30

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Broader source: Energy.gov (indexed) [DOE]

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

31

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure to Accommodate  

E-Print Network [OSTI]

Project Information Form Project Title Potential to Build Current Natural Gas Infrastructure Project Natural gas is often touted as a `bridge' to low carbon fuels in the heavy duty transportation sector, and the number of natural gas-fueled medium and heavy-duty fleets is growing rapidly. Research

California at Davis, University of

32

Table 9. Natural Gas Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual Natural Gas Production, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 17.71 17.68 17.84 18.12 18.25 18.43 18.58 18.93 19.28 19.51 19.80 19.92 20.13 20.18 20.38 20.35 20.16 20.19 AEO 1995 18.28 17.98 17.92 18.21 18.63 18.92 19.08 19.20 19.36 19.52 19.75 19.94 20.17 20.28 20.60 20.59 20.88 AEO 1996 18.90 19.15 19.52 19.59 19.59 19.65 19.73 19.97 20.36 20.82 21.25 21.37 21.68 22.11 22.47 22.83 23.36 AEO 1997 19.10 19.70 20.17 20.32 20.54 20.77 21.26 21.90 22.31 22.66 22.93 23.38 23.68 23.99 24.25 24.65 AEO 1998 18.85 19.06 20.35 20.27 20.60 20.94 21.44 21.81 22.25 22.65 23.18 23.75 24.23 24.70 24.97 AEO 1999 18.80 19.13 19.28 19.82 20.23 20.77 21.05 21.57 21.98 22.47 22.85 23.26 23.77 24.15

33

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 North Slope Decision Support for Water Resource Planning and Management Last Reviewed 6/26/2013 DE-NT0005683 Goal The goal of this project is to develop a general scientific, engineering, and technological support system for water resources planning and management related to oil and gas development on the North Slope of Alaska. Such a system will aid in developing solutions to economic, environmental, and cultural concerns. Performers University of Alaska Fairbanks Systems, Fairbanks, AK 99775-7880 Texas A&M University, College Station, TX 77843-3136 PBS&J, Inc., Marietta, GA 30067 Background Alaska’s North Slope hosts a phenomenal wealth of natural, cultural, and economic resources. It represents a complex system, not only in terms of its biophysical system and global importance, but also from the standpoint

34

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stripper Well Consortium Stripper Well Consortium DE-FC26-00NT41025 Goal: The goal is to enhance the ability of the domestic production industry to keep stripper wells producing at economic production rates in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. Objective: The objective is to develop and manage an industry-driven consortium that provides a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector that focus on improving the production performance of domestic natural gas and oil stripper wells. Performer: The Pennsylvania State University (Energy Institute) - Project management Accomplishments: Established a consortium governing structure, constitution and bylaws, Established areas of research focus (reservoir remediation and characterization, well bore cleanup, and surface systems optimization) and rules for proposal submission and selection, and

35

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 Using Artificial Barriers to Augment Fresh Water Supplies in Shallow Arctic Lakes Last Reviewed 6/26/2013 DE-NT0005684 Goal The goal of this project is to implement a snow control practice to enhance snow drift formation as a local water source to recharge a depleted lake despite possible unfavorable climate and hydrology preconditions (i.e., surface storage deficit and/or low precipitation). Performer University of Alaska Fairbanks, Fairbanks, AK Background Snow is central to activities in polar latitudes of Alaska over a very significant part of each year. With the arrival of snow, modes of travel, working, and living are transformed. Oil and gas exploration operations restricted to winter months use ice roads and ice pads in arctic and subarctic regions. The general reasoning behind ice road construction is

36

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov (indexed) [DOE]

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

37

Energy Department Projects Focus on Sustainable Natural Gas Development |  

Broader source: Energy.gov (indexed) [DOE]

Projects Focus on Sustainable Natural Gas Projects Focus on Sustainable Natural Gas Development Energy Department Projects Focus on Sustainable Natural Gas Development January 10, 2013 - 1:00pm Addthis Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA. Gayland Barksdale Technical Writer, Office of Fossil Energy What is RPSEA? The Research Partnership to Secure Energy for America - or RPSEA -

38

Sauget Plant Flare Gas Reduction Project  

E-Print Network [OSTI]

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

39

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deep Trek Re-configurable Processor for Data Acquisition Deep Trek Re-configurable Processor for Data Acquisition DE-FC26-06NT42947 Goal The goal of this project is to develop and qualify a Re-configurable Processor for Data Acquisition (RPDA) by packaging previously developed components in an advanced high-temperature Multi-Chip Module (MCM), and by developing configuration software that may be embedded within the RPDA to link data-acquisition system Analog Front-Ends to digital system busses. Performer Honeywell International Inc., Plymouth, MN 55441 Background Electronic data acquisition systems are necessary to make deep oil and gas drilling and production cost effective, yet the basic electronic components from which such systems are built will not operate reliably at the high temperatures encountered in deep wells. As well depths increase beyond 15,000 feet, temperatures above 200°C are relatively common. In some cases the target reservoir temperature may be as high as 300°C.

40

Natural Gas - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Most Requested Most Requested Change category... Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports Filter by: All Data Analysis Projections Weekly Reports Natural Gas Storage Report Working Gas in Underground Storage for current week and week ago comparison. (archived versions) Archived Versions Natural Gas Storage Report - Archive Natural Gas Weekly Update Weekly average spot and futures prices of natural gas. (archived versions) Archived Versions Natural Gas Weekly Update - Archive Today in Energy - Natural Gas Short, timely articles with graphs about recent natural gas issues and trends Monthly Reports Drilling Productivity Report Released: January 13, 2014 EIA's new Drilling Productivity Report (DPR) takes a fresh look at oil

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road  

E-Print Network [OSTI]

Project Information Form Project Title Reduction of Lifecycle Green House Gas Emissions From Road@ucdavis.edu Funding Source(s) and Amounts Provided (by each agency or organization) US DOT $30,000 Total Project Cost Brief Description of Research Project This white paper will summarize the state of knowledge and state

California at Davis, University of

43

BioGas Project Applications for Federal Agencies and Utilities  

Broader source: Energy.gov [DOE]

Presentation covers BioGas Project Applications for Federal Agencies and Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

44

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

45

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

46

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Broader source: Energy.gov (indexed) [DOE]

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

47

2013 Unconventional Oil and Gas Project Selections  

Broader source: Energy.gov [DOE]

The Office of Fossil Energys National Energy Technology Laboratoryhas an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

48

Business and Project Management of Natural Gas  

Science Journals Connector (OSTI)

The process and associated technology of natural gas can be found elsewhere in the preceding ... end of this phase, large amount of capital has been used and there is no ... or companies, from within their own fu...

G. G. Nasr; N. E. Connor

2014-01-01T23:59:59.000Z

49

Short Mountain Landfill gas recovery project  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

Not Available

1992-05-01T23:59:59.000Z

50

PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O  

Office of Legacy Management (LM)

A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON STIMULATION EXPERIMENT USING A NUCLEAR EXPLOSIVE I. INTRODUCTION Project Rulison is o joint experiment sponsored by Austral O i l Company, Incorporated, of Houston, Texas, the U. S. Atomic Energy Commission and the Department o f the Interior, w i t h the Program Management provided b y CER Geonuclear Corporotion of L

51

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations DE-FC26-04NT15425 Project Goal This project is being conducted in two phases. The objective of the first phase is to characterize the reservoir using advanced evaluation methods in order to assess the potential of a CO2 flood of the target reservoir. This reservoir characterization includes advanced petrophysical, geophysical, geological, reservoir engineering, and reservoir simulation technologies. The objective of the second project phase is to demonstrate the benefits of using advanced seismic methods for the monitoring of the CO2 flood fronts. Performers Schlumberger Data & Consulting Services - Pittsburgh, PA New Horizon Energy - Traverse City, MI

53

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultra-High-Speed Motor for Drilling Ultra-High-Speed Motor for Drilling DE-FC26-04NT15502 Project Goal The project goal is to design two sizes of an ultra-high-speed (10,000 rpm), inverted, configured electric motor specifically for drilling. Performers Impact Technologies LLC, Tulsa, OK University of Texas, Arlington, TX Results Researchers have developed PMSM (permanent magnet synchronous machine) electromagnetic designs of both radial and axial motors for rotational speeds up to 10,000 rpm in two outer diameters (OD). Finite element analyses (FEA) of the magnetic saturation and power/torque output have been made at various speed and loading conditions. Mechanical 3-D models have been prepared based on those designs. Bearing and seal materials have been studied, and manufacturers have been contacted to provide them. The project milestones completed to date are the:

54

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mud System for Microhole Coiled Tubing Drilling Mud System for Microhole Coiled Tubing Drilling DE-FC26-03NT15476 Project Goal The goal of the project is to develop an innovative mud system for coiled tubing drilling (CTD) and small-diameter holes (microholes) for vertical, horizontal and multilateral drilling and completion applications. The system will be able to mix the required fluids (water, oil, chemicals, muds, slurries), circulate that mixture downhole (modified 350 gpm @1,000 psi and 15 gpm@ 5,000 psi), clean and store (200 bbls) the base fluids, and be able to perform these functions in an underbalanced condition with zero discharge and low environmental impact. Another primary and most important goal of this project is to develop key components for a new abrasive slurry drilling system.

55

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

56

Oklahoma Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company Smart Grid Project and Electric Company Smart Grid Project Jump to: navigation, search Project Lead Oklahoma Gas and Electric Company Country United States Headquarters Location Oklahoma City, Oklahoma Additional Benefit Places Arkansas Recovery Act Funding $130,000,000.00 Total Project Value $357376037 Coverage Area Coverage Map: Oklahoma Gas and Electric Company Smart Grid Project Coordinates 35.4675602°, -97.5164276° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

57

NETL: Natural Gas and Petroleum T&D Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission and Distribution Transmission and Distribution COMPLETED T&D PROJECTS Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-AM26-05NT42653 Conceptual Engineering/Socioeconomic Impact Study—Alaska Spur Pipeline ASRC Constructors, Inc. Inspection Technologies DE-NT-0004654 The Instrumented Pipeline Initiative Concurrent Technologies Corporation DE-FC26-03NT41881 Innovative Sensors for Pipeline Crawlers to Assess Pipeline Defects and Conditions Batelle Columbus Laboratories FWP05FE03 Multi-purpose Sensor for Detecting Pipeline Defects Los Alamos National Laboratory DE-FC26-04NT42267 Remote Detection of Internal Pipeline Corrosion Using Fluidized Sensors SouthWest Research Institute DE-FC26-04NT42266 Delivery Reliability for Natural Gas - Inspection Technologies Gas Technology Institute

58

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents The Mississippi Leadville Limestone Exploration Play of Utah and Colorado-Exploration Techniques and Studies for Independents DE-FC26-03NT15424 Project Goal The overall goals of this study are to 1) develop and demonstrate techniques and exploration methods never tried on the Leadville Limestone; 2) target areas for exploration; 3) increase deliverability from new and old Leadville fields through detailed reservoir characterization; 4) reduce exploration costs and risk, especially in environmentally sensitive areas; and 5) add new oil discoveries and reserves. The project is being conducted in two phases, each with specific objectives. The objective of Phase 1 (Budget Period I) is to conduct a case study of the Leadville reservoir at Lisbon field (the largest Leadville producer) in San Juan County, UT, in order understand the reservoir characteristics and facies that can be applied regionally.

59

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery DE-FC26-03NT15413 Project Goal The overall objective of this project is to understand the role of mineralogy of reservoir rocks in determining interactions of reservoir minerals and their dissolved species with externally added reagants (surfactants/polymers) and their effects on solid-liquid and liquid-liquid interfacial properties, such as adsorption, wettability, and interfacial tension. A further goal is to devise schemes to control these interactions in systems relevant to reservoir conditions. Particular emphasis will be placed on the type and nature of different minerals in oil reservoirs. Performer Columbia University, New York, NY Background

60

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Silicon-On-Insulator (SOI) High Temperature Electronics Development of Silicon-On-Insulator (SOI) High Temperature Electronics DE-FC26-03NT41834 Goal The goal is to improve the reliability of high-temperature electronic components found in the downhole “smart drilling” tools needed to improve drilling efficiency and success rate at depths of 20,000 feet and below and temperatures greater than 225°C. This will be done by utilizing Silicon-on-Insulator (SOI) based technology to develop various high priority electronic components. Performer Honeywell, Inc., Plymouth, Minnesota 55441 Joint Industry Partners: BP, Baker Hughes, Goodrich Aerospace, Honeywell, Schlumberger, Intelliserv, Quartzdyne. Results The project has resulted in the successful design and testing of four key components needed for high temperature drilling equipment. These include: an Electrically-Erasable Programmable Read-Only Memory (EEPROM); a Field Programmable Gate Array; a Precision Amplifier (OpAmp) and a Sigma-Delta Analog-to-Digital Converter (ADC). The establishment of a Joint Industry Project (JIP) and participating companies’ commitment was a major reason for the project success. Major results include:

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration Harsh Environment Electronics Packaging for Downhole Oil & Gas Exploration DE-FC26-06NT42950 Goal The goal is to develop new packaging techniques for downhole electronics that will be capable of withstanding at least 200oC (~400oF) while maintaining a small form factor and high vibration tolerance necessary for use in a downhole environment. These packaging techniques will also be capable of integrating a sensor and other electronics to form an integrated electronics/sensor module. Performers General Electric Global Research Center, Niskayuna, NY 12309 Binghamton University (SUNY), Binghamton, NY 13902 Background Sensors and electronics systems are key components in measurement-while-drilling (MWD) equipment. Examples of sensors and electronics that can directly impact the efficiency of drilling guidance systems can include gamma ray and neutron sensors, orientation modules, pressure sensors and the all of the associated signal conditioning and computational electronics. As drilling depths increase, more rigorous temperature demands are made on the electronic components in the drillstring. Current sensor systems for MWD applications are limited by the temperature rating of their electronics, with a typical upper end temperature rating of 175oC (~350oF). The lifetime of an electronics system at such temperatures is extremely short (600-1500 hrs). These limitations are driven by the temperature performance and reliability of the materials in the electronic components (active and passive devices) and their associated packages and interconnect methods.

62

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

63

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs DE-FC26-04NT15508 Project Goal The project goal is to provide a methodology that will allow operators of oil reservoirs in carbonate reefs to better image the interior structure of those reservoirs and to identify those areas that contain the most oil remaining after initial production. Performers Michigan Technological University, Houghton, MI Z-Seis Inc., Houston, TX Results This study provides a significant step forward in reservoir characterization by demonstrating that crosswell seismic imaging can be used over considerable distances to better define features within a reservoir and by showing that pre-stack characteristics of reflection events can be used to reduce ambiguity in determination of lithology and fluid content. Crosswell seismic imaging of the two reefs has provided data that is well beyond any that a reservoir engineer or development geologist has previously had for improved characterization and production.

64

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

65

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Vibration Monitoring and Control System Drilling Vibration Monitoring and Control System DE-FC26-02NT41664 Goal Improve the rate of penetration and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration. Performer APS Technology, Inc., Cromwell, CT 06492 Results To date, this project has produced the following results: Carried out a review of the major sources of vibration likely to influence the bottom hole assembly (BHA) and in particular the bit, and characterized them by their anticipated frequency and amplitude; Developed a software model to analyze drillstring axial vibration and determine optimal damping action; Developed a method to directly quantify the various vibration modes using a system of four accelerometers and a magnetometer mounted in a sensor sub of the damper component;

66

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 Geomechanical Study of Bakken Formation for Improved Oil Recovery Last Reviewed 12/12/2013 DE-08NT0005643 Goal The goal of this project is to determine the geomechanical properties of the Bakken Formation in North Dakota, and use these results to increase the success rate of horizontal drilling and hydraulic fracturing in order to improve the ultimate recovery of this vast oil resource. Performer University of North Dakota, Grand Forks, ND 58202-7134 Background Compared to the success of producing crude oil from the Bakken Formation in eastern Montana, the horizontal drilling and hydraulic fracture stimulation technology applied in western North Dakota has been less successful, thus requiring the development of new completion and fracturing technologies.

67

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling The Synthesis and Evaluation of Inexpensive CO2 Thickeners Designed by Molecular Modeling DE-FC26-04NT15533 Project Goal The goal of this project is to use molecular modeling and experimental results to design inexpensive, environmentally benign, CO2-soluble compounds that can decrease the mobility of CO2 at typical enhanced oil recovery (EOR) reservoir conditions. Performers University of Pittsburgh, Pittsburgh, PA Yale University, New Haven, CT Background The research group previously formulated the only known CO2 thickener, a (fluoroacrylate-styrene) random copolymer, but this proof-of-concept compound was expensive and environmentally unacceptable because it was fluorous. They then identified the most CO2-soluble, high-molecular-weight, conventional polymer composed solely of carbon, hydrogen, and oxygen: poly(vinyl acetate), or PVAc. PVAc could not dissolve at pressures below the minimum miscibility pressure (MMP), however. The current research effort, therefore, was directed at using molecular modeling and experimental tools to design polymers that are far more CO2-soluble than PVAc. The subsequent goal was to incorporate this polymer into a thickening agent that will dissolve in CO2 below the MMP and generate a two- to ten-fold decrease in CO2 mobility at concentrations of 0.01–1.0 percent by weight. Although most of the thickeners envisioned are copolymers, researchers will also evaluated several small hydrogen-bonding agents and surfactants with oligomeric (very short polymer) tails that form viscosity-enhancing structures in solution , and novel CO2 soluble surfactants that may be able to generate foams in situ as they mix with reservoir brine (without the need for the injection of alternating slugs of water).

68

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota Subtask 1.2 – Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, North Dakota DE-FC26-08NT43291 – 01.2 Goal The goal of this project is to quantitatively describe and understand the Bakken Formation in the Williston Basin by collecting and analyzing a wide range of parameters, including seismic and geochemical data, that impact well productivity/oil recovery. Performer Energy & Environmental Research Center, Grand Forks, ND 58202-9018 Background The Bakken Formation is rapidly emerging as an important source of oil in the Williston Basin. The formation typically consists of three members, with the upper and lower members being shales and the middle member being dolomitic siltstone and sandstone. Total organic carbon (TOC) within the shales may be as high as 40%, with estimates of total hydrocarbon generation across the entire Bakken Formation ranging from 200 to 400 billion barrels. While the formation is productive in numerous reservoirs throughout Montana and North Dakota, with the Elm Coulee Field in Montana and the Parshall area in North Dakota being the most prolific examples of Bakken success, many Bakken wells have yielded disappointing results. While variable productivity within a play is nothing unusual to the petroleum industry, the Bakken play is noteworthy because of the wide variety of approaches and technologies that have been applied with apparently inconsistent and all too often underachieving results. This project will implement a robust, systematic, scientific, and engineering research effort to overcome these challenges and unlock the vast resource potential of the Bakken Formation in the Williston Basin.

69

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

70

NETL: News Release - DOE Selects Projects Targeting Deep Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2006 22, 2006 DOE Selects Projects Targeting Deep Natural Gas Resources Research Focuses on High-Tech Solutions to High Temperature, Pressure Challenges WASHINGTON, DC - The Department of Energy today announced the selection of seven cost-shared research and development projects targeting America's vast, but technologically daunting, deep natural gas resources. These projects focus on developing the advanced technologies needed to tackle drilling and production challenges posed by natural gas deposits lying more than 20,000 feet below the earth's surface. There, drillers and producers encounter extraordinarily high temperatures (greater than 400 °F) and pressures (greater than 15,000 psi), as well as extremely hard rock and corrosive environments. The projects come under the oversight of the Office of Fossil Energy's National Energy Technology Laboratory, which has managed the Deep Trek research program since its inception in 2002. To date, DOE has awarded 12 Deep Trek projects totaling over $31 million, (with $10 million contributed by research partners) and is currently managing another seven projects focused on resource assessment and improved imaging technology for deep reservoirs.

71

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications Electromagnetic (EM) Telemetry Tool for Deep Well Drilling Applications DE-FC26-02NT41656 Goal: To develop a wireless, electromagnetic (EM) based telemetry system to facilitate efficient deep natural gas drilling at depths beyond 20,000 feet and up to 392˚F (200˚C) Background: The wireless, EM telemetry system will be designed to facilitate measurement-while-drilling (MWD) operations within a high temperature, deep drilling environment. The key components that will be developed and tested include a new high efficiency power amplifier (PA) and advanced signal processing algorithms. The novel PA architecture will provide greater and more efficient power delivery from the subterranean transmitter through the transmission media. Maximum energy transfer is especially critical downhole, where the transmitter’s principal power source is typically a battery. Increased energy at the receiver antenna equates to increased recoverable signal amplitude; thus, the overall receiver signal-to-noise ratio is improved resulting in deeper operational depth capability.

72

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

73

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells Supercement for Annular Seal and Long-term Integrity in Deep, Hot Wells DE-FC26-03NT41836 Goal: The goal of the project is to develop a supercement capable of sealing the annuli of and providing long-term integrity in deep, hot wells. Performers CSI Technologies, LLC , Houston, TX Argonne National Laboratory, Argonne, IL Results Phase I work involved a literature search on cements and evaluation of Portland and non-Portland cement systems and various formulations within these systems. Laboratory work involved more than 1,100 tests on 169 different formulations. Baseline testing established a foundation for comparison. Conventional and unconventional mechanical tests were conducted, and many systems were tested at high temperatures. From this work six candidate systems comprising some 10 formulas were recommended for further analysis in Phase II: reduced water systems, magnesium oxide, molybdenum trioxide, fibers, epoxy (resins), and graded particle systems.

74

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of A 275° C Downhole Microcomputer System Development of A 275° C Downhole Microcomputer System DE-FC26-05NT42656 Goal The goal of this project is to produce a downhole microcomputer system (DMS) capable of operating at 275 °C for 1000 hours. The base DMS will consist of a 68HC11 single chip microcomputer with boot ROM, static RAM, counter/timer unit, parallel input/output (PIO) unit, and serial peripheral interface (SPI) and will also have two peripheral chips, a Data RAM and Mask ROM. Performer Oklahoma State University, Electrical and Computer Engineering Department, Stillwater, OK 74078 Background The down-scaling of bulk complementary metal-oxide-semiconductor (CMOS), the dominant integrated circuit (IC) process over the last 4 decades, has increased circuit densities to very high levels and has been the basis for considerable growth in digital signal processing, data acquisition, and intelligent control systems. With down-scaling, however, the CMOS has become increasingly susceptible to failure in high temperature environments. This failure is primarily related to current leakage in transistors in bulk ICs, which becomes catastrophically large at high temperatures.

75

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual" b. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per thousand cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.983258692,2.124739238,2.26534793,2.409252566,2.585728477,2.727400662,2.854942053,2.980927152,3.13861755,3.345819536,3.591100993,3.849544702,4.184279801,4.510016556,4.915074503,5.29147351,5.56022351,5.960471854 "AEO 1995",,1.891706924,1.998384058,1.952818035,2.064227053,2.152302174,2.400016103,2.569033816,2.897681159,3.160088567,3.556344605,3.869033816,4.267391304,4.561932367,4.848599034,5.157246377,5.413405797,5.660917874 "AEO 1996",,,1.630674532,1.740334763,1.862956911,1.9915856,2.10351261,2.194934146,2.287655669,2.378991658,2.476043002,2.589847464,2.717610782,2.836870306,2.967124845,3.117719429,3.294003735,3.485657428,3.728419409

76

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

77

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

December 18, 2009 December 18, 2009 CX-000850: Categorical Exclusion Determination 25A4274 - Energy Efficient Capture of Carbon Dioxide from Coal Flue Gas CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Illinois Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000841: Categorical Exclusion Determination 25A1381 - Affordable Energy from Water and Sunlight CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-000585: Categorical Exclusion Determination 25A1152 - 1366 Direct Wafer: Enabling Terawatt Photovoltaics CX(s) Applied: B3.6 Date: 12/18/2009 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy December 18, 2009 CX-009901: Categorical Exclusion Determination

78

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

79

Natural Gas Procurement Challenges for a Project Financed Cogeneration Facility  

E-Print Network [OSTI]

these criteria as inconsistent with UCC project economics and normal procurement practice. A. TERM OF CONTRACT The trend in the industry was strongly moving away from long term fixed price contracts. Natural Gas prices had moved steadily upward through..., by 1986? the problem of long term take or pay contracts in the Industry was overwhelming. Most producers had written some contracts at very low prices that had not expired while consumers were replacing contract written at high prices. However...

Good, R. L.; Calvert, T. B.; Pavlish, B. A.

80

Table 10. Natural Gas Net Imports, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Net Imports, Projected vs. Actual" Natural Gas Net Imports, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",2.02,2.4,2.66,2.74,2.81,2.85,2.89,2.93,2.95,2.97,3,3.16,3.31,3.5,3.57,3.63,3.74,3.85 "AEO 1995",,2.46,2.54,2.8,2.87,2.87,2.89,2.9,2.9,2.92,2.95,2.97,3,3.03,3.19,3.35,3.51,3.6 "AEO 1996",,,2.56,2.75,2.85,2.88,2.93,2.98,3.02,3.06,3.07,3.09,3.12,3.17,3.23,3.29,3.37,3.46,3.56 "AEO 1997",,,,2.82,2.96,3.16,3.43,3.46,3.5,3.53,3.58,3.64,3.69,3.74,3.78,3.83,3.87,3.92,3.97 "AEO 1998",,,,,2.95,3.19,3.531808376,3.842532873,3.869043112,3.894513845,3.935930967,3.976293564,4.021911621,4.062207222,4.107616425,4.164502144,4.221304417,4.277039051,4.339964867

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual" a. Natural Gas Wellhead Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per thousand cubic feet in ""dollar year"" specific to each AEO)" ,"AEO Dollar Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1992,1.9399,2.029,2.1099,2.1899,2.29,2.35,2.39,2.42,2.47,2.55,2.65,2.75,2.89,3.01,3.17,3.3,3.35,3.47 "AEO 1995",1993,,1.85,1.899,1.81,1.87,1.8999,2.06,2.14,2.34,2.47,2.69,2.83,3.02,3.12,3.21,3.3,3.35,3.39 "AEO 1996",1994,,,1.597672343,1.665446997,1.74129355,1.815978527,1.866241336,1.892736554,1.913619637,1.928664207,1.943216205,1.964540124,1.988652706,2.003382921,2.024799585,2.056392431,2.099974155,2.14731431,2.218094587

82

Table 9. Natural Gas Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Production, Projected vs. Actual" Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",17.71,17.68,17.84,18.12,18.25,18.43,18.58,18.93,19.28,19.51,19.8,19.92,20.13,20.18,20.38,20.35,20.16,20.19 "AEO 1995",,18.28,17.98,17.92,18.21,18.63,18.92,19.08,19.2,19.36,19.52,19.75,19.94,20.17,20.28,20.6,20.59,20.88 "AEO 1996",,,18.9,19.15,19.52,19.59,19.59,19.65,19.73,19.97,20.36,20.82,21.25,21.37,21.68,22.11,22.47,22.83,23.36 "AEO 1997",,,,19.1,19.7,20.17,20.32,20.54,20.77,21.26,21.9,22.31,22.66,22.93,23.38,23.68,23.99,24.25,24.65 "AEO 1998",,,,,18.85,19.06,20.34936142,20.27427673,20.60257721,20.94442177,21.44076347,21.80969238,22.25416183,22.65365219,23.176651,23.74545097,24.22989273,24.70069313,24.96691322

83

Table 7a. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Natural Gas Wellhead Prices, Projected vs. Actual a. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per thousand cubic feet in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.94 2.03 2.11 2.19 2.29 2.35 2.39 2.42 2.47 2.55 2.65 2.75 2.89 3.01 3.17 3.30 3.35 3.47 AEO 1995 1993 1.85 1.90 1.81 1.87 1.90 2.06 2.14 2.34 2.47 2.69 2.83 3.02 3.12 3.21 3.30 3.35 3.39 AEO 1996 1994 1.60 1.67 1.74 1.82 1.87 1.89 1.91 1.93 1.94 1.96 1.99 2.00 2.02 2.06 2.10 2.15 2.22

84

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

July 25, 2012 July 25, 2012 CX-008873: Categorical Exclusion Determination Oregon State University- Natural Gas Self-contained Home Filling Station CX(s) Applied: B3.6 Date: 07/25/2012 Location(s): Oregon, Colorado, Michigan Offices(s): Advanced Research Projects Agency-Energy April 17, 2012 CX-008671: Categorical Exclusion Determination Arizona State University - Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels - Phase II CX(s) Applied: A9, B3.6 Date: 04/17/2012 Location(s): Arizona, Arizona, Arizona, Minnesota, North Carolina Offices(s): Advanced Research Projects Agency-Energy February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6

85

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

86

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

87

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

88

Baltimore Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Baltimore, Maryland Recovery Act Funding $200,000,000.00 Total Project Value $451,814,234.00 Coverage Area Coverage Map: Baltimore Gas and Electric Company Smart Grid Project Coordinates 39.2903848°, -76.6121893° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

89

Madison Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $5,550,941.00 Total Project Value $11,101,881.00 Coverage Area Coverage Map: Madison Gas and Electric Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

90

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts associated with a proposal by Emera CNG, LLC that would include Emera's CNG plant Emeras CNG plant would include facilities to receive, dehydrate, and compress gas to fill pressure vessels with an open International Organization for Standardization (ISO) container frame mounted on trailers. Emera plans to truck the trailers a distance of a quarter mile from its proposed CNG facility to a berth at the Port of Palm Beach, where the trailers will be loaded onto a roll-on/roll-off ocean going carrier. Emera plans to receive natural gas at its planned compression facility from the Riviera Lateral, a pipeline owned and operated by Peninsula Pipeline Company. Although this would be the principal source of natural gas to Emeras CNG facility for export, during periods of maintenance at Emeras facility, or at the Port of Palm Beach, Emera may obtain CNG from other sources and/or export CNG from other general-use Florida port facilities. The proposed Emera facility will initially be capable of loading 8 million cubic feet per day (MMcf/day) of CNG into ISO containers and, after full build-out, would be capable to load up to 25 MMcf/day. For the initial phase of the project, Emera intends to send these CNG ISO containers from Florida to Freeport, Grand Bahama Island, where the trailers will be unloaded, the CNG decompressed, and injected into a pipeline for transport to electric generation plants owned and operated by Grand Bahama Power Company (GBPC). DOE authorizing the exportation of CNG and is not providing funding or financial assistance for the Emera Project.

91

NETL: News Release - DOE Selects Projects Targeting America's "Tight" Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2006 7, 2006 DOE Selects Projects Targeting America's "Tight" Gas Resources Research to Help Unlock Nation's Largest Growing Source of Natural Gas WASHINGTON, DC - The Department of Energy today announced the selection of two cost-shared research and development projects targeting America's major source of natural gas: low-permeability or "tight" gas formations. Tight gas is the largest of three so-called unconventional gas resources?the other two being coalbed methane (natural gas) and gas shales. Production of unconventional gas in the United States represents about 40 percent of the Nation's total gas output in 2004, but could grow to 50 percent by 2030 if advanced technologies are developed and implemented. The constraints on producing tight gas are due to the impermeable nature of the reservoir rocks, small reservoir compartments, abnormal (high or low) pressures, difficulty in predicting natural fractures that aid gas flow rates, and need to predict and avoid reservoirs that produce large volumes of water.

92

Gas-Fired Absorption Heat Pump Water Heater Research Project | Department  

Broader source: Energy.gov (indexed) [DOE]

Emerging Technologies » Gas-Fired Absorption Heat Pump Water Emerging Technologies » Gas-Fired Absorption Heat Pump Water Heater Research Project Gas-Fired Absorption Heat Pump Water Heater Research Project The U.S. Department of Energy (DOE) is currently conducting research into carbon gas-fired absorption heat pump water heaters. This project will employ innovative techniques to increase water heating energy efficiency over conventional gas storage water heaters by 40%. Project Description This project seeks to develop a natural gas-fired water heater using an absorption heat. The development effort is targeting lithium bromide aqueous solutions as a working fluid in order to avoid the negative implications of using more toxic ammonia. Project Partners Research is being undertaken through a Cooperative Research and Development

93

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

94

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

95

Assessing water and environmental impacts of oil and gas projects in Nigeria.  

E-Print Network [OSTI]

??Oil and gas development projects are major sources of social and environmental problems particularly in oil-rich developing countries like Nigeria. Yet, data paucity hinders our (more)

Anifowose, Babatunde A.

2011-01-01T23:59:59.000Z

96

Table 7b. Natural Gas Wellhead Prices, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Natural Gas Wellhead Prices, Projected vs. Actual b. Natural Gas Wellhead Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per thousand cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1.98 2.12 2.27 2.41 2.59 2.73 2.85 2.98 3.14 3.35 3.59 3.85 4.18 4.51 4.92 5.29 5.56 5.96 AEO 1995 1.89 2.00 1.95 2.06 2.15 2.40 2.57 2.90 3.16 3.56 3.87 4.27 4.56 4.85 5.16 5.41 5.66 AEO 1996 1.63 1.74 1.86 1.99 2.10 2.19 2.29 2.38 2.48 2.59 2.72 2.84 2.97 3.12 3.29 3.49 3.73 AEO 1997 2.03 1.82 1.90 1.99 2.06 2.13 2.21 2.32 2.43 2.54 2.65 2.77 2.88 3.00 3.11 3.24 AEO 1998 2.30 2.20 2.26 2.31 2.38 2.44 2.52 2.60 2.69 2.79 2.93 3.06 3.20 3.35 3.48 AEO 1999 1.98 2.15 2.20 2.32 2.43 2.53 2.63 2.76 2.90 3.02 3.12 3.23 3.35 3.47

97

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

98

Monetizing stranded gas : economic valuation of GTL and LNG projects.  

E-Print Network [OSTI]

??Globally, there are significant quantities of natural gas reserves that lie economically or physically stranded from markets. Options to monetize such reserves include Gas to (more)

Black, Brodie Gene, 1986-

2010-01-01T23:59:59.000Z

99

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

100

Graphene as the Ultimate Membrane for Gas Separation Project...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 8. Natural Gas Wellhead Prices, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Wellhead Prices, Projected vs. Actual Natural Gas Wellhead Prices, Projected vs. Actual (current dollars per thousand cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 4.32 5.47 6.67 7.51 8.04 8.57 AEO 1983 2.93 3.11 3.46 3.93 4.56 5.26 12.74 AEO 1984 2.77 2.90 3.21 3.63 4.13 4.79 9.33 AEO 1985 2.60 2.61 2.66 2.71 2.94 3.35 3.85 4.46 5.10 5.83 6.67 AEO 1986 1.73 1.96 2.29 2.54 2.81 3.15 3.73 4.34 5.06 5.90 6.79 7.70 8.62 9.68 10.80 AEO 1987 1.83 1.95 2.11 2.28 2.49 2.72 3.08 3.51 4.07 7.54 AEO 1989* 1.62 1.70 1.91 2.13 2.58 3.04 3.48 3.93 4.76 5.23 5.80 6.43 6.98 AEO 1990 1.78 1.88 2.93 5.36 9.2 AEO 1991 1.77 1.90 2.11 2.30 2.42 2.51 2.60 2.74 2.91 3.29 3.75 4.31 5.07 5.77 6.45 7.29 8.09 8.94 9.62 10.27 AEO 1992 1.69 1.85 2.03 2.15 2.35 2.51 2.74 3.01 3.40 3.81 4.24 4.74 5.25 5.78 6.37 6.89 7.50 8.15 9.05 AEO 1993 1.85 1.94 2.09 2.30

102

Table 11. Natural Gas Net Imports, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Net Imports, Projected vs. Actual Natural Gas Net Imports, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 1.19 1.19 1.19 1.19 1.19 1.19 AEO 1983 1.08 1.16 1.23 1.23 1.23 1.23 1.23 AEO 1984 0.99 1.05 1.16 1.27 1.43 1.57 2.11 AEO 1985 0.94 1.00 1.19 1.45 1.58 1.86 1.94 2.06 2.17 2.32 2.44 AEO 1986 0.74 0.88 0.62 1.03 1.05 1.27 1.39 1.47 1.66 1.79 1.96 2.17 2.38 2.42 2.43 AEO 1987 0.84 0.89 1.07 1.16 1.26 1.36 1.46 1.65 1.75 2.50 AEO 1989* 1.15 1.32 1.44 1.52 1.61 1.70 1.79 1.87 1.98 2.06 2.15 2.23 2.31 AEO 1990 1.26 1.43 2.07 2.68 2.95 AEO 1991 1.36 1.53 1.70 1.82 2.11 2.30 2.33 2.36 2.42 2.49 2.56 2.70 2.75 2.83 2.90 2.95 3.02 3.09 3.17 3.19 AEO 1992 1.48 1.62 1.88 2.08 2.25 2.41 2.56 2.68 2.70 2.72 2.76 2.84 2.92 3.05 3.10 3.20 3.25 3.30 3.30 AEO 1993 1.79 2.08 2.35 2.49 2.61 2.74 2.89 2.95 3.00 3.05 3.10

103

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

104

SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL  

E-Print Network [OSTI]

1 SAFETY OF HYDROGEN/NATURAL GAS MIXTURES BY PIPELINES: ANR FRENCH PROJECT HYDROMEL Hébrard, J.1 linked with Hydrogen/Natural gas mixtures transport by pipeline, the National Institute of Industrial scenario, i.e. how the addition of a quantity of hydrogen in natural gas can increase the potential

Boyer, Edmond

105

NETL: News Release - DOE Selects New Projects to Enhance Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 8, 2004 December 8, 2004 DOE Selects New Projects to Enhance Oil and Gas Production 35 Projects Contribute to Energy Security, Reduce Greenhouse Gas Emissions WASHINGTON, DC - Secretary of Energy Spencer Abraham today announced the selection of 35 new cost-shared projects that promise to strengthen our nation's energy security and reduce greenhouse emissions. In announcing the awards, Secretary Abraham lauded the wide-ranging projects as "an investment in our future that will benefit the Nation for years to come." The total award value of the new projects is more than $39 million. "President Bush's National Energy Policy calls attention to the continuing need to strengthen our energy security, modernize energy infrastructure, and accelerate the protection and improvement of the environment," Secretary Abraham said. "It also calls for promoting enhanced oil and gas recovery, and improving oil- and gas-exploration technology to increase domestic energy supplies. The new projects meet all of these important national goals."

106

Using landfill gas for energy: Projects that pay  

SciTech Connect (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

107

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

108

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

109

Memphis Light, Gas and Water Division Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Gas and Water Division Smart Grid Project Light, Gas and Water Division Smart Grid Project Jump to: navigation, search Project Lead Memphis Light, Gas and Water Division Country United States Headquarters Location Memphis, Tennessee Recovery Act Funding $5,063,469.00 Total Project Value $13112363 Coverage Area Coverage Map: Memphis Light, Gas and Water Division Smart Grid Project Coordinates 35.1495343°, -90.0489801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

NETL: News Release - DOE Selects 2 Projects to Expand Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 2, 2000 October 2, 2000 DOE Selects 2 Projects to Expand Natural Gas Development and Use A technology that converts natural gas into liquids and a process that upgrades raw, low-quality natural gas to pipeline quality are the focus of two projects selected by the Department of Energy in a nationwide competition. The projects are valued at approximately $3.2 million, with DOE contributing a little more than $2 million. The Energy Department's National Energy Technology Laboratory, the lead laboratory for fossil energy research and development, will manage the two projects: Praxair of Tarrytown, NY and subcontractor Foster Wheeler Development Corporation, will develop a novel system that processes natural gas into "synthesis gas" - gas that can be chemically recombined into a variety of liquid fuels -- in less time than conventional methods. Featuring a short reaction-time catalyst used with the company's gas-mixing technology, the system requires significantly less energy then conventional synthesis gas manufacturing plants. It also is less costly to build and does not use steam, another cost-saving feature. It could be a major contributor in future technologies to convert remote or otherwise stranded gas supplies into liquid fuels that could be more easily transported to market. Significant quantities of stranded gas are found in Alaska, for example.

111

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

112

EIS-0498: Magnolia Liquefied Natural Gas Project, Calcasieu Parish, Louisiana  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission (FERC) is preparing an EIS for a proposal to build and operate a liquefied natural gas (LNG) facility on land at the Port of Lake Charles. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

113

Abatement of Air Pollution: Greenhouse Gas Emissions Offset Projects (Connecticut)  

Broader source: Energy.gov [DOE]

Projects that either capture and destroy landfill methane, avoid sulfur hexafluoride emissions, sequester carbon through afforestation, provideend-use energy efficiency, or avoid methane emissions...

114

Delivery and viability of landfill gas CDM projects in AfricaA South African experience  

Science Journals Connector (OSTI)

The eThekwini Municipality (Durban, South Africa) landfill gas Clean Development Mechanism (CDM) project was the first to be registered and verified in Africa. The idea for the project was developed in 2002, yet it was not until the end of 2006 that the smaller Component One (1MW) was registered, while the larger Component Two (9MW) followed only in March 2009. Valuable lessons were learnt from Component One, and these were applied to Component Two. The paper describes the Durban CDM process, the lessons learnt, and assesses the viability of landfill gas to electricity CDM projects in Africa. It concludes that small to medium sized landfill gas to electricity CDM projects are not viable in Africa unless there is a renewable energy feed-in-tariff, or unless the gas is simply flared rather than being utilised for power generation.

R. Couth; C. Trois; J. Parkin; L.J. Strachan; A. Gilder; M. Wright

2011-01-01T23:59:59.000Z

115

Annual Energy Outlook with Projections to 2025 - Market Trends- Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand and Supply Natural Gas Demand and Supply Annual Energy Outlook 2005 Market Trends - Natural Gas Demand and Supply Figure 82. Natural gas consumption by sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Figure 83. Natural gas production by source, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Projected Increases in Natural Gas Use Are Led by Electricity Generators In the AEO2005 reference case, total natural gas consumption increases from 22.0 trillion cubic feet in 2003 to 30.7 trillion cubic feet in 2025. In the electric power sector, natural gas consumption increases from 5.0 trillion cubic feet in 2003 to 9.4 trillion cubic feet in 2025 (Figure 82),

116

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network [OSTI]

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

117

Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

United States. Bonneville Power Administration.

1992-05-01T23:59:59.000Z

118

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

119

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Broader source: Energy.gov (indexed) [DOE]

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

120

NETL: News Release - DOE Selects 2 Projects to Help Boost Gas Flow from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 15, 2001 August 15, 2001 DOE Selects 2 Projects to Help Boost Gas Flow from Low-Permeability Formations New Technologies Targeted at Future Gas Production From "Tight" Formations in Western U.S. MORGANTOWN, WV - America has vast resources of natural gas, but President Bush's National Energy Policy cautions that domestic production of the easier "conventional" gas could peak as early as 2015. To help prepare for the day when the Nation's increasing demand for clean-burning natural gas will have to be met by gas trapped in denser, more difficult-to-produce "unconventional" formations, the U.S. Department of Energy has selected two firms to develop advanced methods for locating and producing these low permeability gas reservoirs.

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Greenhouse Gas Emission Trends and Projections in Europe 2009 | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Emission Trends and Projections in Europe 2009 Greenhouse Gas Emission Trends and Projections in Europe 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Emission Trends and Projections in Europe 2009 Agency/Company /Organization: European Environment Agency Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Maps Website: www.eea.europa.eu/publications/eea_report_2009_9 Country: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Ireland, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom UN Region: "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

123

DOE - Office of Legacy Management -- Project Gas Buggy Site - NM 14  

Office of Legacy Management (LM)

Gas Buggy Site - NM 14 Gas Buggy Site - NM 14 FUSRAP Considered Sites Site: Project Gas Buggy Site (NM.14 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Gasbuggy, New Mexico, Site Nevada Test Site History Documents Related to Project Gas Buggy Site Fact Sheet Gasbuggy, New Mexico The Gasbuggy Site is located in northwestern New Mexico in Rio Arriba County approximately 55 miles east of the city of Farmington and approximately 12 miles southwest of Dulce, New Mexico, in the Carson National Forest. Floodplains and Wetlands Survey Results for the Gasbuggy and Gnome-Coach Sites, New Mexico, December 1993.

124

NETL: Oil & Natural Gas Projects: Alaska Heavy Oils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12/20/2012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation’s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations. Performers Colorado School of Mines, Golden, CO 80401 University of Houston, Houston, TX 77204 Earthworks, Newtown, CT 06470 BP, Anchorage, AK 99519 Background Although the reserves of heavy oil on the North Slope of Alaska are enormous (estimates are up to 10 billion barrels in place), difficult

125

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

126

Table 10. Natural Gas Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Production, Projected vs. Actual Production, Projected vs. Actual (trillion cubic feet) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 14.74 14.26 14.33 14.89 15.39 15.88 AEO 1983 16.48 16.27 16.20 16.31 16.27 16.29 14.89 AEO 1984 17.48 17.10 17.44 17.58 17.52 17.32 16.39 AEO 1985 16.95 17.08 17.11 17.29 17.40 17.33 17.32 17.27 17.05 16.80 16.50 AEO 1986 16.30 16.27 17.15 16.68 16.90 16.97 16.87 16.93 16.86 16.62 16.40 16.33 16.57 16.23 16.12 AEO 1987 16.21 16.09 16.38 16.32 16.30 16.30 16.44 16.62 16.81 17.39 AEO 1989* 16.71 16.71 16.94 17.01 16.83 17.09 17.35 17.54 17.67 17.98 18.20 18.25 18.49 AEO 1990 16.91 17.25 18.84 20.58 20.24 AEO 1991 17.40 17.48 18.11 18.22 18.15 18.22 18.39 18.82 19.03 19.28 19.62 19.89 20.13 20.07 19.95 19.82 19.64 19.50 19.30 19.08 AEO 1992 17.43 17.69 17.95 18.00 18.29 18.27 18.51 18.75 18.97

127

Research Projects Addressing Technical Challenges to Environmentally Acceptable Shale Gas Development Selected by DOE  

Broader source: Energy.gov [DOE]

Fifteen research projects aimed at addressing the technical challenges of producing natural gas from shales and tight sands, while simultaneously reducing environmental footprints and risks, have been selected to receive a total of $28 million in funding from the U.S. Department of Energys Office of Fossil Energy.

128

Project 35013 Species-and Site-specific Impacts of Gas Supersaturation on Aquatic Animals  

E-Print Network [OSTI]

three species tend to be bottom oriented and deep water species, and most TDG effects are in the upperProject 35013 Species- and Site-specific Impacts of Gas Supersaturation on Aquatic Animals Sponsor in the river?" The proposal was submitted primarily at the request of the state water quality agencies

129

NETL: News Release - DOE Selects Projects to Improve 'Stripper' Gas Well  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 13, 2000 June 13, 2000 DOE Selects Project to Improve 'Stripper' Gas Well Economics By Using Low-Cost Clean Coal Product to Filter Waste Water In its third and final round of competition for projects that can help sustain natural gas production from "stripper" wells, the U.S. Department of Energy has selected a proposal to test a coal-based filtering material that could sharply reduce the costs of disposing of waste water from these low-volume wells. The Western SynCoal Clean Coal Plant The Rosebud SynCoal® demonstration plant near Colstrip, Montana, was built in DOE's Clean Coal Technology Program. Its upgraded coal product, originally intended as a high quality fuel for power plants, may also be a low cost filter material for oil and gas well waste water.

130

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

131

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

132

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

133

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

134

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

135

Western Gas Sands Project. Status report, 1 March-31 March 1980  

SciTech Connect (OSTI)

The March, 1980 progress of the government-sponsored projects directed towards increasing gas production from the low permeability gas sands of the western United States is summarized in this report. A site for the multi-well experiment was approved by the industry review committee; drilling is expected by mid-summer. Bartlesville Energy Technology Center continued work on fracture conductivity, rock/fluid interaction, and log evaluation and interpretation techniques. Lawrence Livermore Laboratory continued experimental and theoretical work on hydraulic fracturing mechanics and analysis of well test data. Analysis of data obtained from a test of the borehole seismic unit by Sandia Laboratories continued. The DOE Well Test Facility continued bottom-hole pressure buildup measurements at the Colorado Interstate Gas Company Miller No. 1 well.

Not Available

1980-01-01T23:59:59.000Z

136

NETL: News Release - Projects Selected to Boost Unconventional Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2010 7, 2010 Projects Selected to Boost Unconventional Oil and Gas Resources Simulation and Visualization Tools, CO2 Enhanced Oil Recovery Targeted for Advancement Washington, D.C. - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next generation CO2 enhanced oil recovery (EOR) to the point where it is ready for pilot (small) scale testing.

137

San Diego Gas and Electric Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Electric Company and Electric Company Country United States Headquarters Location San Diego, California Recovery Act Funding $28115052 Total Project Value $59427645 Coverage Area Coverage Map: San Diego Gas and Electric Company Smart Grid Project Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

138

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

139

Western Gas Sands Project, status report, October-November-December 1981  

SciTech Connect (OSTI)

This WGSP Quarterly Report summarizes the progress of government-sponsored projects aimed at recovering gas from low permeability gas sands in the Western United States during October, November and December 1981. CK GeoEnergy released the final report for Development of Techniques for Optimizing Selection and Completion of Western Gas Sands. For CER's Reservoir Simulation Model Development, primary emphasis during the quarter was placed on extending the previous work to include effects of massive hydraulic fractures intersecting multiple lenses. During the quarter, the University of Oklahoma completed the two-dimensional reservoir simulator for BETC. A simplified two-dimensional hydraulic fracturing model is being developed by LLL. A major activity this quarter at Los Alamos was redesigning the NMR receiver system, making it capable of being repackaged for downhole use. Sandia summarizes the analysis of five saturated rock samples that were measured for dielectric constant. The drilling, coring, logging and casing of MWX-1 was accomplished this quarter; quality of output, mainly core, core data and logs, has been good.

Crawley, A.; Atkinson, C.H.

1982-07-01T23:59:59.000Z

140

Cliffs Minerals, Inc. Eastern Gas Shales Project, Ohio No. 5 well - Lorain County. Phase II report. Preliminary laboratory results  

SciTech Connect (OSTI)

The US Department of Energy is funding a research and development program entitled the Eastern Gas Shales Project designed to increase commercial production of natural gas in the eastern United States from Middle and Upper Devonian Shales. The program's objectives are as follows: (1) to evaluate recoverable reserves of gas contained in the shales; (2) to enhanced recovery technology for production from shale gas reservoirs; and (3) to stimulate interest among commercial gas suppliers in the concept of producing large quantities of gas from low-yield, shallow Devonian Shale wells. The EGSP-Ohio No. 5 well was cored under a cooperative cost-sharing agreement between the Department of Energy (METC) and Columbia Gas Transmission Corporation. Detailed characterization of the core was performed at the Eastern Gas Shale Project's Core Laboratory. At the well site, suites of wet and dry hole geophysical logs were run. Characterization work performed at the Laboratory included photographic logs, lithologic logs, fracture logs, measurements of core color variation, and stratigraphic interpretation of the cored intervals. In addition samples were tested for physical properties by Michigan Technological University. Physical properties data obtained were for: directional ultrasonic velocity; directional tensile strength; strength in point load; and trends of microfractures.

none,

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics  

SciTech Connect (OSTI)

This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

Larry Demick

2011-08-01T23:59:59.000Z

142

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network [OSTI]

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

143

Comprehensive Financial Model For Oil and Gas Field Projects In Qatar.  

E-Print Network [OSTI]

??Project finance is essentially the raising of finance for a new project, secured against future revenues rather than an existing corporate balance sheet or other (more)

Al-Thani, Faisal F.J.

2002-01-01T23:59:59.000Z

144

NETL: Oil & Natural Gas Projects - Integrated Synthesis of the Permian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the United States DE-FC26-04NT15509 Goal The overall objective was to collect and synthesize available data on the hydrocarbon-bearing geological systems in the Permian Basin and distribute data in readily usable formats to scientists, engineers, managers, and decision makers in the oil and gas industry. Performer Bureau of Economic Geology, University of Texas, Austin, TX Collaborators State of Texas Background The Permian Basin is the largest producing basin in the United States, still containing as much as 30 billion barrels of remaining mobile oil. A long-standing problem for companies seeking to recover this resource has been the difficulty of access to data and the knowledge of how to use the data. No modern, integrated syntheses of Permian Basin geologic data was previously available. This project has made possible the delivery of large volumes of Permian basin reservoir and basin data and interpretations to industry, academia, and the general public.

145

Institutional project summary University of Redlands direct fired gas absorption chiller system  

SciTech Connect (OSTI)

The University of Redlands, located in the California Inland Empire City of Redlands supplies six campus building with chilled and hot water for cooling and space heating from a centrally located Mechanical Center. The University was interested in lowering chilled water production costs and eliminating Ozone depleting chloroflourocarbon (CFC) refrigerants in addition to adding chiller capacity for future building to be added to the central plant piping {open_quotes}loop{close_quotes}. After initially providing a feasibility study of chiller addition alternatives and annual hourly load models, GRT & Associates, Inc. (GRT) provided design engineering for the installation of a 500 Ton direct gas fired absorption chiller addition to the University of Redland`s mechanical center. Based on the feasibility study and energy consumption tests done after the new absorption chiller was added, the university estimates annual energy cost saving versus the existing electric chiller is approximately $65,000 per year. Using actual construction costs, the simple before tax payback period for the project is six years.

Tanner, G.R.

1996-05-01T23:59:59.000Z

146

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

147

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring the petroleum potential of a frontier province: Cretaceous stratigraphy and  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2015 start) Project Title: Exploring Myanmar. It has been shown that gas and oil exists in the basin and that a considerable unconventional biogenic gas system exists in the deep-waters offshore. The sediments of the Rakhine Basin were deposited

Henderson, Gideon

148

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

149

Understanding and managing leakage in forestbased greenhousegasmitigation projects  

Science Journals Connector (OSTI)

...greenhouse-gas emissions in an area...only produce greenhouse-gas (GHG) bene...reduce GHG emissions. The leakage...mitigation (energy, transportation...emissions-reducing activities...be inversely related (notably in...

2002-01-01T23:59:59.000Z

150

Categorical Exclusion Determinations: Natural Gas Regulation | Department  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Regulation Natural Gas Regulation Categorical Exclusion Determinations: Natural Gas Regulation Categorical Exclusion Determinations issued by Natural Gas Regulation. DOCUMENTS AVAILABLE FOR DOWNLOAD October 14, 2011 CX-006821: Categorical Exclusion Determination ConocoPhillips Company CX(s) Applied: B5.7 Date: 10/14/2011 Location(s): Quintana Island, Texas Office(s): Fossil Energy, NNSA-Headquarters July 19, 2011 CX-006219: Categorical Exclusion Determination Freeport Liquefied Natural Gas Development, L.P. CX(s) Applied: B5.7 Date: 07/19/2011 Location(s): Freeport, Texas Office(s): Fossil Energy, Natural Gas Regulation January 19, 2011 CX-005025: Categorical Exclusion Determination Eni USA Gas Marketing, LLC CX(s) Applied: B5.7 Date: 01/19/2011 Location(s): Cameron Parish, Louisiana

151

NETL: News Release - New Projects to Help Operators See Oil, Gas Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Operators "See" Oil, Gas Formations More Clearly Help Operators "See" Oil, Gas Formations More Clearly Six Research Teams to Develop Advanced Diagnostics And Imaging Technologies for Oil, Gas Fields TULSA, OK - If oil and gas producers could "see" hydrocarbon-bearing formations more accurately from the surface or from nearby wellbores, they can position new wells more precisely to produce more oil or gas with less risk and ultimately, at lower costs. For many producers in the United States, especially smaller producers operating on razor-thin margins, advanced diagnostics and imaging systems can help them in business. By visualizing the barriers and pathways for the flow of oil and gas through underground rock formations, producers can avoid dry holes and increase ultimate recovery.

152

Unaccounted-for gas project. Measurement Task Force (orifice meter studies). Volume 2B. Final report  

SciTech Connect (OSTI)

The study was aimed at determining unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric Co.'s transmission and distribution systems during 1987. Activities and methods are described and results are presented for research conducted on orifice meter accuracy. The Measurement Task Force determined that orifice metering inaccuracies were the largest single contributor to 1987 UAF.

Godkin, B.J.; Robertson, J.D.; Wlasenko, R.G.; Cowgill, R.M.; Grinstead, J.R.

1990-06-01T23:59:59.000Z

153

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

154

High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan  

SciTech Connect (OSTI)

The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

None

1982-03-01T23:59:59.000Z

155

Integrated flue gas treatment for simulataneous emission control and heat rate improvement - demonstration project at Ravenswood  

SciTech Connect (OSTI)

Results are presented for electric-utility, residual-oil fired, field demonstration testing of advanced-design, heat-recovery type, flue gas sub-coolers that incorporate sulfite-alkali-based wet scrubbing for efficient removal of volatile and semi-volatile trace elements, sub-micron solid particulate matter, SO{sub 2} and SO{sub 3}. By innovative adaptation of wet collector system operation with methanol injection into the rear boiler cavity to convert flue-gas NO to No{sub 2}, simultaneous removal of NO{sub x} is also achieved. The focus of this integrated flue gas treatment (IFGT) technology development and demonstration-scale, continuous performance testing is an upward-gas-flow, indirectly water-cooled, condensing heat exchanger fitted with acid-proof, teflon-covered tubes and tubesheets and that provides a unique condensing (non-evaporative) wet-scrubbing mode to address air toxics control objectives of new Clean Air Act, Title III. Advantageous trace-metal condensation/nucleation/agglomeration along with substantially enhanced boiler efficiency is accomplished in the IFGT system by use of boiler makeup water as a heat sink in indirectly cooling boiler flue gas to a near-ambient-temperature, low-absolute-humidity, water-saturated state. Moreover, unique, innocuous, stack systems design encountered with conventional high-humidity, wet-scrubber operations. The mechanical design of this advanced flue-gas cooling/scrubbing equipment is based on more than ten years of commercial application of such units is downward-gas-flow design/operation for energy recovery, e.g. in preheating of makeup water, in residual-oil and natural-gas fired boiler operations.

Heaphy, J.; Carbonara, J.; Cressner, A. [Consolidated Edison Company, New York, NY (United States)] [and others

1995-06-01T23:59:59.000Z

156

Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994  

SciTech Connect (OSTI)

The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

1995-12-01T23:59:59.000Z

157

Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: Walker Ridge 313 LWD Operations and Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cook Cook 1 , Gilles Guerin 1 , Stefan Mrozewski 1 , Timothy Collett 2 , & Ray Boswell 3 Walker Ridge 313 LWD Operations and Results Gulf of Mexico Gas Hydrate Joint Industry Project Leg II: 1 Borehole Research Group Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964 E-mail: Cook: acook@ldeo.columbia.edu Guerin: guerin@ldeo.columbia.edu Mrozewski: stefan@ldeo.columbia.edu 3 National Energy Technology Laboratory U.S. Department of Energy P.O. Box 880 Morgantown, WV 26507 E-mail: ray.boswell@netl.doe.gov 2 US Geological Survey Denver Federal Center, MS-939 Box 25046 Denver, CO 80225 E-mail:

158

Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the  

E-Print Network [OSTI]

- covered foothills in the background. (Photograph by Benjamin M. Sleeter.) #12;Baseline and Projected LaPoint, Patrick Miles, Ronald Piva, Jeffery Turner, and Brad Smith of the USDA Forest Service

Fleskes, Joe

159

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets?  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Are non-marine organic-rich shales suitable exploration targets? (EARTH-15-SR2) Host institution: University of Oxford Supervisor 1: Stuart Robinson Supervisor 2: Steve Hesselbo (University of Exeter) Project description: Shales

Henderson, Gideon

160

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Evaluating the resilience of deepwater systems to recover from oil spills Host institution: Heriot-Watt University Gatliff (BGS), Jeffrey Polton (NOC), Alejandro Gallego and Eileen Bresnan (MSS). Project description: Oil

Henderson, Gideon

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project  

Broader source: Energy.gov [DOE]

Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office

162

New Project To Improve Characterization of U.S. Gas Hydrate Resources  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate?bearing sediments for the purpose of methane hydrate resource appraisal.

163

Understanding and managing leakage in forestbased greenhousegasmitigation projects  

Science Journals Connector (OSTI)

...Sectors: fossil fuel or biomass Leakage can occur in...emissions from some form of biomass (veg- etation, forests...g. vegetable oil, wood pulp, cacao, rice...discuss projects that use biomass to substitute for fossil-fuel-intensive...sector, while biomass plantations as a source of supply...

2002-01-01T23:59:59.000Z

164

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development  

Broader source: Energy.gov [DOE]

The Office of Fossil Energys National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

165

Effect of short-term material balances on the projected uranium measurement uncertainties for the gas centrifuge enrichment plant  

SciTech Connect (OSTI)

A program is under way to design an effective International Atomic Energy Agency (IAEA) safeguards system that could be applied to the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). This system would integrate nuclear material accountability with containment and surveillance. Uncertainties in material balances due to errors in the measurements of the declared uranium streams have been projected on a yearly basis for GCEP under such a system in a previous study. Because of the large uranium flows, the projected balance uncertainties were, in some cases, greater than the IAEA goal quantity of 75 kg of U-235 contained in low-enriched uranium. Therefore, it was decided to investigate the benefits of material balance periods of less than a year in order to improve the sensitivity and timeliness of the nuclear material accountability system. An analysis has been made of projected uranium measurement uncertainties for various short-term material balance periods. To simplify this analysis, only a material balance around the process area is considered and only the major UF/sub 6/ stream measurements are included. That is, storage areas are not considered and uranium waste streams are ignored. It is also assumed that variations in the cascade inventory are negligible compared to other terms in the balance so that the results obtained in this study are independent of the absolute cascade inventory. This study is intended to provide information that will serve as the basis for the future design of a dynamic materials accounting component of the IAEA safeguards system for GCEP.

Younkin, J.M.; Rushton, J.E.

1980-02-05T23:59:59.000Z

166

Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993  

SciTech Connect (OSTI)

The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

Levey, R.A.; Finley, R.J.; Hardage, B.A.

1994-06-01T23:59:59.000Z

167

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

168

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

169

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford in extracting gas from these low-permeability rocks is hydraulic fracture. This involves injecting large of water and gas during hydraulic fracturing and subsequent gas recovery. This is essential in order

Henderson, Gideon

170

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

171

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers ProMIS/Project No.: DE-NT0005648  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Edward Levy Edward Levy Principal Investigator Director, Lehigh University Energy Research Center RecoveRy of WateR fRom BoileR flue Gas usinG condensinG Heat excHanGeRs PRomis/PRoject no.: de-nt0005648 Background As the United States' population grows and demand for electricity and water increases, power plants located in some parts of the country will find it increasingly difficult to obtain the large quantities of water needed to maintain operations. Most of the water used in a thermoelectric power plant is used for cooling, and the U.S. Department of Energy (DOE) has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. Many coal-fired power plants operate with stack temperatures in the 300 °F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to

172

NETL: Oil & Natural Gas Projects: Next Generation Surfactants for Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of the 401 billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant EOR has seen an increase in activity in recent years due to increased energy demand and higher oil prices. In

173

Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update  

SciTech Connect (OSTI)

The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

Benioff, R.

1999-05-11T23:59:59.000Z

174

Eastern Gas Shales Project (EGSP) data files: a final report. Open-file report 81-598  

SciTech Connect (OSTI)

The United States Geological Survey and Petroleum Information Corporation (PI) of Denver have created two large computerized files of data for the Eastern Gas Shales Project (EGSP) as part of a large responsibility to the Department of Energy (DOE), Morgantown Energy Technology Center (METC), in Morgantown, West Virginia. Computer-compatible well, outdrop, and sample data from EGSP contractors are being stored on digital tape and delivered to METC for subsequent data-base management. This report has been written to: (1) discuss data-file background and development, (2) address specific problems and solutions for future project use, and (3) present a general summary of well- and sample-data file content by state, county, well, contractor, and subject coverage. When looking at the EGSP data-gathering task in retrospect, modifications to project management would have made the data-gathering process more successful. Many problems resulted from having contractors perform their own data encoding. Some EGSP contractors had little knowledge of computer- and data-encoding techniques, and they often delegated encoding responsibilities to subordinates who were not properly informed about procedures. The overall lack of uniformity in analytical procedures and methods resulted in an apparent over-abundance of card classes. Nearly 40% of the available card classes were never used, and about 30% of those used contain fewer than 100 data records. The most serious problem encountered during data-file development has been the long delay in arranging for an efficient retrieval and mapping system. Sample-and well-data file management are now coordinated through METC, and Petroleum Information Corporation maintains an effective in-house data management system for data retrieval and analysis. The present system would have been very useful to retrieve data for contractor needs two years earlier, even though the files were incomplete.

Dyman, T.S.

1981-01-01T23:59:59.000Z

175

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

October 18, 2012 October 18, 2012 CX-009518: Categorical Exclusion Determination (0674-1585) Xilectric, Inc. - Low Cost Transportation Batteries CX(s) Applied: B3.6 Date: 10/18/2012 Location(s): Rhode Island, New York Offices(s): Advanced Research Projects Agency-Energy September 27, 2012 CX-010530: Categorical Exclusion Determination Electro-Autotrophic Synthesis of Higher Alcohols CX(s) Applied: B3.6 Date: 09/27/2012 Location(s): California, North Carolina, North Carolina Offices(s): Advanced Research Projects Agency-Energy September 19, 2012 CX-009902: Categorical Exclusion Determination Agrivida - Conditionally Activated Enzymes Expressed in Cellulosic Energy Crops CX(s) Applied: B3.6 Date: 09/19/2012 Location(s): Massachusetts, Connecticut Offices(s): Advanced Research Projects Agency-Energy

176

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2010 August 14, 2010 CX-004957: Categorical Exclusion Determination General Compression, Inc. -Fuel-Free, Ubiquitous, Compressed Air Energy Storage CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Watertown, Massachusetts Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004953: Categorical Exclusion Determination Fluidic Inc. -Enhanced Metal-Air Energy Storage System CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Scottsdale, Arizona Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 13, 2010 CX-004925: Categorical Exclusion Determination

177

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2010 June 2, 2010 CX-003144: Categorical Exclusion Determination ATK - A High Efficiency Inertial Carbon Dioxide Extraction System CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): New York Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy June 2, 2010 CX-003131: Categorical Exclusion Determination Lawrence Berkeley National Laboratory & Wildcat Disc. Technology - High Throughput Tools to Screen New Metal Organic Framework Materials CX(s) Applied: B3.6 Date: 06/02/2010

178

The ATLAS 3D project - XVI. Physical parameters and spectral line energy distributions of the molecular gas in gas-rich early-type galaxies  

E-Print Network [OSTI]

[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring in those galaxies, starting here with the dense star-forming gas. We use existing integrated $^{12}$CO(1-0, 2-1), $^{13}$CO(1-0, 2-1), HCN(1-0) and HCO$^{+}$(1-0) observations and present new $^{12}$CO(3-2) single-dish data. From these, we derive for the first time the average kinetic temperature, H$_{2}$ volume density and column density of the emitting gas, this using a non-LTE theoretical model. Since the CO lines trace different physical conditions than of those the HCN and HCO$^{+}$ lines, the two sets of lines are treated separately. We also compare for the first time the predicted CO spectral line energy distributions (SLEDs) and gas properties of our molecular gas-rich ETGs with those of a sample of nearby well-studied disc galaxies. The gas excitation con...

Bayet, Estelle; Davis, Timothy A; Young, Lisa M; Crocker, Alison F; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frdric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovi?, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

2012-01-01T23:59:59.000Z

179

Categorical Exclusion Determinations: Portsmouth Paducah Project Office |  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth Paducah Project Portsmouth Paducah Project Office Categorical Exclusion Determinations: Portsmouth Paducah Project Office Categorical Exclusion Determinations issued by Portsmouth Paducah Project Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2012 CX-009253: Categorical Exclusion Determination Optimization of Electrical Power at the Portsmouth Gaseous Diffusion Facility CX(s) Applied: B4.6, B4.11 Date: 08/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office May 9, 2012 CX-008824: Categorical Exclusion Determination X-608 Well Field Transfer CX(s) Applied: B1.24 Date: 05/09/2012 Location(s): Ohio Offices(s): Portsmouth Paducah Project Office April 25, 2012 CX-009252: Categorical Exclusion Determination Disposition of Department of Energy Surplus or Excess Personal Property

180

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

Advanced Research Projects Advanced Research Projects Agency-Energy Categorical Exclusion Determinations: Advanced Research Projects Agency-Energy Categorical Exclusion Determinations issued by Advanced Research Projects Agency-Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD June 10, 2013 CX-010529: Categorical Exclusion Determination Electroalcoholgenesis CX(s) Applied: B3.6 Date: 06/10/2013 Location(s): South Carolina, Washington Offices(s): Advanced Research Projects Agency-Energy May 23, 2013 CX-010566: Categorical Exclusion Determination Massachusetts Institute of Technology- Scalable, Self-Powered Purification Technology for Brackish and Heavy Metal Contaminated Water CX(s) Applied: B3.6 Date: 05/23/2013 Location(s): Massachusetts Offices(s): Advanced Research Projects Agency-Energy May 22, 2013

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Broader source: Energy.gov (indexed) [DOE]

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

182

Project 5 -- Solution gas drive in heavy oil reservoirs: Gas and oil phase mobilities in cold production of heavy oils. Quarterly progress report, October 1--December 31, 1996  

SciTech Connect (OSTI)

In this report, the authors present the results of their first experiment on a heavy crude of about 35,000 cp. A new visual coreholder was designed and built to accommodate the use of unconsolidated sand. From this work, several clear conclusions can be drawn: (1) oil viscosity does not decrease with the evolution of gas, (2) the critical gas saturation is in the range of 4--5%, and (3) the endpoint oil relative permeability is around 0.6. However, the most important parameter, gas phase mobility, is still unresolved. Gas flows intermittently, and therefore the length effect becomes important. Under the conditions that the authors run the experiment, recovery is minimal, about 7.5%. This recovery is still much higher than the recovery of the C{sub 1}/C{sub 10} model system which was 3%. After a duplicate test, they plan to conduct the experiment in the horizontal core. The horizontal core is expected to provide a higher recovery.

Firoozabadi, A.; Pooladi-Darvish, M.

1996-12-31T23:59:59.000Z

183

Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality  

Science Journals Connector (OSTI)

The hypothetical leakage of methane gas caused by fracking a 1,000-m deep Cretaceous claystone ... In summary, the geological risks of a fracking operation are minor. The technical risks are ... when rising metha...

Michael O. Schwartz

2014-10-01T23:59:59.000Z

184

LNG Project Development: Shipping and Terminal Considerations  

Science Journals Connector (OSTI)

Liquefied natural gas (LNG) projects require multibillion-dollar investments and multidisciplined ... of engineers, environmentalists, economists, and others. LNG projects can be divided into five major ... gas g...

V. V. Staffa; D. K. Jhaveri

1980-01-01T23:59:59.000Z

185

NETL: 2013 Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf > Project Portfolio Reference Shelf > Project Portfolio Gasification Systems 2013 Gasification Systems Project Portfolio Gasifier Optimization Gas Separation Gas Separation Gasifier Optimization Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Cleaning Gas Separation U.S. Economic Competitiveness Gas Separation Gasifier Optimization U.S. Economic Competitiveness Gasifier Optimization U.S. Economic Competitiveness Gas Cleaning Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Separation U.S. Economic Competitiveness Gas Separation U.S. Economic Competitiveness U.S. Economic Competitiveness Gas Cleaning Gas Cleaning Gas Separation Gas Cleaning Gas Separation Global Environmental Benefits Gas Separation Global Environmental Benefits Global Environmental Benefits Gas Cleaning Gas Separation Systems Analyses Global Environmental Benefits Gas Separation Systems Analyses Global Environmental Benefits Systems Analyses Global Environmental Benefits Gas Cleaning Systems Analyses Gas Cleaning Gas Separation Systems Analyses Systems Analyses Gas Cleaning Systems Analyses Systems Analyses Systems Analyses

186

Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos Canyon 21B well  

Science Journals Connector (OSTI)

Through the use of 3-D seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ?2ohm-m and P-wave velocity in the range of ?1.9km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gas hydrate in the logged sand interval, mainly because large washouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gas hydrate saturations in the sedimentary section drilled in the Alaminos Canyon 21 B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gas hydrate saturation in the target sand section in the AC21-B well can be constrained to the range of 828%, with 20% being our best estimate.

M.W. Lee; T.S. Collett; K.A. Lewis

2012-01-01T23:59:59.000Z

187

The Birmingham-CfA cluster scaling project - I: gas fraction and the M-T relation  

E-Print Network [OSTI]

We have assembled a large sample of virialized systems, comprising 66 galaxy clusters, groups and elliptical galaxies with high quality X-ray data. To each system we have fitted analytical profiles describing the gas density and temperature variation with radius, corrected for the effects of central gas cooling. We present an analysis of the scaling properties of these systems and focus in this paper on the gas distribution and M-T relation. In addition to clusters and groups, our sample includes two early-type galaxies, carefully selected to avoid contamination from group or cluster X-ray emission. We compare the properties of these objects with those of more massive systems and find evidence for a systematic difference between galaxy-sized haloes and groups of a similar temperature. We derive a mean logarithmic slope of the M-T relation within R_200 of 1.84+/-0.06, although there is some evidence of a gradual steepening in the M-T relation, with decreasing mass. We recover a similar slope using two additional methods of calculating the mean temperature. Repeating the analysis with the assumption of isothermality, we find the slope changes only slightly, to 1.89+/-0.04, but the normalization is increased by 30%. Correspondingly, the mean gas fraction within R_200 changes from (0.13+/-0.01)h70^-1.5 to (0.11+/-0.01)h70^-1.5, for the isothermal case, with the smaller fractional change reflecting different behaviour between hot and cool systems. There is a strong correlation between the gas fraction within 0.3*R_200 and temperature. This reflects the strong (5.8 sigma) trend between the gas density slope parameter, beta, and temperature, which has been found in previous work. (abridged)

A. J. R. Sanderson; T. J. Ponman; A. Finoguenov; E. J. Lloyd-Davies; M. Markevitch

2003-01-03T23:59:59.000Z

188

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

189

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

190

The final LDRD report for the project entitled: {open_quotes}Enhanced analysis of complex gas mixtures by pattern recognition of microsensor array signals{close_quotes}  

SciTech Connect (OSTI)

Microsensors do not have the selectivity to chemical species available in large laboratory instruments. This project employed arrays of catalytically gated silicon microsensors with different catalysts to create data streams which can be analyzed by pattern recognition programs. One of the most significant accomplishments of the program was the demonstration of that mixtures of H{sub 2} with the oxidants NO{sub x} and O{sub 2} could distinguished from one another by the use of different catalytic metals on the Sandia Robust Hydrogen (SRH) sensors and the newly developed pattern recognition algorithm. This sensor system could be used to identify explosive gas mixtures and analyze exhaust streams for pollution control.

Hughes, R.C.; Osbourn, G.C.

1996-09-01T23:59:59.000Z

191

Achieving greenhouse gas emission reductions in developing countries through energy efficient lighting projects in the Clean Development Mechanism (CDM)  

SciTech Connect (OSTI)

Energy efficiency can help address the challenge of increasing access to modern energy services, reduce the need for capital-intensive supply investments as well as mitigating climate change. Efficient lighting is a promising sector for improving the adequacy and reliability of power systems and reducing emissions in developing countries. However, these measures are hardly represented in the CDM portfolio. The COP/MOP decision to include programs of activities in the CDM could open the door to the implementation of a large number of energy efficiency projects in developing countries. Since GHG reductions are essentially the emission equivalent of energy savings, the CDM can benefit from long established energy efficiency methodologies for quantifying energy savings and fulfilling CDM methodological requirements. The integration of the CDM into energy efficiency programs could help spur a necessary transformation in the lighting market.

Figueres, C.; Bosi, M.

2006-11-15T23:59:59.000Z

192

Categorical Exclusion Determinations: Advanced Research Projects  

Broader source: Energy.gov (indexed) [DOE]

November 21, 2011 November 21, 2011 CX-007697: Categorical Exclusion Determination Autogrid, Inc. - Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation CX(s) Applied: A9, B1.7 Date: 11/21/2011 Location(s): New York, California Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007689: Categorical Exclusion Determination Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks CX(s) Applied: A9 Date: 11/18/2011 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy November 18, 2011 CX-007684: Categorical Exclusion Determination Texas Engineering Experiment Station - Robust Adaptive Topology Control

193

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

194

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

195

Natural Gas Vehicle Cylinder Safety, Training and Inspection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Natural Gas Vehicle Cylinder Safety, Training and Inspection Project Presentation from the U.S. DOE Office of...

196

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Broader source: Energy.gov (indexed) [DOE]

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

197

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

198

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

199

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

200

The Millennium Gas project aims to undertake smoothed-particle hydrodynamic resimulations of the Millennium Simulation, providing many hundred massive galaxy clusters for comparison with X-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at  

E-Print Network [OSTI]

. Abstract The Millennium Gas project aims to undertake smoothed-particle hydrodynamic-ray surveys (170 clusters with kTsl > 3 keV). This paper looks at the hot gas and stellar fractions-core systems but are successful in matching the hot gas profiles of non-cool-core clusters. Although

Thomas, Peter

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

202

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

203

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

204

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

205

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

206

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

207

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

208

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

209

Integrated Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of hydrogen from natural gas and opens the possibility of incorporating wind and solar energy effectively. To learn more about integrated technology validation projects now...

210

Japan to get Alaskan gas  

Science Journals Connector (OSTI)

Japan to get Alaskan gas ... More than $100 million will be invested overall in the project in which Japan will receive 50 billion cubic feet per year of liquefied natural gas from Alaska for 15 years, starting in 1969. ...

1966-07-25T23:59:59.000Z

211

The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474  

SciTech Connect (OSTI)

The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout the various decommissioning campaigns. The use of low force compaction for insulation and soft wastes provided a simple, robust and cost effective solution as did the direct encapsulation of LLW steel components in the later stages of reactor decommissioning. Progress through early campaigns was good, often bettering the baseline schedule, especially when undertaking the repetitive tasks seen during Neutron Shield and Graphite Core decommissioning, once the operators had become experienced with the equipment, though delays became more pronounced, mainly as a result of increased failures due to the age and maintainability of the RDM and associated equipment. Extensive delays came about as a result of the unsupported insulation falling away from the pressure vessel during removal and the inability of the ventilation system to manage the sub micron particulate generated during IPOPI cutting operations, though the in house development of revised and new methodologies ultimately led to the successful completion of PV and I removal. In a programme spanning over 12 years, the decommissioning of the reactor pressure vessel and core led to the production 110 ILW and 75 LLW WAGR boxes, with 20 LLW ISO freight containers of primary reactor wastes, resulting in an overall packaged volume of approximately 2500 cubic metres containing the estimated 460 cubic metres of the reactor structure. (authors)

Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

2012-07-01T23:59:59.000Z

212

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

213

EIA - Natural Gas Pipeline Network - Natural Gas Pipeline Development &  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelinesk > Development & Expansion Pipelinesk > Development & Expansion About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Development and Expansion Timing | Determining Market Interest | Expansion Options | Obtaining Approval | Prefiling Process | Approval | Construction | Commissioning Timing and Steps for a New Project An interstate natural gas pipeline construction or expansion project takes an average of about three years from the time it is first announced until the new pipe is placed in service. The project can take longer if it encounters major environmental obstacles or public opposition. A pipeline development or expansion project involves several steps: Determining demand/market interest

214

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

215

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

216

BNL experiment with gas jet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project: Study of Hot Electron Transport and Subsequent Ion Acceleration using Overdense Gas Jet Target and Ultrafast TW CO2 Laser System Vitaly Yakimenko, Igor Pogorelsky ATF,...

217

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

218

CX-003797: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project - Alternative Fueling Station in Rancho Cucamonga, California CX(s)...

219

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

220

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

222

Empirical Methods for Detecting Regional Trends and Other Spatial Expressions in Antrim Shale Gas Productivity, with Implications for Improving Resource Projections Using Local Nonparametric Estimation Techniques  

Science Journals Connector (OSTI)

The primary objectives of this research were to (1) investigate empirical methods for establishing regional trends in unconventional gas resources as exhibited by historical production data ... 80-acre cells) fro...

Timothy C. Coburn; Philip A. Freeman; Emil D. Attanasi

2012-03-01T23:59:59.000Z

223

Project 371  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

224

Project 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

225

Project311  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

226

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

227

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Beacon Power Beacon Power Corporation Smart Grid Demonstration Project Tyngsboro Massachusetts City of Painesville Smart Grid Demonstration Project City of Painesville Smart Grid Demonstration Project Painesville Ohio Duke Energy Business Services LLC Smart Grid Demonstration Project Duke Energy Business Services LLC Smart Grid Demonstration Project Charlotte North Carolina East Penn Manufacturing Co Smart Grid Demonstration Project East Penn Manufacturing Co Smart Grid Demonstration Project Lyon Station Pennsylvania Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Albuquerque New Mexico New York State Electric Gas Corporation Smart Grid Demonstration Project New York State Electric Gas Corporation Smart Grid Demonstration Project

228

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

229

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

230

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

231

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process) and KS-1 absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000MW Power Station and confirmed successful, long term demonstration following ?5000hours of operation in 200607 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

232

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

233

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

234

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

235

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

236

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

237

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

238

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

239

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

240

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On-Road Mobile Sources Project for the Houston-Galveston Area Council  

E-Print Network [OSTI]

Methodology for Assessing Greenhouse Gas Emissions and Assessing Mitigation Options for On reductions in GHG, and b) use analytical tools/methods to assess the emissions reductions possible through and prioritized based on factors such as cost effectiveness, potential for emission reductions, and applicability

242

Warm Gas Cleanup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Warm Gas Cleanup Warm Gas Cleanup NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 5 Project Description The Environmental Protection Agency (EPA) has established strict regulations for the trace contaminant emissions from integrated gasification combined cycle (IGCC) systems. The Department of Energy (DOE) performance goals for trace contaminant removal were selected to meet or exceed EPA's standard limits for contaminants, as well as to avoid poisoning of: the catalysts utilized in making liquids from fuel gas the electrodes in fuel cells selective catalytic reduction (SCR) catalysts The objective of the NETL's ORD Warm Gas Cleanup project is to assist in achieving both DOE and EPA targets for trace contaminant capture from coal gasification, while preserving the high thermal efficiency of the IGCC system. To achieve this, both lab and pilot-scale research is underway to develop sorbents capable of removing the following contaminants from high temperature syngas (up to 550°F):

243

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 26, 2012 January 26, 2012 The Office of Fossil Energy sponsored early research that refined more cost-effective and innovative production technologies for U.S. shale gas production -- such as directional drilling. By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet, representing nearly half of all U.S. natural gas production. | Image courtesy of the Office of Fossil Energy. Producing Natural Gas From Shale By 2035, EIA projects that shale gas production will rise to 13.6 trillion cubic feet. When you consider that 1 tcf of natural gas is enough to heat 15 million homes for one year, the importance of this resource to the nation becomes obvious. January 26, 2012 Natural Gas Production and U.S. Oil Imports Take a look at the Energy Information Administration's projections for

244

Natural Gas Weekly Update, Printer-Friendly Version  

Gasoline and Diesel Fuel Update (EIA)

projects have been proposed to import natural gas from neighboring countries. Natural Gas Transportation Update Northwest Pipeline Company on Wednesday, August 25, said it will...

245

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network [OSTI]

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant. (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

246

NETL: Gasification Archived Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Gasification Systems Reference Shelf - Archived Projects Archived Projects | Active Projects | All NETL Fact Sheets Feed Systems Reaction-Driven Ion Transport Membranes Gasifier Optimization and Plant Supporting Systems Coal/Biomass Gasification at Colorado School of Mines Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst Co-Production of Substitute Natural Gas/Electricity via Catalytic Coal Gasification Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development

247

Carbon Sequestration Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

248

Applications for Certificates for Electric, Gas, or Natural Gas  

Broader source: Energy.gov (indexed) [DOE]

Electric, Gas, or Natural Gas Electric, Gas, or Natural Gas Transmission Facilities (Ohio) Applications for Certificates for Electric, Gas, or Natural Gas Transmission Facilities (Ohio) < Back Eligibility Commercial Developer Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State Ohio Program Type Siting and Permitting Provider The Ohio Power Siting Board An applicant for a certificate to site a major electric power, gas, or natural gas transmission facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a reference for state and local governments and for the public. The applicant shall provide a statement explaining the need for the

249

Research Projects to Address Technical Challenges Facing Small...  

Energy Savers [EERE]

Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Research Projects to Address Technical...

250

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

251

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 20, 2012 Research Projects to Address Technical Challenges Facing Small Oil and Natural Gas Producers Selected by DOE for Further Development Nine new research projects aimed...

252

Multiproject baselines for evaluation of electric power projects  

E-Print Network [OSTI]

Natural gas Fuel Type Capacity Annual generation EmissionsFuel Coal a Hydroelectric Capacity (MW) Type Baseload Load-Following Annual generation (Fuel/Project Natural gas Coal Wind Project Type Capacity Annual generation

2003-01-01T23:59:59.000Z

253

CBM Project Status Update  

Broader source: Energy.gov (indexed) [DOE]

San Diego Gas & Electric Company. All copyright and trademark rights reserved. San Diego Gas & Electric Company. All copyright and trademark rights reserved. DOE Peer Review November 3, 2010 SDG&E Borrego Springs Microgrid Demonstration Project SDG&E RDSI Project Overview Slide #2 © San Diego Gas & Electric Company. All copyright and trademark rights reserved. Proprietary - Internal Work product SDG&E Borrego Springs Microgrid Project Summary Utilize advanced technologies to integrate and manage distributed resources within the Smart Grid Budget: $15.2M ($4.1M SDG&E, $7.5M DOE, $2.8M CEC, and $0.8M partners) Benefits: *Reduce the peak load of feeders and enhance system reliability *Accommodate various generation and storage configurations 2010 Goal: Successfully resolve DOE audit, negotiate contracts for remaining partners, and engage/inform

254

Project 253  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anna Lee Tonkovich Anna Lee Tonkovich Technical Contact Velocys, Inc. 7950 Corporate Blvd. Plain City, OH 43064 614-733-3330 tonkovich@velocys.com Sequestration UPGRADING METHANE STREAMS WITH ULTRA-FAST TSA Background Most natural gas streams are contaminated with other materials, such as hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and nitrogen. Effective processes for removal of H 2 S and CO 2 exist, but because of its relative inertness, nitrogen removal is more difficult and expensive. This project will focus on the separation of nitrogen from methane, which is one of the most significant challenges in recovering low-purity methane streams. The approach is based on applying Velocys' modular microchannel process technology (MPT) to achieve ultra-fast thermal swing adsorption (TSA). MPT

255

Project 270  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SILICON CARBIDE MICRO-DEVICES FOR SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS Description Reducing pollution and improving energy efficiency require sensitive, rugged sensors that can quantitatively detect gases that are produced in advanced combustion systems. Most materials cannot withstand the high temperature, chemically reactive environments encountered in power plants. This project is focused on developing solid state sensors based on the wide bandgap semiconductor silicon carbide (SiC), which can tolerate high temperatures and pressures as well as corrosive gases. Drawing upon the tools of semiconductor physics, surface science and chemistry, at the level of individual atoms and molecules, an understanding of the underlying physical mechanisms leading to

256

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

257

Philadelphia Navy Yard: UESC Project  

Broader source: Energy.gov (indexed) [DOE]

Navy Yard Navy Yard UESC project with PGW ESCO Perspective Presented by Christopher Abbuehl Constellation Energy Integrated Energy Company * Generation - 12,000+ megawatts of owned generating capacity (fossil, nuclear &renewable ) * Electric Commodity - 62 million MWH peak load served to retail power customers (2010) Trusted supplier to 2/3 of the Fortune 100 * Gas Commodity - 334 million mmBTUs of natural gas delivered in open retail markets (2010) * Owns Baltimore Gas and Electric ESCO Services * More than 25 years of comprehensive energy projects through performance contracting. * Over 4,000 Energy Savings Projects implemented for large governmental, institutional, and private sector customers Constellation Energy Key Facts 2 * Established: 1816 *

258

DOE Hydrogen Pipeline R&D Project Review Meeting | Department...  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Project, Paul Wang, Concurrent Technologies Corporation (partners: Air Products, Resource Dynamics Corp., EDO Fiber Science) Natural Gas Utilities Options...

259

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri 3 Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC Requirements: High Mass Flow Endwall Contouring, Leading Edge Filleting and Blade Tip Ejection under Roating Turbine Condition Texas A&M University Meinhard Schobeiri Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Aero/Heat Transfer Federal Project Manager: Robin Ames Project Objective: This project is advanced research designed to provide the gas turbine industry with a set of quantitative aerodynamic and film cooling effectiveness data essential to understanding the basic physics of complex secondary flows. This includes their influence on the efficiency and performance of gas turbines, and the impact that differing film cooling ejection arrangements have on suppressing the detrimental effect of these

260

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network [OSTI]

A10. Net Value of ITC for Landfill Gas (10% Nominal Discountbiomass, geothermal, landfill gas, municipal solid waste,biomass, geothermal, and landfill gas projects. Section 4

Bolinger, Mark

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network [OSTI]

A10. Net Value of ITC for Landfill Gas (10% Nominal Discountopen-loop biomass, geothermal, landfill gas, municipal solidbiomass, geothermal, and landfill gas projects. Section 4

Bolinger, Mark

2009-01-01T23:59:59.000Z

262

UK Oil and Gas Collaborative Doctoral Training Centre For applications to the University of Aberdeen  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre For applications. IMPORTANT In section 2 Programme The Oil and Gas projects are all being BOX: PUT Oil and Gas CDT and the name of the project you're interested

Levi, Ran

263

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

264

Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979  

SciTech Connect (OSTI)

This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

Manilla, R.D. (ed.)

1980-04-01T23:59:59.000Z

265

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Broader source: Energy.gov (indexed) [DOE]

Partners Patson-Exel-Diageo City of Chicago Richard M. Daley Mayor Vehicles -12 CNG conversions Infrastructure -1 new public CNG station Project Partners Peoples Gas ...

266

The Geopolitics of Oil, Gas, and Ecology in the Caucasus and Caspian Sea Basin. 1998 Caucasus Conference Report.  

E-Print Network [OSTI]

Energy Agency, Caspian Oil and Gas. Paris: Energy Charterforecasting studies on oil and gas projects in Kazakhstan33 Map of oil and gas

Garcelon, Marc; Walker, Edward W.; Patten-Wood, Alexandra; Radovich, Aleksandra

1998-01-01T23:59:59.000Z

267

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Electric Company Smart Grid Project Atlantic City Electric Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Consolidated Edison Company of New York Inc Smart Grid Project Consolidated Edison Company of New York Inc Smart Grid Project New York New York New Jersey El Paso Electric Smart Grid Project El Paso Electric Smart Grid Project El Paso Texas New Mexico Hawaii Electric Co Inc Smart Grid Project Hawaii Electric Co Inc Smart Grid Project Oahu Hawaii Memphis Light Gas and Water Division Smart Grid Project Memphis Light Gas and Water Division Smart Grid Project Memphis Tennessee Municipal Electric Authority of Georgia Smart Grid Project Municipal

268

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Baltimore Gas Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid Project Houston Texas Central Maine Power Company Smart Grid Project Central Maine Power Company Smart Grid Project Augusta Maine Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Wyoming City of Fulton Missouri Smart Grid Project City of Fulton Missouri

269

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Atlantic City Electric Company Smart Grid Project Mays Landing New Jersey Maryland District of Columbia Avista Utilities Smart Grid Project Avista Utilities Smart Grid Project Spokane Washington Idaho Baltimore Gas and Electric Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado Burbank Water and Power Smart Grid Project Burbank Water and Power Smart Grid Project Burbank California CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid

270

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

271

Challenges and strategies of shale gas development.  

E-Print Network [OSTI]

??The objective of this paper is to help new investors and project developers identify the challenges of shale gas E&P and to enlighten them of (more)

Lee, Sunje

2012-01-01T23:59:59.000Z

272

Special Report Post-project  

E-Print Network [OSTI]

to check tbat proper controls are in place wbile a project is in operation. When our managers audit an oil refinery, for example, tbey gatber detailed informa- tion about how the oil and gas is col- lected

Rudowsky, Ira

273

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

274

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital

275

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

276

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

277

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

278

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

279

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

280

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

282

NETL Project Fact Sheets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Fact Sheets Project Fact Sheets Advanced Research Development of a Two-Fluid Drag Law for Clustered Particles Using Direct Numerical Simulation and Validation through Experiments [PDF-942KB] (Feb 2012) Uncertainty Quantification Tools for Multiphase Gas-Solid Flow Simulations using MFIX [PDF-557KB] (Feb 2012) Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments [PDF-357KB] (Dec 2011) Model-Based Optimal Sensor Network Design for Condition Monitoring in an IGCC Plant [PDF-494KB] (Nov 2011) Development of Metal Oxide Nanostructure-Based Optical Sensors for Fossil Fuel Derived Gas Measurement at High Temperature [PDF-726KB] (Oct 2011) Adaptable Sensor Packaging for High Temperature Fossil Fuel Energy Systems [PDF-441KB] (Oct 2011)

283

Gas Separations using Ceramic Membranes  

SciTech Connect (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

284

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Sources » Fossil » Natural Gas Energy Sources » Fossil » Natural Gas Natural Gas November 20, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG Facility to Export Liquefied Natural Gas The Department of Energy announced the conditional authorization for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC to export liquefied natural gas to countries that do not have a Free Trade Agreement with the U.S. This is the fifth conditional authorization the Department has announced. October 31, 2013 Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project

285

Gas to Liquid Technologies  

Science Journals Connector (OSTI)

The liquefaction energy required in a LNG plant typically has been reported as 912% of the heat energy in the natural gas, and 910% energy shrinkage is ... energy. LNG projects have a very high capital cost, in...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

286

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

287

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

288

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

289

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

290

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base...

rroames

2010-01-12T23:59:59.000Z

291

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

292

Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based  

E-Print Network [OSTI]

,931.44 Total Project Cost $98,931.44 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle, 2014 ­ October 31, 2015 Brief Description of Research Project Current greenhouse gas emissions

California at Davis, University of

293

CX-008869: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Gas Technology Institute- Commercial Prototype Adsorbed Natural Gas System for Light Duty Vehicles CX(s) Applied: B3.6 Date: 08/20/2012 Location(s): Illinois, Illinois Offices(s): Advanced Research Projects Agency-Energy

294

Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

(Gas) - Commercial Natural Gas Efficiency (Gas) - Commercial Natural Gas Efficiency Rebate Program Montana-Dakota Utilities (Gas) - Commercial Natural Gas Efficiency Rebate Program < Back Eligibility Commercial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $300 Custom: Varies by project Provider Montana-Dakota Utilities Co. Montana-Dakota Utilities (MDU) offers rebates on energy efficient natural gas furnaces to its eligible commercial customers. New furnaces are eligible for a rebate incentive between $150 and $300, if the equipment meets program efficiency standards. Furnaces with AFUE between 92% of 95% are eligible for rebates if they are being installed as replacement units

295

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

296

Gas Turbine Manufacturers Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

297

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

298

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

299

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso 65 Hafnia-based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology University of Texas -- El Paso Chintalapalle Ramana Project Dates: 9/30/2009 - 9/30/2011 Area of Research: Materials Federal Project Manager: Briggs White Project Objective: This project is focused on developing novel coatings for high-H2 fired gas turbine components such that high efficiencies and long lifetimes may be acheived in Integrated Gasification Combined Cycle (IGCC) powerplants. Nanostructured Hafnia-based coatings will be develped for thermal barrier coatings (TBCs). A fundamental understanding of TBCs will be aquired and a knowledge database of next generation TBC materials with high-temperature tolerance, durability, and reliability will be generated.

300

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado 6 High Pressure Kinetics of Syngas and Nearly Pure Hydrogen Fuels Univ of Colorado John Daily Project Dates: 8/1/2007 - 9/30/2010 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: The goal of this project is to develop the necessary chemical kinetics information to understand the combustion of syngas and nearly pure hydrogen fuels at conditions of interest in gas turbine combustion. Objectves are to explore high-pressure kinetics by making detailed composition measurements of combustion intermediates and products in a flow reactor using molecular beam/mass spectrometry (MB/MS) and matrix isolation spectroscopy (MIS), to compare experimental data with calculations using existing mechanisms, and to use theoretical methods to

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

302

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Oil Plays in Utah and Vicinity/PUMP 2 Major Oil Plays in Utah and Vicinity/PUMP 2 DE-FC26-02NT15133 Goal The primary goal of this study is to increase recovery of oil reserves from existing reservoirs and from new discoveries by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. The overall objectives of this study are to: 1) increase recoverable oil from existing reservoirs, 2) add new discoveries, 3) prevent premature abandonment of numerous small fields, 4) increase deliverability through identifying the latest drilling, completion, and secondary/tertiary recovery techniques, and 5) reduce development costs and risk. Performer Utah Geological Survey (UGS), Salt Lake City, UT

303

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

304

Project Catalyst | Open Energy Information  

Open Energy Info (EERE)

Project Catalyst Project Catalyst Jump to: navigation, search Name Project Catalyst Agency/Company /Organization ClimateWorks, European Climate Foundation Sector Climate, Energy, Land Focus Area Energy Efficiency, Forestry Website http://www.project-catalyst.in References Project Catalyst[1] Project Catalyst Screenshot Contents 1 About 2 Resources 2.1 Tools 2.2 Programs 3 References About "Project Catalyst is an initiative of the ClimateWorks Foundation. ClimateWorks is a global, nonprofit philanthropic foundation headquartered in San Francisco, California with a network of affiliated foundations in China, India, the US, and the European Union. The ClimateWorks family of organizations focus on enacting policies that reduce greenhouse gas emissions through three general policy areas: energy efficiency standards,

305

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

306

Optimization of the gas production rate by marginal cost analysis: Influence of the sales gas pressure, gas price and duration of gas sales contract  

Science Journals Connector (OSTI)

Abstract The development of a gas field requires accurate planning, but the gas production rate is one of the main challenges in determining the feasibility of a gas project. An optimum gas production rate is determined not only by the gas reserve and reservoir characteristics but also by the consumer's requirements of the sales gas pressure, duration of the gas sales contract and gas price. This paper presents a gas production optimization model based on the marginal cost approach to maximize economic profit using a case study in the Donggi gas field. The results reveal that increasing the sales gas pressure and gas price raises the optimum gas production rate and increases the maximum profit; meanwhile, increasing the duration of a gas sales contract will reduce the optimum gas production rate and reduce or increase the maximum profit depending on the gas reserve and reservoir characteristics. This work clearly shows the relationship between the user's requirements and optimum gas production rate, which is an important piece of information for negotiating the gas price and planning production.

Suprapto Soemardan; Widodo Wahyu Purwanto; Arsegianto

2014-01-01T23:59:59.000Z

307

Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

308

Projection Systems  

Science Journals Connector (OSTI)

As a general rule, broad-band sources which employ projection optics are the most difficult to evaluate. In addition to the problems encountered in evaluating exposed lamps, one must characterize the projected...

David Sliney; Myron Wolbarsht

1980-01-01T23:59:59.000Z

309

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied...

310

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

311

ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MICROTURBINE PROJECT MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC March 31, 1998 ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT Stacy & Stacy Consulting, LLC Prepared for: INDUSTRY PUBLICATION Prepared by: MICHAEL J. TAYLOR Project Manager March 31, 1998 JO 850200 : FC 980009 ABSTRACT The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a demonstration of gas-fired, integrated microturbine systems at the Department of Energy's Naval Petroleum Reserve No. 3 (NPR-3), in partnership with Stacy & Stacy Consulting, LLC (Stacy & Stacy). The project encompassed the testing of two gas microturbine systems at two oil-production wellsites. The microturbine-generators were fueled directly by casinghead gas to power their beam-pumping-unit motors. The system at well 47-A-34 utilized the casinghead sweet gas (0-ppm

312

Natural Gas Program Archive (Disk1)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eastern U.S. Gas Eastern U.S. Gas Shales Eastern U.S. Gas Eastern U.S. Gas Shales Shales Program Program This DVD contains information related to research and development (R&D) undertaken by the U.S. Department of Energy (DOE) during the 1976-1995 time period. This R&D focused on improving industry understanding of ways to locate and produce natural gas from the fractured organic gas shales of the Eastern U.S. A second DVD is also available that includes similar information related to the five other R&D programs targeting unconventional natural gas during roughly the same time frame: Western U.S. Gas Sands (1977-1992), Methane Recovery from Coalbeds (1978-1982), Methane Hydrates (1982-1992), Deep Source Gas Project (1982-1992), and Secondary Gas Recovery (1987-1995). The following items are found on this DVD.

313

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

314

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

315

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

316

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

317

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

318

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

319

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

320

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

322

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

323

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

324

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

325

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

326

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

327

Energy Efficiency Project Development  

SciTech Connect (OSTI)

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

328

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

329

A Collaborative Industry-MDRU Research Project Available for Sponsorship  

E-Print Network [OSTI]

to permanently trap the green- house gas carbon dioxide (CO2 ) thus affording environmental and regulatory, and accelerate mineralization from CO2 -rich (10-100%) gas streams at rates commensurate with mine greenhouse gas in CO2 -rich gas streams from point sources such as power plants Project goals 1-3 will be evaluated

Michelson, David G.

330

NETL: Turbines - UTSR Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University 2 An Experimental and Chemical Kinetics Study of the Combustion of Synga and High Hydrogen Content Fuels Penn State University & Princeton University Robert Santoro (PSU), Fred Dryer (Princeton), & Yiguang Ju (Princeton) Project Dates: 10/1/2009 - 9/30/2012 Area of Research: Combusion Federal Project Manager: Mark Freeman Project Objective: To resolve the recently noted difficulties observed in the ability of existing elementary kinetic models to predict experimental ignition delay, burning rate, and homogenous chemical kinetic oxidation characteristics of hydrogen and hydrogen/carbon monoxide fuels with air and with air diluted with nitrogen and/or carbon dioxide at pressures and dilutions in the range of those contemplated for gas turbine applicaitons

331

San Luis Transmission Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Luis Transmission Project EIS/EIR Luis Transmission Project EIS/EIR San Luis Transmission Project EIS/EIR Western proposes to construct, own, operate, and maintain a new 230-kilovolt transmission line about 62 miles in length between Western's Tracy Substation and Western's San Luis Substation and a new 70-kV transmission line about 5 miles in length between the San Luis and O'Neill Substations. Western also will consider other transmission construction options including: A new 500-kV transmission line about 62 miles in length operated at 230-kV between Western's Tracy and San Luis Substations; A new 500-kV transmission line operated at 500-kV about 62 miles in length between the Tracy Substation and Pacific Gas and Electric's Los Banos Substation; and A new 230-kV transmission line about 18 miles in length between San Luis Substation and Dos Amigos Substation.

332

Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions  

E-Print Network [OSTI]

Mountains National Park Biodiesel (B50) Tanks1,3 $33,681 $13,204 $46,885 -16 18 110 11 Duke Energy 2 Hybrid 555 3634 332 2007 CFAT Projects(12 projects) City of Hickory 1 Natural Gas Vehicle - Honda Civic GX6 with Crankcase Filtration System2 $24,671 $6,168 $30,839 0 115 828 85 Holmes Oil Co. ** E85 infrastructure1,7 $42

333

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

334

Category:Smart Grid Investment Grant Projects | Open Energy Information  

Open Energy Info (EERE)

Investment Grant Projects Investment Grant Projects Pages in category "Smart Grid Investment Grant Projects" The following 98 pages are in this category, out of 98 total. A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project B Baltimore Gas and Electric Company Smart Grid Project Black Hills Power, Inc. Smart Grid Project Black Hills/Colorado Electric Utility Co. Smart Grid Project Burbank Water and Power Smart Grid Project C CenterPoint Energy Smart Grid Project Central Lincoln People's Utility District Smart Grid Project Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project

335

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project > GTI focuses on energy & environmental issues ­ Specialize on natural gas & hydrogen > Our main Natural Gas Gas Hydrates Kent Perry Executive Director Exploration & Production Technology Distributed

336

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2011  

Broader source: Energy.gov [DOE]

Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

337

Project Hindsight  

Science Journals Connector (OSTI)

...and extended the life of the engine com-pared...blades employed in the turbine engine-that drives...1943, to prevent gas "clean-up" due...compensate for the residual hydrogen clean-up...study of the hydrogen gas discharge and its ef-fect on tube life, were able to develop...

Chalmers W. Sherwin; Raymond S. Isenson

1967-06-23T23:59:59.000Z

338

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network [OSTI]

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

Williams, C.

2004-01-01T23:59:59.000Z

339

EIS-0487: Freeport LNG Liquefaction Project, Brazoria County...  

Energy Savers [EERE]

environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal...

340

Secretary Moniz Announces New Biofuels Projects to Drive Cost...  

Energy Savers [EERE]

waste materials and algae can directly replace gasoline and other fuels in our gas tanks and refineries. The research projects announced today build on the Energy Department's...

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Announces $14 Million Industry Partnership Projects to Increase...  

Broader source: Energy.gov (indexed) [DOE]

particulate matter and nitrous oxides sensors suitable to support an exhaust gas recirculation control system in diesel engines. The project will include validation and...

342

Southwest Engineers participates in North Dakota fracking project  

Science Journals Connector (OSTI)

Southwest Engineers Inc is working with Earthwater Resources Inc on a major project in the Bakken Shale oil and gas zone in North Dakota, USA.

2013-01-01T23:59:59.000Z

343

Energy Department Announces Clean Cities Projects to Diversify...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to...

344

EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana ...  

Office of Environmental Management (EM)

the potential environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating...

345

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

346

The Mississippi CCS Project  

SciTech Connect (OSTI)

The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

Doug Cathro

2010-09-30T23:59:59.000Z

347

Project Information Form Project Title Environmentally Friendly Driving Feedback Systems Research and  

E-Print Network [OSTI]

Provided (by each agency or organization) Caltrans $136,000 Total Project Cost $136,000 Agency IDProject Information Form Project Title Environmentally Friendly Driving Feedback Systems Research of Research Project Among several strategies to reduce fuel consumption and greenhouse gas emissions from

California at Davis, University of

348

The secondary recovery project at Ogharefe Field, Nigeria  

SciTech Connect (OSTI)

A secondary recovery project involving water injection and gas-lift facilities was installed in the Ogharefe field in 1979 following detailed reservoir simulation studies. Two years' operation provides the opportunity to discuss the progress of the project so far.

Aron, D.; Ashbourne, T.J.; Oloketuyi, D.O.

1984-04-01T23:59:59.000Z

349

Category:OpenEI Projects | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas P cont. OpenEI:ProjectsPublic Resources OpenEI:ProjectsSearch Engine Optimization Retrieved from "http:en.openei.orgwindex.php?titleCategory:OpenEIProjects&old...

350

Fuel Cell Applied Research Project  

SciTech Connect (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

351

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

352

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

353

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

354

Discontinued Projects  

Broader source: Energy.gov [DOE]

This page lists projects that received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

355

project management  

National Nuclear Security Administration (NNSA)

the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply tanks and associated pumping facilities were added. Later in the project, an additional...

356

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Incentive Payment - The ESIP works with utility, industry, and BPA to complete the measurement and verification, reporting and development of a custom project completion...

357

Demonstration of a Low-NOx Heavy-Duty Natural Gas Engine  

SciTech Connect (OSTI)

Results of a Next Generation Natural Gas Vehicle engine research project: A Caterpillar C-12 natural gas engine with Clean Air Power Dual-Fuel technology and exhaust gas recirculation demonstrated low NOx and PM emissions.

Not Available

2004-02-01T23:59:59.000Z

358

Philadelphia Gas Works: Whos on First?  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingabout the Philadelphia Gas Works (PGW) and its federal projects.

359

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

360

Laboring Lesbians at Gas Stations: Pumping the "Good Life".  

E-Print Network [OSTI]

?? This dissertation project is an interdisciplinary exploration of laboring lesbian bodies within the context of U.S. gas stations. I begin with an investigation of (more)

Tweedy, Amy Jo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

362

oil-gas-announcements | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil and Gas Announcements Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Oil Operators Gain Powerful,...

363

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Whistling Ridge Energy Project Bonneville Power...

364

US10 Capable Prototype Volvo MG11 Natural Gas Engine Development: Final Report, December 16, 2003 - July 31, 2006  

SciTech Connect (OSTI)

The report discusses a project to develop a low-emissions natural gas engine with exhaust gas recirculation (EGR) and a three-way catalyst (TWC).

Tai, C.; Reppert, T.; Chiu, J.; Christensen, L.; Knoll, K.; Stewart, J.

2006-10-01T23:59:59.000Z

365

Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas-Fired Absorption Gas-Fired Absorption Heat Pump Water Heater Research Project to someone by E-mail Share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Facebook Tweet about Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Twitter Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Google Bookmark Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Delicious Rank Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on Digg Find More places to share Building Technologies Office: Gas-Fired Absorption Heat Pump Water Heater Research Project on AddThis.com...

366

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction .  

E-Print Network [OSTI]

??In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic (more)

Abdollahi, Farhang

2013-01-01T23:59:59.000Z

367

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

E-Print Network [OSTI]

decision support tool for landfill gas-to energy projects,industrial emissions e. Landfills f. Solid waste treatmentreductions Forests, dairy, landfills 75% overall savings HFC

Greenblatt, Jeffery B.

2014-01-01T23:59:59.000Z

368

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

369

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

370

NETL: News Release - DOE Projects to Advance Environmental Science and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology Nine Unconventional Natural Gas Projects Address Water Resource and Management Issues Washington, D.C. - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and to support science that will aid the regulatory and permitting processes required for shale gas development. A primary goal of Fossil Energy's Oil and Natural Gas Program is to enhance the responsible development of domestic natural gas and oil resources that supply the country's energy. A specific objective is to accelerate the development and demonstration of technologies that will aid our country's independent producers in dealing with use and treatment of water related to natural gas and oil production.

371

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

372

Project title:  

Broader source: Energy.gov (indexed) [DOE]

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

373

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

374

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

375

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

376

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

377

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

378

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

379

Issues and Trends: Natural Gas - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Issues and Trends: Natural Gas Issues and Trends: Natural Gas Updated: November 25, 2013 For prior report data see Natural Gas Year-in-Review archives EIA's Natural Gas Issues and Trends highlights timely information and analyses on natural gas markets. Natural gas prices reflect decreasing seasonality. Today in Energy, November 20, 2013 Increased Northeast natural gas production reduces net inflow of supply from other areas. Today in Energy, November 19, 2013 Gas pipeline expansions reduce Marcellus backup, New York gas prices. Natural Gas Weekly Update, November 13, 2013 EIA projects lower natural gas use this winter. Natural Gas Weekly Update, October 31, 2013 Northeast net imports from Canada plummet, driven by export growth at Niagara Falls. Natural Gas Weekly Update, October 10, 2013

380

Project 281  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANALYSIS OF DEVONIAN BLACK SHALE IN ANALYSIS OF DEVONIAN BLACK SHALE IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION Background Global climate change is an area of increasing concern, and many scientists believe the cause is due, at least in part, to increased emissions of CO 2 , especially from the combustion of fossil fuels. These concerns are driving initiatives to develop carbon management technologies. One promising approach is geologic sequestration of CO 2 . Options being investigated include sequestration in saline aquifers, oil and gas reservoirs, and unminable coal seams In analogy with sequestration in coal seams, another option may be sequestration in Devonian black shales, organic-rich rocks that serve as both a source and trap for natural gas. Most of the natural gas is

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Working gas in storage is estimated to have been about 2,425 billion cubic feet at the end of November, 14% below the previous 5-year average. The current outlook for winter demand and supply suggests that storage is headed for record lows this winter if weather is normal or colder than normal. In the base case, we project that gas storage will fall to about 640 billion cubic feet at the end of the heating season (March 31, 2001). The previous record low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide additional gas in preparation for the subsequent winter season.

382

Active NEPA Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Active NEPA Projects Active NEPA Projects Active NEPA Projects List of Active NEPA Projects EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities. Last Update: January 8, 2014 EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated

383

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect (OSTI)

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

384

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

385

MDU Solar Energy Project Case Study  

Broader source: Energy.gov (indexed) [DOE]

MDU Solar Energy Project MDU Solar Energy Project Case Study A Partnership between Ellsworth AFB and MDU Resources Group, Inc.  Based in Bismarck, North Dakota  Celebrated our 85 th year in 2009  NYSE - MDU for over 60 years  Over $4B market cap  Fortune 500 Company  Member of the S&P MidCap 400 Index  Over 8,000 employees in 44 states  Business Lines:  Energy  Utility Resources  Construction Materials  Construction Materials  Energy  Oil and Gas Production  Utility Resources  Natural Gas Pipelines  Construction Services  Electric / Natural Gas Utilities  Utility Resources  Montana - Dakota Utilities Co.  Cascade Natural Gas Co.  Intermountain Gas Corporation  Great Plains Natural Gas Co.  About 950,000 customers  ND, SD, WY, MT, WA, OR, ID, MN

386

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

387

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

388

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

389

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

390

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

391

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

392

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

393

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

394

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Market  

Gasoline and Diesel Fuel Update (EIA)

Oil and natural Gas Oil and natural Gas Annual Energy Outlook 2007 with Projections to 2030 Oil and Natural Gas Figure 67. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Figure 67. Total natural gas consumption, 1990-2030 (trilliion cubic feet). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Projected Natural Gas Use for Electricity Generation Peaks in 2020 Total natural gas consumption in the United States is projected to increase from 22.0 trillion cubic feet in 2005 to 26.1 trillion cubic feet in 2030 in the AEO2007 reference case. Much of the growth is expected before 2020, with demand for natural gas in the electric power sector growing from 5.8

395

EPA's Liquefied Natural Gas Regulatory Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquefied Natural Gas Liquefied Natural Gas Regulatory Roadmap July 2006 EPA230-B-06-001 About this Roadmap Natural gas continues to play an important role in meeting our nation's growing energy needs. In 2005, natural gas accounted for 23% of our nation's total energy consumption. 1 The Department of Energy's Energy Information Administration (EIA) projects that domestic consumption of natural gas will continue to increase and that imports of liquefied natural gas (LNG) will meet much of the increased demand. 2 LNG, created when natural gas is converted into a liquid state by cooling it to a temperature close to negative 260°F, presents an efficient way to transport natural gas via ship from foreign production areas to the United States. The cooling process reduces the

396

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

397

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

398

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

399

LUCF Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

400

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

402

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

403

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

404

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

405

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

406

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

407

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

408

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

409

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

410

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

411

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

412

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

413

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

414

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

415

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

416

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

417

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

418

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

419

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

420

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

422

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

423

Header with Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

42648 - Micro-Mixing Lean Premix Systems for Ultra-Low Emission 42648 - Micro-Mixing Lean Premix Systems for Ultra-Low Emission Hydrogen/Syngas Combustion 12/15/2006 FACT SHEET I. PROJECT PARTICIPANTS Parker Hannifin Corporation (Lead) Gas Turbine Fuel Systems Division, 9200 Tyler Blvd., Mentor OH 44060 PI: Dr. Adel Mansour (e-mail: amansour@parker.com, Ph.: 440-954-8171) University of California at Irvine UCI Combustion Laboratory, Irvine, CA 92617 Solar Turbines Incorporated 2200 Pacific Highway, San Diego CA 92101 II. PROJECT DESCRIPTION A. Objective(s) The overall objective of this DOE-Supported research and development program is to develop and test a next-generation, practical and scalable, high-performing, multi-point injector module for hydrogen and syngas fuels. The injector will use Parker Hannifin's

424

Header with Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shock Wave Compression rev060908, 6/14/06, rev 9/8/06 Shock Wave Compression rev060908, 6/14/06, rev 9/8/06 FACT SHEET Rampressor Shock Wave Compressor , DE-FC26-06NT42651 (Ramgen Power Systems, RPS) I. PROJECT PARTICIPANTS A. Prime Participant: Ramgen Power Systems, Inc (RPS) under cooperative Agreement DE-FC26-06NT42651 B. Sub-Award Participants: ASE Technologies (ASE), Manufacturing Resources Inc. (MRI), Geminus Technologies Development (GTD), Steve Kushnick, P.E., Alouette Technology. II. PROJECT DESCRIPTION A. Objective(s): Based on aerospace ramjet technology, Ramgen Power Systems is developing a novel more cost effective compressor concepts (air and carbon dioxide) for support of coal fueled gasification stationary power applications and for potential replacement of the compressor component in gas turbines.

425

Expansion of the U.S. Natural Gas Pipeline Network:  

Gasoline and Diesel Fuel Update (EIA)

Expansion of the U.S. Natural Gas Pipeline Network: Expansion of the U.S. Natural Gas Pipeline Network: Additions in 2008 and Projects through 2011 This report examines new natural gas pipeline capacity added to the U.S. natural gas pipeline system during 2008. In addition, it discusses and analyzes proposed natural gas pipeline projects that may be developed between 2009 and 2011, and the market factors supporting these initiatives. Questions or comments on this article should be directed to Damien Gaul at damien.gaul@eia.doe.gov or (202) 586-2073. Robust construction of natural gas infrastructure in 2008 resulted in the completion of 84 pipeline projects in the lower 48 States, adding close to 4,000 miles of natural gas pipeline. These completions of new natural gas pipelines and expansions of existing pipelines in the United States

426

CX-011737: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Gas Technology Institute - Dual Electrolyte Extraction Electro-Refinery for Aluminum Production CX(s) Applied: B3.6 Date: 10/23/2013 Location(s): Illinois Offices(s): Advanced Research Projects Agency-Energy

427

CX-008868: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Gas Technology Institute- Nano-Valved Adsorbents for CH4 Storage CX(s) Applied: B3.6 Date: 08/20/2012 Location(s): Illinois, Kentucky, South Carolina Offices(s): Advanced Research Projects Agency-Energy

428

CX-008871: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

SRI International- Container-less Natural Gas Storage CX(s) Applied: B3.6 Date: 08/29/2012 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

429

CX-002623: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002623: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas StationStore 412 CX(s) Applied: B5.1 Date: 06102010 Location(s): Harrisburg,...

430

CX-002622: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas StationStore 426 CX(s) Applied: B5.1 Date: 06102010 Location(s): Carlisle,...

431

CX-002625: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas StationStore 191 CX(s) Applied: B5.1 Date: 06102010 Location(s): Carlisle,...

432

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

433

EIA - AEO2010 - Comparison With Other Projections  

Gasoline and Diesel Fuel Update (EIA)

Comparison With Other Projections Comparison With Other Projections Annual Energy Outlook 2010 with Projections to 2035 Comparison With Other Projections Only IHS Global Insights, Inc. (IHSGI) produces a comprehensive energy projection with a time horizon similar to that of AEO2010. Other organizations, however, address one or more aspects of the U.S. energy market. The most recent projection from IHSGI, as well as others that concentrate on economic growth, international oil prices, energy consumption, electricity, natural gas, petroleum, and coal, are compared here with the AEO2010 projections. Economic growth Projections of the average annual growth rate of real GDP in the United States from 2008 to 2018 range from 2.1 percent to 2.8 percent (Table 9). In the AEO2010 Reference case, real GDP grows by an average of 2.2 percent per year over the period, lower than projected by the Office of Management and Budget (OMB), the Congressional Budget Office (CBO), the Social Security Administration (SSA), and the Bureau of Labor Statistics (BLS)—although none of those projections has been updated since August 2009. The AEO2010 projection is similar to the IHSGI projection and slightly higher than projections by the Interindustry Forecasting Project at the University of Maryland (INFORUM). In March 2009, the consensus Blue Chip projection was for 2.2-percent average annual growth from 2008 to 2018.

434

Preparing for Project Implementation Financing Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

435

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 DE-FE26-06NT42877, DE-FC26-02NT41628, and DE-FC26-00NT40920 Goal The goal of this project is to conduct activities leading to the development, implementation, and operation of a remote, multi-sensor seafloor observatory focused on behavior of the marine hydrocarbon system within the gas hydrate stability zone of the deepwater Gulf of Mexico and analysis of data resultant from that observatory over time. Attaining this goal will lead to an enhanced understanding of the role the hydrocarbon system plays in the environment surrounding the site. Investigations include physical, chemical, and microbiological studies. Models developed from these studies are designed to provide a better understanding of gas

436

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

437

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

438

Category:Smart Grid Projects - Advanced Metering Infrastructure | Open  

Open Energy Info (EERE)

Metering Infrastructure Metering Infrastructure Jump to: navigation, search Smart Grid Projects - Advanced Metering Infrastructure category Pages in category "Smart Grid Projects - Advanced Metering Infrastructure" The following 31 pages are in this category, out of 31 total. A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project B Baltimore Gas and Electric Company Smart Grid Project Black Hills Power, Inc. Smart Grid Project Black Hills/Colorado Electric Utility Co. Smart Grid Project C CenterPoint Energy Smart Grid Project Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and Power Smart Grid Project City of Quincy, FL Smart Grid Project City of Westerville, OH Smart Grid Project

439

Project Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

440

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

442

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

443

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

444

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

445

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

446

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

447

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

448

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

449

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

450

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

451

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

452

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

453

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

454

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

455

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

456

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

457

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

458

Natural Gas Annual 2010 (NGA) - With Data for 2010  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See All Natural Gas Reports Natural Gas Annual With Data for 2010 | Release Date: December 29, 2011 | Next Release: December 29, 2012 | full report Data Tablesall tables Overview 1 Summary Statistics for Natural Gas in the United States PDF CSV 2 Natural Gas Production, Transmission, and Consumption by State PDF CSV Supplies 3 Gross Withdrawals and Marketed Production of Natural Gas by State and the Gulf of Mexico PDF CSV 4 Offshore Gross Withdrawals of Natural Gas by State and the Gulf of Mexico PDF CSV 5 Number of Producing Gas Wells by State and the Gulf of Mexico PDF CSV 6 Wellhead Value and Marketed Production of Natural Gas, and by State PDF CSV 7 Natural Gas Processed, Liquids Extracted, and Estimated Extraction Loss by State PDF CSV

459

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

460

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

462

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

463

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

464

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

465

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

466

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

19 19 Notes: Working gas in storage is estimated to have been below 1,800 billion cubic feet at the end of December, more than 20% below the previous 5-year average. The estimated end-year level is the lowest for the period of time that EIA has records. The current outlook for winter demand and supply suggests that storage is likely to remain very low this winter. In the base case, we project that gas storage will fall to about 470 billion cubic feet at the end of the heating season (March 31, 2001). The previous 30-year observed low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide

467

Natural Gas | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 25, 2013 March 25, 2013 Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Data from Alaska Test Could Help Advance Methane Hydrate R&D Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future. March 22, 2013 ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers Two New ARPA-E Programs Will Engage Nation's Brightest Scientists, Engineers and Entrepreneurs in Research Competition to Improve Vehicle Manufacturing Techniques and Natural Gas Conversion January 10, 2013 Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA.

468

NETL: News Release - New Projects to Investigate Smart Drilling Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

469

Annual Energy Outlook with Projections to 2025-Market Trends - Oil and  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Oil and Natural Gas Index (click to jump links) Natural Gas Consumption and Prices Natural Gas Production Natural Gas Imports and Wellhead Prices Natural Gas Alternative Cases Oil Prices and Reserve Additions Oil Production Alaskan Oil Production and Oil Imports Petroleum Refining Refined Petroleum Products Natural Gas Consumption and Prices Projected Increases in Natural Gas Use Are Led by Electricity Generators Figure 85. Natural gas consumption by end-use sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total natural gas consumption is projected to increase from 2002 to 2025 in all the AEO2004 cases. The projections for domestic natural gas consumption in 2025 range from 29.1 trillion cubic feet per year in the low economic

470

INCITE Projects 2012 INCITE Projects  

E-Print Network [OSTI]

: 4 Million Hours Large-Eddy Simulation of Two-Phase Flow Combustion in Gas Turbines Thierry Poinsot-to-Cirrus Transition Roberto Paoli, CERFACS Allocation: 20 Million Hours Climate-Science Computational Development Team Hours Energy Technologies Optimization of Complex Energy System Under Uncertainty Mihai Anitescu

Kemner, Ken

471

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

472

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

473

Project 106  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Large Format Single Large Format Tube Tester Large Format OTM Tubes Multi-tube Pilot Plant Reactor, P-1 DEVELOPMENT OF OXYGEN TRANSPORT MEMBRANE (OTM) FOR PRODUCTION AND TESTING OF SYNTHESIS GAS-DERIVED ULTRA-CLEAN FUELS Description Natural gas is an attractive feedstock for the production of ultra-clean fuels (UCF) because it is abundant and inexpensive, and can be converted into a number of sulfur free fuels including diesel, gasoline, dimethyl ether and derivatives, methanol and other oxygenates that can be used within the existing fuel distribution infrastructure. These fuels, when used neat, or when blended with petroleum based fuels, have the potential to dramatically reduce vehicle emissions from a number of propulsion systems including advanced IC (internal combustion) engines, fuel cells, and IC- fuel cell hybrids.

474

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project of strategic options for the natural gas industry as hydrogen energy systems evolve ­ Vehicle to encourage of tradeoffs ­ NY state qualifies natural gas-run fuel cells, CA only renewable hydrogen (potential for partial

475

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network [OSTI]

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

476

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

477

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

478

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

479

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

480

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

Note: This page contains sample records for the topic "gas project cxs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

482

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

483

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

484

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

485

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

486

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

487