Sample records for gas production processing

  1. Process for production desulfurized of synthesis gas

    DOE Patents [OSTI]

    Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

    1993-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  2. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

    1982-01-01T23:59:59.000Z

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  3. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Ge, Zigang

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  4. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  5. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01T23:59:59.000Z

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  6. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    SciTech Connect (OSTI)

    Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

    2002-09-20T23:59:59.000Z

    The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

  7. Gas-chromatographic identification of volatile products from thermal processing of Bitumen

    SciTech Connect (OSTI)

    Zenkevich, I.G.; Ventura, K. [Advanced Chemical Engineering Institute, Pardubice (Czechoslovakia)

    1992-03-10T23:59:59.000Z

    The variety of bitumen industrial brands is evident in the significant variation of composition and ratio of volatile thermal processing products, which makes their detailed characterization difficult. For that reason, in the authors` opinion a simple and easily reproducible method for gas chromatographic analysis and identification of these substances should be of greater interest than gathering more such results. In this report the authors discuss the selection of an optimal combination of group and individual gas chromatographic methods for identification of volatile thermal processing products in the presence of air, using the example of AP bitumen, the main brand used in Czechoslavakia for production of asphalt. 15 refs., 1 tab.

  8. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  9. Assessment of microbial processes on gas production at radioactive low-level waste disposal sites

    SciTech Connect (OSTI)

    Weiss, A.J.; Tate, R.L. III; Colombo, P.

    1982-05-01T23:59:59.000Z

    Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

  10. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG)...

  11. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2014-01-01T23:59:59.000Z

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700ºC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

  12. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect (OSTI)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01T23:59:59.000Z

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  13. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  14. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals

    SciTech Connect (OSTI)

    Sun, Xiaolei; Rink, Nancy

    2011-04-30T23:59:59.000Z

    This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

  15. Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells

    SciTech Connect (OSTI)

    Maryn, S.

    1994-03-01T23:59:59.000Z

    Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

  16. Gas Production Tax (Texas)

    Broader source: Energy.gov [DOE]

    A tax of 7.5 percent of the market value of natural gas produced in the state of Texas is imposed on every producer of gas.

  17. Distributed Hydrogen Production from Natural Gas: Independent...

    Energy Savers [EERE]

    Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent...

  18. Monthly Natural Gas Gross Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Report Monthly Natural Gas Gross Production Report Data Files Methodology and Analysis Form and Instructions Monthly Natural Gas Gross Production Report with data for February 2015...

  19. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15T23:59:59.000Z

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  20. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a eviequestionnairesMillionNovember 200061:WaterGas

  1. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15T23:59:59.000Z

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  2. POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    · Transportation of energy from production areas to consumption areas Substitute Natural Gas (methane) Myriam DeP · Use of existing natural gas network · Mid or long term storage · Transportation · Production. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis

  3. Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I

    SciTech Connect (OSTI)

    Raymond Hobbs

    2007-05-31T23:59:59.000Z

    The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

  4. Shale gas production: potential versus actual greenhouse gas emissions

    E-Print Network [OSTI]

    O’Sullivan, Francis Martin

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  5. Natural gas dehydration process and apparatus

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Ng, Alvin; Mairal, Anurag P.

    2004-09-14T23:59:59.000Z

    A process and corresponding apparatus for dehydrating gas, especially natural gas. The process includes an absorption step and a membrane pervaporation step to regenerate the liquid sorbent.

  6. Gas purification process

    SciTech Connect (OSTI)

    Randell, D.R.; Phillips, E.

    1981-02-17T23:59:59.000Z

    Ciba-Geigy claims that anthraquinone sulfonamides have equal or better activity than the anthraquinone disulfonic acids used in the removal of hydrogen sulfide as sulfur from gases by such methods as the Stretford process. Examples of the preferred compounds are N,N'-disulfomethylanthraquinone-2,6-disulfonamide and N,N'-dicarboxymethylanthraquinone-2,7-disulfonamide.

  7. Process Design, Simulation and Integration of Dimethyl Ether (DME) Production from Shale Gas by Direct and Indirect Methods 

    E-Print Network [OSTI]

    Karagoz, Secgin

    2014-08-11T23:59:59.000Z

    may be obtained from shale gas is dimethyl ether (DME). Dimethyl ether can be used in many areas such as power generation, transportation fuel, and domestic heating and cooking. Dimethyl ether is currently produced from natural gas, coal and biomass...

  8. Natural gas product and strategic analysis

    SciTech Connect (OSTI)

    Layne, A.W.; Duda, J.R.; Zammerilli, A.M.

    1993-12-31T23:59:59.000Z

    Product and strategic analysis at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC) crosscuts all sectors of the natural gas industry. This includes the supply, transportation, and end-use sectors of the natural-gas market. Projects in the Natural Gas Resource and Extraction supply program have been integrated into a new product focus. Product development facilitates commercialization and technology transfer through DOE/industry cost-shared research, development, and demonstration (RD&D). Four products under the Resource and Extraction program include Resource and Reserves; Low Permeability Formations; Drilling, Completion, and Stimulation: and Natural Gas Upgrading. Engineering process analyses have been performed for the Slant Hole Completion Test project. These analyses focused on evaluation of horizontal-well recovery potential and applications of slant-hole technology. Figures 2 and 3 depict slant-well in situ stress conditions and hydraulic fracture configurations. Figure 4 presents Paludal Formation coal-gas production curves used to optimize the hydraulic fracture design for the slant well. Economic analyses have utilized data generated from vertical test wells to evaluate the profitability of horizontal technology for low-permeability formations in Yuma County, Colorado, and Maverick County, Texas.

  9. Shale gas production: potential versus actual greenhouse gas emissions*

    E-Print Network [OSTI]

    Shale gas production: potential versus actual greenhouse gas emissions* Francis O, monitor and verify greenhouse gas emissions and climatic impacts. This reprint is one of a series intended Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential

  10. Autothermal production of synthesis gas

    SciTech Connect (OSTI)

    Lewis, J.L.

    1987-05-19T23:59:59.000Z

    An autothermal reactor is described for the production of a synthesis gas in which both primary reforming and secondary reforming are achieved at a high level of efficiency. The method comprises a heat exchange chamber having a first portion and a second portion, a first inlet connected to the heat exchange chamber for the introduction of steam and feed gas to the heat exchange chamber, reaction tubes mounted within the first portion of the heat exchanger chamber at a location spaced longitudinally from the first inlet in communication with the first inlet and in non-concentric relationship therewith so as to provide a flow path for the steam and feed gas from the first inlet through the plurality of reaction tubes.

  11. Process Design and Integration of Shale Gas to Methanol 

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process...

  12. Natural gas hydrates - issues for gas production and geomechanical stability

    E-Print Network [OSTI]

    Grover, Tarun

    2008-10-10T23:59:59.000Z

    NATURAL GAS HYDRATES – ISSUES FOR GAS PRODUCTION AND GEOMECHANICAL STABILITY A Dissertation by TARUN GROVER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August 2008 Major Subject: Petroleum Engineering NATURAL GAS HYDRATES – ISSUES FOR GAS PRODUCTION AND GEOMECHANICAL STABILITY A Dissertation by TARUN GROVER Submitted to the Office of Graduate...

  13. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of Gas Price ($/Mscf) for Offshore Gas Hydrate StudyEvaluation of deepwater gas-hydrate systems. The Leadingfor Gas Production from Gas Hydrates Reservoirs. J. Canadian

  14. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, L.G.; Pinnau, I.

    1996-03-26T23:59:59.000Z

    A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

  15. Natural gas treatment process using PTMSP membrane

    DOE Patents [OSTI]

    Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

    1996-01-01T23:59:59.000Z

    A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

  16. Production Trends of Shale Gas Wells

    E-Print Network [OSTI]

    Khan, Waqar A.

    2010-01-14T23:59:59.000Z

    To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

  17. Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process

    DOE Patents [OSTI]

    DeGeorge, Charles W. (Chester, NJ)

    1981-01-01T23:59:59.000Z

    In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

  18. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27T23:59:59.000Z

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  19. Adjusted Estimates of Texas Natural Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural...

  20. Powering the World: Offshore Oil & Gas Production

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The globalPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek that it may be on call for a further ordering." Technology is a "standing-reserve" of energy for humans

  1. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect (OSTI)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01T23:59:59.000Z

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  2. Gas treating process and composition

    SciTech Connect (OSTI)

    Byers, D.L.

    1989-06-20T23:59:59.000Z

    This patent describes a process for the removal of H/sub 2/S from a sour gaseous stream. The process consists of: (a) contacting the sour gaseous stream in a contacting zone with an aqueous reaction solution, at a temperature not greater than about 160{sup 0}C, the reaction solution comprising an effective amount of vanadium V-containing ions to oxidize H/sub 2/S to elemental sulfur and being substantially free of anthraquinone disulfonate, and producing a sweet gas stream and an aqueous solution having a pH of 8-11 and containing sulfur and vanadium IV-containing ions, the reaction solution further comprising an amount of phosphate ions sufficient to provide a molar ratio of phosphate ions to vanadium IV-containing ions produced in solution of at least 0.1; (b) removing sulfur from the aqueous solution, producing an aqueous solution having reduced sulfur content; (c) regenerating aqueous solution having reduced sulfur content in a regenerating zone and producing regenerated reactant in the solution; and (d) returning regenerated solution from step (c) to the contacting zone for use as aqueous reaction solution therein.

  3. Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

  4. Natural Gas Processing Plant- Sulfur (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

  5. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOE Patents [OSTI]

    Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

    2000-01-01T23:59:59.000Z

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  6. Covered Product Category: Residential Gas Storage Water Heaters...

    Energy Savers [EERE]

    Gas Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

  7. Process for treatment of residual gas

    SciTech Connect (OSTI)

    Nolden, K.

    1980-01-01T23:59:59.000Z

    A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

  8. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30T23:59:59.000Z

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  9. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, R.J.

    1988-06-16T23:59:59.000Z

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  10. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  11. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  12. Process Intensification with Integrated Water-Gas-Shift Membrane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intensification with Integrated Water-Gas-Shift Membrane Reactor Process Intensification with Integrated Water-Gas-Shift Membrane Reactor water-gas-shift.pdf More Documents &...

  13. Takahax-Hirohax process for coke oven gas desulfurization

    SciTech Connect (OSTI)

    Gastwirth, H.; Miner, R.; Stengle, W.

    1981-01-01T23:59:59.000Z

    This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

  14. 90-day Interim Report on Shale Gas Production - Secretary of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

  15. Exhaust gas clean up process

    DOE Patents [OSTI]

    Walker, Richard J. (McMurray, PA)

    1989-01-01T23:59:59.000Z

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  16. Elemental Fluorine-18 Gas: Enhanced Production and Availability

    SciTech Connect (OSTI)

    VanBrocklin, Henry F. [Department of Radiology and Biomedical Imaging

    2011-12-01T23:59:59.000Z

    The overall objective of this project was to develop an efficient, reproducible and reliable process for the preparation of fluorine-18 labeled fluorine gas ([¹?F]F?) from readily available cyclotron-produced [¹?F]fluoride ion. The two step process entailed the production of [¹?F]fluoromethane with subsequent conversion to [¹?F]F? by electric discharge of [¹?F]fluoromethane in the presence of carrier nonradioactive F? gas. The specific goals of this project were i) to optimize the preparation of [¹?F]fluoromethane from [¹?F]fluoride ion; ii) to develop a prototype automated system for the production of [¹?F]F? from [¹?F]fluoride ion and iii) develop a compact user friendly automated system for the preparation of [¹?F]F? with initial synthesis of fluorine-18 labeled radiotracers. Over the last decade there has been an increased interest in the production of "non-standard" positron-emitting isotopes for the preparation of new radiotracers for a variety of applications including medical imaging and therapy. The increased availability of these isotopes from small biomedical cyclotrons has prompted their use in labeling radiotracers. In much the same way the production of [¹?F]F? gas has been known for several decades. However, access to [¹?F]F? gas has been limited to those laboratories with the means (e.g. F? targetry for the cyclotron) and the project-based need to work with [¹?F]F? gas. Relatively few laboratories, compared to those that produce [¹?F]fluoride ion on a daily basis, possess the capability to produce and use [¹?F]F? gas. A simplified, reliable system employing [¹?F]fluoride ion from cyclotron targetry systems that are already in place coupled with on-demand production of the [¹?F]F? gas would greatly enhance its availability. This would improve the availability of [¹?F]F? gas and promote further work with a valuable precursor. The major goals of the project were accomplished over the funding period. The preparation of ¹?F]fluoromethane has been automated with reproducible yields greater than 90% conversion from [¹?F]fluoride ion. A trap and release system was established for the [¹?F]fluoride ion concentration and direct elution of the [¹?F]fluoride ion into the reaction vial with the appropriate base and precursor in DMSO. Other solvents were also investigated. The production time for [¹?F]fluoromethane is less than 10 minutes. An automated system for the [¹?F]F? gas production from the [18F]fluoromethane has been developed. The unit coupled to the [¹?F]fluoromethane system permits the on demand production of [¹?F]F? gas. In less than 30 minutes, mCi quantities of [¹?F]F? gas were produced. Several variables for the [¹?F]F? gas production were investigated and a set of parameters for reproducible operation were determined. These parameters included discharge chamber size, carrier gas (He, Ne, Ar), discharge time, discharge current, mass of F? gas added to the chamber. FDOPA and EF5 were used to test the reactivity of the [¹?F]F? gas. Both products were produced in low to modest yield. The ready availability of [¹?F]F? gas has potential impact to advance both DOE mission-driven initiatives and nuclear medicine initiatives through other federally funded agencies such as NIH and DoD. New reactions involving the use of [¹?F]F? gas will lead to direct labeling of new radiotracers and intermediates as well as new fluorine-18 labeled synthons that may be further reacted with other reagents to provide useful fluorine-18 labeled compounds. New tracers to understand and follow plant and microbial metabolism as well as new tracers for nuclear medicine applications, that have been either difficult to obtain or never produced due to the limited availability of [¹?F]F? gas, may be prepared using the techniques developed .

  17. Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review

    E-Print Network [OSTI]

    Jackson, Robert B.

    Air Impacts of Increased Natural Gas Acquisition, Processing, and Use: A Critical Review to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air

  18. Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -

    SciTech Connect (OSTI)

    Jung, J.W. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL; Phelps, Tommy Joe [ORNL; Rawn, Claudia J [ORNL; Santamarina, Carlos [Georgia Institute of Technology

    2012-01-01T23:59:59.000Z

    Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

  19. Method for the production of synthesis gas

    SciTech Connect (OSTI)

    Escher, G.; Harjung, J.; Wenning, H.P.

    1981-11-24T23:59:59.000Z

    A method is claimed for the continuous production of synthesis gas comprising of carbon monoxide and hydrogen through the autothermal gasification of solid combustibles in a pressure reactor. The method involves the following: introducing into a screw machine containing two parallely ordered shafts, a finely divided solid combustible; moistening and intimately mixing the solid combustible with 2 to 30% by weight of water, degasing and compressing the moist solid combustible to a pressure higher than that of the reactor; adding the gas-tight compressed and moist solid combustible to a reaction chamber-through a burner where the combustible is brought into contact with the gasification medium; evaporating the water in the compressed and moist solid combustible and producing a comminuted dispersion of the solid combustible in the mixture of the gasification medium and water vapor; reacting the combustible dispersion to give a raw synthesis gas; and removing the raw synthesis gas from the reactor.

  20. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

  1. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. Gas-Adsorption Processes - An Update

    E-Print Network [OSTI]

    Keller, G. E., II

    1984-01-01T23:59:59.000Z

    low capital costs per unit of feed processed. Given the importance of capital costs in overall process economics, vapor-liquid separations will usually be a first choice if the energy costs are tolerable. And in fact, systems of distillation... increased applications for recovery of organics from various process vent streams, storage-tank vents. and air streams from solvent-pointing and other operations involving vaporization of organics. Major-use areas such as gas dehydration, removal...

  3. Covered Product Category: Residential Whole-Home Gas Tankless...

    Energy Savers [EERE]

    Whole-Home Gas Tankless Water Heaters Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides acquisition...

  4. Coke oven gas desulphurization by the Carl Still process

    SciTech Connect (OSTI)

    Knight, R.E.

    1981-01-01T23:59:59.000Z

    The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

  5. Evolution of gas processing industry in Saudi Arabia

    SciTech Connect (OSTI)

    Showail, A.

    1983-01-01T23:59:59.000Z

    The beginning of the natural gas processing industry in Saudi Arabia is traced back to 1959 when Aramco embarked on a program to recover natural gas liquids (NGL) for export from low pressure gases such as stabilizer overhead, spheroid, tank farm, and refinery off-gases. The processing scheme involves compression and refrigeration to extract C3+ raw NGL, a raw NGL gathering system, and a fractionation plant to separate propane, butane, and natural gasoline. NGL extracted in Abqaiq and Ras Tanura is moved to Ras Tanura for fractionation, storage, and export. The system, built in several increments, has total design capacity of 500 MMscfd of feed gases to produce 320,000 bpd of NGL composed of 40% propane, 30% butane, and 30% natural gasoline. Phase II of the Saudi gas program envisages collection and processing of associated gas produced with Arabian medium and heavy crude oils largely in the northern onshore and offshore fields. Further domestic development may focus on more diversification in gas product utilization and on upgrading to higher value products.

  6. The U.S. Natural Gas and Shale Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas and Shale Production Outlook for North American Gas Forum September 29, 2014 by Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas...

  7. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  8. Shale Gas Production: Potential versus Actual GHG Emissions

    E-Print Network [OSTI]

    O'Sullivan, Francis

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

  9. QER- Comment of Process Gas Consumer Group

    Broader source: Energy.gov [DOE]

    Hello, Attached are comments offered by the Process Gas Consumers Group in response to the August 25, 2014 Federal Register Notice soliciting comments on issues related to the Quadrennial Energy Review. Please let us know if you have any questions or would like any additional information.

  10. Largest U. S. gas processing plant begins operations

    SciTech Connect (OSTI)

    Mallet, M.W.

    1987-01-19T23:59:59.000Z

    Conoco Inc.'s and Tenneco Oil Co.'s new San Juan, N.M., gas processing plant near Bloomfield, N.M., is capable of making more NGL than any gas plant in the U.S. The plant, with a throughput capacity of 500 MMcfd, proved this when it began production this past November at a rate of 42,000 b/d of NGL. The jointly owned cryogenic plant was constructed by Conoco's natural gas products department, which operates the plant. Construction began in September 1985 and was completed in 13 months. Careful planning between Conoco and the two prime contractors, Pan West Constructors Inc. and Dresser Clark, facilitated a ''fast track'' construction schedule and an extremely smooth start-up.

  11. Gas production from oceanic Class 2 hydrate accumulations

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.

    2007-02-01T23:59:59.000Z

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. The vastamounts of hydrocarbon gases that are trapped in hydrate deposits in thepermafrost and in deep ocean sediments may constitute a promising energysource. Class 2 hydrate deposits are characterized by a Hydrate-BearingLayer (HBL) that is underlain by a saturated zone of mobile water. Inthis study we investigated three methods of gas production via verticalwell designs. A long perforated interval (covering the hydrate layer andextending into the underlying water zone) yields the highest gasproduction rates (up to 20 MMSCFD), but is not recommended for long-termproduction because of severe flow blockage caused by secondary hydrateand ice. A short perforated interval entirely within the water zoneallows long-term production, but only at rates of 4.5 7 MMSCFD. A newwell design involving localized heating appears to be the most promising,alleviating possible blockage by secondary hydrate and/or ice near thewellbore) and delivering sustainably large, long-term rates (10-15MMSCFD).The production strategy involves a cyclical process. During eachcycle, gas production continuously increases, while the correspondingwater production continuously decreases. Each cycle is concluded by acavitation event (marked by a precipitous pressure drop at the well),brought about by the inability of thesystem to satisfy the constant massproduction rate QM imposed at the well. This is caused by the increasinggas contribution to the production stream, and/or flow inhibition causedby secondary hydrate and/or ice. In the latter case, short-term thermalstimulation removes the blockage. The results show that gas productionincreases (and the corresponding water-to-gas ratio RWGC decreases) withan increasing(a) QM, (b) hydrate temperature (which defines its stabilityfor a given pressure), and (c) intrinsic permeability. Lower initialhydrate saturations lead initially to higher gas production and a lowerRWGC, but the effect is later reversed as the hydrate is depleted. Thedisposal of the large amounts of produced water does not appear to pose asignificant environmental problem. Production from Class 2 hydrates ischaracterized by (a) the need for confining boundaries, (b) thecontinuously improving RWGC over time (opposite to conventional gasreservoirs), and (c) the development of a free gas zone at the top of thehydrate layer (necessitating the existence of a gas cap forproduction).

  12. EIA-914 Monthly Natural Gas Production Report Data Analysis...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA-914: Monthly Natural Gas Production Report Data Analysis October 2006 Page 1 of 38 EIA-914 Monthly Natural...

  13. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  14. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

    1986-01-01T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  15. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  16. The Gonzaga desulfurization flue gas process

    SciTech Connect (OSTI)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01T23:59:59.000Z

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixed to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.

  17. Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen cosmetic and food products (such as whipped cream) or in oil recovery processes. Depending on the a of oil droplets and gas bubbles and show that the oil can have two very different roles, either

  18. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  19. STEO September 2012 - natural gas production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q Unatural gas production

  20. Comparing Product Development Processes and Managing Risk

    E-Print Network [OSTI]

    Unger, Darian W.

    Product Development Processes (PDPs) require careful design to reduce development time, create better products and manage the risks of bringing new products to market. This paper investigates the relationship between product ...

  1. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  2. Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation 

    E-Print Network [OSTI]

    Adegoke, Adesola Ayodeji

    2006-10-30T23:59:59.000Z

    The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL...

  3. Hierarchical production scheduling in the process industry

    E-Print Network [OSTI]

    Hierarchical production scheduling in the process industry Anna Lindholm Nils-Petter Nytz are handled. The activities are are denoted production scheduling (PS) and detailed production scheduling (DPS. The focus is on production scheduling for chemical process industries with continuous production

  4. Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System 

    E-Print Network [OSTI]

    Gakhar, Kush

    2012-02-14T23:59:59.000Z

    Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

  5. Method for treating a nuclear process off-gas stream

    DOE Patents [OSTI]

    Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

    1984-01-01T23:59:59.000Z

    Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

  6. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect (OSTI)

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01T23:59:59.000Z

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

  7. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Chin, Arthur Achhing; Jain, Puja; Linehan, Suzanne; Lipiecki, Francis Joseph; Maroldo, Stephen Gerard; November, Samuel J; Yamamoto, John Hiroshi

    2013-02-19T23:59:59.000Z

    A process for production of a borohydride compound. The process comprises combining a compound comprising boron and oxygen with an adduct of alane.

  8. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01T23:59:59.000Z

    to economically Page viable gas production. The overallare not promising targets for gas production. AcknowledgmentEnergy, Office of Natural Gas and Petroleum Technology,

  9. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12015","1151989"...

  10. ,"New York Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  11. Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification

    SciTech Connect (OSTI)

    Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

    2010-06-04T23:59:59.000Z

    The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

  12. Chemical production processes and systems

    SciTech Connect (OSTI)

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17T23:59:59.000Z

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  13. FEMP Designated Product Assessment for Commercial Gas Water Heaters

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

  14. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications 

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    2000-01-01T23:59:59.000Z

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  15. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  16. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  17. Treatment of gas from an in situ conversion process

    DOE Patents [OSTI]

    Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

    2011-12-06T23:59:59.000Z

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  18. DPA and Gas Production from Protons on W and Be

    E-Print Network [OSTI]

    McDonald, Kirk

    Production in Tungsten · Ran the Mu2e target in MARS15 using the following parameters: ­ 8 GeV protonsDPA and Gas Production from Protons on W and Be Brian Hartsell FNAL March 20, 2013 #12;DPA and Gas on Tungsten target ­ Gaussian distribution with 1mm X and Y sigma ­ 6mm diameter, 160mm length target ­ 3 bins

  19. The production of methanol by the Brookhaven National Laboratory process

    SciTech Connect (OSTI)

    Miller, D.B.; Williams, J.J.; Johnson, A.R.

    1990-11-01T23:59:59.000Z

    The purpose of this study was to develop a capital cost estimate and methanol production costs for a new methanol process under development at the Brookhaven National Laboratory (BNL). The cost of fuel delivered to the US Gulf Coast is compared with fuel produced by a conventional methanol process and a liquefied natural gas (LNG) process. The new methanol process is made possible by the development of a new liquid phase catalyst. The new liquid catalyst system can convert synthesis gas almost completely to methanol in a SINGLE pass through the methanol synthesis reactor. This catalyst system reduces synthesis reaction temperatures from about 260{degree}C to about 100{degree}C, permitting isothermal synthesis conditions, in contrast to the temperature gradients in currently available pelleted, solid catalysts. Natural gas feedstock can be processed at pressures under 250 psia. Since nitrogen in the synthesis gas can be tolerated, the autothermal reforming step (combination of partial oxidation and steam reforming over a nickel catalyst) uses preheated air rather than oxygen. However, even with nitrogen present, the volume of gas fed to the reactor can still be smaller than the volume of gas that must be circulated in a conventional reactor, which operates with low conversions and requires high recycle volumes. The characteristics of the BNL system permits a major improvement in methanol plant design and economics. 11 figs., 15 tabs.

  20. Sales and Use Tax Exemption for Gas Processing Facilities

    Broader source: Energy.gov [DOE]

    In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

  1. Natural Gas Reforming | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production Natural Gas Reforming Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon...

  2. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

    1995-01-01T23:59:59.000Z

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  3. Gas Distribution Modeling using Sparse Gaussian Process Mixture Models

    E-Print Network [OSTI]

    Stachniss, Cyrill

    Gas Distribution Modeling using Sparse Gaussian Process Mixture Models Cyrill Stachniss1 Christian-- In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query

  4. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, C.Y.

    1993-09-21T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  5. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A.; Kong, Peter C.

    2006-08-29T23:59:59.000Z

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  6. Method for processing coke oven gas

    SciTech Connect (OSTI)

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1980-11-25T23:59:59.000Z

    Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

  7. Methane hydrate gas production: evaluating and exploiting the solid gas resource

    SciTech Connect (OSTI)

    McGuire, P.L.

    1981-01-01T23:59:59.000Z

    Methane hydrate gas could be a tremendous energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs and a system for coring hydrate reservoirs are also described.

  8. The Use of Horizontal Wells in Gas Production from Hydrate Accumulations

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    E.D. Toward Production From Gas Hydrates: Current Status,International Conference on Gas Hydrates, Trondheim, Norway,for Gas Production from Gas Hydrate Reservoirs, J. Can. Pet.

  9. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    Toward Production from Gas Hydrates: Current Status,Facing Gas Production From Gas-Hydrate Deposits. Society ofConference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland,

  10. High-productivity automatic GTAW process

    SciTech Connect (OSTI)

    Imaizumi, H.; Kato, T.; Murakami, Y.

    1994-12-31T23:59:59.000Z

    Gas tungsten arc welding (GTAW) has, since developed by AIRCO, spread globally as a weld process which assures a quality weld. However, the only drawback with GTAW is low productivity and we have challenged the subject in how we could improve that. To that end, we set the target of 3 times deposition rate as compared to conventional TIG. With conventional TIG arc, arc spread angle ranges 130{degrees} to 140{degrees}; to improve energy density, we have employed double flux TIG of SAF, France to converge the arc down to 80{degrees}. Consequently, energy density was upped to 4 times of conventional TIG, thus penetration depth and filler wire feed rated increased up to 2 to 4 times. We have succeeded in controlling cool-down in the molten pool, enabling the utilization of highly-converged TIG arc and preventing deposited metals burn-through for cleaner weld process, high-productivity GTAW. We find that: (1) The TIG arc spread angle is convergeable from 140{degrees} down to 80{degrees}; heat energy to be 3.5 times of that obtainable conventionally. (2) 65{emdash}80 g/min attained with 500A and C.S. in flat position, and 35{emdash}40 g/min., with all-position pipe weld. (3) 2{emdash}3 times efficiency improvement, obtained with work in C.S., S.S., and Inconel. (4) Excellent impact value obtainable despite heat-input increase. (5) Fume-less, spatterless, gouging-less and grindingless weld is obtainable; we were successful in improving the operational environment.

  11. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01T23:59:59.000Z

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  12. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    SciTech Connect (OSTI)

    Spath, P. L.; Mann, M. K.

    2000-09-28T23:59:59.000Z

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

  13. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    E-Print Network [OSTI]

    Reagan, M. T.

    2010-01-01T23:59:59.000Z

    Spatial distributions of gas and hydrate phase saturations (from the Mallik 2002 Gas Hydrate Production Research Wellsimulating the behavior of gas hydrates, Energy Conversion

  14. Strategies for gas production from oceanic Class 3 hydrateaccumulations

    SciTech Connect (OSTI)

    Moridis, George J.; Reagan, Matthew T.

    2007-05-01T23:59:59.000Z

    Gas hydrates are solid crystalline compounds in which gasmolecules are lodged within the lattices of ice crystals. Vast amounts ofCH4 are trapped in gas hydrates, and a significant effort has recentlybegun to evaluate hydrate deposits as a potential energy source. Class 3hydrate deposits are characterized by an isolated Hydrate-Bearing Layer(HBL) that is not in contact with any hydrate-free zone of mobile fluids.The base of the HBL in Class 3 deposits may occur within or at the edgeof the zone of thermodynamic hydrate stability.In this numerical study oflong-term gas production from typical representatives of unfracturedClass 3 deposits, we determine that simple thermal stimulation appears tobe a slow and inefficient production method. Electrical heating and warmwater injection result in very low production rates (4 and 12 MSCFD,respectively) that are orders of magnitude lower than generallyacceptable standards of commercial viability of gas production fromoceanic reservoirs. However, production from depressurization-baseddissociation based on a constant well pressure appears to be a promisingapproach even in deposits characterized by high hydrate saturations. Thisapproach allows the production of very large volumes ofhydrate-originating gas at high rates (>15 MMSCFD, with a long-termaverage of about 8.1 MMSCFD for the reference case) for long times usingconventional technology. Gas production from hydrates is accompanied by asignificant production of water. However, unlike conventional gasreservoirs, the water production rate declines with time. The lowsalinity of the produced water may require care in its disposal. Becauseof the overwhelming advantage of depressurization-based methods, thesensitivity analysis was not extendedto thermal stimulation methods. Thesimulation results indicate that depressurization-induced gas productionfrom oceanic Class 3 deposits increases (and the corresponding waterto-gas ratio decreases) with increasing hydrate temperature (whichdefines the hydrate stability), increasing intrinsic permeability of theHBL, and decreasing hydrate saturation although depletion of the hydratemay complicate the picture in the latter case.

  15. ESP/rotary gas separator duo found to optimize production

    SciTech Connect (OSTI)

    Jacobs, G.H.

    1986-11-01T23:59:59.000Z

    A field test conducted on a low-volume waterflood well in West Texas equipped with an electric submersible pump (ESP) proved to rotary gas separator (RGS) to be more efficient than conventional reverse flow gas separators, achieving gas separation efficiencies close to 90%. Further, the RGS increased the run time of the ESP, thus lowering the wellbore fluid level and increasing oil production. The one drawback found is that RGSs can be susceptible to fluid erosion.

  16. Optimal Control of Raw Timber Production Processes

    E-Print Network [OSTI]

    Standiford, Richard B.

    of development of the society imposes demands on the planning and control of production processes in the formOptimal Control of Raw Timber Production Processes Ivan Kolenka Abstract: This paper demonstrates the possibility of optimal planning and control of timber harvesting activ- ities with mathematical optimization

  17. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  18. The U.S. Oil and Natural Gas Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

  19. Data Files Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Data Files Data Files 1 EIA Best Estimate of Gross Withdrawals: Combination of historical production data from the Natural Gas Annual and current estimates based on data from the...

  20. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:22:39 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SNY2"...

  1. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01T23:59:59.000Z

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  2. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-12-31T23:59:59.000Z

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  3. 90-day Second Report on Shale Gas Production - Secretary of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Second Report on Shale Gas Production - Secretary of Energy Advisory Board Novemeber 18,...

  4. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18T23:59:59.000Z

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  5. Process for improving metal production in steelmaking processes

    DOE Patents [OSTI]

    Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

    1996-01-01T23:59:59.000Z

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  6. Annual report of the origin of natural gas liquids production form EIA-64A

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The collection of basic, verifiable information on the Nation`s reserves and production of natural gas liquids (NGL) is mandated by the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275) and the Department of Energy Organization Act of 1977 (Public Law 95-91). Gas shrinkage volumes reported on Form EIA-64A by natural gas processing plant operators are used with natural gas data collected on a {open_quotes}wet after lease separation{close_quotes} basis on Form EIA-23, Annual Survey of Domestic Oil and Gas Reserves, to estimate {open_quotes}dry{close_quotes} natural gas reserves and production volumes regionally and nationally. The shrinkage data are also used, along with the plant liquids production data reported on Form EIA-64A, and lease condensate data reported on Form EIA-23, to estimate regional and national gas liquids reserves and production volumes. This information is the only comprehensive source of credible natural gas liquids data, and is required by DOE to assist in the formulation of national energy policies.

  7. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOE Patents [OSTI]

    Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  8. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

  9. Greenhouse gas emissions in biogas production systems

    E-Print Network [OSTI]

    Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

    2009-01-01T23:59:59.000Z

    from soils amended with biogas waste compared to otherCrutzen et al. 2008). Biogas production from organicamounts of fermentation effluent (biogas waste) remain after

  10. Greenhouse gas budgets of crop production current

    E-Print Network [OSTI]

    Levi, Ran

    production and distribution 16 2.7.2 Emissions associated with other agrochemicals 17 2.7.3 On-farm energy

  11. Process and system for removing impurities from a gas

    DOE Patents [OSTI]

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15T23:59:59.000Z

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  12. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  13. Productivity enhancement through process integration

    E-Print Network [OSTI]

    Alotaibi, Meteab Aujian

    2006-10-30T23:59:59.000Z

    with many inequality constraints problems (Biegler and Grossmann, 2004). 23 Examples for applications of these two methods in process systems engineering include linear model predictive control (MPC) problems (Rao et al., 1998...) and nonlinear MPC problems (Albuquerque et al., 1997). b. Providing second-order information: It uses the second derivatives for objective or constraint functions to develop the Hessian matrix for the QP problems. Positive definite quasi...

  14. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOE Patents [OSTI]

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13T23:59:59.000Z

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  15. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  16. Covered Product Category: Residential Gas Storage Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  17. Wireless Critical Process Control in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

  18. Process for producing dimethyl ether from synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, R.

    1985-06-04T23:59:59.000Z

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  19. Process for producing dimethyl ether form synthesis gas

    DOE Patents [OSTI]

    Pierantozzi, Ronald (Macungie, PA)

    1985-01-01T23:59:59.000Z

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  20. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-11-01T23:59:59.000Z

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  1. Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation of Gas Diffusion in Kerogen, Langmuir Desorption from

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    SPE 159250 Forecasting Gas Production in Organic Shale with the Combined Numerical Simulation algorithm to forecast gas production in organic shale that simultaneously takes into account gas diffusion-than-expected permeability in shale-gas formations, while Langmuir desorption maintains pore pressure. Simulations confirm

  2. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  3. Product Development Processes, Three Vectors Of Improvement

    E-Print Network [OSTI]

    Holmes, Maurice

    2003-01-01T23:59:59.000Z

    Product Development Processes have achieved a state of some maturity in recent years, but have focused primarily on structuring technical activities from the initiation of development to launch. We advocate major advances ...

  4. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29T23:59:59.000Z

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  5. On-Board Hydrogen Gas Production System For Stirling Engines

    SciTech Connect (OSTI)

    Johansson, Lennart N. (Ann Arbor, MI)

    2004-06-29T23:59:59.000Z

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  6. Florida Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14U.S. Offshore U.S.

  7. Florida Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercialNov-14U.S. Offshore

  8. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    E-Print Network [OSTI]

    Rutqvist, J.

    2009-01-01T23:59:59.000Z

    Conference on Gas Hydrates (ICGH 2008), Vancouver, BritishGSC et al. Mallik 5L-38 gas hydrate production research wellfrom the Mallik 2002 Gas Hydrate Production Research Well

  9. Synthesis and deposition of metal nanoparticles by gas condensation process

    SciTech Connect (OSTI)

    Maicu, Marina, E-mail: marina.maicu@fep.fraunhofer.de; Glöß, Daniel; Frach, Peter [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden (Germany); Schmittgens, Ralph; Gerlach, Gerald [Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany); Hecker, Dominic [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden, Germany and Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany)

    2014-03-15T23:59:59.000Z

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  10. Florida Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May2009 2010

  11. Gulf of Mexico Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 2009 2010

  12. New Mexico Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008 2009 2010

  13. Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

  14. Alternative Fuels Data Center: Natural Gas Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce OperatingPropaneStationProduction to

  15. Process for the production of liquid hydrocarbons

    DOE Patents [OSTI]

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27T23:59:59.000Z

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  16. Taxation of oil and gas payments received independent of production

    SciTech Connect (OSTI)

    Fambrough, J.

    1983-06-01T23:59:59.000Z

    Several economic incentives are offered to mineral owners for entering into an oil and gas lease. These are: (1) a bonus; (2) a delay rental; (3) a royalty. This article is intended to aid in the understanding of the tax treatment for these oil and gas payments, received independent of production, in order to avoid any tax penalties and to elucidate a tax-minimization strategy. 11 references, 7 tables. (NLG)

  17. Natural gas production from hydrate dissociation: An axisymmetric model

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Pottsdam, NY); Ji, Chuang (Clarkson Univ., Pottsdam, NY); Smith, D.H.

    2007-08-01T23:59:59.000Z

    This paper describes an axisymmetric model for natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing well. During the hydrate dissociation, heat and mass transfer in the reservoir are analyzed. The system of governing equations is solved by a finite difference scheme. For different well pressures and reservoir temperatures, distributions of temperature and pressure in the reservoir, as well as the natural gas production from the well are evaluated. The numerical results are compared with those obtained by a linearization method. It is shown that the gas production rate is a sensitive function of well pressure. The simulation results are compared with the linearization approach and the shortcomings of the earlier approach are discussed.

  18. The production of activated silica with carbon dioxide gas

    E-Print Network [OSTI]

    Hayes, William Bell

    1956-01-01T23:59:59.000Z

    Ional to the per cent of carbon dioxi. de 1n the flue gas for a constant total gas flow rate. REFE REN CES l. Andrews, R. V, , Hanford Works Eocument (1952), 2. Andrews, R. V. & J. A. W. W. A, , ~46 82 (1954). 3. Andrews, R. V, , Personal Communication 4... of the reciuire . ents for the dedree of iliASTER OF SCIENCE Janus', 1956 Major Subject: Chemi. cal Engineering TH PRODUCTION OP ACTIVATED SILICA 7iIITH CARBON DIOXIDE GAS A Thesis William Bell Hayes III Approved as to style and content by: Chairmen...

  19. Partial oxidation process for producing a stream of hot purified gas

    DOE Patents [OSTI]

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28T23:59:59.000Z

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  20. New process for coke-oven gas desulfurization

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-10-01T23:59:59.000Z

    With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

  1. Process for making ceramic hot gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    2001-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  2. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  3. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0CubicCubic8Stone,923Production 2010

  4. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980

  5. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear JanProduction 1980Alaska Arkansas

  6. Depressurization-induced gas production from Class 1 hydratedeposits

    SciTech Connect (OSTI)

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2005-11-01T23:59:59.000Z

    Class 1 hydrate deposits are characterized by ahydratebearing layer underlain by a two-phase zone involving mobile gas.Two kinds of deposits are investigated. The first involves water andhydrate in the hydrate zone (Class 1W), while the second involves gas andhydrate (Class 1G). We introduce new models to describe the effect of thepresence of hydrates on the wettability properties of porous media. Wedetermine that large volumes of gas can be readily produced at high ratesfor long times from Class 1 gas hydrate accumulations by means ofdepressurization-induced dissociation using conventional technology.Dissociation in Class 1W deposits proceeds in distinct stages, while itis continuous in Class 1G deposits. To avoid blockage caused by hydrateformation in the vicinity of the well, wellbore heating is a necessity inproduction from Class 1 hydrates. Class 1W hydrates are shown tocontribute up to 65 percent of the production rate and up to 45 percentof the cumulative volume of produced gas; the corresponding numbers forClass 1G hydrates are 75 percent and 54 percent. Production from bothClass 1W and Class 1G deposits leads to the emergence of a seconddissociation front (in addition to the original ascending hydrateinterface) that forms at the top of the hydrate interval and advancesdownward. Inboth kinds of deposits, capillary pressure effects lead tohydrate lensing, i.e., the emergence of distinct banded structures ofalternating high-low hydrate saturation, which form channels and shellsand have a significant effect on production.

  7. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  8. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31T23:59:59.000Z

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  9. Ohio Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar AprProcessed (Million

  10. Tennessee Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1ResidentialThousandProcessed

  11. Indiana Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009 2010 2011 2012 2013 2014 ViewProcessed

  12. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31T23:59:59.000Z

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  13. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    SciTech Connect (OSTI)

    Sublette, K.L.

    1994-03-01T23:59:59.000Z

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  14. The feasibility assessment of a U.S. natural gas production reporting system uniform production reporting model. Final report, July 1993--June 1994

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    The Uniform Production Reporting Model (UPRM) project was charged with identifying the best practices and procedures of the natural gas producing states related to the gathering, management, and dissemination of production data. It is recommended that the producing states begin the process of upgrading state systems using the concepts embodied in the UPRM model.

  15. DIGITAL SIGNAL PROCESSING AS A DIAGNOSTIC TOOL FOR GAS

    E-Print Network [OSTI]

    Eagar, Thomas W.

    DIGITAL SIGNAL PROCESSING AS A DIAGNOSTIC TOOL FOR GAS TUNGSTEN ARC WELDING Carl D. Sorensen by the intense heat and light of the ·elding arc. To avoid these problems it is desirable to use the welding arc. The arc is treated as an electrical "black box" with the weld current as an input and the weld voltage

  16. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01T23:59:59.000Z

    2012. 14. Pless, J. , Natural Gas Development and HydraulicProduction of Substituted Natural Gas from the Wet OrganicU.S.E.I.A), California Natural Gas Consumption. 2012. 116.

  17. TECHNICAL AND OPERATING SUPPORT FOR PILOT DEMONSTRATION OF MORPHYSORB ACID GAS REMOVAL PROCESS

    SciTech Connect (OSTI)

    Nagaraju Palla; Dennis Leppin

    2004-02-01T23:59:59.000Z

    Over the past 14 years, the Gas Technology Institute and jointly with Uhde since 1997 developing Morphysorb{reg_sign} a new physical solvent-based acid gas removal process. Based on extensive laboratory, bench, pilot-plant scale experiments and computer simulations, DEGT Gas Transmission Company, Canada (DEGT) has chosen the process for use at its Kwoen processing facility near Chetwynd, British Columbia, Canada as the first commercial application for the Morphysorb process. DOE co-funded the development of the Morphysorb process in various stages of development. DOE funded the production of this report to ensure that the results of the work would be readily available to potential users of the process in the United States. The Kwoen Plant is designed to process 300 MMscfd of raw natural gas at 1,080-psia pressure. The sour natural gas contains 20 to 25 percent H{sub 2}S and CO{sub 2}. The plant reduces the acid gas content by about 50% and injects the removed H{sub 2}S and CO{sub 2} into an injection well. The Kwoen plant has been operating since August 2002. Morphysorb{reg_sign} is a physical solvent-based process used for the bulk removal of CO{sub 2} and/or H{sub 2}S from natural gas and other gaseous streams. The solvent consists of N-Formyl morpholine and other morpholine derivatives. This process is particularly effective for high-pressure and high acid-gas applications and offers substantial savings in investment and operating cost compared to competitive physical solvent-based processes. GTI and DEGT first entered into an agreement in 2002 to test the Morphysorb process at their Kwoen Gas Treating Plant in northern BC. The process is operating successfully without any solvent related problems and has between DEGTC and GTI. As of December 2003, about 90 Bcf of sour gas was processed. Of this about 8 Bcf of acid gas containing mainly H{sub 2}S and CO{sub 2} was injected back into the depleted reservoir and 82 Bcf sent for further processing at DEGTC's Pine River Plant. This report discusses the operational performance at Kwoen plant during the performance test as well as the solvent performance since the plant started up. The Morphysorb performance is assessed by Duke Energy according to five metrics: acid gas pickup, recycle gas flow, total hydrocarbon loss in acid gas stream, Morphysorb solvent losses and foaming related problems. Plant data over a period of one year show that the Morphysorb solvent has performed extremely well in four out of five of these categories. The fifth metric, Morphysorb solvent loss, is being evaluated over a longer-term period in order to accurately assess it. However, the preliminary indications based on makeup solvent used to date are that solvent losses will also be within expectations. The analysis of the solvent samples indicates that the solvent is very stable and did not show any sign of degradation. The operability of the solvent is good and no foaming related problems have been encountered. According to plant operators the Morphysorb unit runs smoothly and requires no special attention.

  18. Geomechanical Development of Fractured Reservoirs During Gas Production

    E-Print Network [OSTI]

    Huang, Jian

    2013-04-05T23:59:59.000Z

    GEOMECHANICAL DEVELOPMENT OF FRACTURED RESERVOIRS DURING GAS PRODUCTION A Dissertation by JIAN HUANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... this research work. I would also want to extend my appreciation to my friends and colleagues, Jun Ge, Chakra Rawal, Reza Safari, Sonia Wang, Vahid Serajian, Wenxu Xue and other members in the geomechanics group, who were always willing to help and offer...

  19. Low permeability gas reservoir production using large hydraulic fractures

    E-Print Network [OSTI]

    Holditch, Stephen A

    1970-01-01T23:59:59.000Z

    extending up to three thousand feet from the producing well. Also, a model simulating a nuclear cavity was designed. This model simulated a well containing an eighty foot radius cavity with a fractured zone of one hundred times the reservoir permeability... of each system was prepared. The results of this study showed that all fractures of greater than one thousand foot radius had greater productivity and greater cumu- lative gas produced than did the nuclear cavity. It appears that large hydraulic...

  20. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  1. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N. (Baton Rouge, LA)

    2012-07-10T23:59:59.000Z

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  2. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  3. The thief process for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Freeman, M.C.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.

  4. Collaborative Product and Process Model: Multiple Viewpoints Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , product information, process information, product lifecycle management 1 Introduction In today lifecycle management becomes much more important. Product Lifecycle Management (PLM) is a strategic business related to product lifecycle. This kind of collaboration depends on exchanging and sharing adequate

  5. Development of an advanced, continuous mild gasification process for the production of co-products: Topical report

    SciTech Connect (OSTI)

    Cha, C.Y.; Merriam, N.W.; Jha, M.C.; Breault, R.W.

    1988-06-01T23:59:59.000Z

    Research on mild gasification is discussed. The report is divided into three sections: literature survey of mild gasification processes; literature survey of char, condensibles, and gas upgrading and utilization methods; and industrial market assessment of products of mild gasification. Recommendations are included in each section. (CBS) 248 refs., 58 figs., 62 tabs.

  6. Desulphurization of coke oven gas by the Stretford Process

    SciTech Connect (OSTI)

    Plenderleith, J.

    1981-01-01T23:59:59.000Z

    The Stretford process is probably the most effective means available for removing hydrogen sulphide from gas streams. For streams which do not contain hydrogen cyanide or excessive oxygen it should be nearly ideal. However, the large volume of waste liquor generated by fixation of hydrogen cyanide has prevented its widespread adoption for coke oven gas treatment. Investigations of various proposals for treating the waste liquor indicate that the only practicable way of dealing with it is by reductive incineration. Although attempts to apply the Peabody-Holmes reductive incineration process have been disappointing, significant progress in overcoming some of its deficiencies has been made. The Zimpro wet oxidation process will provide a convenient method of treating the HCN scrubber effluent at No. 1 Plant. However, it will not treat the sodium based liquor from the Stretford plant. Its application to Stretford waste treatment is limited to situations where ammonium liquors and ammonium sulphate recovery facilities are available. Commissioning of this plant has been delayed while a defect in the air compressor supplied for the plant is being remedied. When the problem of liquid effluent disposal has been overcome, and if reagent chemicals continue to be available at reasonable prices, the Stretford process will be a good choice for coke oven gas desulphurization. 8 figures.

  7. Simulation, integration, and economic analysis of gas-to-liquid processes 

    E-Print Network [OSTI]

    Bao, Buping

    2009-05-15T23:59:59.000Z

    Gas-to-liquid (GTL) process involves the chemical conversion of natural gas (or other gas sources) into synthetic crude that can be upgraded and separated into different useful hydrocarbon fractions including liquid transportation fuels. A leading...

  8. Strategies for gas production from oceanic Class 3 hydrate accumulations

    E-Print Network [OSTI]

    Moridis, George J.; Reagan, Matthew T.

    2007-01-01T23:59:59.000Z

    coexistence of aqueous, gas and hydrate phases, indicatingIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Makogon, Y.F. , “Gas hydrates: frozen energy,” Recherche

  9. Process for production of a metal hydride

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12T23:59:59.000Z

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  10. alcohol production process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-01-01 38 Process improvements during production ramp-up MIT - DSpace Summary: Raytheon Company is currently ramping up production radars for a fighter aircraft. This...

  11. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  12. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    SciTech Connect (OSTI)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31T23:59:59.000Z

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

  13. U.S. Natural Gas Gross Withdrawals and Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoal ProductionLiquefiedNatural Gas Exports

  14. Forecasting long-term gas production of dewatered coal seams and fractured gas shales

    SciTech Connect (OSTI)

    Spivey, J.P.; Semmelbeck, M.E.

    1995-12-31T23:59:59.000Z

    Production decline curves are routinely used by engineers to predict the future performance of oil and gas wells. Because the results of decline curve predictions are used for calculating asset value and estimating future revenue, they are one of the most important tools reservoir engineers use. There are numerous variations on the basic exponential or hyperbolic decline analysis method. Fetkovitch and other have extended the decline curve analysis method to handle gas wells properly and to be able to estimate reservoir properties from the analysis of these data. However, there has been considerable drilling activity in the last 10 years into unconventional reservoirs whose wells do not follow the traditional production decline characteristic shapes. Among these problem reservoirs are coalbed methane and fractured shale reservoirs. A procedure is presented which allows forecasting long range performance of dewatered coal and fractured gas shale reservoirs having nonlinear adsorption isotherms, using constant pressure solutions to the flow equation for slightly compressible liquids. A correlation is presented to show the range of applicability of this procedure.

  15. Improving Product and Manufacturing Process Design through a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enable more accurate modeling of machining processes, which will result in improved productivity. Graphic credit Third Wave Systems. fluid. This inefficient trial-and-error process...

  16. Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities

    E-Print Network [OSTI]

    Legg, Sean W

    2013-05-21T23:59:59.000Z

    of these detectors is required in order to have a well-functioning gas detection system. However, the uncertainty in leak locations, gas composition, process and weather conditions, and process geometries must all be considered when attempting to determine...

  17. Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery

    E-Print Network [OSTI]

    Lambers, James

    Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

  18. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect (OSTI)

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01T23:59:59.000Z

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  19. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect (OSTI)

    Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

    2010-04-30T23:59:59.000Z

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

  20. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect (OSTI)

    Pennline, Henry W.; Hoffman, James S.

    2013-10-01T23:59:59.000Z

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  1. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    Collett, T.S. , 1993. Natural gas hydrates of the Prudhoe2008. Mechanical Properties of Natural Gas Hydrate Bearinggas hydrate reservoir. Natural Gas Hydrate: In Oceanic and

  2. Product-level bill of material development process : managing complexity

    E-Print Network [OSTI]

    Lester, Ryan John

    2009-01-01T23:59:59.000Z

    Cisco's current process for developing and maintaining product-level bills of materials (BOMs) has resulted in inconsistencies in BOM structure leading to product launch delays, increased product support costs, and lower ...

  3. Alignment strategies for drug product process development and manufacturing

    E-Print Network [OSTI]

    Garvin, Christopher John

    2012-01-01T23:59:59.000Z

    The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

  4. GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

  5. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    in Indiana (IN), USA electricity is mostly generated byUSA, where gas, nuclear and hydro are the main sources of electricity.

  6. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    house gas emissions and carbon footprint are numerous. Thisgas emissions and carbon footprint are numerous. In thispayback time • Carbon footprint • Efficiency improvement (

  7. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect (OSTI)

    Kadam, K. L.

    2001-06-22T23:59:59.000Z

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  8. Process improvements during production ramp-up

    E-Print Network [OSTI]

    Chew, Ryan W. (Ryan Wayne)

    2007-01-01T23:59:59.000Z

    Raytheon Company is currently ramping up production radars for a fighter aircraft. This product is doubling production in the next year to meet customer demand; however, the program has not been able to meet the current ...

  9. Development of an advanced, continuous mild gasification process for the production of co-products

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.; Kline, S.; Onischak, M.; Babu, S.P. (Institute of Gas Technology, Chicago, IL (USA)); Duthie, R.G. (Bechtel National, Inc., San Francisco, CA (USA))

    1990-04-01T23:59:59.000Z

    A project team consisting of the Institute of Gas Technology, Peabody Holding Company, Inc., and Bechtel National, Inc., is developing a mild gasification process that uses a fluidized/entrained-bed reactor. This reactor is designed to process caking bituminous coals over a wide range of particle sizes without oxidative pretreatment, and also without the use of oxygen or air as reactants. The co-product streams, consisting of char, fuel gas, water, and condensables, would be separated by conventional means such as cyclone, staged condensers, and recycle-oil scrubbers. An isothermal process research unit (PRU) has been built at IGT, consisting of an 8-inch-I.D., 8-foot-long fluidized-bed section and a 4-inch-I.D., 13-foot-long entrained flow section, externally heated by electrical heaters. This quarter, eleven mild gasification tests were conducted in the PRU. Illinois No. 6 coal was used in nine of the tests and a West Virginia metallurgical grade of coal was used in the last two tests. The tests conducted in the PRU this quarter were operated with feed rates about three times higher than those used in the last quarter. Results show the effect of process temperature on the shields of char, oils/tars, and gases. Various compositional effects on the oils/tars were also discovered. Char upgrading studies were completed for the char co-product options of smokeless fuel and adsorbent char. A total condensate collection system was designed for the PRU system. 18 figs., 22 tabs.

  10. Process for production of a borohydride compound

    DOE Patents [OSTI]

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19T23:59:59.000Z

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  11. Surfactant process for promoting gas hydrate formation and application of the same

    DOE Patents [OSTI]

    Rogers, Rudy E. (Starkville, MS); Zhong, Yu (Brandon, MS)

    2002-01-01T23:59:59.000Z

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  12. New Concepts in Hardware and Processes to Conserve Oil and Gas in Industrial Processes

    E-Print Network [OSTI]

    Humphrey, J. L.

    1982-01-01T23:59:59.000Z

    A broad program to identify and evaluate new types of hardware and processes to conserve oil and gas in chemical plants and petroleum refineries has been completed. During the course of this program, which was sponsored by the Office of Industrial...

  13. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments

    E-Print Network [OSTI]

    Rutqvist, J.

    2014-01-01T23:59:59.000Z

    and arctic onshore gas hydrate production wells. OTC-21015.Bay Unit L-106 Well Unit C gas hydrate deposit in Alaska.Toward Production from Gas Hydrates: Current Status,

  14. QUAUTE DES PRODUITS — QUALITY OF PRODUCTS Processing ability of pork products

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    QUAUTE DES PRODUITS — QUALITY OF PRODUCTS Processing ability of pork products B. JACQUET-de-Gaulle, 94700 Maisons-Alfort The first part is devoted to the economics of pig meat products as well in terms of national consumption as in terms of production of fresh, processed and cured products, canned meat

  15. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect (OSTI)

    Bundy, R.D.; Munday, E.B.

    1991-01-01T23:59:59.000Z

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  16. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Hazardous Substances Directive WEEE = Waste Electrical andelectronic products (RoHS, WEEE). Complementary metal oxide

  17. Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer Boundaries

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . SPE SPE 23442 Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer, Richardson, TX 7S0834S36 U.5A. Telex, 730989 SPEDAL. ABSTRACT A family of pressure and production decline as gas reservoirs which produce substan- tial amounts of water together with ~as. Production of water

  18. Exploring the Optimum Role of Natural Gas in Biofuels Production

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Vann Bush, Managing Director, Energy Conversion, Gas Technology Institute

  19. Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska

    E-Print Network [OSTI]

    Kim, J.

    2014-01-01T23:59:59.000Z

    2009. Toward Production From Gas Hydrates: Current Status,Geologic Controls on Gas Hydrate Occurrence in the MountCollett T.S. 1993. Natural Gas Hydrates of the Prudhoe Bay

  20. Calculation of CO2 column heights in depleted gas fields from known pre-production gas column heights

    E-Print Network [OSTI]

    Calculation of CO2 column heights in depleted gas fields from known pre-production gas column that the CO2 is in a dense phase (either liquid or supercritical). Accurate assessment of the storage capacity also requires an estimation of the amount of CO2 that can be safely stored beneath the reservoir seal

  1. Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model. [Cyclic thermal injection

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.

    1985-05-01T23:59:59.000Z

    The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.

  2. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31T23:59:59.000Z

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  3. Slovakian refiner operating new hybrid hydrogen-production process

    SciTech Connect (OSTI)

    Babik, A. (Chemko s.p., Strazske (Slovakia)); Kurt, J. (Uhde GmbH, Dortmund (Germany))

    1994-03-21T23:59:59.000Z

    Chemko s.p. has implemented Uhde GmbH's new combined autothermal reforming (CAR) process into an existing hydrogen plant at its refinery in Strazske, Slovakia. The new technology uses a combination of steam reforming and partial oxidation processes to produce synthesis gas or hydrogen for use in refinery or petrochemical processes. The paper describes the CAR process, process development, the reactor, convective reformer, partial oxidation, and the demonstration unit.

  4. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01T23:59:59.000Z

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  5. Sulfur by-product formation in the Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.; DeBerry, D.W.

    1993-09-01T23:59:59.000Z

    Liquid redox sulfur recovery processes remove H2S from sour gas streams and produce elemental sulfur for sale or disposal. The Stretford Process is one of the oldest commercial liquid redox processes and it is based on a vanadium and anthraquinone redox system. Improvements in the operability and reliability of the Stretford process would be beneficial to the process user. The report presents results of research focused on developing an understanding of the process parameters and factors that impact sulfur by-product formation (e.g., sodium thiosulfate and sodium sulfate) in the Stretford process. The information in the report can help current Stretford plant process users better understand the operations of their plants, especially with regards to sulfur by-product formation and control strategies.

  6. Heat and mass transfer in the gas tungsten and gas metal arc welding processes

    SciTech Connect (OSTI)

    Watkins, A.D; Smartt, H.B.; Einerson, C.J.; Watkins, J.A.

    1990-01-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode was measured for a wide range of conditions suitable for mechanized welding. The results are given as (1) the arc efficiency and (2) the anode heat and current input distributions for various anode materials over a range of current and voltage. The nominal arc is Gaussian, {approximately}4 mm in diameter, with {approximately}75{percent}heat transfer efficiency. Variations from these values are discussed in terms of the electrical and thermal energy transport mechanisms. Heat transferred to the workpiece (cathode) during direct current, electrode positive gas metal arc welding (GMAW) was measured for various parameters applicable to machine welding. The results are presented as a function of electrode speed for changing voltages and contact tip to workpiece distances. The total heat transfer efficiency was nominally 85{percent} for a 0.89 mm diameter steel electrode using an argon-2{percent} oxygen shielding gas; the nominal heat transfer efficiency of the droplet component was 40{percent}. The average droplet temperatures ranged from 2400 to 3100 K, depending on the process parameters. A new method of measuring the heat transferred from the arc to the workpiece, using a boiling liquid nitrogen calorimeter, has been developed that gives rapid, accurate values. 20 refs., 8 figs., 2 tabs.

  7. Process management applications in biopharmaceutical drug production

    E-Print Network [OSTI]

    Smith, Stephen E

    2011-01-01T23:59:59.000Z

    Genzyme's manufacturing and supply chain organization is responsible for the production and delivery of medically necessary medicines for patients with rare diseases around the world. Because of the nature of the products ...

  8. By Terry Engelder and Gary G. Lash UNIVERSITY PARK, PA.The shale gas rush is on. Excitement over natural gas production from a

    E-Print Network [OSTI]

    Engelder, Terry

    natural gas production from a number of Devonian-Mississippian black shales such as the Barnett by the Eastern Gas Shales Project (EGSP), a U.S. Department of Energy-sponsored investigation of gas potential. Economic gas production from black shale often requires stimulation by hydraulic fracturing

  9. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    = LCI = Mfg = MRR = RoHS = WEEE = Application programmingelectronic products (RoHS, WEEE). Complementary metal oxide

  10. Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact...

  11. Gas Turbines Increase the Energy Efficiency of Industrial Processes 

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

  12. MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas) Engineering

    E-Print Network [OSTI]

    George, Glyn

    MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas with oil and gas specialization at the assistant- or associate professor-level, commencing April 12, 2010 in the area of oil and gas, and process engineering, to supervise graduate students, to participate in other

  13. Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd Skogestad*

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd variables (CVs) for a natural gas to hydrocarbon liquids (GTL) process based on the idea of self of operation are studied. In mode I, where the natural gas flow rate is given, there are three unconstrained

  14. Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsena , Sigurd little attention. this paper addresses optimal operation of a simple natural gas liquefaction process at all times. Keywords: Self-optimizing control, liquefied natural gas, LNG, PRICO, disturbances, optimal

  15. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01T23:59:59.000Z

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  16. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    of United States oil and gas resources on CD-ROM: U.S.of United States Oil and Gas Resources conducted by the U.S.assess conventional oil and gas resources. In order to use

  17. Process reengineering for the product development process at an analytical instrument manufacturer

    E-Print Network [OSTI]

    Tandon, Shubhang

    2014-01-01T23:59:59.000Z

    In an analytical instrument manufacturing company, the new product development process was analyzed with the objective of reducing time to market, to full scale production of new products and to improve project management ...

  18. Automated product recovery in a Hg-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1992-07-21T23:59:59.000Z

    A method of removing deposited product from a photochemical reactor used in the enrichment of [sup 196]Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out. 2 figs.

  19. Automated product recovery in a HG-196 photochemical isotope separation process

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Speer, Richard (Reading, MA)

    1992-01-01T23:59:59.000Z

    A method of removing deposited product from a photochemical reactor used in the enrichment of .sup.196 Hg has been developed and shown to be effective for rapid re-cycling of the reactor system. Unlike previous methods relatively low temperatures are used in a gas and vapor phase process of removal. Importantly, the recovery process is understood in a quantitative manner so that scaling design to larger capacity systems can be easily carried out.

  20. The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

  1. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect (OSTI)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31T23:59:59.000Z

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evalua

  2. A technique to control mercury from flue gas: The Thief Process

    SciTech Connect (OSTI)

    O'Dowd, W.J.; Pennline, H.W.; Freeman, M.C.; Granite, E.J.; Hargis, R.A.; Lacher, C.J.; Karash, A.

    2006-12-01T23:59:59.000Z

    The Thief Process is a mercury removal process that may be applicable to a broad range of pulverized coal-fired combustion systems. This is one of several sorbent injection technologies under development by the U.S. Department of Energy for capturing mercury from coal-fired electric utility boilers. A unique feature of the Thief Process involves the production of a thermally activated sorbent in situ at the power plant. The sorbent is obtained by inserting a lance, or thief, into the combustor, in or near the flame, and extracting a mixture of partially combusted coal and gas. The partially combusted coal or sorbent has adsorptive properties suitable for the removal of vapor-phase mercury at flue gas temperatures that are typical downstream of a power plant preheater. One proposed scenario, similar to activated carbon injection (ACI), involves injecting the extracted sorbent into the downstream ductwork between the air preheater and the particulate collection device of the power plant. Initial laboratory-scale and pilot-scale testing, using an eastern bituminous coal, focused on the concept validation. Subsequent pilot-scale testing, using a Powder River Basin (PRB) coal, focused on the process development and optimization. The results of the experimental studies, as well as an independent experimental assessment, are detailed. In addition, the results of a preliminary economic analysis that documents the costs and the potential economic advantages of the Thief Process for mercury control are discussed.

  3. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  4. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  5. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  6. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  7. Prediction of gas-hydrate formation conditions in production and surface facilities

    E-Print Network [OSTI]

    Ameripour, Sharareh

    2006-10-30T23:59:59.000Z

    Gas hydrates are a well-known problem in the oil and gas industry and cost millions of dollars in production and transmission pipelines. To prevent this problem, it is important to predict the temperature and pressure under which gas hydrates...

  8. Energy, water and process technologies integration for the simultaneous production of

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    production process from gasification. Keywords: Bioethanol; Energy and Food Production; Integrated Process production of corn. Figure 1.- Bioethanol Production expectations (source US DOE) However, there are limits

  9. Forecasting long-term gas production from shale

    E-Print Network [OSTI]

    Cueto-Felgueroso, Luis

    Oil and natural gas from deep shale formations are transforming the United States economy and its energy outlook. Back in 2005, the US Energy Information Administration published projections of United States natural gas ...

  10. Direct estimation of gas reserves using production data 

    E-Print Network [OSTI]

    Buba, Ibrahim Muhammad

    2004-09-30T23:59:59.000Z

    This thesis presents the development of a semi-analytical technique that can be used to estimate the gas-in-place for volumetric gas reservoirs. This new methodology utilizes plotting functions, plots, extrapolations, ...

  11. Process for Low Cost Domestic Production of LIB Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

  12. Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas

    DOE Patents [OSTI]

    Durai-Swamy, Kandaswamy (Culver City, CA)

    1982-01-01T23:59:59.000Z

    In a process for recovery of values contained in solid carbonaceous material, the solid carbonaceous material is comminuted and then subjected to pyrolysis, in the presence of a carbon containing solid particulate source of heat and a beneficially reactive transport gas in a transport flash pyrolysis reactor, to form a pyrolysis product stream. The pyrolysis product stream contains a gaseous mixture and particulate solids. The solids are separated from the gaseous mixture to form a substantially solids-free gaseous stream which comprises volatilized hydrocarbon free radicals newly formed by pyrolysis. Preferably the solid particulate source of heat is formed by oxidizing part of the separated particulate solids. The beneficially reactive transport gas inhibits the reactivity of the char product and the carbon-containing solid particulate source of heat. Condensed stabilized hydrocarbons are obtained by quenching the gaseous mixture stream with a quench fluid which contains a capping agent for stabilizing and terminating newly formed volatilized hydrocarbon free radicals. The capping agent is partially depleted of hydrogen by the stabilization and termination reaction. Hydrocarbons of four or more carbon atoms in the gaseous mixture stream are condensed. A liquid stream containing the stabilized liquid product is then treated or separated into various fractions. A liquid containing the hydrogen depleted capping agent is hydrogenated to form a regenerated capping agent. At least a portion of the regenerated capping agent is recycled to the quench zone as the quench fluid. In another embodiment capping agent is produced by the process, separated from the liquid product mixture, and recycled.

  13. Forecasting long-term gas production Luis Cueto-Felguerosoa

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    by increasing the length of a single well within the gas-bearing shale. Hydraulic fracturing, or "fracking" (9

  14. Simulation and integration of liquefied natural gas (lng) processes

    E-Print Network [OSTI]

    Al-Sobhi, Saad Ali

    2009-05-15T23:59:59.000Z

    gas (LNG). When there is a considerable distance involved in transporting natural gas, LNG is becoming the preferred method of supply because of technical, economic, and political reasons. Thus, LNG is expected to play a major role in meeting...

  15. Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

  16. Gas production potential of disperse low-saturation hydrateaccumulations in oceanic sediments

    SciTech Connect (OSTI)

    Moridis, George J.; Sloan, E. Dendy

    2006-07-19T23:59:59.000Z

    In this paper we evaluate the gas production potential ofdisperse, low-saturation (SH<0.1) hydrate accumulations in oceanicsediments. Such hydrate-bearing sediments constitute a significantportion of the global hydrate inventory. Using numerical simulation, weestimate (a) the rates of gas production and gas release from hydratedissociation, (b) the corresponding cumulative volumes of released andproduced gas, as well as (c) the water production rate and the mass ofproduced water from disperse, low-SH hydrate-bearing sediments subject todepressurization-induced dissociation over a 10-year production period.We investigate the sensitivity of items (a) to (c) to the followinghydraulic properties, reservoir conditions, and operational parameters:intrinsic permeability, porosity, pressure, temperature, hydratesaturation, and constant pressure at which the production well is kept.The results of this study indicate that, despite wide variations in theaforementioned parameters (covering the entire spectrum of suchdeposits), gas production is very limited, never exceeding a few thousandcubic meters of gas during the 10-year production period. Such lowproduction volumes are orders of magnitude below commonly acceptedstandards of economic viability, and are further burdened with veryunfavorable gas-to-water ratios. The unequivocal conclusion from thisstudy is that disperse, low-SH hydrate accumulations in oceanic sedimentsare not promising targets for gas production by means ofdepressurization-induced dissociation, and resources for early hydrateexploitation should be focused elsewhere.

  17. Mitigating the impact of a time-dependent production process

    E-Print Network [OSTI]

    Dudnik, Sara A

    2007-01-01T23:59:59.000Z

    Value-added processes that bear associated wait times occur frequently during production manufacturing and increase cycle time. Since the wait time is integral to the value created by the process, it can be difficult to ...

  18. Desulfurization of flue gas by the confined zone dispersion process - Proof-of-concept tests

    SciTech Connect (OSTI)

    Abrams, J.Z.; Blake, J.H.; Pennline, H.W.

    1986-01-01T23:59:59.000Z

    As part of a program to develop more cost-effective approaches to the control of acid rain precursors, the Department of Energy (DOE) is supporting proof-of-concept tests of the Confined Zone Dispersion (CZD) process proposed by Bechtel. This process removes SO/sub 2/ from flue gas by injecting a finely atomized slurry of highly reactive pressure hydrated dolomitic lime into the duct of a utility boiler. A slipstream of flue gas at 300/sup 0/F will be withdrawn from the plant ductwork and will pass through a 130-ft run of 3-ft diameter test duct. A two-fluid atomizer will inject the lime slurry into the upstream end of the test duct. A pilot scale electrostatic precipitator (ESP) will remove reaction products and fly ash before the gas is discharged back into the utility's ESP. An 11-month test program will optimize controllable variables, acquire design data, and demonstrate reliability by a long duration run. Measurements taken will include SO/sub 2/ removal, lime utilization, ESP performance, and characterization of waste solids.

  19. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    models as com- pletely as possible prior to making the gas injection simulations. One validation test involved simulating a horizontal gas drive ex- cluding gravity effects by using the same densities for gas and oil. Shown in Figure 6 is the GOR...THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  20. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01T23:59:59.000Z

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  1. lehigh-logo Models and Simulation for Bulk Gas Production and

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    lehigh-logo Models and Simulation for Bulk Gas Production and Distribution Wasu Glankwamdee Jeff/Distribution ()Lehigh/Air Products Pittsburgh, PA 1 / 1 lehigh-logo In Our Last Episode(s)... Our project is studying;lehigh-logo Entities in the Production/Distribution Simulation Sites Location, Production Capacity

  2. Active constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a

    E-Print Network [OSTI]

    Skogestad, Sigurd

    processes. 2. Optimal operation of a PRICO liquefaction plant 2.1. Plant description The PRICO processActive constraint regions for a natural gas liquefaction process Magnus G. Jacobsen a , Sigurd Keywords: Self-optimizing control Liquefied natural gas LNG PRICO Disturbances Optimal operation a b s t r

  3. Gaussian Process Product Models for Nonparametric Nonstationarity

    E-Print Network [OSTI]

    Adams, Ryan Prescott

    .ac.uk Oliver Stegle os252@cam.ac.uk Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK- dictive distributions. 1. Introduction The Gaussian process (Rasmussen & Williams, 2006) is a useful approaches involve Gaussian process mix- tures (Rasmussen, 2000), augmentation of the input space (Pfingsten

  4. Collective effects in multiparticle production processes at the LHC

    E-Print Network [OSTI]

    S. M. Troshin; N. E. Tyurin

    2011-06-27T23:59:59.000Z

    We discuss various aspects of the multiparticle production processes at the LHC energy range with emphasis on the collective effects associated with appearance of the new scattering mode, which corresponds to the reflective scattering and its impact on multiparticle production processes.

  5. Process and Product Certification Arguments -Getting the Balance Right

    E-Print Network [OSTI]

    Kelly, Tim

    that should be adopted by the development and assessment lifecycle. Product-based certification reliesProcess and Product Certification Arguments - Getting the Balance Right Ibrahim Habli Tim Kelly on the generation and assurance of product-specific evidence that meets safety requirements derived from hazard

  6. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  7. Accounting for Adsorbed gas and its effect on production bahavior of Shale Gas Reservoirs

    E-Print Network [OSTI]

    Mengal, Salman Akram

    2010-10-12T23:59:59.000Z

    pressures )( p by conventional well tests due to very low permeabilities. Decline curves for conventional gas, when applied on shale gas reservoirs, can not be validated by material balance due to unavailability of average reservoir pressure. However...* variable rate gas BDF including adsorbed gas exhibiting exponential decline (b = 1)................. 25 4.6 Plot of [m(pi )? m(pwf )] / qg(t) vs material balance pseudo time tca*, xii FIGURE...

  8. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect (OSTI)

    Mendoza, Luis A.

    2007-12-01T23:59:59.000Z

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  9. Distributed Hydrogen Production from Natural Gas: Independent Review

    SciTech Connect (OSTI)

    Fletcher, J.; Callaghan, V.

    2006-10-01T23:59:59.000Z

    Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

  10. Life Cycle Assessment of Hydrogen Production via Natural Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. 27637.pdf More Documents & Publications...

  11. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  12. Low-cost process for hydrogen production

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Bauer, Hans F. (Morgantown, WV); Grimes, Robert W. (Laramie, WY)

    1993-01-01T23:59:59.000Z

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  13. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  14. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21T23:59:59.000Z

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  15. Catalyst and process development for synthesis gas conversion to isobutylene

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1992-05-26T23:59:59.000Z

    The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

  16. Gas Turbines Increase the Energy Efficiency of Industrial Processes

    E-Print Network [OSTI]

    Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

    1981-01-01T23:59:59.000Z

    It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed...

  17. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, D.E.

    1997-10-21T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector`s centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel`s wall in the form of a ``wavy film,`` while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs.

  18. Process for the production of hydrogen peroxide

    DOE Patents [OSTI]

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02T23:59:59.000Z

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  19. Matrix Product States approach to non-Markovian processes

    E-Print Network [OSTI]

    Descamps Benoit

    2014-10-31T23:59:59.000Z

    A matrix product state approach to non-Markovian, classical and quantum processes is discussed. In the classical case, the Radon-Nikodym derivative of all processes can be embedded into quantum measurement procedure. In the both cases, quantum and classical, the master equation can be derived from a projecting a quantum Markovian process onto a lower dimensional subspace.

  20. Depressurization-induced gas production from Class 1 and Class 2hydrate deposits

    SciTech Connect (OSTI)

    Moridis, George J.; Kowalsky, Michael

    2006-05-12T23:59:59.000Z

    Class 1 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) underlain by a two-phase zone involving mobile gas. Such deposits are further divided to Class 1W (involving water and hydrate in the HBL) and Class 1G (involving gas and hydrate in the HBL). In Class 2 deposits, a mobile water zone underlies the hydrate zone. Methane is the main hydrate-forming gas in natural accumulations. Using TOUGH-FX/HYDRATE to study the depressurization-induced gas production from such deposits, we determine that large volumes of gas could be readily produced at high rates for long times using conventional technology. Dissociation in Class 1W deposits proceeds in distinct stages, but is continuous in Class 1G deposits. Hydrates are shown to contribute significantly to the production rate (up to 65 percent and 75 percent in Class 1W and 1G, respectively) and to the cumulative volume of produced gas (up to 45 percent and 54 percent in Class 1W and 1G, respectively). Large volumes of hydrate-originating CH4 could be produced from Class 2 hydrates, but a relatively long lead time would be needed before gas production (which continuously increases over time) attains a substantial level. The permeability of the confining boundaries plays a significant role in gas production from Class 2 deposits. In general, long-term production is needed to realize the full potential of the very promising Class 1 and Class 2 hydrate deposits.

  1. NGPL Production, Gaseous Equivalent at Processing Plants

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production, Gaseous

  2. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy LeakHydrogen Production

  3. Help for declining natural gas production seen in the unconventional sources of natural gas. [Eastern shales, tight sands, coal beds, geopressured zones

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-01-10T23:59:59.000Z

    Oil imports could be reduced and domestic gas production increased if additional gas production is obtained from four unconventional resources-eastern Devonian shales, tight sands, coal beds, and geopressured zones. Gas produced from these resources can help maintain overall production levels as supplies from conventional gas sources gradually decline. The eastern shales and western sands are the chief potential contributors in the near term. Further demonstrations of coal bed methane's recovery feasibility could improve the prospects for its production while future geopressured methane production remains speculative at this time.

  4. Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6

    E-Print Network [OSTI]

    George, Steven M.

    Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6 R. K; published 23 July 2004 The gas phase reaction products during tungsten W atomic layer deposition ALD using WF6 and Si2H6 were studied using quadrupole mass spectrometry. The gas phase reactions products were

  5. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  6. Process for off-gas particulate removal and apparatus therefor

    DOE Patents [OSTI]

    Carl, Daniel E. (Orchard Park, NY)

    1997-01-01T23:59:59.000Z

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gasflow in the outer channel maintains the fluid on the channel's wall in the form of a "wavy film," while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator.

  7. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    gas releases during drilling, and well integrity issuesNext, drilling of exploration wells and conducting wellal. , 2006a), as well as the 1998 and 2005 drilling programs

  8. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    releases during drilling, and well integrity issues duringand ? Ensuring well structural integrity with subsidence inat nearby wells, seal integrity loss and associated gas

  9. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    collection of additional reservoir data to support reservoirflow (drawdown) data for those hydrate reservoirs that aregeologic data on gas-hydrate-bearing sand reservoirs in the

  10. Process for the removal of tritium from the product solutions obtained by the Purex process

    SciTech Connect (OSTI)

    Bossche, A.V.; Olinger, R.

    1983-02-22T23:59:59.000Z

    A process for the removal of tritium from the product solutions obtained in the reprocessing of irradiated nuclear fuels by the Purex process comprising a plurality of series-connected extraction cycles having an organic solvent.

  11. Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991

    SciTech Connect (OSTI)

    Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

    1992-01-01T23:59:59.000Z

    The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

  12. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  13. Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

  14. Processing and Gas Barrier Behavior of Multilayer Thin Nanocomposite Films 

    E-Print Network [OSTI]

    Yang, You-Hao

    2012-10-19T23:59:59.000Z

    Thin films with the ability to impart oxygen and other types of gas barrier are crucial to commercial packaging applications. Commodity polymers, such as polyethylene (PE), polycarbonate (PC) and polyethylene terephthalate (PET), have insufficient...

  15. Process Design and Integration of Shale Gas to Methanol

    E-Print Network [OSTI]

    Ehlinger, Victoria M.

    2013-02-04T23:59:59.000Z

    Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact...

  16. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  17. Microwave off-gas treatment apparatus and process

    DOE Patents [OSTI]

    Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Wicks, George G. (North Aiken, SC)

    2003-01-01T23:59:59.000Z

    The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

  18. Method and apparatus for processing exhaust gas with corona discharge

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Orlando, Thomas M. (Kennewick, WA); Tonkyn, Russell G. (Kennewick, WA)

    1999-01-01T23:59:59.000Z

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  19. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23T23:59:59.000Z

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  20. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18T23:59:59.000Z

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  1. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N. [Exxon Production Research, Houston, TX (United States); Denton, R.D. [Exxon Production Malaysia, Inc., Kuala Lumpur (Malaysia)

    1996-12-31T23:59:59.000Z

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  2. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  3. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  4. Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses 

    E-Print Network [OSTI]

    Vera Rosales, Fabian 1986-

    2012-12-11T23:59:59.000Z

    The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability...

  5. Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production

    E-Print Network [OSTI]

    Life-Cycle Greenhouse Gas and Energy Analyses of Algae Biofuels Production Transportation Energy The Issue Algae biofuels directly address the Energy Commission's Public Interest Energy Research fuels more carbonintensive than conventional biofuels. Critics of this study argue that alternative

  6. R. S. Driof, Process Demlopnant Dranch, Production Division

    Office of Legacy Management (LM)

    S. Driof, Process Demlopnant Dranch, Production Division 7 i 7; I; " k>JSTI'IC AT TIE CifiICAL CCNSTXICTIOS COXi'O+TIO:? PIX)T PIGIT-JUL'I 31, 19% Chemico ban fouzd tw...

  7. Study of gas production potential of New Albany Shale (group) in the Illinois basin

    SciTech Connect (OSTI)

    Hasenmueller, N.R.; Boberg, W.S.; Comer, J.; Smidchens, Z. (Indiana Geological Survey, Bloomington (United States)); Frankie, W.T.; Lumm, D.K. (Illinois State Geological Survey, Champaign (United States)); Hamilton-Smith, T.; Walker, J.D. (Kentucky Geological Survey, Lexington (United States))

    1991-08-01T23:59:59.000Z

    The New Albany Shale (Devonian and Mississippian) is recognized as both a source rock and gas-producing reservoir in the Illinois basin. The first gas discovery was made in 1885, and was followed by the development of several small fields in Harrison County, Indiana, and Meade County, Kentucky. Recently, exploration for and production of New Albany gas has been encouraged by the IRS Section 29 tax credit. To identify technology gaps that have restricted the development of gas production form the shale gas resource in the basin, the Illinois Basin Consortium (IBC), composed of the Illinois, Indiana, and Kentucky geological surveys, is conducting a cooperative research project with the Gas Research Institute (GRI). An earlier study of the geological and geochemical aspects of the New Albany was conducted during 1976-1978 as part of the Eastern Gas Shales Project (EGSP) sponsored by the Department of Energy (DOE). The current IBC/GRI study is designed to update and reinterpret EGSP data and incorporate new data obtained since 1978. During the project, relationships between gas production and basement structures are being emphasized by constructing cross sections and maps showing thickness, structure, basement features, and thermal maturity. The results of the project will be published in a comprehensive final report in 1992. The information will provide a sound geological basis for ongoing shale-gas research, exploration, and development in the basin.

  8. A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youTheWSRC-TR-97-0100WHITE.3RD MIAMISearchTimothy

  9. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2009-10-01T23:59:59.000Z

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  10. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs 

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

  11. ASPEN simulation of the SNG production process in an indirect coal-liquefaction plant

    SciTech Connect (OSTI)

    Bistline, J E; Shafer, T B

    1982-08-01T23:59:59.000Z

    The synthetic natural gas (SNG) production process (methanation, CO-shift, and hydrogen removal) in an indirect coal-liquefaction plant was simulated using the Advanced System for Process Engineering (ASPEN). The simulation of the methanation unit agreed to within 12% of Fluor's design for converting carbon monoxide and carbon dioxide. A parametric study examined the effect of four important operating parameters on product composition, process thermal efficiency, and outlet temperature from the second methanation reactor. The molar split of gas feed to the CO-shift unit before methanation was varied from 0.2 to 0.6; variations of molar recycle ratio (0.01 - 0.67), molar steam-to-feed ratio (0.04 - 0.19), and feed temperature (478 - 533 K, 400-500/sup 0/F) to the first methanation reactor were also studied. A 50%-lower split improved thermal efficiency by 6%, but the mole % hydrogen and carbon monoxide in the product SNG required to meet pipeline-quality standards and temperature constraints were not met. Increasing the steam-to-feed ratio from 0.04 to 0.19 improved product quality but decreased thermal efficiency by 8%. By decreasing the feed temperature from 533 to 477 K (500 to 400/sup 0/F), product specifications and temperature constraints were met with no effect on thermal efficiency. However, it may be impractical to operate the reactor at 477 K (400/sup 0/F) because the kinetics are too slow. Increasing the recycle ratio from 0.4 to 0.67 had no effect on thermal efficiency, and temperature constraints and product specifications were met. The SNG production process should be optimized at recycle ratios above 0.67.

  12. Standardization of Components, Products and Processes with Data Mining

    E-Print Network [OSTI]

    Kusiak, Andrew

    1 Standardization of Components, Products and Processes with Data Mining Bruno AGARD Département de - 1527, USA andrew-kusiak@uiowa.edu ABSTRACT Data mining offers tools for extracting knowledge from databases. This paper discusses applications of data mining in standardization of components, products

  13. Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass Mariano Martín Abstract. In this paper we present the conceptual design for the optimization of FT-diesel production to increase the yield towards green diesel. The optimization of the system is formulated as an equation

  14. Optimal biodiesel production using bioethanol: Towards process integration.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal biodiesel production using bioethanol: Towards process integration. Kristen Severson Ave. Pittsburgh PA 15213 Abstract. In this paper we optimize the production of biodiesel to recover the ethanol, separate the polar and non polar phases and purify the glycerol and biodiesel

  15. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09T23:59:59.000Z

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  16. Table 9. Natural Gas Production, Projected vs. Actual Projected

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14 EarlyNatural Gas

  17. PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS

    SciTech Connect (OSTI)

    M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

    2007-11-01T23:59:59.000Z

    A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

  18. Top-quark processes at NLO in production and decay

    SciTech Connect (OSTI)

    Campbell, John M.; Ellis, R.Keith

    2012-04-01T23:59:59.000Z

    We describe the implementation of top production and decay processes in the parton-level Monte Carlo program MCFM. By treating the top quark as being on-shell, we can factorize the amplitudes for top-pair production, s-channel single-top production, and t-channel single-top production into the product of an amplitude for production and an amplitude for decay. In this way we can retain all spin correlations. Both the production and the decay amplitudes are calculated consistently at next-to-leading order in alpha_s. The full dependence on the b-quark mass is also kept. Phenomenological results are presented for various kinematic distributions at the LHC and for the top quark forward-backward asymmetry at the Tevatron.

  19. Process Modeling Phase I Summary Report for the Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    Pannala, Sreekanth [ORNL; Daw, C Stuart [ORNL; Boyalakuntla, Dhanunjay S [ORNL; FINNEY, Charles E A [ORNL

    2006-09-01T23:59:59.000Z

    This report summarizes the results of preliminary work at Oak Ridge National Laboratory (ORNL) to demonstrate application of computational fluid dynamics modeling to the scale-up of a Fluidized Bed Chemical Vapor Deposition (FBCVD) process for nuclear fuels coating. Specifically, this work, referred to as Modeling Scale-Up Phase I, was conducted between January 1, 2006 and March 31, 2006 in support of the Advanced Gas Reactor (AGR) Program. The objective was to develop, demonstrate and "freeze" a version of ORNL's computational model of the TRI ISOtropic (TRISO) fuel-particle coating process that can be specifically used to assist coater scale-up activities as part of the production of AGR-2 fuel. The results in this report are intended to serve as input for making decisions about initiating additional FBCVD modeling work (referred to as Modeling Scale-Up Phase II) in support of AGR-2. The main computational tool used to implement the model is the general-purpose multiphase fluid-dynamics computer code known as MFIX (Multiphase Flow with Interphase eXchanges), which is documented in detail on the DOE-sponsored website http://www.mfix.org. Additional computational tools are also being developed by ORNL for post-processing MFIX output to efficiently summarize the important information generated by the coater simulations. The summarized information includes quantitative spatial and temporal measures (referred to as discriminating characteristics, or DCs) by which different coater designs and operating conditions can be compared and correlated with trends in product quality. The ORNL FBCVD modeling work is being conducted in conjunction with experimental coater studies at ORNL with natural uranium CO (NUCO) and surrogate fuel kernels. Data are also being obtained from ambient-temperature, spouted-bed characterization experiments at the University of Tennessee and theoretical studies of carbon and silicon carbide chemical vapor deposition kinetics at Iowa State University. Prior to the current scale-up activity, considerable effort has gone in to adapting the MFIX code to incorporate the unique features of fuel coating reactors and also in validating the resulting simulation features with experimental observations. Much of this work is documented in previous AGR reports and publications (Pannala et al., 2004, Pannala et al., 2005, Boyalakuntla et al., 2005a, Boyalakuntla et al., 2005b and Finney et al., 2005). As a result of the previous work described above, the ORNL coater model now has the capability for simulating full spatio-temporal details of the gas-particle hydrodynamics and gas-particle heat and mass transfer in the TRISO coater. This capability provides a great deal of information about many of the processes believed to control quality, but the model is not yet sufficiently developed to fully predict coating quality for any given coater design and/or set of operating conditions because the detailed chemical reaction kinetics needed to make the model fully predictive are not yet available. Nevertheless, the model at its current stage of development already provides the most comprehensive and detailed quantitative information available about gas flows, solid flows, temperatures, and species inside the coater during operation. This level of information ought to be highly useful in expediting the scale-up process (e.g., in correlating observations and minimizing the number of pilot-scale tests required). However, previous work had not yet demonstrated that the typical design and/or operating changes known to affect product quality at the lab scale could be clearly discriminated by the existing model. The Modeling Scale-Up Phase I work was initiated to produce such a demonstration, and two detailed examples are discussed in this report.

  20. SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT IN THE MID-CONTINENT

    SciTech Connect (OSTI)

    Scott Reeves

    2003-03-01T23:59:59.000Z

    Stripper gas wells are an important source of domestic energy supply and under constant threat of permanent loss (shut-in) due to marginal economics. In 1998, 192 thousand stripper gas wells produced over a Tcf of gas, at an average rate of less than 16 Mcfd. This represents about 57% of all producing gas wells in the onshore lower-48 states, yet only 8% of production. Reserves of stripper gas wells are estimated to be only 1.6 Tcf, or slightly over 1% of the onshore lower-48 total (end of year 1996 data). Obviously, stripper gas wells are at the very margin of economic sustenance. As the demand for natural gas in the U.S. grows to the forecasted estimate of over 30 Tcf annually by the year 2010, supply from current conventional sources is expected to decline. Therefore, an important need exists to fully exploit known domestic resources of natural gas, including those represented by stripper gas wells. The overall objectives of this project are to develop an efficient and low-cost methodology to broadly categorize the well performance characteristics for a stripper gas field, identify the high-potential candidate wells for remediation, and diagnose the specific causes for well underperformance. With this capability, stripper gas well operators can more efficiently and economically produce these resources and maximize these gas reserves. A further objective is to identify/develop, evaluate and test ''new and novel,'' economically viable remediation options. Finally, it is the objective of this project that all the methods and technologies developed in this project, while being tested in the Mid-Continent, be widely applicable to stripper gas wells of all types across the country. The project activities during the reporting period were: (1) Prepared various materials to describe the project for promotional purposes and to attract potential industry partners. Materials included slides for DOE's displays at the SPE Eastern Regional and Annual Technical Conference, and a project description prospectus and accompanying presentation. (2) Identified the significant stripper gas plays in the Mid-Continent region. In Texas, where most Mid-Continent stripper gas wells and production exist, we obtained this information from the Railroad Commission. We identified three high-priority plays--the Canyon sands of West Texas, the Bend Conglomerate in North Texas, and the Hugoton field in the Panhandle area (the field also extends into Oklahoma and Kansas). (3) Solicited industry research partners in these areas to provide test sites. We had originally reached an agreement with Union Pacific Resources to utilize their Ozona (Canyon) field in West Texas, but that arrangement eventually fell through in December as a result of their merger with Anadarko. In the meantime, we have contacted the following people or organizations in an attempt to secure test sites: (A) Phillips Petroleum (largest operator in the Texas Hugoton field), never received a call back after two attempts. (B) Made a presentation to Mitchell Energy in Fort Worth (the largest operator in the Bend Conglomerate). They declined to participate--already performing similar studies. (C) Anadarko in the Kansas Hugoton. Similar to the West Texas team, they declined to become involved. (D) St. Mary Operating and Cheasapeake Energy, both of whom showed an interest in such studies at the GTI workshop on restimulation (held on Oct 25 in Houston). Never received call backs. Also contacted Ocean Energy based on a similar lead, but they do not have enough wells for the project. (E) Oneok, who have indicated an interest in participating using the Mocane-Laverne field in Oklahoma. Discussions are ongoing. (F) Harrison Interests, one of the second-tier operators in the Ozona Canyon play, but who have shown some interest in participating. Discussions are ongoing. (4) We have also contacted the Mid-Continent representative of the PTTC, and the Stripper Well Consortium contact at the University of Tulsa, to request their assistance in our partner acquisition process. (5) We have begun developing

  1. Western Gas Sands Project: production histories of the Piceance and Uinta basins of Colorado and Utah

    SciTech Connect (OSTI)

    Anderson, S.; Kohout, J. (comp.)

    1980-11-20T23:59:59.000Z

    Current United States geological tight sand designations in the Piceance and Uinta Basins' Western Gas Sands Project include the Mesaverde Group, Fort Union and Wasatch Formations. Others, such as the Dakota, Cedar Mountain, Morrison and Mancos may eventually be included. Future production from these formations will probably be closely associated with existing trends. Cumulative gas production through December 1979, of the Mesaverde Group, Fort Union and Wasatch Formations in the Piceance and Uinta Basins is less than 275 billion cubic feet. This contrasts dramatically with potential gas in place estimates of 360 trillion cubic feet. If the geology can be fully understood and engineering problems surmounted, significant potential reserves can be exploited.

  2. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    E-Print Network [OSTI]

    Moridis, G.J.

    2011-01-01T23:59:59.000Z

    require some form of artificial lift (typically gas lift forGH development will require artificial lift such as electriclow pressure at surface. Artificial lift will be required to

  3. Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problem

  4. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01T23:59:59.000Z

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  5. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation

    SciTech Connect (OSTI)

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01T23:59:59.000Z

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  6. Nonlineai Control of Biotechnological Processes with Growth-Production Decoupling

    E-Print Network [OSTI]

    Bastin, Georges

    , for instance, to substrate overload- ing. Typical examples involve biological wastewater treatment processes Nonlinear control design techniques for a class of continuous biological processes with growth growth and the product formation. The issue of feedback linearizing control of biological reactors has

  7. Simulation of production and injection performance of gas storage caverns in salt formations

    SciTech Connect (OSTI)

    Hagoort, J. (Delft Univ. of Technology (Netherlands))

    1994-11-01T23:59:59.000Z

    This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

  8. Production of natural gas from methane hydrate by a constant downhole pressure well

    SciTech Connect (OSTI)

    Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2007-07-01T23:59:59.000Z

    Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.

  9. MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2009-10-01T23:59:59.000Z

    The Next Generation Nuclear Power/Advanced Gas Reactor (NGNP/AGR) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas “bubble” movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values.

  10. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL] [ORNL; Birdwell Jr, Joseph F [ORNL] [ORNL; Tsouris, Costas [ORNL] [ORNL; Jennings, Hal L [ORNL] [ORNL

    2008-01-01T23:59:59.000Z

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  11. Synthetic aggregates prepared from flue gas desulfurization by-products using various binder materials

    SciTech Connect (OSTI)

    Bellucci, J.; Graham, U.M.; Hower, J.C.; Robl, T.L. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31T23:59:59.000Z

    Flue Gas Desulfurization (FGD) by-products can be converted into environmentally safe and structurally stable aggregates. One type of synthetic aggregate was prepared using an optimum mixture of (FGD) by-products, fly ash, and water. Mineral reactions have been examined using X-ray diffraction and scanning electron microscope.

  12. CO2 gas production understanding above a partly flooded coal post-mining area

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - The Westphalian deposit is constituted by numerous exploited coal seams of different thicknesses. These seamsCO2 gas production understanding above a partly flooded coal post-mining area Candice Lagnya, a former coal mining area. To understand the origin of this production, a borehole of 90 meters deep

  13. Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  14. Title of Dissertation: STUDY OF OPTICAL PROPERTIES AND CURRENT EMISSION PROCESSES OF GAS

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: STUDY OF OPTICAL PROPERTIES AND CURRENT EMISSION PROCESSES OF GAS PHASE FIELD IONIZATION SOURCES Xuefeng Liu, Doctor of Philosophy, 2004 Dissertation Directed By). This dissertation explores the properties of the gas field ionization source with the goal of providing a resource

  15. Process for removal of hydrogen halides or halogens from incinerator gas

    DOE Patents [OSTI]

    Huang, H.S.; Sather, N.F.

    1987-08-21T23:59:59.000Z

    A process for reducing the amount of halogens and halogen acids in high temperature combustion gas and through their removal, the formation of halogenated organics at lower temperatures, with the reduction being carried out electrochemically by contacting the combustion gas with the negative electrode of an electrochemical cell and with the halogen and/or halogen acid being recovered at the positive electrode.

  16. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  17. Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

  18. EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

  19. Plastic plugbacks can extend oil and gas well productive life

    SciTech Connect (OSTI)

    Rice, R.T. (Chevron U.S.A. Inc. (US))

    1991-11-01T23:59:59.000Z

    A high rate of successful water reduction has been documented in 21 plastic plugbacks performed on gravel-packed oil and gas well completions in the Gulf of Mexico. This electric wireline plugback method is unique because it is performed inside gravel pack assemblies, utilizing plastic instead of cement. This article presents a case study of field results from 21 jobs performed by Tenneco/Chevron.

  20. Fuel gas production by microwave plasma in liquid

    SciTech Connect (OSTI)

    Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

    2006-06-05T23:59:59.000Z

    We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

  1. The future of U.S. natural gas production, use, and trade Sergey Paltsev a,b,n

    E-Print Network [OSTI]

    The future of U.S. natural gas production, use, and trade Sergey Paltsev a,b,n , Henry D. Jacoby 19 May 2011 Available online 16 June 2011 Keywords: Natural gas Climate Policy International gas.S. regional detail, are applied to analysis of the future of U.S. natural gas. The focus is on uncertainties

  2. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01T23:59:59.000Z

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  3. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect (OSTI)

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S. [USDOE Pittsburgh Energy Technology Center, PA (United States); Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N. [Gilbert/Commonwealth, Inc., Library, PA (United States)

    1995-12-01T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  4. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22T23:59:59.000Z

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  5. Slag processing system for direct coal-fired gas turbines

    DOE Patents [OSTI]

    Pillsbury, Paul W. (Winter Springs, FL)

    1990-01-01T23:59:59.000Z

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  6. Catalysts and process for liquid hydrocarbon fuel production

    DOE Patents [OSTI]

    White, Mark G; Liu, Shetian

    2014-12-09T23:59:59.000Z

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.

  7. Table 4. Principal shale gas plays: natural gas production and proved reserves, 2012-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas plays: natural gas

  8. The Use of Horizontal Wells in Gas Production from Hydrate Accumulations

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Reagan, Matthew T.; Zhang, Keni

    2008-04-15T23:59:59.000Z

    The amounts of hydrocarbon gases trapped in natural hydrate accumulations are enormous, leading to a recent interest in the evaluation of their potential as an energy source. Earlier studies have demonstrated that large volumes of gas can be readily produced at high rates for long times from gas hydrate accumulations by means of depressurization-induced dissociation, using conventional technology and vertical wells. The results of this numerical study indicate that the use of horizontal wells does not confer any practical advantages to gas production from Class 1 deposits. This is because of the large disparity in permeabilities between the hydrate layer (HL) and the underlying free gas zone, leading to a hydrate dissociation that proceeds in a horizontally dominant direction and is uniform along the length of the reservoir. When horizontal wells are placed near the base of the HL in Class 2 deposits, the delay in the evolution of a significant gas production rate outweighs their advantages, which include higher rates and the prevention of flow obstruction problems that often hamper the performance of vertical wells. Conversely, placement of a horizontal well near to top of the HL can lead to dramatic increases in gas production from Class 2 and Class 3 deposits over the corresponding production from vertical wells.

  9. Depressurization-induced gas production from Class 1 and Class 2hydrate deposits

    SciTech Connect (OSTI)

    Moridis, George J.; Kowalsky, Michael

    2006-05-12T23:59:59.000Z

    Class 1 hydrate deposits are characterized by aHy-drate-Bearing Layer (HBL) underlain by a two-phase zone involvingmobile gas. Such deposits are further divided to Class 1W (involvingwater and hydrate in the HBL) and Class 1G (involving gas and hydrate inthe HBL). In Class 2 deposits, a mobile water zone underlies the hydratezone. Methane is the main hydrate-forming gas in natural accumulations.Using TOUGH-FX/HYDRATE to study the depressurization-induced gasproduction from such deposits, we determine that large volumes of gascould be readily produced at high rates for long times using conventionaltechnology. Dissociation in Class 1W deposits proceeds in distinctstages, but is continuous in Class 1G deposits. Hydrates are shown tocontribute significantly to the production rate (up to 65 percent and 75percent in Class 1W and 1G, respectively) and to the cumulative volume ofproduced gas (up to 45 percent and 54 percent in Class 1W and 1G,respectively). Large volumes of hydrate-originating CH4 could be producedfrom Class 2 hydrates, but a relatively long lead time would be neededbefore gas production (which continuously increases over time) attains asubstantial level. The permeability of the confining boundaries plays asignificant role in gas production from Class 2 deposits. In general,long-term production is needed to realize the full potential of the verypromising Class 1 and Class 2 hydrate deposits.

  10. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect (OSTI)

    Sims, A.V.

    1983-06-01T23:59:59.000Z

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  11. Analysis of error in using fractured gas well type curves for constant pressure production

    E-Print Network [OSTI]

    Schkade, David Wayne

    1987-01-01T23:59:59.000Z

    of normalized time and normalized cumulative production is a large improvement over using a constant evaluation pressure. 0 imens ion less cumulative production type curves are particularly useful in modeling production for economic projections, such as re... of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering ANALYSIS OF ERROR IN USING FRACTURED GAS WELL TYPE CURVES FOR CONSTANT PRESSURE PRDDUCTION A Thesis by DAVID WAYNE SCHKADE Approved as to style and content by: S. A. Ho lditch...

  12. Alaska State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYearThousand From Gas

  13. New Mexico Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas, WetReserves

  14. New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,Decade Year-0Year(Million

  15. New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear JanBarrels)

  16. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural GasCubic Feet)

  17. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14 Early

  18. Florida Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by Local0 0

  19. Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas ProvedCommercial Consumers by

  20. Florida Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May JunFuel

  1. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,perMississippi

  2. New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas NumberFuel(Million

  3. Kansas Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base Gas)6 Dollars per301

  4. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOE Patents [OSTI]

    Wijmans Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2012-05-15T23:59:59.000Z

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  5. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25T23:59:59.000Z

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  6. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect (OSTI)

    Margot Gerritsen

    2008-10-31T23:59:59.000Z

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids the redundant work generally done in the near-well regions. We improved the accuracy of the streamline simulator with a higher order mapping from pressure grid to streamlines that significantly reduces smoothing errors, and a Kriging algorithm is used to map from the streamlines to the background grid. The higher accuracy of the Kriging mapping means that it is not essential for grid blocks to be crossed by one or more streamlines. The higher accuracy comes at the price of increased computational costs, but allows coarser coverage and so does not generally increase the overall costs of the computations. To reduce errors associated with fixing the pressure field between pressure updates, we developed a higher order global time-stepping method that allows the use of larger global time steps. Third-order ENO schemes are suggested to propagate components along streamlines. Both in the two-phase and three-phase experiments these ENO schemes outperform other (higher order) upwind schemes. Application of the third order ENO scheme leads to overall computational savings because the computational grid used can be coarsened. Grid adaptivity along streamlines is implemented to allow sharp but efficient resolution of solution fronts at reduced computational costs when displacement fronts are sufficiently separated. A correction for Volume Change On Mixing (VCOM) is implemented that is very effective at handling this effect. Finally, a specialized gravity operator splitting method is proposed for use in compositional streamline methods that gives an effective correction of gravity segregation. A significant part of our effort went into the development of a parallelization strategy for streamline solvers on the next generation shared memory machines. We found in this work that the built-in dynamic scheduling strategies of OpenMP lead to parallel efficiencies that are comparable to optimal schedules obtained with customized explicit load balancing strategies as long as the ratio of number of streamlines to number of threads is sufficiently high, which is the case in real-fie

  7. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  8. New Mexico Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear(Million Cubic

  9. New Mexico Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear(MillionTexas

  10. Gulf of Mexico-Alabama Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 2009

  11. Gulf of Mexico-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 200988,219

  12. Gulf of Mexico-Mississippi Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008

  13. Gulf of Mexico-Texas Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008119,456

  14. A Review on Biomass Torrefaction Process and Product Properties

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; J. Richard Hess; Richard D. Boardman

    2011-08-01T23:59:59.000Z

    Biomass Torrefaction is gaining attention as an important preprocessing step to improve the quality of biomass in terms of physical properties and chemical composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of approximately 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-280 C. Thus, the process can be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. The present review work looks into (a) torrefaction process and different products produced during the process and (b) solid torrefied material properties which include: (i) physical properties like moisture content, density, grindability, particle size distribution and particle surface area and pelletability; (ii) chemical properties like proximate and ultimate composition; and (iii) storage properties like off-gassing and spontaneous combustion.

  15. UCN production by multiphonon processes in superfluid Helium under pressure

    E-Print Network [OSTI]

    P. Schmidt-Wellenburg; K. H. Andersen; O. Zimmer

    2009-01-29T23:59:59.000Z

    Cold neutrons are converted to ultra-cold neutrons (UCN) by the excitation of a single phonon or multiphonons in superfluid helium. The dynamic scattering function S(q, omega) of the superfluid helium strongly depends on pressure, leading to a pressure- dependent differential UCN production rate. A phenomenological expression for the multiphonon part of the scattering function s(lambda) describing UCN production has been derived from inelastic neutron scattering data. When combined with the production rate from single phonon processes this allows us to calculate the UCN production for any incident neutron flux. For calculations of the UCN production from single phonon processes we propose to use the values for S*(SVP) = 0.118(8) and S*(20 bar) = 0.066(6). As an example we will calculate the expected UCN production rate at the cold neutron beam for fundamental physics PF1b at the Institut Laue Langevin. We conclude that UCN production in superfluid helium under pressure is not attractive.

  16. Gasoline from natural gas by sulfur processing. Final technical report, June 1993--July 1996

    SciTech Connect (OSTI)

    Erekson, E.J.

    1996-07-01T23:59:59.000Z

    The overall objective of this research project was to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each use catalysts and sulfur-containing intermediates: (1) to convert natural gas to CS{sub 2} and (2) to convert CS{sub 2} to gasoline-range liquids. Experimental data generated in this project were for use in evaluating the commercial potential of the process.

  17. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  18. Combining Optimization and Simulation for Strategic and Operational Industrial Gas Production and Distribution

    E-Print Network [OSTI]

    Linderoth, Jeffrey T.

    ) are typically produced in bulk through a cryogenic air separation process. Air Products plans its production Engineering Bethlehem, PA {wag3,jtl3,jis6}@lehigh.edu Peter Connard Jim Hutton Air Products and Chemicals, Inc availability. The paper concludes with a case study using data from Air Products. Keywords: Enterprise

  19. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07T23:59:59.000Z

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  20. Integration of a high efficiency flue gas cleanup process into advanced power systems

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.; Yeh, J.T.; Ratafia-Brown, J.A.; Gorokhov, V.A.

    1994-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process, a dry, regenerable flue gas cleanup technology, can simultaneously remove sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from the flue gases generated by coal combustion. While this advanced air pollution abatement process technology has only been previously considered for conventional utility system applications, its unique design characteristics make it quite advantageous for use in advanced power systems, such as those pulverized-coal-fired systems defined in the US Department of Energy`s Combustion 2000 Initiative. Integration of this flue gas cleanup process into the advanced power systems is technically and economically assessed and compared with several commercially available flue gas cleanup processes. An update on the status of the Moving-Bed Copper oxide Process development is also presented.

  1. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    SciTech Connect (OSTI)

    Lienert, Thomas J [Los Alamos National Laboratory

    2010-12-09T23:59:59.000Z

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of the crimp using the electro-spark deposition (ESD) process followed by laser mixing, drilling and rewelding. Results of a study of the ESD parameters on deposition rate and efficiency will be discussed along with mass balance calculations for determining the desired Cr content to eliminate cracking. The study also required purchase of new pulsed Nd:YAG laser welders. Evaluation of the performance of the new lasers, including beam profiling results, will also be presented. Development of a mixing, drilling and re-welding process at atmospheric pressure with inert gas shielding demonstrated the efficacy of the Cr-augmentation approach. However, extending the process to vacuum conditions proved more challenging owing to loss of laser transmission through the window from spatter and condensation of metal vapors. Solutions developed to circumvent hese issues will be reviewed. Weld microstructures found with various Cr levels will be presented and discussed.

  2. Development of new critical fluid-based processing methods for nutraceuticals and natural products

    SciTech Connect (OSTI)

    King, J. W. (Jerry W.)

    2004-01-01T23:59:59.000Z

    The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products, and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes, which will be noted. Sub-critical water is finding increase use as an extraction/fractionation or reaction medium. The literature reports applications for the extraction spices, natural antioxidants (rosemary, anthocyanins, etc.), and herbal components (tea and coffee ingredients), Our studies and the literature provide adequate correlations of solute solubility in sub-critical water as well as models for the kinetics of extraction in this medium. Finally, the current state of critical fluid technology as applied to natural products and nutraceuticals will be assessed; noting specific processes, organizations, and products that exist.

  3. Apparatus for production of synthesis gas using convective reforming

    SciTech Connect (OSTI)

    Karafian, M.; Tsang, I.C.

    1991-04-09T23:59:59.000Z

    This patent describes a system for the steam reforming of hydrocarbons into a hydrogen-rich gas. It comprises a convective reformer device having indirect heat exchange means for partially reforming a feed mixture of hydrocarbons and steam; a steam reforming furnace having a radiant section, reforming tubes in the radiant section, and means for producing radiant heat for the further reforming of the partially reformed effluent; an auto-thermal reformer for fully reforming the effluent; conduit means for passing the partially reformed effluent; conduit means for passing the effluent; and conduit means for passing the fully reformed effluent to supply the heat of reaction for the partial reformation of the hydrocarbon-steam feed mixture.

  4. The elimination of liquid loading problems in low productivity gas wells

    E-Print Network [OSTI]

    Neves, Toby Roy

    1987-01-01T23:59:59.000Z

    developed for use on oil wells and the methodology of calculating the gas flow rate was altered to suit the needs of this study. Most correlations calculate the gas flow rate with the following equation: 3 27 E 07 Zg Qo (R Rs) (T + 460) In this study...THE ELIMINATION OF LIQUID LOADING PROBLEMS IN LOW PRODUCTIVITY GAS WELLS A Thesis by TOBY ROY NEVES Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  5. Rapid Gas Hydrate Formation Processes: Will They Work?

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

    2010-01-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

  6. Rapid Gas Hydrate Formation Processes: Will They Work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-01T23:59:59.000Z

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formationmore »of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  7. Fuel Cell Assembly Process Flow for High Productivity

    E-Print Network [OSTI]

    Edwards, David A.

    Fuel Cell Assembly Process Flow for High Productivity Problem Presenter Ram Ramanan Bloom Energy: Introduction Bloom Energy manufactures power modules based on fuel cell technology. These are built up their possible placement within a cell assembly. Currently, these rules for assembling the basic components

  8. High-Level waste process and product data annotated bibliography

    SciTech Connect (OSTI)

    Stegen, G.E.

    1996-02-13T23:59:59.000Z

    The objective of this document is to provide information on available issued documents that will assist interested parties in finding available data on high-level waste and transuranic waste feed compositions, properties, behavior in candidate processing operations, and behavior on candidate product glasses made from those wastes. This initial compilation is only a partial list of available references.

  9. 1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when

    E-Print Network [OSTI]

    Stenstrom, Michael K.

    1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important = CL (CL + HcVG) (6) where CL = liquid phase concentration, VL = liquid volume, CG = gas phase concentration, VG = gas volume, Hc = dimensionless Henry's law coefficient and M = mass of gas. Now use two

  10. Process and apparatus for separation of components of a gas stream

    SciTech Connect (OSTI)

    Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.

    2014-06-17T23:59:59.000Z

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  11. Process and apparatus for separation of components of a gas stream

    SciTech Connect (OSTI)

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-11-19T23:59:59.000Z

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  12. Process and apparatus for separation of components of a gas stream

    SciTech Connect (OSTI)

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-09-17T23:59:59.000Z

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  13. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) Estimated Production (Billion Cubic

  14. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) EstimatedProduction 4

  15. Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYearAdditionsLiquids Production (Million

  16. Oil production from thin oil columns subject to water and gas coning 

    E-Print Network [OSTI]

    Chai, Kwok Kit

    1981-01-01T23:59:59.000Z

    OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

  17. Oil production from thin oil columns subject to water and gas coning

    E-Print Network [OSTI]

    Chai, Kwok Kit

    1981-01-01T23:59:59.000Z

    OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

  18. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01T23:59:59.000Z

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  19. Table 4. Principal shale gas plays: natural gas production and proved reserves, 2012-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas plays: natural

  20. Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George; Zhang, Keni

    2008-05-01T23:59:59.000Z

    Gas hydrates are solid crystalline compounds in which gas molecules are lodged within the lattices of an ice-like crystalline solid. The vast quantities of hydrocarbon gases trapped in hydrate formations in the permafrost and in deep ocean sediments may constitute a new and promising energy source. Class 2 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) that is underlain by a saturated zone of mobile water. Class 3 hydrate deposits are characterized by an isolated Hydrate-Bearing Layer (HBL) that is not in contact with any hydrate-free zone of mobile fluids. Both classes of deposits have been shown to be good candidates for exploitation in earlier studies of gas production via vertical well designs - in this study we extend the analysis to include systems with varying porosity, anisotropy, well spacing, and the presence of permeable boundaries. For Class 2 deposits, the results show that production rate and efficiency depend strongly on formation porosity, have a mild dependence on formation anisotropy, and that tighter well spacing produces gas at higher rates over shorter time periods. For Class 3 deposits, production rates and efficiency also depend significantly on formation porosity, are impacted negatively by anisotropy, and production rates may be larger, over longer times, for well configurations that use a greater well spacing. Finally, we performed preliminary calculations to assess a worst-case scenario for permeable system boundaries, and found that the efficiency of depressurization-based production strategies are compromised by migration of fluids from outside the system.

  1. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19T23:59:59.000Z

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  2. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1994-05-06T23:59:59.000Z

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  3. Dutch gas plant uses polymer process to treat aromatic-saturated water

    SciTech Connect (OSTI)

    NONE

    1998-11-02T23:59:59.000Z

    A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

  4. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect (OSTI)

    Lee Nelson

    2011-09-01T23:59:59.000Z

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  5. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect (OSTI)

    R. A. Cordes; A. Donaldson

    2000-09-01T23:59:59.000Z

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  6. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids Production

  7. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future Production

  8. California Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future ProductionDecade

  9. Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProductionExpected Future

  10. Florida Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProductionExpected

  11. New York Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProduction

  12. Texas--State Offshore Natural Gas Plant Liquids Production, Gaseous

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011Dry Production

  13. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year JanProduction

  14. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year JanProduction(Million

  15. Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale ProductionExpected Future

  16. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale ProductionExpected

  17. Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProductionExpected Future

  18. Montana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProductionExpected

  19. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future Production (Billion Cubic

  20. Texas Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future ProductionYear JanDecade

  1. Texas Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future ProductionYear JanDecadeYear

  2. Texas--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale ProvedA(MillionGross

  3. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996)McGuire"Feet) EstimatedProduction 4 12Exports

  4. Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProvedExpected Future Production

  5. Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProduction (Million

  6. Lower 48 States Natural Gas Plant Liquids, Expected Future Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProductionSeparation,(Million(Million

  7. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear JanProductionSeparation,(Million(Million(Million

  8. Proceedings of the 1st Annual Gas Processing Symposium

    E-Print Network [OSTI]

    Foss, Bjarne A.

    -Halwagi (Editors) © 2009 Elsevier B.V. All rights reserved. 1 Dynamic optimization of the LNG value chain Bjarne A where the upstream part of the system and the LNG process plant are optimized individually. The system at the Snøhvit LNG plant. Use of these quite simple models combined with model-based optimization offers

  9. Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process

    SciTech Connect (OSTI)

    Grimes, R.W.

    1992-12-01T23:59:59.000Z

    This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

  10. New applications for enzymes in oil and gas production

    SciTech Connect (OSTI)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01T23:59:59.000Z

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  11. CO{sub 2} Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Lora Toy; Atish Kataria; Raghubir Gupta

    2011-09-30T23:59:59.000Z

    Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ï?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ï?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ï?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ï?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ï?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

  12. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    SciTech Connect (OSTI)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01T23:59:59.000Z

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  13. The use of cavitation for the production of diver breathing gas

    E-Print Network [OSTI]

    Klentzman, Chris Adam

    1990-01-01T23:59:59.000Z

    to produce the necessary vacuum in the cylinder. Various water samples were cavitated by placing them in a vacuum developed in the piston/cylinder assembly. The water samples varied in temperature, volume, and salinity to determine the corre-, lations... PRODUCED BY THE CAVITATION PROCESS AND THEIR BASIC DIMENSIONS. 2. DIMENSIONLESS PARAMETERS FOR ANALYSIS OF THE VOLUME OF GAS PRODUCED BY CAVITATION 3. WATER SAMPLES CAVITATED FOR GAS ANALYSIS 4. MICRO-SCHOLANDER READINGS AND ANALYSIS FOR ALL TESTED...

  14. Calcium looping process for high purity hydrogen production integrated with capture of carbon dioxide, sulfur and halides

    DOE Patents [OSTI]

    Ramkumar, Shwetha; Fan, Liang-Shih

    2013-07-30T23:59:59.000Z

    A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H.sub.2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO.sub.2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO.sub.3, CaS and CaX.sub.2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO.sub.2, in the presence of synthesis gas, in the presence of H.sub.2 and O.sub.2, under partial vacuum, and combinations thereof.

  15. Development of a Commercial Process for the Production of Silicon Carbide Fibrils

    SciTech Connect (OSTI)

    Nixdorf, R.D.

    1999-04-01T23:59:59.000Z

    A patent was issued on ''VLS'' silicon carbide fibrils to North American Phillips Corporation in 1975. Various laboratories and companies have been attempting to improve this process and scale it to larger quantities since that time. All of these efforts met with minimal success because they were using the original technology while attempting to improve the equipment. The principal impediments have been: (1) Slow crystal growth during fibril production; (2) Sensitive stoichiometry factors in the crystal growth chamber; and (3) Precise control of a high temperature process. The principal investigator has scaled silicon carbide whisker production at American Matrix and the SiC fiber process at Advanced Composite Materials Corporation from grams in the laboratory to tons per year production. This project is a proof-of-concept effort to apply some of the recent technology to the problems listed above in the fibril growth process. Two different technology approaches were investigated. A major problem with fibril growth has been generating a consistent supply of the required SiO gas reactant, which is a product of reducing SiO{sub 2}. The first approach, in this project addresses the SiO gas production, involved mixing silica and carbon fibrous raw materials in the immediate proximity of the graphite fibril growth plates to generate SiO nearer to individual sites of fibril growth. Iron bearing catalyst was painted on the graphite plates and the SiO generator mix was placed above the plate. This system was then heated to 1600/1650 C in a graphite resistance furnace. Some fibrils were started but the growth rate and fibril quality were unacceptably low. A second approach, which uses MTS + H{sub 2} gases to address stoichiometry control, was investigated to improve fibril growth rates while reducing the previous high temperature requirements for the process. A partial vacuum chamber was construct inside a commercial microwave furnace. The fibril growth container was coated with an iron catalyst and brought to 1200 C by the microwave field. A mixture of hydrogen and methyl trichlorosilane gases were fed to the fibril reaction container. Excellent silicon carbide fibrils were produced at a growth rate that was over four times greater than previously reported processes. The next phase of the development will be an optimization of operating parameters to improve fibril yield in the microwave growth process. The development activities will then move to the construction and testing of a pilot unit.

  16. The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado

    SciTech Connect (OSTI)

    Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

    1997-01-01T23:59:59.000Z

    Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

  17. Surfactant based imbibition and induced solution gas drive process: investigation by nuclear magnetic resonance

    E-Print Network [OSTI]

    Cox, James Calvin

    1993-01-01T23:59:59.000Z

    drive mechanism. This imbibition and induced solution gas drive study employed nuclear magnetic resonance (NMR) spectroscopy techniques to monitor and characterize the progress of oil recovery inside the rock sample core. A specially designed core...SURFACTANT BASED IMBIBITION AND INDUCED SOLUTION GAS DRIVE PROCESS: INVESTIGATION BY NUCLEAR MAGNETIC RESONANCE A Thesis by JAMES CALVIN COX Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

  18. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    SciTech Connect (OSTI)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01T23:59:59.000Z

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top size cut has traditionally been 45 {mu}m, and in some instances a bottom cut at +5 {mu}m is made to remove ultra-fine particles and reduce oxygen content. Predictably, use of irregular shaped or larger particle feedstock powder can reduce part quality as sintering shrinkage and part detail suffer. Thus, widespread production and technological use of Ti-MIM is limited due in large part to Ti alloy feedstock cost and availability, not MIM processing capability. Lower cost feedstock of fine, spherical Ti alloy powder with sufficient purity must be available in order to fully utilize the advantages of the Ti-MIM processing route allowing expansion of the market to small complex Ti parts in many high volume applications.

  19. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  20. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29T23:59:59.000Z

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a �demonstration� size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  1. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA)

    1994-01-01T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  2. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOE Patents [OSTI]

    Chang, S.G.

    1994-07-26T23:59:59.000Z

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  3. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

    2012-03-06T23:59:59.000Z

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  4. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (MillionGrossFeet)

  5. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in AlabamaGross

  6. Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed

  7. Alaska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1 Year-2 Year-3

  8. Alaska Dry Natural Gas Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1 Year-2

  9. Alaska Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet) YearNetDecade

  10. Alaska Natural Gas Marketed Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecadeFeet) YearNetDecadeYear

  11. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01T23:59:59.000Z

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  12. The effects of production rates and some reservoir parameters on recovery in a strong water drive gas reservoir

    E-Print Network [OSTI]

    Soemarso, Christophorus

    1978-01-01T23:59:59.000Z

    pressure data. Consequently, reliable imbibition laboratory test data are required. The effects of relative permeability, water and gas, and capillary pressure on the ultimate gas recovery were also in- vestigated. ACKNOWLEDGEMENTS The author' wishes... decrease in initial gas saturation when the desaturation process was used. So, in general, the residual gas saturation is higher when the test is obtained by the resaturation process. His findings supported Osoba s previous work showing that a...

  13. Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993

    SciTech Connect (OSTI)

    Hower, T.L.; Uttley, S.J.

    1993-07-01T23:59:59.000Z

    To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

  14. ,"U.S. Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014Processing"

  15. Ohio Natural Gas Processed in Ohio (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar AprProcessed

  16. Ohio Natural Gas Processed in West Virginia (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan Feb Mar AprProcessedWest

  17. U.S. Total Imports Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 and No.DecreasesPlant Processing

  18. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in Alabama (Million Cubic Feet)

  19. EIA - Natural Gas Pipeline Network - Transportation Process & Flow

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06)Pipeline UtilizationProcess and Flow

  20. Louisiana Offshore Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECSInput SupplementalYearCubicProcessed

  1. Texas Onshore Natural Gas Processed in Kansas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million Cubic Feet) TexasCubicKansas

  2. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million Cubic Feet)

  3. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million Cubic Feet)Texas (Million Cubic

  4. Gas and liquid fuel system test facilities for research, development, and production

    SciTech Connect (OSTI)

    Ehrlich, L.

    1995-09-01T23:59:59.000Z

    Meeting the challenges associated with the support of both mature product lines and new high flow, high accuracy DLE (dry low emissions) control valves and systems has been complex. This paper deals with the design and capabilities of the gas and liquid test facility at the Woodward Governor Company Turbomachinery Controls in Loveland, Colorado.

  5. Feasibility of monitoring gas hydrate production with time-lapse VSP

    SciTech Connect (OSTI)

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01T23:59:59.000Z

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  6. Energy, environmental and greenhouse gas effects of using alternative fuels in cement production

    E-Print Network [OSTI]

    Columbia University

    1 Energy, environmental and greenhouse gas effects of using alternative fuels in cement to an increase of AF use from 8.7% to 20.9% of the total energy consumption. 2. One of the alternative fuels used cement industry produces about 3.3 billion tonnes of cement annually. Cement production is energy

  7. Pressure Transient Analysis and Production Analysis for New Albany Shale Gas Wells

    E-Print Network [OSTI]

    Song, Bo

    2010-10-12T23:59:59.000Z

    time shift that can be used to qualify the gas desorption impact on long term production behavior. We focused on the field case Well A in New Albany Shale. We estimated the EUR for 33 wells, including Well A, using an existing analysis approach. We...

  8. Mixed-Conducting Oxygen Permeable Ceramic Membrane and its Application in the Production of Synthesis Gas

    E-Print Network [OSTI]

    Jiang, Qiying

    2010-04-28T23:59:59.000Z

    than the dense membrane. The reaction performance of BSCF asymmetric membranes in the production of synthesis gas (the partial oxidation and CO2 reforming of CH4) was studied, in which the role of the membranes in the reactions was investigated...

  9. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, L.C.; Karnowsky, M.M.; Yost, F.G.

    1992-06-16T23:59:59.000Z

    Disclosed is a process for production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about [minus]40 C and 110 C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  10. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15T23:59:59.000Z

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  11. Radiation zeros in weak boson production processes at hadron colliders

    E-Print Network [OSTI]

    F. Mamedov

    2001-07-31T23:59:59.000Z

    The Standard Model amplitudes for processes where one or more gauge bosons are emitted exhibit zeros in the angular distributions. The theoretical and experimental aspects of these radiation amplitude zeros are reviewed and some recent results are discussed. In particular, the zeros of the $WZ\\gamma$ and $WZZ$ production amplitudes are analyzed. It is briefly explained how radiation zeros can be used to test the SM.

  12. Process for the production of hydrogen from water

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Maroni, Victor A. (Naperville, IL); Willit, James L. (Batavia, IL)

    2010-05-25T23:59:59.000Z

    A method and device for the production of hydrogen from water and electricity using an active metal alloy. The active metal alloy reacts with water producing hydrogen and a metal hydroxide. The metal hydroxide is consumed, restoring the active metal alloy, by applying a voltage between the active metal alloy and the metal hydroxide. As the process is sustainable, only water and electricity is required to sustain the reaction generating hydrogen.

  13. Development of an advanced continuous mild gasification process for the production of coproducts: Task 4. 6, Technical and economic evaluation

    SciTech Connect (OSTI)

    Hogsett, R.F.; Jha, M.C.

    1991-12-01T23:59:59.000Z

    Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of coproducts from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization. In this process, coal is devolatilized under non- oxidizing conditions at mild temperature (900--1100{degrees}F) and pressure (1--15psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

  14. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30T23:59:59.000Z

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  15. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    SciTech Connect (OSTI)

    Franklin M. Orr, Jr.

    2004-05-01T23:59:59.000Z

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference compositional simulation.

  16. Galactic r-process production: The inhomogeneous approach

    E-Print Network [OSTI]

    Wehmeyer, B; Thielemann, F -K

    2015-01-01T23:59:59.000Z

    The origin of elements made by the rapid neutron-capture process (r-process) is not fully understood. Different sources have been proposed, e.g., core-collapse supernovae and neutron star mergers. Old metal-poor stars carry the signature of the astrophysical r-process source(s). Europium is the most indicative element to trace the r-process production, since it is mostly made by the r-process and it is easy to observe compared to other heavy r-process elements. In this work we simulate the evolution of europium in our Galaxy with the inhomogeneous chemical evolution model ICE, and we compare our results with spectroscopic observations. We test the most important parameters affecting the chemical evolution of the r-process element Eu: (a) for neutron star mergers the coalescence time scale of the merger and the probability to experience a neutron star merger event after two supernova explosions occurred and formed a double neutron star system ) and (b) for the sub-class of magneto-rotationally driven Supernova...

  17. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  18. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30T23:59:59.000Z

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  19. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect (OSTI)

    Kieffer, F.

    1994-02-01T23:59:59.000Z

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  20. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31T23:59:59.000Z

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  1. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24T23:59:59.000Z

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

  2. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02T23:59:59.000Z

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  3. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  4. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge

    SciTech Connect (OSTI)

    Zhang, Leguan; Xiao, Bo; Hu, Zhiquan; Liu, Shiming, E-mail: Zhangping101@yeah.net; Cheng, Gong; He, Piwen; Sun, Lei

    2014-01-15T23:59:59.000Z

    Highlights: • High temperature pyrolysis of sewage sludge was efficient for producing tar-free fuel gas. • Complete tar removal and volatile matter release were at elevated temperature of 1300 °C. • Sewage sludge was converted to residual solid with high ash content. • 72.60% of energy conversion efficiency for gas production in high temperature pyrolysis. • Investment and costing for tar cleaning were reduced. - Abstract: Pyrolysis of sewage sludge was studied in a free-fall reactor at 1000–1400 °C. The results showed that the volatile matter in the sludge could be completely released to gaseous product at 1300 °C. The high temperature was in favor of H{sub 2} and CO in the produced gas. However, the low heating value (LHV) of the gas decreased from 15.68 MJ/N m{sup 3} to 9.10 MJ/N m{sup 3} with temperature increasing from 1000 °C to 1400 °C. The obtained residual solid was characterized by high ash content. The energy balance indicated that the most heating value in the sludge was in the gaseous product.

  5. 6/10/12 UK team advances measurement of gas bubbles in pipelines. | Technology news | Process Engineer... 1/2processengineering.theengineer.co.uk/.../1012631.article

    E-Print Network [OSTI]

    Sóbester, András

    process in the manufacturing, power, oil & gas and petrochemical industries. For instance, the sharp

  6. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  7. Productivity and Efficiency of US Gas Transmission Companies: A European Regulatory Perspective

    E-Print Network [OSTI]

    Jamasb, Tooraj; Pollitt, Michael G.; Triebs, T

    the Atlantic.4 Lastly, we would like to stress that all our conclusions apply to gas transmission only. Both in the US and in Europe different energy networks are regulated in different ways and with varying levels of success. This paper is organized... treats output as the “right-hand side” of our cost model and cost as input. We now discuss our variables one at a time. First, we turn to outputs or cost-drivers. Much of the literature on gas transmission uses production functions where the prime...

  8. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30T23:59:59.000Z

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  9. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  10. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect (OSTI)

    Moridis, G.; Reagan, M.T.

    2011-01-15T23:59:59.000Z

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  11. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters 

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis....

  12. Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process

    E-Print Network [OSTI]

    Grujicic, Mica

    Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process M Grujicic1*, W, maximizes the acceleration of the particles. Furthermore, it is found that if the cold-spray nozzle, a significant increase in the average velocity of the particles at the nozzle exit can be obtained

  13. PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    . BACKGROUND This paper will evaluate current practices of clients in the New England/New York whichPROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University

  14. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, Hayim (Chicago, IL); Targos, William M. (Palatine, IL)

    1987-01-01T23:59:59.000Z

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  15. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOE Patents [OSTI]

    Abrevaya, H.; Targos, W.M.

    1987-12-22T23:59:59.000Z

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  16. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    E-Print Network [OSTI]

    Moridis, G.

    2011-01-01T23:59:59.000Z

    m). As in all cases of gas hydrates (Moridis et al. , 2007;by destroying the secondary gas hydrate barrier (if such aInduced Gas Production From Class 1 Hydrate Deposits,” SPE

  17. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  18. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    E-Print Network [OSTI]

    Moridis, George J.; Sloan, E. Dendy

    2006-01-01T23:59:59.000Z

    EG. Formation of gas hydrates in natural gas transmissiongeology of natural gas hydrates. Amsterdam: Springer-Verlag;Soloviev, VA. Submarine gas hydrates. St. Petersburg;1998.

  19. Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 201070,174

  20. Solder extrusion pressure bonding process and bonded products produced thereby

    DOE Patents [OSTI]

    Beavis, Leonard C. (Albuquerque, NM); Karnowsky, Maurice M. (Albuquerque, NM); Yost, Frederick G. (Ceder Crest, NM)

    1992-01-01T23:59:59.000Z

    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about -40.degree. C. and 110.degree. C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.