Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Process for production desulfurized of synthesis gas  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

Wolfenbarger, James K. (Torrance, CA); Najjar, Mitri S. (Wappingers Falls, NY)

1993-01-01T23:59:59.000Z

2

Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market  

U.S. Energy Information Administration (EIA) Indexed Site

Processing: The Crucial Link Between Natural Gas Production Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e., cleaned, before it can be safely delivered to the high-pressure, long-distance pipelines that transport the product to the consuming public. Natural gas that is not within certain specific gravities, pressures, Btu content range, or water content levels will

3

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

4

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network (OSTI)

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

5

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

Office of Scientific and Technical Information (OSTI)

Timothy C. Merkel (Primary Contact) Timothy C. Merkel (Primary Contact) RTI P.O. Box 12194 Research Triangle Park, NC 27709 merkel@rti.org Tel (919) 485-2742 Fax (919) 541-8000 Raghubir P. Gupta RTI P.O. Box 12194 Research Triangle Park, NC 27709 gupta@rti.org Tel (919) 541-8023 Fax (919) 541-8000 Suresh C. Jain U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 suresh.jain@netl.doe.gov Tel (304) 285-5431 Fax (304) 285-4403 Brian S. Turk RTI P.O. Box 12194 Research Triangle Park, NC 27709 bst@rti.org Tel (919) 541-8024 Fax (919) 541-8000 Daniel C. Cicero U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880 Morgantown, WV 26507 daniel.cicero@netl.doe.gov Tel (304) 285-4826 Fax (304) 285-4403 A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas

6

Process for production of synthesis gas with reduced sulfur content  

DOE Patents (OSTI)

A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

1989-01-01T23:59:59.000Z

7

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

8

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

DOE Green Energy (OSTI)

The overall objective of this project is to develop technologies for cleaning/conditioning IGCC generated syngas to meet contaminant tolerance limits for fuel cell and chemical production applications. The specific goals are to develop processes for (1) removal of reduced sulfur species to sub-ppm levels using a hybrid process consisting of a polymer membrane and a regenerable ZnO-coated monolith or a mixed metal oxide sorbent; (2) removal of hydrogen chloride vapors to sub-ppm levels using an inexpensive, high-surface-area material; and (3) removal of NH3 with acidic adsorbents followed by conversion of this NH3 into nitrogen and water. Existing gasification technologies can effectively and efficiently convert a wide variety of carbonaceous feedstocks (coal, petcoke, resids, biomass, etc.) into syngas, which predominantly contains carbon monoxide and hydrogen. Unfortunately, the impurities present in these carbonaceous feedstocks are converted to gaseous contaminants such as H2S, COS, HCl, NH3, alkali macromolecules and heavy metal compounds (such as Hg) during the gasification process. Removal of these contaminants using conventional processes is thermally inefficient and capital intensive. This research and development effort is focused on investigation of modular processes for removal of sulfur, chlorine, nitrogen and mercury compounds from syngas at elevated temperature and pressures at significantly lower costs than conventional technologies.

Merkel, T.C.; Turk, B.S.; Gupta, R.P.; Cicero, D.C.; Jain, S.C.

2002-09-20T23:59:59.000Z

9

Biomass gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas.  

E-Print Network (OSTI)

??A novel study on biomass-air gasification using a horizontal entrained-flow gasifier and catalytic processing of the product gas has been conducted. The study was designed… (more)

Legonda, Isack Amos

2012-01-01T23:59:59.000Z

10

Process for the production of a chemical synthesis gas from coal  

SciTech Connect

A process is described for the production of a chemical synthesis product gas from a carbonaceous feed material and steam which comprises: (A) reacting said steam with said carbonaceous feed material in a reaction zone at a reaction temperature between about 1000F and about 1500/sup 0/F and at a reaction pressure in excess of about 100 psia, in the presence of a carbon-alkali metal catalyst and sufficient added hydrogen and carbon monoxide to provide substantially equilibrium quantities of hydrogen and carbon monoxide in said reaction zone at said reaction temeperature and said reaction pressure; (B) withdrawing from said reaction zone an effluent gas containing substantially equilibrium quantities, at said reaction temperature and pressure, of methane, carbon dioxide, steam, hydrogen and carbon monoxide; (C) treating said effluent gas for the removal of steam and acid gases to produce a treated gas containing primarily carbon monoxide, hydrogen and methane; (D) recovering substantially all of the carbon monoxide and hydrogen from said treated gas as a chemical synthesis product gas, thereby producing a gas comprised substantially of methane; (E) contacting the gas produced in step (D) comprised substantially of methane with steam in a steam reforming zone under conditions such tat at least a portion of the methane present reacts with said steam to produce hydrogen and carbon monoxide; and (F) passing the effluent from said steam reforming zone into said reaction zone without substantial cooling, thereby supplying said added hydrogen and carbon monoxide required in said reaction zone and wherein said reforming zone is operated at conditions such that the heat content of said effluent from said steam reforming zone is sufficient to supply substantially all of the heat needed to preheat said carbonaceous feed material to said reaction temperature.

Eakman, J.; Kalina, T.; Marshall, H.

1980-07-08T23:59:59.000Z

11

English-Spanish glossary: offshore exploration and production, gas processing, and valves  

Science Conference Proceedings (OSTI)

This series of articles contains 3 different English-Spanish glossaries of related terms used in the oil industry. The glossary of the offshore exploration and production involves a summary of terms used in the offshore oil activity. It also includes names of singular equipment used in offshore drilling, as well as several navigation terms in relation to the floating oil structures. With the help of the Gas Processors Association it was possible to compile a glossary of gas processing with a concise selection of common terms of the industry of gas processing. The glossary of valves includes more than 200 terms of the industry of valves in a specialized glossary, and several explanations about the application and operation of valves.

Not Available

1981-12-01T23:59:59.000Z

12

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

13

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

14

In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen  

SciTech Connect

The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

Capp, John P. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

15

Coal gasification via the Lurgi process: Topical report: Volume 1, Production of SNG (substitute material gas)  

Science Conference Proceedings (OSTI)

A Lurgi baseline study was requested by the DOE/GRI Operating Committee of the Joint Coal Gasification Program for the purpose of updating the economics of earlier Lurgi coal gasification plant studies for the production of substitute natural gas (SNG) based on commercially advanced technologies. The current study incorporates the recent experience with large size Lurgi plants in an effort to improve capital and operating costs of earlier plant designs. The present coal gasification study is based on a mine mouth plant producing 250 billion Btu (HHV) per day of SNG using the Lurgi dry bottom coal gasification technology. A Western subbituminous coal was designated as the plant food, obtained from the Rosebud seam at Colstrip, Montana. This study presents the detailed description of an integrated facility which utilizes coal, air, and water to produce 250 billion Btu (HHV) per day of SNG. The plant consists of coal handling and preparation, twenty-six Lurgi dry bottom gasifiers, shift conversion, acid gas removal, methanation, compression and drying of product gas, sulfur recovery, phenol and ammonia recovery, as well as necessary support facilities. The plant is a grass roots, mine mouth facility located in a Western location similar to the town of Colstrip in Rosebud County, Montana. The Lurgi Corporation assisted in this study, under subcontract to Foster Wheeler, by supplying the heat and material balances, flow sheets, utilities, catalysts and chemical requirements, and cost data for Lurgi designed process sections. Details of material supplied by Lurgi Corporation are presented in Appendix A. 52 refs., 36 figs., 64 tabs.

Zahnstecher, L.W.

1984-09-01T23:59:59.000Z

16

Synthesis gas production  

SciTech Connect

Raw synthesis gas produced by the gasification of coal, heavy oil or similar carbonaceous material is contacted with a reforming catalyst at a temperature in the range between about 1000/sup 0/ and about 1800/sup 0/F and at a pressure between about 100 and about 2000 psig prior to adjustment of the carbon monoxide-to-hydrogen ratio and treatment of the gas to increase its Btu content. This catalytic reforming step eliminates C/sub 2/+ compounds in the gas which tend to form tarry downstream waste products requiring further treatment, obviates polymerization problems which may otherwise interfere with upgrading of the gas by means of the water gas shift and methanation reactions, and improves overall process thermal efficiency by making possible efficient low level heat recovery.

Kalina, T.; Moore, R.E.

1977-09-06T23:59:59.000Z

17

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

18

Natural Gas Dry Production (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG...

19

dry natural gas production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Dry natural gas production: The process of producing consumer-grade natural gas. Natural gas withdrawn from reservoirs is reduced by volumes used at the production ...

20

Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission  

DOE Green Energy (OSTI)

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hynol Corp., New York, NY (United States)

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

22

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

23

Gas-separation process  

DOE Patents (OSTI)

A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA); Baker, Richard W. (Palo Alto, CA)

1994-01-01T23:59:59.000Z

24

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

25

Natural Gas Production,  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Production, Transmission, and Consumption by State, 1996 (Million Cubic Feet) Table Alabama ... 530,841 5,361 -35,808 -163,227 0 921 18 325,542...

26

Gas-separation process  

DOE Patents (OSTI)

A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

Toy, L.G.; Pinnau, I.; Baker, R.W.

1994-01-25T23:59:59.000Z

27

Thai gas production now underway  

SciTech Connect

Encouraged by the prospect of reducing crude imports by 20%, the Thai government is investing heavily in a national gas development project that will tap at least two and possibly four gas fields in the Gulf of Thailand by the mid-1980's. The installation of the B wellhead platform on Union Oil Co. of Thailand's A-structure field marked the first completed construction in the project. Gas reserves in the A structure - a 15-mile-long faulted anticline in the southern Pattani trough - could be between 1 and 2 trillion CF; production will peak at 250 million CF/day of gas and 6000 bbl/day of condensate. Pairs of production-processing platforms will handle production, liquids-separation, and dehydration functions. The gas will then flow to a central processing platform for sendout to shore via a 264-mile (425-km) 34-in. pipeline. Production from the A field is scheduled to start in July 1980. Meanwhile, Texas Pacific Oil Co., Inc., has a 1983 production target for development of the more southerly B field, estimated to contain 5.8 TCF.

1980-02-01T23:59:59.000Z

28

Gas production apparatus  

DOE Patents (OSTI)

This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

Winsche, Warren E. (Bellport, NY); Miles, Francis T. (Bellport, NY); Powell, James R. (Wading River, NY)

1976-01-01T23:59:59.000Z

29

EIA's Natural Gas Production Data  

Reports and Publications (EIA)

This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

Information Center

2009-04-09T23:59:59.000Z

30

Hyrogen Production from Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2003 Hydrogen Coordination Meeting Arthur Hartstein Program Manager Natural Gas and Oil ProcessingHydrogen Introduction * Natural gas is currently the lowest cost...

31

Production of Gas-Solid Structures in Aluminum and Nickel Alloys by Gasar Processing  

DOE Green Energy (OSTI)

Experimental data on directional and bulk solidification of hydrogen-charged samples of aluminum alloy A356 and nickel alloy Inconel 718 are discussed. The solidification structure of the porous zone is shown to be dependent on many process variables. Of these variables, hydrogen content in the melt prior to solidification, and furnace atmospheric pressure during solidification play the decisive role. Also important are the furnace atmosphere composition, the solidification velocity, and the temperature distribution of the liquid metal inside the mold.

Apprill, J.M.; Baldwin, M.D.; Maguire, M.C.; Miszkiel, M.E.; Shapovalov, V.I.

1999-01-06T23:59:59.000Z

32

Geohydrologic study of the Michigan Basin for the applicability of Jack W. McIntyre`s patented process for simultaneous gas recovery and water disposal in production wells  

Science Conference Proceedings (OSTI)

Geraghty & Miller, Inc. of Midland, Texas conducted a geohydrologic study of the Michigan Basin to evaluate the applicability of Jack McIntyre`s patented process for gas recovery and water disposal in production wells. A review of available publications was conducted to identify, (1) natural gas reservoirs which generate large quantities of gas and water, and (2) underground injection zones for produced water. Research efforts were focused on unconventional natural gas formations. The Antrim Shale is a Devonian gas shale which produces gas and large quantities of water. Total 1992 production from 2,626 wells was 74,209,916 Mcf of gas and 25,795,334 bbl of water. The Middle Devonian Dundee Limestone is a major injection zone for produced water. ``Waterless completion`` wells have been completed in the Antrim Shale for gas recovery and in the Dundee Limestone for water disposal. Jack McIntyre`s patented process has potential application for the recovery of gas from the Antrim Shale and simultaneous injection of produced water into the Dundee Limestone.

Maryn, S.

1994-03-01T23:59:59.000Z

33

Challenges associated with shale gas production | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges associated with shale gas production Challenges associated with shale gas production What challenges are associated with shale gas production? More Documents &...

34

Natural Gas Processed  

U.S. Energy Information Administration (EIA) Indexed Site

Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases...

35

Shale Gas Production  

Gasoline and Diesel Fuel Update (EIA)

Gas Production Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2007 2008 2009 2010 2011 View History U.S. 1,293 2,116 3,110 5,336 7,994 2007-2011 Alabama 0 0 0 0 2007-2010 Alaska 0 0 0 0 0 2007-2011 Arkansas 94 279 527 794 940 2007-2011 California 101 2011-2011 Colorado 0 0 1 1 3 2007-2011 Kentucky 2 2 5 4 4 2007-2011 Louisiana 1 23 293 1,232 2,084 2007-2011 North 1 23 293 1,232 2,084 2007-2011 South Onshore 0 2011-2011 Michigan 148 122 132 120 106 2007-2011 Montana 12 13 7 13 13 2007-2011 New Mexico 2 0 2 6 9 2007-2011 East 2 0 1 3 5 2007-2011 West 0 0 1 3 4 2007-2011 North Dakota 3 3 25 64 95 2007-2011

36

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

37

Natural gas liquids consumption, production, and reserves  

Science Conference Proceedings (OSTI)

Natural gas liquids are condensates that occur during production and liquids recovered during processing, and they are classified as lease condensate or natural gas plant liquids (NGPL). There has been a decline in total domestic production, but an increase in ethane and liquefied petroleum gas (LPG) during the past decade. Statistical tables illustrate trends in the production of NGPLs and liquefied refinery gases (LRG), imports and exports, and marketing and sales. World production data show that, while the US now produces close to 41% of world output, the production trends in other areas are increasing as ours decline. 10 tables. (DCK)

Sala, D.

1983-03-28T23:59:59.000Z

38

Natural Gas Dry Production  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

39

The Product Creation Process  

E-Print Network (OSTI)

The Product Creation Process is described in its context. A phased model is shown, as many organisations use such a model as blueprint. The operational organisation of the product creation process is discussed, especially the role of the operational leader.

Gerrit Muller

1999-01-01T23:59:59.000Z

40

THE PRODUCTION OF GAS HYDRATES  

E-Print Network (OSTI)

Mr. Chairman and Members of the Subcommittee, thank-you for the opportunity to appear before you today to discuss the production and economics of gas hydrate development.

Steven H. Hancock; P. Eng

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing. Annual report, January 1--December 31, 1993  

SciTech Connect

Natural gas hydrates are crystalline materials formed of natural gas and water at elevated pressures and reduced temperatures. Because natural gas hydrates can plug drill strings, pipelines, and process equipment, there is much effort expended to prevent their formation. The goal of this project was to provide industry with more economical hydrate inhibitors. The specific goals for the past year were to: continue both screening and high pressure experiments to determine optimum inhibitors; investigate molecular mechanisms of hydrate formation/inhibition, through microscopic and macroscopic experiments; begin controlled tests on the Exxon pilot plant loop at their Houston facility; and continue to act as a forum for the sharing of field test results. Progress on these objectives are described in this report.

NONE

1993-12-31T23:59:59.000Z

42

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

43

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

44

AVESTAR® - Shale Gas Processing (SGP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Shale Gas Processing (SGP) Shale Gas Processing (SGP) SPG The shale gas revolution is transforming America's energy landscape and economy. The shale gas boom, including the Marcellus play in Appalachia, is driving job creation and investment in the energy sector and is also helping to revive other struggling sectors of the economy like manufacturing. Continued growth in domestic shale gas processing requires that energy companies maximize the efficiency and profitability from their operations through excellent control and drive maximum business value from all their plant assets, all while reducing negative environmental impact and improving safety. Changing demographics and rapidly evolving plant automation and control technologies also necessitate training and empowering the next-generation of shale gas process engineering and

45

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

46

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

47

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

48

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

No. 1905-0205 No. 1905-0205 Expiration Date: 05/31/2015 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1:

49

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

NLE Websites -- All DOE Office Websites (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

50

Process for making substitute natural gas  

SciTech Connect

A process, having high thermal efficiency, is provided for the production of substitute natural gas from fossil fuels such as crude oil, by non-catalytic hydrogenation. High thermal efficiency is obtained by using cryogenic systems for separating hydrogen from (A) the product of the hydrogenation reaction and (B) from products produced by partial oxidation in the production of hydrogen required for the hydrogenation reactions. Other products from the partial oxidation reaction may be used either as fuel or as feedstocks for catalytic steam reforming to produce SNG.

Conway, H.L.; Hargis, J.A.; Stroud, H.J.

1980-06-24T23:59:59.000Z

51

Optimization models of gas recovery and gas condensate processing  

Science Conference Proceedings (OSTI)

We present a complex of mathematical models that formalize gas recovery and processing. Optimization problems for gas recovery and gas condensate processing are stated and corresponding solution algorithms are suggested. These mathematical models provide ...

M. Kh. Prilutskii; V. E. Kostyukov

2012-05-01T23:59:59.000Z

52

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals-Phase I  

DOE Green Energy (OSTI)

The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial work the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.

Raymond Hobbs

2007-05-31T23:59:59.000Z

53

Process gas solidification system  

DOE Patents (OSTI)

It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

Fort, William G. S. (Oak Ridge, TN); Lee, Jr., William W. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

54

Pennsylvania drives Northeast natural gas production growth ...  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales ... in Northeastern Pennsylvania, ... gas production in West Virginia ...

55

Natural Gas Marketed Production  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price Marketed Production Period: Monthly Annual Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,085,518 2,166,183 2,097,434 2,188,208 2,188,379 2,104,808 1973-2013 Federal Offshore Gulf of Mexico 116,480 112,975 102,113 109,113 102,493 105,284 1997-2013 Alabama NA NA NA NA NA NA 1989-2013 Alaska 29,725 27,904 25,445 23,465 23,613 25,916 1989-2013 Arizona NA NA NA NA NA NA 1991-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1989-2013 Colorado NA NA NA NA NA NA 1989-2013 Florida NA NA NA NA NA NA 1989-2013

56

New Methodology for Natural Gas Production Estimates  

Reports and Publications (EIA)

A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

Information Center

2010-04-26T23:59:59.000Z

57

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

58

MONTHLY NATURAL GAS PRODUCTION REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

205 205 Expiration Date: 09/20/2012 Burden: 3 hours MONTHLY NATURAL GAS PRODUCTION REPORT Version No.: 2011.001 REPORT PERIOD: Month: Year: If any respondent identification data has changed since the last report, enter an "X" in the box: - - - - Mail to: - Oklahoma 2. Natural Gas Lease Production 1. Gross Withdrawals of Natural Texas Contact Title: COMMENTS: Identify any unusual aspects of your operations during the report month. (To start a new line, use alt + enter.) Wyoming Other States Alaska New Mexico City: Gas Louisiana Company Name: Address 1: Address 2: Questions? Contact Name: Phone No.: Email: If this is a resubmission, enter an "X" in the box: This form may be submitted to the EIA by mail, fax, e-mail, or secure file transfer. Should you choose to submit your data via e-mail, we must advise you that e-mail is an insecure means of transmission because the data are not encrypted, and there is

59

EIA - Natural Gas Production Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Production Production Gross Withdrawals and Production Components of natural gas production for the U.S., States and the Gulf of Mexico (monthly, annual). Number of Producing Gas Wells U.S. and State level data (annual). Wellhead Value & Marketed Production U.S. and State level natural gas wellhead values and prices of marketed production (annual). Offshore Gross Withdrawals U.S., State, and Gulf of Mexico gross withdrawals from oil and gas wells(annual). Gulf of Mexico Federal Offshore Production Production of crude oil, natural gas wet after lease separation, natural gas liquids, dry natural gas, and lease condensate (annual). Natural Gas Plant Liquids Production Production by U.S., region, and State (annual). Lease Condensate Production Production by U.S., region, and State (annual).

60

Advanced gas atomization production of oxide dispersion strengthened (ODS) Ni-base superalloys through process and solidification control.  

E-Print Network (OSTI)

??A novel gas atomization reaction synthesis (GARS) method was utilized to produce precursor Ni-Cr-Y-Ti powder with a surface oxide and an internal rare earth (RE)-containing… (more)

Meyer, John

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Topical report 5, Process analysis  

DOE Green Energy (OSTI)

The economics of converting coal to ethanol by a biological process is quite attractive. When processing 1500 tons of coal per day, the plant generates 85 million gallons of ethanol per year. The return on investment for the process is 110 percent and the payout is 0.9 years.

NONE

1995-11-01T23:59:59.000Z

62

Desulfurized gas production from vertical kiln pyrolysis  

DOE Patents (OSTI)

A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

Harris, Harry A. (Rifle, CO); Jones, Jr., John B. (Grand Junction, CO)

1978-05-30T23:59:59.000Z

63

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

U.S. Energy Information Administration (EIA) Indexed Site

Process and Flow Process and Flow About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Transportation Process and Flow Overview | Gathering System | Processing Plant | Transmission Grid | Market Centers/Hubs | Underground Storage | Peak Shaving Overview Transporting natural gas from the wellhead to the final customer involves several physical transfers of custody and multiple processing steps. A natural gas pipeline system begins at the natural gas producing well or field. Once the gas leaves the producing well, a pipeline gathering system directs the flow either to a natural gas processing plant or directly to the mainline transmission grid, depending upon the initial quality of the wellhead product.

64

Gas Production Tax (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Tax (Texas) Gas Production Tax (Texas) Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local...

65

Powering the World: Offshore Oil & Gas Production  

E-Print Network (OSTI)

rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-30 yearsPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The global

Patzek, Tadeusz W.

66

Greenhouse gas budgets of crop production current  

E-Print Network (OSTI)

Greenhouse gas budgets of crop production ­ current and likely future trends Helen C. Flynn and Pete Smith #12;Greenhouse gas budgets of crop production ­ current and likely future trends Helen C or boundaries. #12;3Greenhouse gas budgets of crop production ­ current and likely future trends About

Levi, Ran

67

Ohio Percent of Historical Gas Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

68

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

69

Natural gas treatment process using PTMSP membrane  

DOE Patents (OSTI)

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

70

DEEPWATER SUBSEA LIQUID/GAS SEPARATION PROCESS UNDER LIVE OIL PRODUCTION CONDITIONS IN THE GULF OF MEXICO  

Science Conference Proceedings (OSTI)

This report includes technical progress made during the period October 2001 to October 2002. At the end of the first technical progress report the project was moving from feasibility of equipment design work to application of this equipment to the actual site for potential demonstration. The effort focuses on reservoir analysis cost estimations of not only the sub-sea processing unit but also the wells, pipelines, installation costs, operating procedures and economic modeling of the development scheme associated with these items. Geologic risk analysis was also part of the overall evaluation, which is factored into the probabilistic economic analysis. During this period two different potential sites in the Gulf of Mexico were analyzed and one site in Norway was initiated but not completed during the period. A summary of these activities and results are included here.

E. (Eddie) T. Cousins

2003-04-24T23:59:59.000Z

71

Natural gas hydrates - issues for gas production and geomechanical stability  

E-Print Network (OSTI)

Natural gas hydrates are solid crystalline substances found in the subsurface. Since gas hydrates are stable at low temperatures and moderate pressures, gas hydrates are found either near the surface in arctic regions or in deep water marine environments where the ambient seafloor temperature is less than 10°C. This work addresses the important issue of geomechanical stability in hydrate bearing sediments during different perturbations. I analyzed extensive data collected from the literature on the types of sediments where hydrates have been found during various offshore expeditions. To better understand the hydrate bearing sediments in offshore environments, I divided these data into different sections. The data included water depths, pore water salinity, gas compositions, geothermal gradients, and sedimentary properties such as sediment type, sediment mineralogy, and sediment physical properties. I used the database to determine the types of sediments that should be evaluated in laboratory tests at the Lawrence Berkeley National Laboratory. The TOUGH+Hydrate reservoir simulator was used to simulate the gas production behavior from hydrate bearing sediments. To address some important gas production issues from gas hydrates, I first simulated the production performance from the Messsoyakha Gas Field in Siberia. The field has been described as a free gas reservoir overlain by a gas hydrate layer and underlain by an aquifer of unknown strength. From a parametric study conducted to delineate important parameters that affect gas production at the Messoyakha, I found effective gas permeability in the hydrate layer, the location of perforations and the gas hydrate saturation to be important parameters for gas production at the Messoyakha. Second, I simulated the gas production using a hydraulic fracture in hydrate bearing sediments. The simulation results showed that the hydraulic fracture gets plugged by the formation of secondary hydrates during gas production. I used the coupled fluid flow and geomechanical model "TOUGH+Hydrate- FLAC3D" to model geomechanical performance during gas production from hydrates in an offshore hydrate deposit. I modeled geomechanical failures associated with gas production using a horizontal well and a vertical well for two different types of sediments, sand and clay. The simulation results showed that the sediment and failures can be a serious issue during the gas production from weaker sediments such as clays.

Grover, Tarun

2008-08-01T23:59:59.000Z

72

Powder Metallurgy Processing and Products  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Powder Metallurgy Processing and Products. Sponsorship. Organizer(s) ...

73

STEO September 2012 - natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

natural gas production at record high, inventories most natural gas production at record high, inventories most ever at start of heating season on Nov. 1 U.S. marketed natural gas production is expected to rise by 2.6 billion cubic feet per day this year to a record 68.9 billion cubic feet per day, said the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Katherine Teller explains: "This strong growth in production was driven in large part by production in Pennsylvania's Marcellus shale formation where drilling companies are using hydraulic fracturing to free the trapped gas." The increase in production, along with the large natural gas inventories left over from last winter because of warmer temperatures, will push U.S. gas inventories to a record high of nearly

74

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

75

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

Science Conference Proceedings (OSTI)

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

76

,"Colorado Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Colorado Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

77

Environmental Control in Oil & Gas Exploration & Production.  

E-Print Network (OSTI)

?? The goal of this study is to examine the environmental impacts of oil and gas exploration and production (E&P), the roles of legislation, and… (more)

Ibem-Ezera, Victor

2010-01-01T23:59:59.000Z

78

,"Kansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

79

,"California Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

80

,"Louisiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

,"Alabama Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

82

,"Oklahoma Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

83

,"Utah Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

84

,"Arizona Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151991" ,"Release...

85

,"Texas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

86

,"Arkansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151991" ,"Release...

87

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151989" ,"Release...

88

,"Oregon Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","72013","1151991" ,"Release...

89

,"Kansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

90

,"Arizona Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

91

,"Montana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

92

,"Virginia Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

93

,"California Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

94

,"Pennsylvania Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

95

,"Ohio Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

96

,"Missouri Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

97

,"Tennessee Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

98

,"Nevada Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301991" ,"Release Date:","1212...

99

,"Oregon Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301979" ,"Release Date:","1212...

100

,"Michigan Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"Oklahoma Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

102

,"Utah Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

103

,"Nebraska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

104

,"Pennsylvania Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

105

,"Arkansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

106

,"Louisiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

107

,"Illinois Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

108

,"Alabama Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

109

,"Kentucky Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

110

,"Mississippi Dry Natural Gas Reserves Estimated Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

111

,"Mississippi Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

112

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

113

,"Dry Natural Gas Reserves Estimated Production "  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Dry Natural Gas Reserves Estimated Production ",52,"Annual",2011,"6301977" ,"Release Date:","81...

114

,"Florida Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

115

,"Colorado Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

116

,"Texas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

117

,"Alaska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

118

,"Maryland Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

119

,"Indiana Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

120

,"South Dakota Natural Gas Marketed Production (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

90-day Interim Report on Shale Gas Production - Secretary of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interim Report on Shale Gas Production - Secretary of Energy Advisory Board 90-day Interim Report on Shale Gas Production - Secretary of Energy Advisory Board The Shale Gas...

122

Analysis of selected energy security issues related to US crude oil and natural gas exploration, development, production, transportation and processing. Final report, Task 13  

Science Conference Proceedings (OSTI)

In July 1989, President Bush directed the Secretary of Energy to initiate the development of a comprehensive National Energy Strategy (NES) built upon a national consensus. The overall principle for the NES, as defined by the President and articulated by the Economic Policy Council (EPC), is the continuation of the successful policy of market reliance, consistent with the following goals: Balancing of energy, economic, and environmental concerns; and reduced dependence by the US and its friends and allies on potentially unreliable energy suppliers. The analyses presented in this report draw upon a large body of work previously conducted for DOE/Office of Fossil Energy, the US Department of Interior/Minerals Management Service (DOI/MMS), and the Gas Research Institute (GRI), referenced throughout the text of this report. This work includes assessments in the following areas: the potential of advanced oil and gas extraction technologies as improved through R&D, along with the successful transfer of these technologies to the domestic petroleum industry; the economic and energy impacts of environmental regulations on domestic oil and gas exploration, production, and transportation; the potential of tax incentives to stimulate domestic oil and gas development and production; the potential environmental costs associated with various options for leasing for US oil and gas resources in the Outer Continental Shelf (OCS); and the economic impacts of environmental regulations affecting domestic crude oil refining.

Not Available

1990-10-01T23:59:59.000Z

123

EIA - Analysis of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Natural Gas Data Collection and Estimation This presentation to the Oklahoma Independent Petroleum Association gives an overview of the EIA natural gas data collection system, Oklahoma natural gas statistics, recent changes in monthly natural gas production statistics, and the May 2010 short-term natural gas forecast. The presentation focuses on the EIA-914, the "Monthly Natural Gas Production Report," and recent changes to this survey's estimation methodology. Categories: Production (Released, 6/9/2010, ppt format)

124

Natural gas conversion process. Sixth quarterly report  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-12-01T23:59:59.000Z

125

International Natural Gas Production - 2003  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natura ...

126

Advanced Materials and Processes for Gas Turbines  

Science Conference Proceedings (OSTI)

Jul 1, 2003 ... Out of Print. Description These proceedings from the United Engineering Foundation's Advanced Materials and Processes for Gas Turbines ...

127

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

128

,"New Mexico Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

129

Process for purifying natural gas  

SciTech Connect

This patent describes a process for separating water and carbon dioxide from a feedstream comprising hydrocarbons, water and carbon dioxide. It includes passing the feedstream to a first adsorption zone containing a solid adsorbent having selectivity for water at a first zone adsorption temperature effective to adsorb water and a first zone adsorption pressure and withdrawing a first zone adsorption effluent stream having a reduced concentration of water relative to the feedstream; passing at least a portion of the first zone adsorption effluent stream to a second adsorption zone containing a solid adsorbent having selectivity for carbon dioxide at a second zone adsorption temperature effective to adsorb carbon dioxide and a second zone adsorption pressure, the second zone adsorption temperature being lower than the first zone adsorption temperature, and withdrawing a second zone adsorption effluent stream having a reduced concentration of carbon dioxide relative to the first effluent stream; passing a first purge gas through the first adsorption zone at a first zone regeneration temperature.

Markovs, J.; James, F.E.

1992-02-18T23:59:59.000Z

130

Applications: Oil and gas production  

E-Print Network (OSTI)

on Health, Safety & Environment in Oil & Gas E&P SPE/EAGE European Unconventional Resources Conference SPE International Conference PennWell Unconventional Oil and Gas Europe PennWell Underwater Intervention Marine Exploration Society Conference UGAS SPE Middle East Unconventional Gas Conference WHOC World Heavy Oil

131

Federal Offshore California Natural Gas Marketed Production ...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

132

Magnesium Electrolytic Production Process  

Science Conference Proceedings (OSTI)

Oct 1, 1999 ... The process is adopted at magnesium and titanium-magnesium plants of Russia, Kazakhstan, Ukraine. The best modern projects are realised ...

133

Adjusted Estimates of Texas Natural Gas Production  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information Administration 1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO 2 ) production. Normally, EIA would wait until publication of the Natural Gas Annual (NGA) before revising the 2004 data, but the adjustments for CO 2 are large enough to warrant making the changes at this time. Prior to 2005, EIA relied exclusively on the voluntary sharing of production data by state and federal government entities to develop its natural gas production estimates. In 2005, EIA began collecting production data directly from operators on the new EIA-914 production

134

Monthly Natural Gas Gross Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Report Report Monthly Natural Gas Gross Production Report Data Files Methodology and Analysis Form and Instructions Monthly Natural Gas Gross Production Report with data for September 2013 Released: December 6, 2013 Next Release: January 7, 2014 The two graphs below show total U.S. and Lower 48 natural gas production on one and the individual State production on the other. U.S. and Lower 48 States Natural Gas Gross Withdrawals Figure Data State Natural Gas Gross Withdrawals Figure Data In September, Lower 48 States production decreased 0.8 percent or 0.58 billion cubic feet per day (Bcf/d). Louisiana had the largest volumetric decrease at 5.3 percent or 0.34 Bcf/d as many surveyed operators reported various maintenance issues and normal well decline. Wyoming also dropped

135

NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS  

SciTech Connect

Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

2004-12-01T23:59:59.000Z

136

NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS  

SciTech Connect

Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

2004-12-01T23:59:59.000Z

137

Troubleshooting natural gas processing: Wellhead to transmission  

Science Conference Proceedings (OSTI)

This book describes practical, day-to-day problems of natural gas handling. This book combines field experience with technical principles on natural gas production treating and transmission. This volume is dominated by illustrative case histories and rules of thumb. The book also provides a checklist of distillation problems which is a summary of causes and cures of the problems encountered in the fractionation of propane, butane and natural gasoline. A glossary of terms used in natural gas transmission is another good part of this book. The author has avoided complex mechanical details in favor of simple line drawings. Among the topics discussed are; wellhead pressure and gas flow, vapor-liquid separation at the wellhead, wellhead compression, corrosion in gathering systems, gas sweetening using amines, sulfur recovery, dehydration, centrifugal gas compression, reciprocal gas compression, hydrates, gas cooling and condensate recovery.

Lieberman, N.

1987-01-01T23:59:59.000Z

138

Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products  

DOE Patents (OSTI)

Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

2000-01-01T23:59:59.000Z

139

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

140

Process for treatment of residual gas  

SciTech Connect

A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

Nolden, K.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

How EIA Estimates Natural Gas Production  

Reports and Publications (EIA)

The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing States and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The States and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

Information Center

2004-02-01T23:59:59.000Z

142

Exhaust gas clean up process  

DOE Patents (OSTI)

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

143

Oil and Gas Environmental Review and Approval Processes (New Brunswick,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Environmental Review and Approval Processes (New Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada) < Back Eligibility Commercial Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State New Jersey Program Type Environmental Regulations Provider New Brunswick Natural Resources Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact Assessment (EIA) process. The process will identify potential environmental impacts at the early stages before a project is implemented so that negative environmental impacts can be avoided.

144

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network (OSTI)

It is a well known fact that the gas turbine in a combined cycle has a higher inherent Carnot efficiency than the steam cycle which has been more generally accepted by industry. Unlike steam turbines, gas turbines do not require large boiler feed water, condensate and cooling water facilities. The benefits of the high efficiency of combined cycle gas turbines can only be realized if the energy in the hot exhaust can be utilized. Data for several plants, in various stages of engineering, in which clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial processes, namely in the production of ammonia, LNG, and olefins. These options are briefly discussed.

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

145

STEO December 2012 - natural gas production  

U.S. Energy Information Administration (EIA) Indexed Site

2012 natural gas production seen at record 69 billion cubic feet per 2012 natural gas production seen at record 69 billion cubic feet per day U.S. natural gas production is expected to increase 4.5 percent this year to a record 69 billion cubic feet per day, according to the new monthly energy forecast from the U.S. Energy Information Administration. A big portion of that natural gas is going to the U.S. electric power sector, which is generating more electricity from gas in place of coal. Consumption of natural gas for power generation this year is forecast to jump by more than 21 percent. The growth in gas production is expected to slow in 2013. And while gas use by the electric power sector is expected to decline by about 10 percent next year, it will remain high by historical standards. These trends reflect a structural shift toward using more natural gas for U.S. power generation.

146

Shale Natural Gas Estimated Production  

Annual Energy Outlook 2012 (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Shale Gas (Billion Cubic Feet) Data Series: Proved Reserves as of Dec. 31 Adjustments...

147

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

focus of GH exploration and production studies in northernoil and gas exploration and production activities; includingGas hydrate exploration and production activities will be

Moridis, G.J.

2011-01-01T23:59:59.000Z

148

Alternative Fuels Data Center: Natural Gas Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production and Distribution on Google Bookmark Alternative Fuels Data Center: Natural Gas Production and Distribution on Delicious Rank Alternative Fuels Data Center: Natural Gas Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production and Distribution on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Production and Distribution

149

EIA-914 Monthly Natural Gas Production Report Data Analysis...  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-914: Monthly Natural Gas Production Report Data Analysis October 2006 Page 1 of 38 EIA-914 Monthly Natural Gas...

150

Technology drives natural gas production growth from shale ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Rapid increases in natural gas production from shale gas formations resulted from widespread application ...

151

Arkansas Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

sure that JavaScript is enabled in your browser Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Area: U.S. Alaska Federal Offshore Gulf of Mexico...

152

EIA-914 Monthly Gas Production Report Methodology  

Gasoline and Diesel Fuel Update (EIA)

Monthly Gas Production Report Methodology Current as of April 2010 1 Much of the methodology described below was implemented in April 2010, and it was applied historically to all...

153

,"New Mexico Natural Gas Marketed Production (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:29:02 PM" "Back to Contents","Data 1: New Mexico Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NM2" "Date","New Mexico...

154

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

155

Canola: Chemistry, Production, Processing and UtilizationChapter 6 Processing  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 6 Processing Processing eChapters Processing AOCS Press Downloadable pdf of Chapter 6 Processing from ...

156

Oil, Gas, and Minerals, Exploration and Production, Lease of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa) Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa) Eligibility Utility...

157

Oil and Gas Exploration, Drilling, Transportation, and Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) Eligibility...

158

Federal Offshore--Texas Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Federal Offshore--Texas Natural Gas Marketed Production (Million Cubic Feet) Federal Offshore--Texas Natural Gas Marketed Production...

159

Texas Dry Natural Gas Production (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar...

160

Texas Natural Gas Marketed Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Marketed Production (Million Cubic Feet) Texas Natural Gas Marketed Production (Million Cubic Feet) Decade...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Texas Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Dry Natural Gas Production (Million Cubic Feet) Texas Dry Natural Gas Production (Million Cubic Feet) Decade Year-0...

162

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

163

Federal Outer Continental Shelf Oil and Gas Production Statistics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags Minerals Management Service, MMS, Production, natural gas, gas, condensate, crude oil, oil, OCS production, Outer Continental Shelf, OSC, EIA, Energy Information...

164

South Dakota Dry Natural Gas Production (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Dry Natural Gas Production (Million Cubic Feet) South Dakota Dry Natural Gas Production (Million Cubic Feet)...

165

South Dakota Natural Gas Marketed Production (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Marketed Production (Million Cubic Feet) South Dakota Natural Gas Marketed Production (Million Cubic...

166

Natural Gas Production, Transmission, and Consumption by State...  

Open Energy Info (EERE)

Natural Gas Production, Transmission, and Consumption by State, 2009 The EIA dataset is a state by state comparison of natural gas production, transmission, and consumption for the...

167

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

168

Myanmar production meets first-gas targets  

Science Conference Proceedings (OSTI)

Despite scheduling complications caused by annual monsoons, the Yadana project to bring offshore Myanmar gas ashore and into neighboring Thailand has met it first-gas target of July 1, 1998. The Yadana field is a dry-gas reservoir in the reef upper Birman limestone formation t 1,260 m and a pressure of 174 bara (approximately 2,500 psi). It extends nearly 7 km (west to east) and 10 km (south to north). The water-saturated reservoir gas contains mostly methane mixed with CO{sub 2} and N{sub 2}. No production of condensate is anticipated. The Yadana field contains certified gas reserves of 5.7 tcf, calculated on the basis of 2D and 3D seismic data-acquisition campaigns and of seven appraisal wells. The paper discusses early interest, development sequences, offshore platforms, the gas-export pipeline, safety, environmental steps, and schedule constraints.

Lepage, A. [Total Myanmar Exploration and Production, Singapore (Singapore)

1998-09-07T23:59:59.000Z

169

UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES  

SciTech Connect

The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

S.A.Stern; P.A. Rice; J. Hao

2000-03-01T23:59:59.000Z

170

TMS 2010: Materials Processing and Production  

Science Conference Proceedings (OSTI)

Materials Processing and Production Advances in the vitally important field of materials processing will receive extensive coverage. Materials processing ...

171

Takahax-Hirohax process for coke oven gas desulfurization  

SciTech Connect

This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

Gastwirth, H.; Miner, R.; Stengle, W.

1981-01-01T23:59:59.000Z

172

Federal Energy Management Program: Product Designation Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Product Designation Process to someone by E-mail Share Federal Energy Management Program: Product Designation Process on Facebook Tweet about Federal Energy Management Program: Product Designation Process on Twitter Bookmark Federal Energy Management Program: Product Designation Process on Google Bookmark Federal Energy Management Program: Product Designation Process on Delicious Rank Federal Energy Management Program: Product Designation Process on Digg Find More places to share Federal Energy Management Program: Product Designation Process on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources

173

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact on the United States chemical industry and present many opportunities for new capital investments and industry growth. As in conventional natural gas, shale gas contains primarily methane, but some formations contain significant amounts of higher molecular weight hydrocarbons and inorganic gases such as nitrogen and carbon dioxide. These differences present several technical challenges to incorporating shale gas with current infrastructure designed to be used with natural gas. However, each shale presents opportunities to develop novel chemical processes that optimize its composition in order to more efficiently and profitably produce valuable chemical products. This paper is aimed at process synthesis, analysis, and integration of different processing pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process simulation and published data were used to construct a base-case scenario in Aspen Plus. The impact of different processing pathways was analyzed. Key performance indicators were assessed. These include overall process targets for mass and energy, economic performance, and environmental impact. Finally, the impact of several factors (e.g., feedstock composition, design and operating variables) is studied through a sensitivity analysis. The results show a profitable process above a methanol selling price of approximately $1.50/gal. The sensitivity analysis shows that the ROI depends much more heavily on the selling price of methanol than on the operating costs. Energy integration leads to a savings of $30.1 million per year, or an increase in ROI of 2% points. This also helps offset some of the cost required for the oxygen necessary for syngas generation through partial oxidation. For a sample shale gas composition with high levels of impurities, preprocessing costs require a price differential of $0.73/MMBtu from natural gas. The process is also environmentally desirable because shale gas does not lead to higher GHG emissions than conventional natural gas. More water is required for hydraulic fracturing, but some of these concerns can be abated through conservation techniques and regulation.

Ehlinger, Victoria M.

2013-05-01T23:59:59.000Z

174

Process for the desulfurization of flue gas  

SciTech Connect

A process for the removal of sulfur oxides from gases is described that is comprised of the steps of contacting the gas with a cerium oxide sorbent at conditions whereby the sulfur oxides present in the gas are sorbed by the cerium oxide sorbent and regenerate the cerium oxide sorbent by contacting it with a reducing atmosphere at conditions whereby the sorbent is substantially converted to a sulfur-free state. The gas may be an exhaust gas, e.g., from an automobile or a flue gas. This invention is especially preferred for treating flue gas. In this preferred embodiment, the flue gas may be contacted with the cerium oxide sorbent at a temperature of from 300/sup 0/ to 800/sup 0/C, to form cerium sulfate and/or sulfite and the sorbent is regenerated by contacting with a reducing gas, for example, hydrogen in admixture with steam or other inert gases at a temperature of from 500/sup 0/ to 800/sup 0/C to convert the cerium sulfate or sulfite to cerium oxide. During the regeneration step, the desorbed species is initially sulfur dioxide. However, when about 50% of the sulfur is removed from the sorbent, the desorbed species becomes H/sub 2/S. Thus, the instant invention provides SO/sub 2/ and H/sub 2/S in admixture with the excess reducing gas, which can be fed conveniently to the Claus plant for conversion into elemental sulfur.

Longo, J.M.

1977-01-04T23:59:59.000Z

175

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network (OSTI)

FEMP Designated Product Assessment for Commercial Gas Waterrequirement for FEMP-designated products is generally set at

Lutz, Jim

2012-01-01T23:59:59.000Z

176

EIA - Natural Gas Pipeline Network - Expansion Process Flow Diagram  

Annual Energy Outlook 2012 (EIA)

Natural Gas based on data through 20072008 with selected updates Development and Expansion Process For Natural Gas Pipeline Projects Figure showing the expansion process...

177

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

178

U.S. natural gas processing capacity expands rapidly - Today ...  

U.S. Energy Information Administration (EIA)

... EIA tracks shut-in natural gas processing capacity through the emergency schedule on the survey of natural gas processing plants, Form EIA-757B.

179

Florida Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 375,090 409,248 765,597 854,064 886,147 859,996 1980's 279,690 272,239 270,004 265,840 247,870 218,288 228,721 226,028 260,627 1990's 258,984 222,893 226,254 207,975 10,265 9,061 8,514 8,364 8,174 8,439 2000's 7,844 7,186 6,063 5,771 4,805 3,584 3,972 2,422 300 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Processed Florida Natural Gas Plant Processing

180

Illinois Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Illinois Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 483,902 483,336 478,291 1970's 429,691 341,750 376,310 358,142 342,046 322,393 305,441 275,060 327,451 1980's 150,214 152,645 166,568 156,791 153,419 146,463 106,547 757 509 1990's 607 951 942 809 685 727 578 500 468 358 2000's 271 233 299 306 328 280 242 235 233 164 2010's 5,393 15,727 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Illinois Natural Gas Plant Processing

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural Gas Plant Liquids Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 629 650 667 714 745 784 1979-2011 Alabama 3 2 7 5 6 6 1979-2011 Alaska 14 13 13 13 11 11 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 11 11 11 11 10 10 1979-2011 Coastal Region Onshore 1 1 1 1 1 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 10 10 10 10 9 9 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 26 27 38 48 58 63 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 18 18 18 16 16 16 1979-2011 Kentucky 3 3 3 4 5 4 1979-2011 Louisiana

182

A First Mass Production of Gas Electron Multipliers  

E-Print Network (OSTI)

We report on the manufacture of a first batch of approximately 2,000 Gas Electron Multipliers (GEMs) using 3M's fully automated roll to roll flexible circuit production line. This process allows low-cost, reproducible fabrication of a high volume of GEMs of dimensions up to 30$\\times$30 cm$^{2}$. First tests indicate that the resulting GEMs have optimal properties as radiation detectors. Production techniques and preliminary measurements of GEM performance are described. This now demonstrated industrial capability should help further establish the prominence of micropattern gas detectors in accelerator based and non-accelerator particle physics, imaging and photodetection.

P. S. Barbeau; J. I. Collar; J. D. Geissinger; J. Miyamoto; I. Shipsey; R. Yang

2003-04-07T23:59:59.000Z

183

Gas Production from Hydrate-Bearing Sediments - Emergent Phenomena -  

SciTech Connect

Even a small fraction of fine particles can have a significant effect on gas production from hydrate-bearing sediments and sediment stability. Experiments were conducted to investigate the role of fine particles on gas production using a soil chamber that allows for the application of an effective stress to the sediment. This chamber was instrumented to monitor shear-wave velocity, temperature, pressure, and volume change during CO{sub 2} hydrate formation and gas production. The instrumented chamber was placed inside the Oak Ridge National Laboratory Seafloor Process Simulator (SPS), which was used to control the fluid pressure and temperature. Experiments were conducted with different sediment types and pressure-temperature histories. Fines migrated within the sediment in the direction of fluid flow. A vuggy structure formed in the sand; these small cavities or vuggs were precursors to the development of gas-driven fractures during depressurization under a constant effective stress boundary condition. We define the critical fines fraction as the clay-to-sand mass ratio when clays fill the pore space in the sand. Fines migration, clogging, vugs, and gas-driven fracture formation developed even when the fines content was significantly lower than the critical fines fraction. These results show the importance of fines in gas production from hydrate-bearing sediments, even when the fines content is relatively low.

Jung, J.W. [Georgia Institute of Technology; Jang, J.W. [Georgia Institute of Technology; Tsouris, Costas [ORNL; Phelps, Tommy Joe [ORNL; Rawn, Claudia J [ORNL; Santamarina, Carlos [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

184

Coke oven gas desulphurization by the Carl Still process  

SciTech Connect

The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

Knight, R.E.

1981-01-01T23:59:59.000Z

185

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

shales, silts, and non-commercial sand stringers above the target GH reservoirs. High gas production

Moridis, G.J.

2011-01-01T23:59:59.000Z

186

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

DOE Green Energy (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

187

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

188

Natural gas production and consumption 1979  

Science Conference Proceedings (OSTI)

Total marketed production of natural gas in the United States during 1979 was 20,471 billion cubic feet, an increase of approximately 497 billion cubic feet, or 2.5 percent over 1978. Texas and Louisiana, the two leading producing states, accounted for 70.5 percent of total 1979 marketed production. In 1979, deliveries of natural gas to residential, commercial, industrial, electric utilities, and other consumers totaled 18,141 billion cubic feet. Total consumption, which includes lease, plant, and pipeline fuel in addition to deliveries to consumers, was 20,241 billion cubic feet in 1979 compared to 19,627 billion cubic feet in 1978, an increase of 3.1 percent. Movements of natural gas into and out of each state are presented. Louisiana accounted for the largest quantity of net deliveries, 5,107 billion cubic feet, followed by Texas and Oklahoma with net deliveries of 2,772 billion cubic feet and 914 billion cubic feet, respectively. Imports of natural gas by pipeline from Canada and as liquefied natural gas (LNG) from Algeria totaled 1,253 billion cubic feet in 1979. Total imports increased 288 billion cubic feet, or 29.8 percent, from 1978 levels. Exports of LNG to Japan and pipeline shipments to Canada and Mexico increased 6.0 percent from 52.5 billion cubic feet in 1978 to 55.7 billion cubic feet in 1979. LNG shipments to Japan accounted for 92.1 percent of total exports in 1979.

Not Available

1981-01-01T23:59:59.000Z

189

Figure 5. Percentage change in natural gas dry production and ...  

U.S. Energy Information Administration (EIA)

Figure 5. Percentage change in natural gas dry production and number of gas wells in the United States, 2007?2011 annual ...

190

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

191

Economic Analysis of a Representative Deep-Water Gas Production ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1998: Issues and Trends 181 Appendix C Economic Analysis of a Representative Deep-Water Gas Production Project

192

Marcellus natural gas production gains affect spreads between ...  

U.S. Energy Information Administration (EIA)

... issues, and trends. FAQs Glossary For ... Marcellus natural gas production gains affect spreads ... Supporting increased use of natural gas for power ...

193

HEAVY WATER PRODUCTION: A REVIEW OF PROCESSES.  

SciTech Connect

Methods of heavy water production are examined in detail. Processes based on chemical exchange have the greatest potential for further development but distillation, electrolytic and chromatographic methods are also discussed. In the immediate future most of the world output of heavy water will be produced by hydrogen sulphide/water exchange (the GS process) but there is limited scope for further reduction in GS production costs. Recent advances in process development make the ammonia/hydrogen route an attractive alternative since the enrichment obtainable in each stage is greater while the energy consumption is less. A variation of the ammonia/hydrogen scheme involving the use of amines as additives to, or substitutes for ammonia also appears promising. The greatest obstacle to the development of either the ammonia/hydrogen or amine/hydrogen schemes on a large scale is the limitation on the supply of hydrogen. Ammonia synthesis gas is currently the most plentiful supply available but 1500 tonnes/day of ammonia capacity is needed for each 100 tonnes of heavy water produced annually. Unlimited production could be achieved using an equilibration stage in which hydrogen depleted in deuterium is exchanged with water at high temperature. The economics of this scheme depend on the development of a satisfactory catalyst for water/hydrogen equilibration. Distillation of water, methane and hydrogen have been proposed as econmic routes to heavy water production but design studies and experimental data would need to be clarified if optimistic forecasts are to be substantiated. Processes based on chromatography or selective adsorption have received scant attention in the past. Many problems would need to be overcome before such processes could be adapted to large scale production of heavy water, but in view of recent advances in plant scale chromatography, they should be re-examined. (auth)

Levins, D.M.

1970-09-15T23:59:59.000Z

194

Montana Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Montana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 60,500 59,058 57,793 1970's 59,193 57,105 61,757 56,960 146,907 156,203 0 0 0 1980's 11,825 13,169 15,093 16,349 19,793 16,212 14,177 15,230 15,475 1990's 14,629 14,864 12,697 11,010 10,418 9,413 10,141 8,859 8,715 5,211 2000's 5,495 5,691 6,030 6,263 6,720 10,057 12,685 13,646 13,137 12,415 2010's 12,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Montana Natural Gas Plant Processing

195

Mississippi Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Mississippi Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,068 44,510 0 1970's 50,509 44,732 29,538 29,081 24,568 29,694 0 0 0 1980's 34,337 38,315 29,416 29,705 23,428 21,955 12,131 9,565 8,353 1990's 7,887 7,649 4,822 4,892 5,052 4,869 4,521 4,372 3,668 135,773 2000's 205,106 239,830 263,456 283,675 283,763 292,023 278,436 224,596 174,573 215,951 2010's 218,840 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Mississippi Natural Gas Plant Processing

196

Utah Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Utah Natural Gas Plant Processing

197

Alabama Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Alabama Natural Gas Plant Processing

198

Pennsylvania Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Pennsylvania Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,247 2,390 1,708 1970's 1,418 1,112 1,711 0 0 0 0 0 0 1980's 2,001 2,393 5,432 6,115 5,407 6,356 6,459 6,126 6,518 1990's 6,613 10,244 11,540 10,263 7,133 10,106 10,341 11,661 11,366 11,261 2000's 7,758 9,928 7,033 9,441 9,423 11,462 12,386 13,367 18,046 22,364 2010's 56,162 131,959 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Processed Pennsylvania Natural Gas Plant Processing

199

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

200

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel gas production from animal residue. Dynatech report No. 1551  

DOE Green Energy (OSTI)

A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

Ashare, E.; Wise, D.L.; Wentworth, R.L.

1977-01-14T23:59:59.000Z

202

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

203

Colorado Oil and Gas Commission - Production Data (Jan - Mar...  

Open Energy Info (EERE)

Colorado Oil and Gas Commission - Production Data (Jan - Mar 2011) The Colorado Oil and Gas Commission is the place where Colorado oil, gas, and geothermal data is stored and made...

204

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

205

Production Trends of Shale Gas Wells  

E-Print Network (OSTI)

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important to understand best fracture and stimulation practice to increase productivity of wells. These objectives require that accurate production analysis be performed. For accurate production analysis, it is important to analyze the production behavior of wells, and field production data should be interpreted in such a way that it will identify well parameters. This can be done by performing a detailed analysis on a number of wells over whole reservoirs. This study is an approach that will lead to identifying different flow regions in shale gas wells that include linear and bilinear flow. Important field parameters can be calculated from those observations to help improve future performance. The detailed plots of several wells in this study show some good numbers for linear and bilinear flow, and some unique observations were made. The purpose of this work is to also manage the large amount of data in such a way that they can be used with ease for future studies. A program was developed to automate the analysis and generation of different plots. The program can also be used to perform the simple calculations to calculate different parameters. The goal was to develop a friendly user interface that would facilitate reservoir analysis. Examples were shown for each flow period, i.e. linear and bilinear flow. Different plots were generated (e.g; Bob Plot (square root of time plot) and Fourth Root of Time Plot, that will help in measuring slopes and thus reservoir parameters such as fracture permeability and drainage area. Different unique cases were also observed that show a different behavior of well in one type of plot from another.

Khan, Waqar A.

2008-12-01T23:59:59.000Z

206

PROCESS FOR PRODUCTION OF URANIUM  

DOE Patents (OSTI)

A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

Crawford, J.W.C.

1959-09-29T23:59:59.000Z

207

Developing a water treatment system for Subsea Gas processing plant.  

E-Print Network (OSTI)

??The petroleum industry is currently moving to meet the ever-rising demand for oil and gas production. As onshore fields become depleted and decline in production,… (more)

Honer Badi M Nazhat, Dana

2006-01-01T23:59:59.000Z

208

Louisiana Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Processed (Million Cubic Feet) Natural Gas Processed (Million Cubic Feet) Louisiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,383,334 3,728,717 4,465,379 1970's 5,237,519 5,994,431 6,337,328 6,524,729 6,273,136 5,831,487 5,749,783 5,709,535 5,561,040 1980's 5,197,429 4,770,095 4,190,105 4,439,430 3,811,852 3,794,464 3,880,364 3,918,236 4,002,843 1990's 4,220,068 4,340,531 4,466,425 4,315,312 4,200,126 4,604,292 4,652,677 4,767,965 4,610,969 4,687,261 2000's 4,316,127 4,206,470 3,771,001 3,391,870 3,244,850 2,527,636 2,511,802 2,857,443 2,208,920 2,175,026 2010's 2,207,760 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

209

Methanol production from biomass and natural gas as transportation fuel  

Science Conference Proceedings (OSTI)

Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (1) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the US, (2) minimizes emissions of criteria pollutants, (3) reduces greenhouse gas emissions from production and use, (4) is cost-competitive with petroleum fuel, and (5) is compatible with the emerging vehicle technologies, especially those powdered by fuel cells. The methanol yield, production cost, and potential for reduction of overall fuel-cycle CO{sub 2} emissions were evaluated and compared to those of reformulated gasoline. The results show that a process utilizing natural gas and biomass as cofeedstocks can meet the five requirements more effectively than individual processes utilizing those feedstocks separately. When end-use efficiencies are accounted for, the cost per vehicle mile traveled would be less than that of gasoline used in current vehicles. CO{sub 2} emissions from the vehicle fleet would be reduced 66% by methanol used in fuel cell vehicles and 8--36% in flexible-fuel or dedicated-methanol vehicles during the transition period. Methanol produced from natural gas and biomass, together in one process, and used in fuel cell vehicles would leverage petroleum displacement by a factor of about 5 and achieve twice the overall CO{sub 2} emission reduction obtainable from the use of biomass alone.

Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.

1998-09-01T23:59:59.000Z

210

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

1993-01-01T23:59:59.000Z

211

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

212

Federal Energy Management Program: Covered Product Category: Gas Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

213

Nevada Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

214

Missouri Dry Natural Gas Production (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet) Missouri Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

215

Natural gas production/consumption retrospective 2010 - Today in ...  

U.S. Energy Information Administration (EIA)

In 2010, the natural gas industry saw an abundance of production and strong consumption. On an average annual basis, marketed production of natural gas grew to 61.8 ...

216

Alabama--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

217

Calif--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Calif--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

218

Louisiana--onshore Natural Gas Marketed Production (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

onshore Natural Gas Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

219

Texas--onshore Natural Gas Marketed Production (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

onshore Natural Gas Marketed Production (Million Cubic Feet) Texas--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

220

Cascade heat recovery with coproduct gas production  

DOE Patents (OSTI)

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

1986-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cascade heat recovery with coproduct gas production  

DOE Patents (OSTI)

A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

1986-01-01T23:59:59.000Z

222

Utah Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

223

West Virginia Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

224

Mississippi Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Mississippi Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

225

Federal Gulf Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

226

Alabama Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alabama Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

227

North Dakota Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

228

Pennsylvania Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

229

Florida Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

230

United States Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

231

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

232

Alaska Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

233

Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production  

U.S. Energy Information Administration (EIA)

Shale Gas (Billion Cubic Feet) Area: ... Annual : Download Series History: ... Estimated Production : 0: 0: 0: 0: 0: 2007-2011

234

Texas Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

235

Table 13. Shale Gas Proved Reserves and Production, 2007 - 2009 ...  

U.S. Energy Information Administration (EIA)

Table 13. Shale Gas Proved Reserves and Production, 2007 - 2009 (Billion Cubic Feet at 14.73 psia and 60° Fahrenheit) Reserves Production State and Subdivision 2007 ...

236

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

237

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

238

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

239

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

240

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

242

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

243

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

244

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

245

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

246

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

247

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

248

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

249

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

250

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

251

West Virginia Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

252

Oklahoma Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

253

Pennsylvania Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

254

Texas Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

255

United States Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

256

Michigan Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

257

Alaska Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

258

South Dakota Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

259

New Mexico Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

New Mexico Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

260

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

current conventional oil and gas exploration, is gainingface current oil and gas exploration and productionexploration and production activities will be prone to many of the same potential environmental impacts as conventional oil and gas

Moridis, G.J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Production of Substitute Natural Gas from Coal  

DOE Green Energy (OSTI)

The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

Andrew Lucero

2009-01-31T23:59:59.000Z

262

Multiphase Flow Modeling of Biofuel Production Processes  

Science Conference Proceedings (OSTI)

As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant advantages over other biomass processing methods with respect to separations. These 'green' alternatives employ a hybrid medium that, when operated supercritically, offers the prospect of tunable physicochemical properties. Solubility can be rapidly altered and phases partitioned selectively to precipitate or dissolve certain components by altering temperature or pressure in the near-critical region. The ability to tune the solvation properties of water in the highly compressible near-critical region facilitates partitioning of products or by-products into separate phases to separate and purify products. Since most challenges related to lipid extraction are associated with the industrial scale-up of integrated extraction systems, the new modeling capability offers the prospect of addressing previously untenable scaling issues.

D. Gaston; D. P. Guillen; J. Tester

2011-06-01T23:59:59.000Z

263

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

264

* Canola: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

Volume 4 in the AOCS Monograph Series on Oilseeds. * Canola: Chemistry, Production, Processing, and Utilization Processing agricultural algae algal analytical aocs articles biomass biotechnology By-product Utilization courses detergents division division

265

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network (OSTI)

Page viable gas production. The overall conclusion drawnnot promising targets for gas production. Acknowledgment TheTS. Strategies for gas production from hydrate accumulations

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

266

U.S., Canada continue dominance of world`s gas processing  

Science Conference Proceedings (OSTI)

Gas plants in the US and Canada continued to lead the rest of the world in processing capacity, throughput, and NGL production in 1996. The consolidation of gas-processing assets that has been rolling through US companies in recent years continued to limit growth in new capacity. Canadian liquids producers, on the other hand, will likely benefit from increased gas production and export sales to the US when a clutch of pipeline expansions in the next 18--30 months eases the capacity constraints on gas movements southward. And, markets and suppliers around the world continue to become more closely dependent on each other, stimulating new capacity and production. US capacity stood at slightly more than 678 bcfd as of January 1, 1997; throughput for 1996 averaged 48.8 bcfd; and NGL production exceeded 76,000 gpd. Canadian gas-processing capacity last year approached 40 bcfd. Gas-processing throughput there averaged more than 30.8 bcfd; NGL production fell to slightly more than 42,000 gpd. Oil and Gas Journal`s most recent exclusive, plant-by-plant, worldwide gas-processing survey and its international survey of petroleum-derived sulfur recovery reflect these trends. This report supplements operator-supplied capacity and production data for Alberta with figures from the (1) Alberta Energy and Utilities Board (AEUB), formerly the Energy Resources Conservation Board (ERBC), (2) British Columbia Ministry of Employment and Investment`s Engineering and Operations Branch, and (3) Saskatchewan Ministry of Energy and Mines.

True, W.R.

1997-06-02T23:59:59.000Z

267

Novel Sorption Enhanced Reaction Process for Simultaneous Production of CO2 and H2 from Synthesis Gas Produced by Coal Gasification  

Science Conference Proceedings (OSTI)

The goal of this project is to evaluate the extensive feasibility of a novel concept called Thermal Swing Sorption Enhanced Reaction (TSSER) process to simultaneously produce H{sub 2} and CO{sub 2} as a single unit operation in a sorber-reactor. The successful demonstration of the potential feasibility of the TSSER concept implies that it is worth pursuing further development of the idea. This can be done by more extensive evaluation of the basic sorptive properties of the CO{sub 2} chemisorbents at realistic high pressures and by continuing the experimental and theoretical study of the TSSER process. This will allow us to substantiate the assumptions made during the preliminary design and evaluation of the process and firm up the initial conclusions. The task performed under this project consists of (i) retrofitting an existing single column sorption apparatus for measurement of high pressure CO{sub 2} sorption characteristics, (ii) measurement of high pressure CO{sub 2} chemisorption equilibria, kinetics and sorption-desorption column dynamic characteristics under the conditions of thermal swing operation of the TSSER process, (iii) experimental evaluation of the individual steps of the TSSER process (iv) development of extended mathematical model for simulating cyclic continuous operation of TSSER to aid in process scale-up and for guiding future work, (v) simulate and test SER concept using realistic syngas composition, (vi) extensive demonstration of the thermal stability of sorbents using a TGA apparatus, (vii) investigation of the surfaces of the adsorbents and adsorbed CO{sub 2} ,and (viii) test the effects of sulfur compounds found in syngas on the CO{sub 2} sorbents.

Shivaji Sircar; Hugo S. Caram; Kwangkook Jeong; Michael G. Beaver; Fan Ni; Agbor Tabi Makebe

2010-06-04T23:59:59.000Z

268

Average Price of Natural Gas Production  

Gasoline and Diesel Fuel Update (EIA)

. . Quantity and Average Price of Natural Gas Production in the United States, 1930-1996 (Volumes in Million Cubic Feet, Prices in Dollars per Thousand Cubic Feet) Table Year Gross Withdrawals Used for Repressuring Nonhydro- carbon Gases Removed Vented and Flared Marketed Production Extraction Loss Dry Production Average Wellhead Price of Marketed Production 1930 ....................... NA NA NA NA 1,978,911 75,140 1,903,771 0.08 1931 ....................... NA NA NA NA 1,721,902 62,288 1,659,614 0.07 1932 ....................... NA NA NA NA 1,593,798 51,816 1,541,982 0.06 1933 ....................... NA NA NA NA 1,596,673 48,280 1,548,393 0.06 1934 ....................... NA NA NA NA 1,815,796 52,190 1,763,606 0.06 1935 ....................... NA NA NA NA 1,968,963 55,488 1,913,475 0.06 1936 ....................... 2,691,512 73,507 NA 392,528 2,225,477

269

Method for treating a nuclear process off-gas stream  

DOE Patents (OSTI)

Disclosed is a method for selectively removing and recovering the noble gas and other gaseous components typically emitted during nuclear process operations. The method is adaptable and useful for treating dissolver off-gas effluents released during reprocessing of spent nuclear fuels whereby to permit radioactive contaminant recovery prior to releasing the remaining off-gases to the atmosphere. Briefly, the method sequentially comprises treating the off-gas stream to preliminarily remove NO.sub.x, hydrogen and carbon-containing organic compounds, and semivolatile fission product metal oxide components therefrom; adsorbing iodine components on silver-exchanged mordenite; removing water vapor carried by said stream by means of a molecular sieve; selectively removing the carbon dioxide components of said off-gas stream by means of a molecular sieve; selectively removing xenon in gas phase by passing said stream through a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from oxygen by means of a molecular sieve comprising silver-exchanged mordenite; selectively separating krypton from the bulk nitrogen stream using a molecular sieve comprising silver-exchanged mordenite cooled to about -140.degree. to -160.degree. C.; concentrating the desorbed krypton upon a molecular sieve comprising silver-exchange mordenite cooled to about -140.degree. to -160.degree. C.; and further cryogenically concentrating, and the recovering for storage, the desorbed krypton.

Pence, Dallas T. (San Diego, CA); Chou, Chun-Chao (San Diego, CA)

1984-01-01T23:59:59.000Z

270

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

271

Production Optimization in Shale Gas Reservoirs.  

E-Print Network (OSTI)

?? Natural gas from organic rich shales has become an important part of the supply of natural gas in the United States. Modern drilling and… (more)

Knudsen, Brage Rugstad

2010-01-01T23:59:59.000Z

272

Greenhouse gas emissions in biogas production systems  

E-Print Network (OSTI)

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

273

Gas production from hydrate-bearing sediments.  

E-Print Network (OSTI)

??Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane… (more)

Jang, Jaewon

2011-01-01T23:59:59.000Z

274

Colorado Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Colorado Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 112,440 96,397 85,171 1970's 82,736 97,420 104,116 110,662 118,686 136,090 175,624 171,233 167,959 1980's 201,637 220,108 173,894 181,150 191,625 163,614 180,290 178,048 196,682 1990's 208,069 234,851 256,019 307,250 353,855 345,441 493,963 374,728 425,083 444,978 2000's 494,581 497,385 534,295 555,544 703,804 730,948 751,036 888,705 1,029,641 1,233,260 2010's 1,434,003 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

275

Oklahoma Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Oklahoma Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,038,103 1,122,692 1,167,150 1970's 1,183,273 1,123,614 1,116,872 1,175,548 1,092,487 1,033,003 1,072,992 1,057,326 1,069,293 1980's 1,063,256 1,112,740 1,023,057 1,118,403 1,137,463 1,103,062 1,127,780 1,301,673 1,145,688 1990's 1,102,301 1,100,812 1,071,426 1,082,452 1,092,734 1,015,965 1,054,123 1,014,008 947,177 892,396 2000's 963,464 957,665 854,220 804,029 839,366 865,411 908,055 964,709 1,047,643 1,112,510 2010's 1,110,236 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

276

Michigan Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Michigan Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 171,531 156,996 143,802 1970's 139,571 141,784 94,738 37,384 45,106 79,154 151,318 172,578 199,347 1980's 155,984 151,560 137,364 148,076 151,393 142,255 137,687 125,183 123,578 1990's 134,550 170,574 186,144 201,985 196,000 179,678 117,119 86,564 83,052 67,514 2000's 58,482 50,734 47,292 41,619 37,977 34,545 33,213 29,436 30,008 23,819 2010's 22,405 21,518 21,243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

277

Arkansas Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Arkansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 93,452 88,011 56,190 1970's 37,816 31,387 17,946 26,135 19,784 17,918 20,370 18,630 18,480 1980's 29,003 31,530 33,753 34,572 258,648 174,872 197,781 213,558 228,157 1990's 272,278 224,625 156,573 198,074 218,710 100,720 219,477 185,244 198,148 179,524 2000's 207,045 207,352 12,635 13,725 10,139 16,756 13,702 11,532 6,531 2,352 2010's 9,599 5,611 6,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

278

California Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) California Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 505,063 476,596 455,692 1970's 444,700 431,605 386,664 359,841 252,402 213,079 216,667 206,981 204,693 1980's 169,812 261,725 263,475 276,209 281,389 263,823 276,969 270,191 254,286 1990's 263,667 246,335 243,692 246,283 228,346 226,548 240,566 243,054 235,558 259,518 2000's 260,049 258,271 249,671 238,743 236,465 226,230 223,580 206,239 195,272 198,213 2010's 204,327 180,648 169,203 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

279

Wyoming Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124 1,399,570 1,278,439 1,507,142 2010's 1,642,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

280

Texas Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Texas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,018,237 7,239,621 7,613,234 1970's 7,808,476 7,938,550 8,139,408 7,683,830 7,194,453 6,509,132 6,253,159 6,030,131 5,621,419 1980's 4,563,931 4,507,771 4,258,852 4,377,799 4,164,382 4,199,501 3,997,226 3,813,727 3,842,395 1990's 3,860,388 4,874,718 4,231,145 4,301,504 4,160,551 4,132,491 4,180,062 4,171,967 4,073,739 3,903,351 2000's 4,096,535 3,876,399 3,861,114 3,658,929 3,748,670 3,781,565 3,990,862 4,187,358 4,431,574 4,478,331 2010's 4,534,403 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alaska Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Alaska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 1970's 0 0 0 0 0 0 149,865 151,669 147,954 1980's 111,512 115,394 42,115 62,144 66,062 58,732 134,945 76,805 75,703 1990's 1,571,438 1,873,279 2,121,838 2,295,499 2,667,254 2,980,557 2,987,364 2,964,734 2,966,461 2,950,502 2000's 3,123,599 2,984,807 2,997,824 2,447,017 2,680,859 3,089,229 2,665,742 2,965,956 2,901,760 2,830,034 2010's 2,731,803 2,721,396 2,788,997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014

282

Gas purification facilities at Purex: Process study  

SciTech Connect

This report provides a summary of the results of a process study, requested by the Atomic Energy Commission an the recovery of krypton and xenon from irradiated uranium at the Hanford Purex Plant. This request was prompted by original Commission forecasts of the expanded requirements for Krypton-85 for commercial phosphorescent signal lights and markers and for xenon isotopes of low neutron cross-section for use in liquid xenon scintillation counters, in connection with D.M.A., government and university-sponsored work. It was requested that both Hanford and Savannah River submit order of magnitude cost estimates for recovery facilities at the respective sites for three separate design cases. The cost information developed, along with market survey information obtained-through the A. D. Little Company and Department of Defense market surveys, would serve as the basis for scheduling of the Hanford and Savannah River participation in the Commission`s overall fission rare gas recovery program.

Michels, L.R.; Gerhart, J.M.

1958-12-31T23:59:59.000Z

283

Oil and Gas Environmental Review and Approval Processes (New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Program Type Environmental Regulations Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the...

284

NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010  

DOE Green Energy (OSTI)

This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

Charles V Park

2011-01-01T23:59:59.000Z

285

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 21 Soybean Production and Processing in Brazil  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 21 Soybean Production and Processing in Brazil Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutritio

286

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 19 Soy Protein Products, Processing, and Utilization  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 19 Soy Protein Products, Processing, and Utilization Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nu

287

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network (OSTI)

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

288

Treatment of gas from an in situ conversion process  

SciTech Connect

A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

2011-12-06T23:59:59.000Z

289

,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

290

,"Louisiana--State Offshore Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release Date:","10...

291

,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

292

,"U.S. Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"U.S. Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

293

,"Other States Total Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Other States Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

294

,"New Mexico Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"New Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

295

Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Pacific Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Pacific by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Pacific "} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

296

,"NM, West Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

297

,"Alaska Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

298

,"Alabama Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

299

,"NM, East Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

300

,"Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

302

,"Montana Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

303

,"Texas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Shale Gas Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

304

,"Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

305

,"Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

306

,"Michigan Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

307

,"Colorado Shale Gas Proved Reserves, Reserves Changes, and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6302007"...

308

,"California--State Offshore Natural Gas Marketed Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release...

309

,"North Dakota Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

310

,"Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet)",1,"Annual",2012...

311

,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","92013" ,"Release...

312

ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION  

U.S. Energy Information Administration (EIA)

Form Approved XXXXXX XXXX ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION FORM EIA-64A . REPORT YEAR 2012 . This report is . mandatory

313

,"New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

314

,"Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

315

,"Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

316

,"Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

317

,"West Virginia Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

318

,"Tennessee Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

319

MULTIVARIATE PRODUCTION OPTIMIZATION OF A NATURAL GAS FIELD.  

E-Print Network (OSTI)

??Any production well is drilled and completed for the extraction of oil or gas from itsoriginal location in the reservoir to the stock tank or… (more)

Nago, Annick

2009-01-01T23:59:59.000Z

320

,"Arizona Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Life Cycle Assessment of Hydrogen Production via Natural Gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Hydrogen Production via Natural Gas Steam Reforming Revised February 2001 * NRELTP-570-27637 Pamela L. Spath Margaret K. Mann National Renewable Energy Laboratory...

322

,"Missouri Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

323

,"Nevada Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

324

,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

325

,"Maryland Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

326

,"Illinois Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

327

,"Oregon Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

328

,"Indiana Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

329

,"Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

330

,"Texas State Offshore Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

331

,"Alabama State Offshore Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

332

,"Arkansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

333

,"West Virginia Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

334

,"Wyoming Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

335

,"New Mexico Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

336

,"LA, State Offshore Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

LA, State Offshore Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

337

,"Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

338

,"New York Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

339

,"Oklahoma Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

340

,"Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Texas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

342

,"Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

343

,"South Dakota Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

344

,"Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

345

,"Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

346

,"Utah Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

347

,"Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

348

,"Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

349

,"Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

350

,"Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

351

,"North Dakota Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

352

,"California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

353

,"Ohio Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

354

Pennsylvania natural gas production rose 69% in 2012 despite ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Natural gas production in Pennsylvania averaged 6.1 billion cubic feet per day ...

355

HALON 1301 USE IN OIL AND GAS PRODUCTION ...  

Science Conference Proceedings (OSTI)

... The unique aspects of producing oil and gas in the ... Halon 1301 is a critical component to safe production in totally enclosed arctic facilities ...

2011-09-27T23:59:59.000Z

356

,"California Offshore Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Offshore Natural Gas Gross Withdrawals and Production",1,"Annual",2011,"6301977"...

357

,"Estimated Production of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production of Natural Gas, Wet After Lease Separation " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

358

,"New York Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

359

,"North Dakota Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

360

,"West Virginia Dry Natural Gas Production (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","122011" ,"Release Date:","7312013"...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geomechanics of subsurface sand production and gas storage .  

E-Print Network (OSTI)

??Improving methods of hydrocarbon production and developing new techniques for the creation of natural gas storage facilities are critically important for the petroleum industry. This… (more)

Choi, Jong-Won

2011-01-01T23:59:59.000Z

362

,"Texas Offshore Natural Gas Gross Withdrawals and Production...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Offshore Natural Gas Gross Withdrawals and Production",1,"Annual",2011,"6301977"...

363

Natural Gas Productive Capacity for the Lower-48 States  

U.S. Energy Information Administration (EIA)

An analysis report from the Energy Information Administration which estimates the increases in natural gas productive capacity which should be expected in 2001, given ...

364

,"Federal Offshore--Gulf of Mexico Dry Natural Gas Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2012 ,"Release...

365

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

366

,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2011...

367

,"Texas--State Offshore Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2011 ,"Release...

368

,"Federal Offshore--Texas Natural Gas Marketed Production (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","7312013"...

369

The Production and Processing of Titanium Powder  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Cost Affordable Titanium IV: The Production and Processing of Titanium Powder Sponsored by: TMS Structural Materials Division, TMS: ...

370

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network (OSTI)

to economically Page viable gas production. The overallare not promising targets for gas production. AcknowledgmentEnergy, Office of Natural Gas and Petroleum Technology,

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

371

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

372

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

373

Oil and Gas Production (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production (Missouri) Production (Missouri) Oil and Gas Production (Missouri) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This legislation contains additional information about the permitting, establishment, and operation of oil and gas wells, while additional regulations address oil and gas drilling and production and well spacing and unitization

374

Managing the National Greenhouse Gas Inventory Process | Open Energy  

Open Energy Info (EERE)

Managing the National Greenhouse Gas Inventory Process Managing the National Greenhouse Gas Inventory Process Jump to: navigation, search Tool Summary Name: Managing the National Greenhouse Gas Inventory Process Agency/Company /Organization: United Nations Development Programme, United Nations Environment Programme, Global Environment Facility Topics: GHG inventory Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: ncsp.undp.org/document/managing-national-greenhouse-gas-inventory-proc Managing the National Greenhouse Gas Inventory Process Screenshot References: Managing the National Greenhouse Gas Inventory Process[1] The objective of the handbook is to provide non-AnnexI Parties with a strategic and logical approach to a sustainable inventory process. About "The handbook was developed by United Nations Development Programme with

375

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Mallik Gas Hydrate Production Research Program, Northwestof Depressurization for Gas Production from Gas Hydrate5L-38 Gas Hydrate Thermal Production Test Through Numerical

Moridis, George J.

2008-01-01T23:59:59.000Z

376

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

377

Miscellaneous States Shale Gas Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Miscellaneous States Shale Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2...

378

Federal Offshore--Alabama Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

379

Alabama--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

380

Louisiana--State Offshore Natural Gas Marketed Production (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Offshore--Louisiana Natural Gas Marketed Production ...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

382

Alaska--State Offshore Natural Gas Marketed Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

383

California Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

384

California--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) California--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

385

Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Ohio Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

386

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

387

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

388

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

389

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

390

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

391

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

392

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

393

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

394

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

395

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

396

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

397

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

398

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

399

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

400

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Florida Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Florida Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

402

Mississippi Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

403

Louisiana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

404

Kentucky Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

405

Alaska Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

406

Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

407

Michigan Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Michigan Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

408

Virginia Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

409

Kansas Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Kansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

410

Montana Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

411

Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

412

Alabama Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

413

Colorado Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Colorado Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

414

New Mexico - West Dry Natural Gas Reserves Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

415

Texas--State Offshore Natural Gas Marketed Production (Million...  

Annual Energy Outlook 2012 (EIA)

Marketed Production (Million Cubic Feet) Texas--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

416

Texas Dry Natural Gas Reserves Estimated Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Estimated Production (Billion Cubic Feet) Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

417

GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993  

SciTech Connect

The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

Not Available

1993-07-01T23:59:59.000Z

418

Sales and Use Tax Exemption for Gas Processing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

419

Process Optimization of Cast Alloy 718 for Water Cooled Gas ...  

Science Conference Proceedings (OSTI)

FOR WATER COOLED GAS TURBINE APPLICATION. G.K. Bouse+ and P.W. Schilke*. Gene@ Electric Company+ Materials and Processes Laboratory, and.

420

Method for processing coke oven gas  

SciTech Connect

Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

Flockenhaus, C.; Meckel, J.F.; Wagener, D.

1980-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

422

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

423

Development of biological coal gasification (MicGAS Process)  

Science Conference Proceedings (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

424

Production of biodiesel using expanded gas solvents  

Science Conference Proceedings (OSTI)

A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

Ginosar, Daniel M [Idaho Falls, ID; Fox, Robert V [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID

2009-04-07T23:59:59.000Z

425

Process for selected gas oxide removal by radiofrequency catalysts  

DOE Patents (OSTI)

This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

Cha, C.Y.

1993-09-21T23:59:59.000Z

426

Natural Gas Liquefaction Process for Small-scale LNG Project  

Science Conference Proceedings (OSTI)

In the field of natural gas liquefaction, the small-scale natural gas liquefier has been attracting more and more attentions home and abroad, thanks to its small volume, mobile transportation, easy start-up and shut-down, as well as skid-mounted package. ... Keywords: Natural gas, Small-scale, LNG, Liquefaction process

Cao Wensheng

2012-03-01T23:59:59.000Z

427

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Gross Withdrawals 3,479,290 3,415,884 3,312,386 3,197,100 3,162,922 3,164,791 1967-2012 From Gas Wells 165,624 150,483 137,639 127,417 112,268 107,873 1967-2012 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918 1967-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012 Repressuring 3,039,347 3,007,418 2,908,828 2,812,701 2,795,732 2,801,763 1967-2012 Vented and Flared 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2012 Marketed Production 433,485 398,442 397,077 374,226 356,225 351,259 1967-2012

428

Process for improving metal production in steelmaking processes  

DOE Patents (OSTI)

A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

Pal, Uday B. (Malden, MA); Gazula, Gopala K. M. (Somerville, MA); Hasham, Ali (Karachi, PK)

1996-01-01T23:59:59.000Z

429

Process for improving metal production in steelmaking processes  

DOE Patents (OSTI)

A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

Pal, U.B.; Gazula, G.K.M.; Hasham, A.

1996-06-18T23:59:59.000Z

430

Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility  

DOE Green Energy (OSTI)

The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

Lyke, S.E.; Moore, R.H.

1981-01-01T23:59:59.000Z

431

Natural Gas Production Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration, Office of Oil and Gas, ... for elemental sulfur and carbon dioxide can be used for enhanced oil recovery. Inert gases such as

432

Hazardous Gas Production by Alpha Particles  

DOE Green Energy (OSTI)

This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

Jay A. LaVerne, Principal Investigator

2001-11-26T23:59:59.000Z

433

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

434

Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur  

SciTech Connect

The Topsoe Wet gas Sulfuric Acid (WSA) process is a catalytic process which produces concentrated sulfuric acid from refinery streams containing sulfur compounds such as H{sub 2}S (Claus plant feed), Claus plant tail gas, SO{sub 2} (FCC off-gas, power plants), and spent sulfuric acid (alkylation acid). The WSA process recovers up to 99.97% of the sulfur value in the stream as concentrated sulfuric acid (93--98.5 wt%). No solid waste products or waste water is produced and no chemicals are consumed in the process. The simple process layout provides low capital cost and attractive operating economy. Twenty four commercial WSA plants have been licensed. The WSA process is explained in detail and comparisons with alternative sulfur management technology are presented. Environmental regulations applying to SO{sub x} abatement and sulfuric acid production plants are explained in the context of WSA plant operation.

Ward, J.W. [Haldor Topsoe, Inc., Houston, TX (United States)

1995-09-01T23:59:59.000Z

435

Oregon Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells 409 778 821 1,407 1,344 770 1979-2012 From Oil Wells 0 0 0 0 0 0 1996-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012...

436

Missouri Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2007-2013...

437

Arizona Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

438

Louisiana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

439

Wyoming Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

440

Arizona Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells 654 523 711 183 168 117 1971-2012 From Oil Wells * * * 0 0 0 1971-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Oregon Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1996-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

442

Maryland Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

From Gas Wells 35 28 43 43 34 44 1967-2012 From Oil Wells 0 0 0 0 0 0 2006-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2006-2012...

443

Nevada Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1991-2012 From Gas Wells 0 0 0 0 0 0 2006-2012 From Oil Wells 5 4 4 4 3 4 1991-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2006-2012...

444

Oklahoma Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2002-2013...

445

Missouri Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 0 0 0 0 0 0 1967-2012 From Oil Wells 0 0 0 0 0 0 2007-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2007-2012...

446

Tennessee Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

4,851 5,825 1967-2012 From Gas Wells NA 4,700 5,478 5,144 4,851 5,825 1967-2012 From Oil Wells 3,942 0 0 0 0 0 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From...

447

Florida Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

2,742 290 13,938 17,129 18,681 1971-2012 From Gas Wells 0 0 0 0 0 17,182 1996-2012 From Oil Wells 2,000 2,742 290 13,938 17,129 1,500 1971-2012 From Shale Gas Wells 0 0 0 0 0 0...

448

Wyoming Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

176,075 174,025 158,494 176,834 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013...

449

Indiana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

9,075 8,814 1967-2012 From Gas Wells 3,606 4,701 4,927 6,802 9,075 8,814 1967-2012 From Oil Wells 0 0 0 0 0 0 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed...

450

Nebraska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1,980 1,328 1967-2012 From Gas Wells 1,331 2,862 2,734 2,092 1,854 1,317 1967-2012 From Oil Wells 228 221 182 163 126 11 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From...

451

Pennsylvania Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 182,277 188,538 184,795 173,450 242,305 210,609 1967-2012 From Oil Wells 0 0 0 0 0 3,456 1967-2012 From Shale Gas Wells 0 9,757 89,074 399,452 1,068,288...

452

Wyoming Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

From Gas Wells 1,649,284 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 1967-2012 From Oil Wells 159,039 156,133 135,269 151,871 152,589 24,544 1967-2012 From Shale Gas Wells...

453

Maryland Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

35 28 43 43 34 44 1967-2012 From Gas Wells 35 28 43 43 34 44 1967-2012 From Oil Wells 0 0 0 0 0 0 2006-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0...

454

Michigan Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

129,333 1967-2012 From Gas Wells 80,090 16,959 20,867 7,345 18,470 17,041 1967-2012 From Oil Wells 54,114 10,716 12,919 9,453 11,620 4,470 1967-2012 From Shale Gas Wells 136,367...

455

Ohio Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

84,482 1967-2012 From Gas Wells 82,812 79,769 83,511 73,459 30,655 65,025 1967-2012 From Oil Wells 5,268 5,072 5,301 4,651 45,663 6,684 1967-2012 From Shale Gas Wells 14 17 13 11...

456

Kentucky Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 95,437 112,587 111,782 133,521 122,578 106,122 1967-2012 From Oil Wells 0 1,529 1,518 1,809 1,665 0 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012...

457

Nevada Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 4 3 4 1991-2012 From Gas Wells 0 0 0 0 0 0 2006-2012 From Oil Wells 5 4 4 4 3 4 1991-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2006-2012...

458

Mississippi Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 259,001 331,673 337,168 387,026 429,829 404,457 1967-2012 From Oil Wells 6,203 7,542 8,934 8,714 8,159 43,421 1967-2012 From Shale Gas Wells 0 0 0 0 0 0...

459

Missouri Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 0 0 0 0 1967-2012 From Gas Wells 0 0 0 0 0 0 1967-2012 From Oil Wells 0 0 0 0 0 0 2007-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2007-2012...

460

Colorado Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 436,330 496,374 459,509 526,077 563,750 1,036,572 1967-2012 From Oil Wells 160,833 199,725 327,619 338,565 359,537 67,466 1967-2012 From Shale Gas Wells...

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Virginia Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

146,405 1967-2012 From Gas Wells 6,681 7,419 16,046 23,086 20,375 21,802 1967-2012 From Oil Wells 0 0 0 0 0 9 2006-2012 From Shale Gas Wells 19,100 19,468 18,284 16,433 18,501...

462

Louisiana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

From Gas Wells 1,261,539 1,288,559 1,100,007 911,967 883,712 775,506 1967-2012 From Oil Wells 106,303 61,663 58,037 63,638 68,505 49,380 1967-2012 From Shale Gas Wells 14,986...

463

Utah Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 271,890 331,143 340,224 328,135 351,168 402,899 1967-2012 From Oil Wells 35,104 36,056 36,795 42,526 49,947 31,440 1967-2012 From Shale Gas Wells 0 0 0 0...

464

Montana Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

66,954 1967-2012 From Gas Wells 69,741 67,399 57,396 51,117 37,937 27,518 1967-2012 From Oil Wells 23,092 22,995 21,522 19,292 21,777 20,085 1967-2012 From Shale Gas Wells 14,587...

465

Kansas Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

1967-2012 From Gas Wells 286,856 286,210 269,086 247,651 236,834 264,610 1967-2012 From Oil Wells 44,023 45,038 42,647 39,071 37,194 0 1967-2012 From Shale Gas Wells 0 0 0 0 0 0...

466

Illinois Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

2,121 2,125 1967-2012 From Gas Wells 1,389 1,188 1,438 1,697 2,114 2,125 1967-2012 From Oil Wells 5 5 5 5 7 0 1967-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed...

467

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

Science Conference Proceedings (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

468

Idaho Chemical Processing Plant product denitrator upgrade  

SciTech Connect

The uranium product denitrator at the Idaho Chemical Processing Plant has had serious operating problems since 1970, including inadequate contamintion control, fluidized bed caking, frequent bed heater failure, product overflow plugging, and poor feed control. These problems were minimized through selective redesign and upgrade of the process equipment as part of a process upgrade program completed in March 1981. Following startup and testing of the rebuilt product denitrator, 1044 kg of enriched uranium was processed in three weeks while demonstrating greater reliability, ease of operation, and improved contamination control. To maximize personnel safety in the future, the denitrator vessel should be made critically safe by geometry and process instrumentation isolated from the process for semi-remote operation.

Rindfleisch, J.A.; Durst, P.C.; Dahl, C.A.; Casterline, C.E.; Petig, A.V.

1982-05-01T23:59:59.000Z

469

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

470

Integrated production of fuel gas and oxygenated organic compounds from synthesis gas  

DOE Patents (OSTI)

An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

1995-01-01T23:59:59.000Z

471

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

472

Product lifecycle management (PLM) to support product development processes  

Science Conference Proceedings (OSTI)

Today manufacturing companies are more and more characterized by a growing product and processes complexity. Projects needs the participation of a pool of companies that have to collaborate in a multidisciplinary and integrated way following a defined ...

Marco Alemanni; Danilo Cannoletta; Pierpaolo Gambini; Mauro Macciň; Davide Pinna

2011-03-01T23:59:59.000Z

473

Advanced Multi-Product Coal Utilization By-Product Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

coAl utilizAtion By-Product Processing PlAnt (withdrAwn) Project Description The University of Kentucky Research Foundation (UKRF) of Lexington, Kentucky, in partnership...

474

Strategies for gas production from oceanic Class 3 hydrate accumulations  

E-Print Network (OSTI)

slow conduction process (the main heat transfer mechanism)Heat transfer and gas relative permeability are challenged by the processestransfers. The resulting thermal regime involves heat addition to the dissociation process

Moridis, George J.; Reagan, Matthew T.

2007-01-01T23:59:59.000Z

475

THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS  

SciTech Connect

A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

Michael G. McKellar

2011-11-01T23:59:59.000Z

476

Electrolytic cells for hydrogen gas production  

SciTech Connect

An electrolytic cell bank is described comprising two end plate electrodes, a plurality of intermediate electrodes, a plurality of dielectric separators spaced between the electrodes to form electrolytic cell chambers, a plurality of gas separator diaphragms, alkaline electrolyte, manifolds for allowing off-gas withdrawal of hydrogen and oxygen and means for back-pressuring the exterior walls of each end plate to counter-balance pressures developed within the electrolytic cell chambers. The cell bank is utilized to convert water into its constituent gases of oxygen and hydrogen, and the cell bank is sufficiently large to commercially produce hydrogen at pressures equal to the pressures utilized in commercial gas transmission lines.

Hall, F.F.

1980-11-25T23:59:59.000Z

477

Palm Oil: Production, Processing, Characterization, and Uses  

Science Conference Proceedings (OSTI)

This book serves as a rich source of information on the production, processing, characterization and utilization of palm oil and its components. It also includes several topics related to oil palm genomics, tissue culture and genetic engineering of oil pal

478

Soybeans: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

This comprehensive new soybean reference book, a volume from the AOCS Monograph Series on Oilseeds, disseminates key soybean oilseed information. Soybeans: Chemistry, Production, Processing, and Utilization Food Science Health Nutrition Biochemistry P

479

Product Development Processes, Three Vectors Of Improvement  

E-Print Network (OSTI)

Product Development Processes have achieved a state of some maturity in recent years, but have focused primarily on structuring technical activities from the initiation of development to launch. We advocate major advances ...

Holmes, Maurice

2003-01-01T23:59:59.000Z

480

Process for recovering condensible components from a gas stream  

SciTech Connect

A method is described for adsorbing the condensible components out of the inlet gas stream in one of a number of stationary adsorption beds, while simultaneously cooling one or more of the other adsorption beds with the residue gas stream from the adsorbing bed. At the same time, one or more other adsorption beds are heated by a regeneration gas stream in a closed cycle, thereby stripping and vaporizing the condensible components. A special main gas-flow pattern is utilized at the beginning of each cycle to prevent condensible components, remaining in the bed or beds just heated, from being lost, with the gas stream leaving the process. (6 claims)

McMinn, R.E.; Loomer, J.A.; Sellars, A.I.

1970-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "gas production processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

482

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

483

Development of alternative fuels from coal-derived synthesis gas: Final topical report, demonstration of one-step slurry-phase process for the co-production of methanol and isobutanol  

DOE Green Energy (OSTI)

Liquid phase co-production of methanol and isobutanol (LPIBOH) was de, demonstrated at DOE`s Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Methanol and isobutanol are key intermediates in a synthesis gas-based route to methyl t-butyl ether (MTBE). The technology was demonstrated in a new 18 in. slurry bubble-column reactor that was designed to demonstrate higher pressures and temperatures,higher gas superficial velocities, and lower gas hourly space velocities--all of which are conducive to obtaining optimal isobutanol yield. The integration of the new reactor into the AFDU included the addition of a high-pressure synthesis gas compressor, a high-pressure hydrogen feed source, and a closed-loop methanol- solvent absorption system to remove CO{sub 2} from the unconverted synthesis gas. These modifications were completed in January 1994. The LPIBOH run followed after a short turnaround. It employed a cesium- promoted Cu/ZnO/Al{sub 2}O{sub 3} catalyst developed in Air Products` laboratories and subsequently scaled up to a production- sized batch. Over a thirteen day campaign on simulated Shell gasifier gas, the catalyst and reactor system were tested at a matrix of pressures (750, 1300, 1735 psig) and space velocities (3000, 5000, 8200 sL/kg-hr), representing numerous first-of-a-kind run conditions for the AFDU. Inlet gas superficial velocities spanned an impressive 0.16 to 1.0 ft/sec. Stable reactor performance for a full twelve-hour data period at 1.0 ft/sec was another significant milestone for the liquid phase technology program. Apart from the catalyst deactivation, the run successfully demonstrated mixed alcohol synthesis in a slurry bubble-column reactor, as well as all of the new equipment installed for the trial. Although the full capabilities of the new oxygenates system will not be tested until future runs, the design objectives for the modifications were met with respect to the LPIBOH run.

NONE

1996-06-01T23:59:59.000Z

484

Adsorption process producing chronologically constant amount of a residual gas  

SciTech Connect

An adsorption process is disclosed for purifying or fractionating a gaseous feed mixture comprises an adsorption phase, at least one expansion phase, a purging phase and at least one pressure buildup phase. The expansion phase(S) and the purging phase produce residual process gas fractions. The sum total of volume, and/or mass streams of the residual process gas fractions comprises a residual gas stream which is maintained chronologically substantially constant by controlling the volume and/or gas streams of the gas entering the purging phase and maintaining the gas leaving the expansion phase(S) at a substantially constant value, dependent on the desired mass and/or volume quantity of the residual gas stream. The length of the purging phase and of the expansion phase(S) is adjusted accordingly so that the relationship of the length of time of the purging phase to the length of time of the expansion phase(S) is substantially the same as the relationship of the volume and/or mass of the gas fractions obtained during the purging to those obtained during the expansion phase(S), respectively. The control of the purging and of the expansion phase(S) can also be varied in response to a flow rate of a feed gas entering the process.

Benkmann, C.

1982-02-16T23:59:59.000Z

485

Prediction of Gas Leak Tightness of Superplastically Formed Products  

Science Conference Proceedings (OSTI)

In some applications, in this case an aluminium box in a subatomic particle detector containing highly sensitive detecting devices, it is important that a formed sheet should show no gas leak from one side to the other. In order to prevent a trial-and-error procedure to make this leak tight box, a method is set up to predict if a formed sheet conforms to the maximum leak constraint. The technique of superplastic forming (SPF) is used in order to attain very high plastic strains before failure. Since only a few of these boxes are needed, this makes, this generally slow, process an attractive production method. To predict the gas leak of a superplastically formed aluminium sheet in an accurate way, finite element simulations are used in combination with a user-defined material model. This constitutive model couples the leak rate with the void volume fraction. This void volume fraction is then dependent on both the equivalent plastic strain and the applied hydrostatic pressure during the bulge process (backpressure).

Snippe, Corijn H. C. [National Institute for Subatomic Physics (Nikhef) PO Box 41882, 1009 DB Amsterdam (Netherlands); Meinders, T. [University of Twente, Faculty of Engineering Technology PO Box 217, 7500 AE Enschede (Netherlands)

2010-06-15T23:59:59.000Z

486

Effectively utilizing project, product and process knowledge  

Science Conference Proceedings (OSTI)

Improving project management, product development and engineering processes is for many companies crucial to survive in a fast changing environment. However, these activities are rarely integrated well due to the diversity of stakeholders with individual ... Keywords: CMMI, KM, PLM, Process improvement, Project management

Christof Ebert; Jozef De Man

2008-05-01T23:59:59.000Z

487

Table 6.2 Natural Gas Production, 1949-2011 (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Table 6.2 Natural Gas Production, 1949-2011 (Billion Cubic Feet) Year: Natural Gas Gross Withdrawals: Repressuring: Nonhydrocarbon

488

Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds  

Science Conference Proceedings (OSTI)

The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

2008-02-29T23:59:59.000Z

489

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

DOE Green Energy (OSTI)

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

Spath, P. L.; Mann, M. K.

2000-09-28T23:59:59.000Z

490

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

491

Production of manufactured aggregates from flue gas desulfurization by-products  

SciTech Connect

CONSOL R and D has developed a disk pelletization process to produce manufactured aggregates from the by-products of various technologies designed to reduce sulfur emissions produced from coal utilization. Aggregates have been produced from the by-products of the Coolside and LIMB sorbent injection, the fluidized-bed combustion (FBC), spray dryer absorption (SDA), and lime and limestone wet flue gas desulfurization (FGD) processes. The aggregates produced meet the general specifications for use as road aggregate in road construction and for use as lightweight aggregate in concrete masonry units. Small field demonstrations with 1200 lb to 5000 lb of manufactured aggregates were conducted using aggregates produced from FBC ash and lime wet FGD sludge in road construction and using aggregates made from SDA ash and lime wet FGD sludge to manufacture concrete blocks. The aggregates for this work were produced with a bench-scale (200--400 lb batch) unit. In 1999, CONSOL R and D constructed and operated a 500 lb/hr integrated, continuous pilot plant. A variety of aggregate products were produced from lime wet FGD sludge. The pilot plant test successfully demonstrated the continuous, integrated operation of the process. The pilot plant demonstration was a major step toward commercialization of manufactured aggregate production from FGD by-products. In this paper, progress made in the production of aggregates from dry FGD (Coolside, LIMB, SDA) and FBC by-products, and lime wet FGD sludge is discussed. The discussion covers bench-scale and pilot plant aggregate production and aggregate field demonstrations.

Wu, M.M.; McCoy, D.C.; Fenger, M.L.; Scandrol, R.O.; Winschel, R.A.; Withum, J.A.; Statnick, R.M.

1999-07-01T23:59:59.000Z

492

Covered Product Category: Gas Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Water Heaters Gas Storage Water Heaters Covered Product Category: Gas Storage Water Heaters October 7, 2013 - 10:43am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

493

Gulf of Mexico Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

sure that JavaScript is enabled in your browser Natural Gas Gross Withdrawals and Production (Volumes in Million Cubic Feet) Area: U.S. U.S. Offshore U.S. State Offshore Federal...

494

,"Nebraska Dry Natural Gas Production (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

"Date","Nebraska Dry Natural Gas Production (Million Cubic Feet)" 30132,2147 30497,1954 30863,2168 31228,1829 31593,1326 31958,1180 32324,851 32689,849 33054,793 33419,771...

495

Covered Product Category: Residential Gas Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Furnaces Gas Furnaces Covered Product Category: Residential Gas Furnaces October 7, 2013 - 10:39am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

496

Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

497

Federal Offshore Alabama Natural Gas Gross Withdrawals and Production  

Annual Energy Outlook 2012 (EIA)

NA NA NA NA NA NA 1987-2011 From Gas Wells NA NA NA NA NA NA 1987-2011 From Oil Wells NA NA NA NA NA NA 1987-2011 Marketed Production 1992-1998...

498

Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2006: 244,584: 213,829: 239,860 ...

499

Federal Offshore--Gulf of Mexico Natural Gas Marketed Production ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

500

Global natural gas production doubled between 1980 and 2010 ...  

U.S. Energy Information Administration (EIA)

Global dry natural gas production increased 110% between 1980 and 2010, from 53 trillion cubic feet (Tcf) in 1980 to 112 Tcf in 2010. The combined share of North ...