National Library of Energy BETA

Sample records for gas production operations

  1. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  2. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  3. Gas production apparatus

    DOE Patents [OSTI]

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  4. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  5. Integrated Operation of INL HYTEST System and High-Temperature Steam Electrolysis for Synthetic Natural Gas Production

    SciTech Connect (OSTI)

    Carl Marcel Stoots; Lee Shunn; James O'Brien

    2010-06-01

    The primary feedstock for synthetic fuel production is syngas, a mixture of carbon monoxide and hydrogen. Current hydrogen production technologies rely upon fossil fuels and produce significant quantities of greenhouse gases as a byproduct. This is not a sustainable means of satisfying future hydrogen demands, given the current projections for conventional world oil production and future targets for carbon emissions. For the past six years, the Idaho National Laboratory has been investigating the use of high-temperature steam electrolysis (HTSE) to produce the hydrogen feedstock required for synthetic fuel production. High-temperature electrolysis water-splitting technology, combined with non-carbon-emitting energy sources, can provide a sustainable, environmentally-friendly means of large-scale hydrogen production. Additionally, laboratory facilities are being developed at the INL for testing hybrid energy systems composed of several tightly-coupled chemical processes (HYTEST program). The first such test involved the coupling of HTSE, CO2 separation membrane, reverse shift reaction, and methanation reaction to demonstrate synthetic natural gas production from a feedstock of water and either CO or a simulated flue gas containing CO2. This paper will introduce the initial HTSE and HYTEST testing facilities, overall coupling of the technologies, testing results, and future plans.

  6. Permian basin gas production

    SciTech Connect (OSTI)

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  7. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 3,110 5,336 7,994 10,371 11,415 13,447 2007-2014 Alabama 0 0 2007-2010 Alaska 0 0 0 0 0 0 2007-2014 Arkansas 527 794 940 1,027 1,026 1,038 2007-2014 California 101 90 89 3 2011-2014 Colorado 1 1 3 9 18 236 2007-2014 Kansas 1 3 1 2012-2014 Kentucky 5 4 4 4 4 2 2007-2014 Louisiana 293

  8. Kinetic inhibition of natural gas hydrates in offshore drilling, production, and processing operations. Annual report, January 1--December 31, 1992

    SciTech Connect (OSTI)

    1992-12-31

    Natural gas hydrates are solid crystalline compounds which form when molecules smaller than n-butane contact molecules of water at elevated pressures and reduced temperatures, both above and below the ice point. Because these crystalline compounds plug flow channels, they are undesirable. In this project the authors proposed an alternate approach of controlling hydrate formation by preventing hydrate growth into a sizeable mass which could block a flow channel. The authors call this new technique kinetic inhibition, because while it allows the system to exist in the hydrate domain, it prevents the kinetic agglomeration of small hydrate crystals to the point of pluggage of a flow channel. In order to investigate the kinetic means of inhibiting hydrate formation, they held two consortium meetings, on June 1, 1990 and on August 31, 1990. At subsequent meetings, the authors determined the following four stages of the project, necessary to reach the goal of determining a new hydrate field inhibitor: (1) a rapid screening method was to be determined for testing the hydrate kinetic formation period of many surfactants and polymer candidates (both individually and combined), the present report presents the success of two screening apparatuses: a multi-reactor apparatus which is capable of rapid, high volume screening, and the backup screening method--a viscometer for testing with gas at high pressure; (2) the construction of two high, constant pressure cells were to experimentally confirm the success of the chemicals in the rapid screening apparatus; (3) in the third phase of the work, Exxon volunteered to evaluate the performance of the best chemicals from the previous two stages in their 4 inch I.D. Multiphase flow loop in Houston; (4) in the final phase of the work, the intention was to take the successful kinetic inhibition chemicals from the previous three stages and then test them in the field in gathering lines and wells from member companies.

  9. ,"Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas ...

  10. A battery-operated, stabilized, high-energy pulsed electron gun for the production of rare gas excimers

    SciTech Connect (OSTI)

    Barcellan, L.; Carugno, G.; Berto, E.; Galet, G.; Galeazzi, G.; Borghesani, A. F.

    2011-09-15

    We report on the design of a new type of hot-filament electron gun delivering fairly high current (a few hundreds of {mu} A) at high voltage (up to 100 kV) in continuous or pulsed mode. Its novel features are that the filament is heated by means of a pack of rechargeable batteries floated atop the high-voltage power supply in order to get rid of bulky isolation transformers, and that the filament current and, hence, the electron gun current, is controlled by a feedback circuit including a superluminescent diode decoupled from the high voltage by means of an optical fiber. This electron gun is intended for general purposes, although we have especially developed it to meet the needs of our experiment on the infrared emission spectroscopy of rare gas excimers. Our experiment requires that the charge injection into the sample is pulsed and constant and stable in time. The new electron gun can deliver several tens of nC per pulse of electrons of energy up to 100 keV into the sample cell. The new design also eliminates ripples in the emission current and ensures up to 12 h of stable performance.

  11. The oil and gas joint operating agreement

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This book covers the following topics: introduction to the AAPL model form operating agreement; property provisions of the operating agreement; Article 6---the drilling and development article; duties and obligations revisited---who bear what risk of loss; operator's liens; accounting procedure joint operations; insurance; taking gas in kind absent a balancing agreement; RMMLF Form 5 Gas Balancing Agreement; tax partnerships for nontax professionals; alternative agreement forms.

  12. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  13. Oil and Gas Lease Equipment and Operating Costs 1994 Through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas > Publications > Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Oil and Gas Lease Equipment and Operating Costs 1994 Through 2009 Released: September ...

  14. Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  15. Alternative Fuels Data Center: Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Natural Gas Production on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production on AddThis.com... More

  16. Distributed Hydrogen Production from Natural Gas: Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production from Natural Gas: IndependentReview Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent review report on the ...

  17. Operating a fuel cell using landfill gas

    SciTech Connect (OSTI)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  18. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  19. Natural Gas Marketed Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 2,444,353 2,322,999 2,451,302 2,359,586 2,420,982 2,323,578 1973-2016 Federal Offshore Gulf of Mexico 107,121 99,600 109,645 100,355 107,005 98,896 1997-2016 Alabama NA NA NA NA NA NA 1989-2016 Alaska 30,686 28,434 29,893 26,259 27,071

  20. New Jersey Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) New Jersey Natural Gas ... Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground ...

  1. EIA's Natural Gas Production Data

    Reports and Publications (EIA)

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  2. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  3. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  4. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  5. Desulfurized gas production from vertical kiln pyrolysis

    DOE Patents [OSTI]

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  6. ,"West Virginia Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050WV2" "Date","West Virginia Natural Gas Marketed Production (MMcf)" ...

  7. ,"New Mexico Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:47 AM" "Back to Contents","Data 1: New Mexico Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NM2" "Date","New Mexico Natural Gas Marketed Production (MMcf)" ...

  8. ,"New Mexico Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: New Mexico Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NM2" "Date","New Mexico Natural Gas Marketed Production (MMcf)" ...

  9. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:45 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  10. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  11. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    storage inventories. Categories: Prices, Production, Consumption, ImportsExports & Pipelines, Storage (Released, 792010, Html format) Natural Gas Data Collection and...

  12. Adjusted Estimates of Texas Natural Gas Production

    Reports and Publications (EIA)

    2005-01-01

    The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO2) production.

  13. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data ...

  14. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:41 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Minnesota Natural Gas in ...

  15. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Michigan Natural Gas in ...

  16. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  17. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  18. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:54 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Tennessee Natural Gas in ...

  19. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Alaska Natural Gas in ...

  20. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:43 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Missouri Natural Gas in ...

  1. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:28 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Arkansas Natural Gas in ...

  2. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:40 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Maryland Natural Gas in ...

  3. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:49 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Ohio Natural Gas in ...

  4. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:34 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Illinois Natural Gas in ...

  5. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:46 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Nebraska Natural Gas in ...

  6. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:30:00 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Wyoming Natural Gas in ...

  7. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:56 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Utah Natural Gas in ...

  8. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:37 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Kentucky Natural Gas in ...

  9. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:57 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Virginia Natural Gas in ...

  10. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:29 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","California Natural Gas in ...

  11. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  12. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update (EIA)

    Market Centers and Hubs: A 2003 Update EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Market Centers and Hubs: A 2003 Update Printer-Friendly Version "This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or

  13. Rhode Island Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  14. Wisconsin Natural Gas Underground Storage Injections All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

  15. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  16. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  17. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  18. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  19. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  20. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  1. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  2. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  3. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  4. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  5. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  6. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  7. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  8. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  9. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  10. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  15. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301991" ,"Release...

  2. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  7. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","32016","01151989" ,"Release ...

  15. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  16. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  17. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  18. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  19. West Virginia Dry Natural Gas Reserves Estimated Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production West Virginia Dry Natural Gas Proved ...

  20. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  1. Federal Offshore--Texas Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Texas Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Federal Offshore Texas Natural Gas Gross ...

  2. Louisiana--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed ... Natural Gas Marketed Production Louisiana State Offshore Natural Gas Gross Withdrawals and ...

  3. Texas--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Texas--State Offshore Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Texas State Offshore Natural Gas Gross ...

  4. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  5. STEO December 2012 - natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 natural gas production seen at record 69 billion cubic feet per day U.S. natural gas production is expected to increase 4.5 percent this year to a record 69 billion cubic feet per day, according to the new monthly energy forecast from the U.S. Energy Information Administration. A big portion of that natural gas is going to the U.S. electric power sector, which is generating more electricity from gas in place of coal. Consumption of natural gas for power generation this year is forecast to

  6. New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent New Mexico Natural Gas Plant ...

  7. West Virginia Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent West Virginia Natural Gas Plant Processing NGPL ...

  8. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  9. How EIA Estimates Natural Gas Production

    Reports and Publications (EIA)

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  10. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2014,"06301935" ,"Release Date:","09302015" ,"Next Release Date:","10302015" ,"Excel File...

  11. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  12. Natural gas production on the rise

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas production on the rise After a brief slowdown in early 2016, U.S. natural gas production is expected to increase during the second half of this year and continue rising through 2017. In its new monthly forecast, the U.S. Energy Information Administration said domestic natural gas output during the fourth quarter of this year is expected to top 80 billion cubic feet per day and then climb to a new record of 82 billion cubic feet per day by end of 2017. With record production and

  13. Gas characterization system operation, maintenance, and calibration plan

    SciTech Connect (OSTI)

    Tate, D.D.

    1996-03-04

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations.

  14. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect (OSTI)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  15. Michigan Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas 394,117 394,117 394,117 386,427 387,027 385,038 1990-2015 Working Gas 241,221 323,709 398,647 488,022 563,188 622,544 1990-2015 Net Withdrawals -82,150 -82,493 -74,938...

  16. Arkansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 10,841 11,213 11,664 11,664 11,652 11,652 1990-2016 Working Gas 2,222 2,132 1,808 1,374 1,057 619 1990-2016 Net Withdrawals -212 -283 -127 434 328 438 1990-2016 Injections ...

  17. Missouri Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,341 6,537 6,493 6,045 6,198 6,063 1990-2016 Net Withdrawals -268 -212 28 433 -168 119 1990-2016 Injections 268 ...

  18. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:24 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  19. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  20. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  1. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  2. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  3. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  4. ,"New York Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12152015 12:13:03 PM" "Back to Contents","Data 1: New York Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NY2" "Date","New York...

  5. Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 Virginia Dry Natural Gas Proved Reserves ...

  6. West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) West Virginia Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 West Virginia Dry Natural Gas Proved ...

  7. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore ... Dry Natural Gas Proved Reserves as of Dec. 31 LA, State Offshore Dry Natural Gas Proved ...

  8. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  9. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  10. Challenges associated with shale gas production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges associated with shale gas production Challenges associated with shale gas production What challenges are associated with shale gas production? (1012.02 KB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air Shale Gas Development Challenges: Fracture Fluids

  11. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  12. Minnesota Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    6,573 6,835 6,984 6,973 6,658 6,531 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 1,725 1,987 2,136 2,125 1,810 1,683 1990-2016 Net Withdrawals -219 ...

  13. Wyoming Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    91,886 90,669 90,354 91,501 92,834 94,020 1990-2015 Base Gas 67,815 67,798 67,815 67,815 67,815 67,815 1990-2015 Working Gas 24,071 22,871 22,539 23,686 25,018 26,205 1990-2015 Net...

  14. Maryland Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    ,818 62,080 61,590 61,074 57,082 54,789 1990-2016 Base Gas 45,677 45,677 45,677 45,677 45,677 45,677 1990-2016 Working Gas 16,141 16,403 15,913 15,396 11,405 9,111 1990-2016 Net ...

  15. Washington Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    5,053 45,877 42,090 39,380 37,900 32,046 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 22,753 23,577 19,790 17,080 15,600 9,746 1990-2016 Net ...

  16. Alternative Fuels Data Center: Conventional Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center: Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Conventional Natural Gas Production on Digg Find More

  17. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  18. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  19. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  20. CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: ...

  1. ,"Texas--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Marketed Production ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Marketed Production (MMcf)" ...

  2. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  3. ,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alaska--State Offshore Natural Gas Marketed Production (MMcf)" ...

  4. ,"Louisiana--State Offshore Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Marketed Production (MMcf)" ...

  5. ,"Federal Offshore--Texas Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Marketed Production ...

  6. ,"Federal Offshore--Alabama Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Marketed Production ...

  7. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  8. Operating a blast furnace using dried top gas

    SciTech Connect (OSTI)

    Kundrat, D.M.

    1993-08-10

    A method is described of operating a blast furnace, comprising: introducing into the top of the furnace a charge containing metal oxide, coke and flux, collecting a top gas CO, H[sub 2], carbon dioxide and water from the furnace, increasing the reducing potential of said collected top gas by removing water but without removing carbon dioxide from at least a portion of said collected top gas thereby forming a dried top gas, heating said dried top gas to form a heated dried top gas, introducing said heated dried top gas into the lower half of the stack of the furnace at a position above which said coke is not reactive and introducing an oxygen-containing gas and a hydrogenaceous fuel into the bosh of the furnace whereby said metal oxide is reduced to a molten metal using said heated dried top gas.

  9. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Nebraska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    30,842 30,290 30,389 31,015 32,111 32,123 1990-2016 Base Gas 22,197 22,197 22,197 22,197 22,197 22,197 1990-2016 Working Gas 8,645 8,093 8,192 8,818 9,914 9,926 1990-2016 Net Withdrawals 1,788 549 -103 -630 -1,099 -16 1990-2016 Injections 442 589 741 1,108 404 1990-2016 Withdrawals 1,788 991 486 111 9 387 1990-2016 Change in Working Gas from Same Period Previous Year Volume -1,224 5 778 990 968 -359 1991-2016 Percent -12.4 0.1 10.5 12.6 10.8 -3.5

  11. Oregon Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    24,021 23,538 23,895 24,917 27,133 27,642 1990-2016 Base Gas 11,186 11,186 11,186 11,186 11,186 11,186 1990-2016 Working Gas 12,835 12,352 12,709 13,731 15,947 16,456 1990-2016 Net Withdrawals 1,845 481 -362 -1,027 -1,218 -511 1990-2016 Injections 402 336 1,069 1,027 2,228 511 1990-2016 Withdrawals 2,246 817 708 1,009 1990-2016 Change in Working Gas from Same Period Previous Year Volume 787 993 621 1,431 1,544 1,691 1990-2016 Percent 6.5 8.7 5.1 11.6 10.7 11.5 1990

  12. Iowa Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    236,541 225,867 221,105 218,955 221,304 224,160 1990-2016 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897 1990-2016 Working Gas 38,644 27,970 23,208 21,059 23,407 26,264 1990-2016 Net Withdrawals 19,427 10,674 4,762 2,150 -2,349 -2,856 1990-2016 Injections 122 1 1 17 2,858 3,331 1990-2016 Withdrawals 19,548 10,675 4,763 2,167 509 474 1990-2016 Change in Working Gas from Same Period Previous Year Volume 78 534 2,156 548 -2,458 -6,563 1991-2016 Percent 0.2 1.9

  13. Louisiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    600,979 579,744 593,753 613,908 625,375 627,582 1990-2016 Base Gas 274,129 274,174 274,106 274,142 275,344 275,661 1990-2016 Working Gas 326,850 305,571 319,646 339,766 350,030 351,921 1990-2016 Net Withdrawals 56,058 21,175 -14,011 -20,296 -11,540 -2,585 1990-2016 Injections 10,677 23,206 38,091 36,480 30,639 23,795 1990-2016 Withdrawals 66,735 44,381 24,080 16,183 19,100 21,210 1990-2016 Change in Working Gas from Same Period Previous Year Volume 88,848 140,857 153,919 129,118 104,626 90,542

  14. Alaska Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    38,492 38,987 39,438 40,879 42,836 44,158 2013-2016 Base Gas 14,197 14,197 14,197 14,197 14,197 14,197 2013-2016 Working Gas 24,295 24,790 25,241 26,682 28,639 29,961 2013-2016 Net Withdrawals -50 -459 -451 -1,441 -1,957 -1,468 2013-2016 Injections 496 748 752 1,540 2,065 1,970 2013-2016 Withdrawals 446 289 301 99 108 501 2013-2016 Change in Working Gas from Same Period Previous Year Volume -515 164 850 2,474 4,360 5,604 2013-2016 Percent -2.1 0.7 3.5 10.2 18.0 23.0 2013

  15. California Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    473,606 466,313 471,118 488,378 500,458 508,224 1990-2016 Base Gas 225,845 225,845 225,845 225,845 225,845 225,845 1990-2016 Working Gas 247,760 240,467 245,272 262,533 274,613 282,379 1990-2016 Net Withdrawals 40,217 7,203 -4,805 -17,261 -16,700 -7,766 1990-2016 Injections 5,046 7,694 14,460 19,176 20,553 12,383 1990-2016 Withdrawals 45,263 14,897 9,655 1,914 3,853 4,616 1990-2016 Change in Working Gas from Same Period Previous Year Volume 916 -8,951 -8,466 -7,672 -21,052 -23,626 1990-2016

  16. Tennessee Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    2,014 2,020 2,052 2,069 2,095 2,130 1997-2016 Base Gas 878 878 878 878 878 878 1997-2016 Working Gas 1,137 1,143 1,175 1,192 1,217 1,253 1997-2016 Net Withdrawals 25 -6 -32 -17 -27 -38 1998-2016 Injections 3 25 37 19 27 38 1997-2016 Withdrawals 28 19 5 2 1997-2016 Change in Working Gas from Same Period Previous Year Volume 470 573 595 565 537 524 1997-2016 Percent 70.6 100.4 102.6 90.0 79.0 71.9 1997

  17. Texas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    705,870 681,323 700,744 737,343 766,877 759,232 1990-2016 Base Gas 294,440 294,891 295,364 298,436 298,505 298,312 1990-2016 Working Gas 411,431 386,432 405,380 438,907 468,372 460,919 1990-2016 Net Withdrawals 56,721 24,128 -19,445 -38,115 -29,546 7,624 1990-2016 Injections 17,953 21,048 46,257 52,553 44,466 16,715 1990-2016 Withdrawals 74,674 45,176 26,812 14,438 14,920 24,339 1990-2016 Change in Working Gas from Same Period Previous Year Volume 103,720 154,140 177,174 142,516 107,354 76,072

  18. Locally-smeared operator product expansions

    SciTech Connect (OSTI)

    Monahan, Christopher; Orginos, Kostantinos

    2014-12-01

    We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approach using the example of real scalar field theory.

  19. Montana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 264 2,609 3,670 4,406 2,112 1,418 1990-2016 Change in Working Gas from Same Period Previous Year Volume 2,239 3,471 3,197 3,391 4,649 5,247 1990-2016 Percent 9.4 17.3 ...

  20. Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas 4,980 5,251 5,202 3,591 3,573 3,438 1997-2016 Net Withdrawals -545 -270 48 1,612 17 135 1995-2016 Injections 1,077 722 392 1,258 1,471 653 1997-2016 Withdrawals 533 451 ...

  1. Ohio Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas 181,373 192,681 184,926 165,463 118,381 86,221 1990-2016 Net Withdrawals -22,886 -11,308 7,717 19,441 47,082 32,160 1990-2016 Injections 23,451 13,257 2,530 1,632 70 ...

  2. Illinois Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 746 1,354 17,147 47,497 72,099 52,482 1990-2016 Change in Working Gas from Same Period Previous Year Volume -4,131 -6,939 5,451 10,834 4,759 12,589 1990-2016 Percent ...

  3. Oklahoma Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    319,836 309,723 315,586 324,956 340,266 343,288 1990-2016 Base Gas 183,624 183,624 181,624 181,624 181,624 181,624 1990-2016 Working Gas 136,212 126,100 133,962 143,332 158,643 161,664 1990-2016 Net Withdrawals 26,725 10,070 -5,923 -9,402 -15,348 -3,069 1990-2016 Injections 2,701 4,518 10,606 11,696 17,060 8,283 1990-2016 Withdrawals 29,426 14,589 4,683 2,294 1,711 5,214 1990-2016 Change in Working Gas from Same Period Previous Year Volume 38,649 59,569 66,611 53,951 38,406 23,706 1990-2016

  4. Pennsylvania Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    631,739 569,313 549,303 554,903 586,915 623,378 1990-2016 Base Gas 343,818 343,699 336,838 336,631 336,740 337,217 1990-2016 Working Gas 287,921 225,614 212,465 218,272 250,176 286,161 1990-2016 Net Withdrawals 87,473 62,426 20,011 -5,601 -32,012 -36,463 1990-2016 Injections 5,148 8,852 24,088 30,454 44,376 43,461 1990-2016 Withdrawals 92,621 71,278 44,098 24,854 12,364 6,997 1990-2016 Change in Working Gas from Same Period Previous Year Volume 34,424 64,473 98,696 77,397 46,930 31,712 1990-2016

  5. Indiana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    97,724 92,441 90,746 90,218 93,116 95,432 1990-2016 Base Gas 77,171 77,164 77,161 77,161 77,159 77,158 1990-2016 Working Gas 20,553 15,277 13,584 13,057 15,957 18,274 1990-2016 Net Withdrawals 6,106 5,259 1,694 527 -2,905 -2,226 1990-2016 Injections 166 119 201 439 2,997 2,269 1990-2016 Withdrawals 6,272 5,378 1,894 966 92 42 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,736 3,953 4,911 4,051 4,056 3,433 1990-2016 Percent 22.2 34.9 56.6 45.0 34.1 23.1

  6. Kansas Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    233,257 221,342 225,397 232,549 245,809 250,495 1990-2016 Base Gas 164,231 164,229 164,214 164,200 164,187 164,172 1990-2016 Working Gas 69,026 57,113 61,183 68,350 81,622 86,323 1990-2016 Net Withdrawals 26,541 11,913 -4,070 -7,167 -13,272 -4,701 1990-2016 Injections 1,222 3,898 10,871 11,169 14,861 9,088 1990-2016 Withdrawals 27,763 15,811 6,801 4,002 1,588 4,388 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,373 17,845 21,158 25,542 24,672 17,504 1990-2016 Percent 5.1

  7. Kentucky Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    190,694 181,000 178,850 194,795 203,102 205,878 1990-2016 Base Gas 112,965 112,964 112,961 112,959 112,957 112,956 1990-2016 Working Gas 77,729 68,036 65,889 81,836 90,145 92,922 1990-2016 Net Withdrawals 19,675 9,656 2,150 -16,117 -8,262 -2,776 1990-2016 Injections 575 1,883 3,203 17,718 10,554 5,041 1990-2016 Withdrawals 20,250 11,540 5,354 1,601 2,292 2,265 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,014 21,500 21,915 22,918 21,339 18,578 1990-2016 Percent 16.5

  8. Mississippi Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    249,528 242,509 254,667 261,037 267,742 266,005 1990-2016 Base Gas 116,505 116,483 116,449 116,491 116,028 116,068 1990-2016 Working Gas 133,023 126,026 138,218 144,545 151,714 149,937 1990-2016 Net Withdrawals 36,129 6,944 -12,187 -6,394 -6,684 1,758 1990-2016 Injections 5,837 12,939 20,073 13,651 15,608 8,894 1990-2016 Withdrawals 41,966 19,883 7,886 7,256 8,924 10,651 1990-2016 Change in Working Gas from Same Period Previous Year Volume 27,861 60,981 73,599 49,163 35,750 22,932 1990-2016

  9. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    29,595 30,309 30,632 34,015 35,551 34,065 1995-2016 Base Gas 9,640 9,640 9,640 10,450 10,450 10,450 1995-2016 Working Gas 19,955 20,669 20,992 23,565 25,101 23,615 1995-2016 Net Withdrawals 4,787 -713 -323 -3,383 -1,536 1,486 1993-2016 Injections 1,260 3,081 2,222 3,807 3,036 1,576 1994-2016 Withdrawals 6,047 2,367 1,898 424 1,500 3,062 1994-2016 Change in Working Gas from Same Period Previous Year Volume 4,615 13,768 13,039 9,452 5,305 3,085 1996-2016 Percent 30.1 199.5 163.9 67.0 26.8 15.0

  10. Colorado Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    90,208 87,796 84,108 82,774 88,322 94,164 1990-2016 Base Gas 58,435 58,428 58,429 58,436 58,440 58,446 1990-2016 Working Gas 31,772 29,368 25,679 24,338 29,882 35,718 1990-2016 Net Withdrawals 9,800 2,412 3,688 1,334 -5,548 -5,842 1990-2016 Injections 1,835 3,933 3,939 3,816 7,388 7,000 1990-2016 Withdrawals 11,635 6,345 7,627 5,149 1,841 1,157 1990-2016 Change in Working Gas from Same Period Previous Year Volume -434 2,740 2,493 3,043 3,547 2,566 1990-2016 Percent -1.3 10.3 10.8 14.3 13.5

  11. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  12. On-Board Hydrogen Gas Production System For Stirling Engines (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated

  13. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1" "Date","U.S. Gas Plant Production of Natural Gas Liquids ...

  14. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  15. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA 1991-2016 Dry Production 2006-2014

  16. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  17. NREL Document Profiles Natural Gas Fueling, Fleet Operation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Profiles Natural Gas Fueling, Fleet Operation Media may contact: George Douglas, 303-275-4096 email: George Douglas Steve Ginter, Mack, 610-709-3259 Golden, Colo., June 7, 2000 - A unique and successful natural gas fueling and fleet operation involving trash haulers is discussed in a recent document issued by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The NREL document, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that

  18. Natural Gas Plant Field Production: Natural Gas Liquids

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 PADD 1

  19. New Methodology for Natural Gas Production Estimates

    Reports and Publications (EIA)

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  20. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  1. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  2. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  3. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1996-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA

  4. Oxygen permeation and coal-gas-assisted hydrogen production using...

    Office of Scientific and Technical Information (OSTI)

    Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes Citation Details In-Document Search Title: Oxygen permeation and coal-gas-assisted ...

  5. Oil & Natural Gas Projects Exploration and Production Technologies...

    Open Energy Info (EERE)

    & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration...

  6. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  7. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 Dry Production 78,122

  8. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  9. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  10. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  11. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  12. New York Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New York Dry Natural Gas Proved Reserves Dry ...

  13. New Mexico Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New Mexico Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New Mexico Dry Natural Gas Proved Reserves ...

  14. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 TX, State Offshore Dry Natural Gas Proved ...

  15. Alaska Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16,327 13,253 15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into

  16. Alaska Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -16,327 -13,253 -15,555 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas

  17. Georgia Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 123 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  18. Georgia Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -90 -339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas from

  19. Idaho Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground

  20. Idaho Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -112 -395 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural Gas from Underground

  1. South Carolina Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) South Carolina Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 80 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas

  2. Lower 48 States Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  3. Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  4. Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  5. Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  6. ,"Nevada Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Dry Natural Gas Production (Million Cubic ... 1:11:52 AM" "Back to Contents","Data 1: Nevada Dry Natural Gas Production (Million Cubic ...

  7. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million ... 10:12:48 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Production (Million ...

  8. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million ... 10:12:49 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million ...

  9. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend ... Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast ...

  10. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  11. New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  12. New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  14. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Dry Natural Gas Expected Future Production ... 7:18:08 AM" "Back to Contents","Data 1: Texas Dry Natural Gas Expected Future Production ...

  15. ,"U.S. Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production ... to Contents","Data 1: U.S. Natural Gas Plant Liquids, Expected Future Production ...

  16. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  17. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  18. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  19. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8,737 17,100 18,166 17,618 18,096 17,265 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 18,737 17,100 18,166 17,618 18,096 17,265

  20. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    707,527 664,972 702,555 680,919 696,269 671,978 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 635,571 597,344 631,105 611,669 625,459 603,638

  1. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,450 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  2. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  3. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  4. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  5. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,218 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,218

  6. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    34,199 31,283 33,192 31,720 31,806 29,945 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1994-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 34,199 31,283 33,192 31,720 31,806 29,945

  7. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    55,930 145,478 156,116 148,710 148,672 145,311 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 139,012 129,693 139,178 132,575 132,542 129,545 1989

  8. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,521 4,233 4,426 4,275 4,454 4,280 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 4,521 4,233 4,426 4,275 4,454 4,280

  9. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,680 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  10. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,423 116,401 120,760 118,944 121,569 115,202 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 112,423 116,401 120,760 118,944 121,569 115,202 1991

  11. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    214,000 201,258 214,561 203,524 211,217 201,673 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 214,000 201,258 214,561 203,524 211,217 201,673 1989

  12. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    447,447 430,800 452,601 429,503 441,514 434,346 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 447,447 430,800 452,601 429,503 441,514 434,346

  13. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,423 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  14. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  15. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  16. Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  18. ,"Kansas Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production ...

  19. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  20. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  1. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production ...

  2. ,"Utah Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production ...

  3. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  4. ,"Montana Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production ...

  5. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production ...

  6. ,"Michigan Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production ...

  7. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  8. Operating experience review of an INL gas monitoring system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-01

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. Some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  9. Operating experience review of an INL gas monitoring system

    SciTech Connect (OSTI)

    Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  10. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect (OSTI)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  11. Methodology for optimizing the development and operation of gas storage fields

    SciTech Connect (OSTI)

    Mercer, J.C.; Ammer, J.R.; Mroz, T.H.

    1995-04-01

    The Morgantown Energy Technology Center is pursuing the development of a methodology that uses geologic modeling and reservoir simulation for optimizing the development and operation of gas storage fields. Several Cooperative Research and Development Agreements (CRADAs) will serve as the vehicle to implement this product. CRADAs have been signed with National Fuel Gas and Equitrans, Inc. A geologic model is currently being developed for the Equitrans CRADA. Results from the CRADA with National Fuel Gas are discussed here. The first phase of the CRADA, based on original well data, was completed last year and reported at the 1993 Natural Gas RD&D Contractors Review Meeting. Phase 2 analysis was completed based on additional core and geophysical well log data obtained during a deepening/relogging program conducted by the storage operator. Good matches, within 10 percent, of wellhead pressure were obtained using a numerical simulator to history match 2 1/2 injection withdrawal cycles.

  12. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of Natural Gas into Underground Storage

  13. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  14. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  15. Conformal field theories at nonzero temperature: Operator product...

    Office of Scientific and Technical Information (OSTI)

    nonzero temperature: Operator product expansions, Monte Carlo, and holography Citation Details In-Document Search Title: Conformal field theories at nonzero temperature: Operator ...

  16. Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -174 -102 253 1970's -200 -96 -1,074 2,468 1,707 -2,185 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  17. Connecticut Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 683 740 746 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  18. Connecticut Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -242 501 1,271 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of

  19. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections

  20. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net

  1. Rhode Island Natural Gas Underground Storage Injections All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 97 243 137 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections of

  2. Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's -6 411 541 1990's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net Withdrawals of Natural

  3. Strings of liquid beads for gas-liquid contact operations

    SciTech Connect (OSTI)

    Hattori, Kenji; Ishikawa, Mitsukuni; Mori, Y.H. . Dept. of Mechanical Engineering)

    1994-12-01

    Energy recovery from hot gases exhausted from power plants, garbage incineration facilities, and many industrial processes has been growing due to demands for saving the primary-energy consumption. A novel device for gas-liquid contact operations is proposed to feed a liquid onto wires (or threads) hanging down in a gas stream is proposed. The liquid disintegrates into beads strung on each wire at regular intervals; if the wire is moderately wettable, a thin film forms to sheathe the wire, thereby interconnecting the beads. Since the beads fall down slowly, which possibly renews the film flowing down even more slowly, a sufficient gas-liquid contact time is available even in a contactor with considerably limited height. An approximate calculation method is developed for predicting the variation in the temperature effectiveness for the liquid (the fractional approach of the liquid exit temperature to the gas inlet temperature) with the falling distance, assuming an applicability of strings-of-beads contactors to thermal energy recovery from hot gas streams.

  4. Dynamic gas flow during plasma operation in TMX-U

    SciTech Connect (OSTI)

    Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.

    1982-11-12

    Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73/sup 0/ Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation.

  5. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  6. Residual Gas Analysis for Long-Pulse, Advanced Tokamak Operation

    SciTech Connect (OSTI)

    Klepper, C Christopher; Hillis, Donald Lee; Bucalossi, J.; Douai, D.; OddonCEA, IRFM, P.; VartanianCEA-Cadarach, S.; Colas, L.; Manenc, L.; Pegourie, B.

    2010-01-01

    A shielded residual gas analyzer RGA system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This diagnostic RGA has been used in long-pulse up to 6 min discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H2 /D2 isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H2 injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses 4 min absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H2 could increase due to thermodesorption of overheated plasma facing components. 2010 American Institute of Physics.

  7. ,"Montana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  8. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  9. ,"Colorado Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  10. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  11. ,"Michigan Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  12. ,"Florida Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  13. ,"Lower 48 States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  14. ,"Wyoming Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  17. ,"Kentucky Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  18. ,"Mississippi Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  19. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). AGA e-mail for DOE Furnace Product Class (83.56 KB) AGA Cover Letter for Furnace Product Class White Paper

  20. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details ... OSTI Identifier: 879832 Report Number(s): US 6755021 US patent application 10246064 DOE ...

  1. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  2. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  3. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  4. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"West Virginia Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  6. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  7. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  9. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  10. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  11. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Decrease 48% Decrease 90% Carbon Capture at the Power Plant Results in 80% Reduction in LC GHG Emissions for Coal-fired Power Plants and 70% Reduction for Natural Gas- fired ...

  12. Production of biodiesel using expanded gas solvents

    SciTech Connect (OSTI)

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  13. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  14. Michigan Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. Kentucky Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  17. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. Florida Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  1. Alaska Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  2. Arkansas Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. Colorado Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. West Virginia Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. New Mexico Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  9. New Mexico Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  10. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  11. Federal Offshore--Louisiana Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  12. Alabama--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Alaska--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  15. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  16. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  17. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  18. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    23,819 23,559 22,451 22,896 22,535 20,900 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA ...

  19. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 ...

  20. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA ...

  1. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  2. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed ...

  3. STEO September 2012 - natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Katherine Teller explains: "This strong growth in production was driven in large part by production in Pennsylvania's Marcellus shale formation where drilling companies ...

  4. ,"Midwest Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:21 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Midwest Region Natural Gas ...

  5. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:59 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","West Virginia Natural Gas in ...

  6. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:48 AM" "Back to Contents","Data 1: Total Underground Storage" ... York Natural Gas in Underground Storage (Base Gas) (MMcf)","New York Natural Gas in ...

  7. ,"Mountain Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:22 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Mountain Region Natural Gas ...

  8. ,"Pacific Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:26 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","Pacific Region Natural Gas ...

  9. ,"East Region Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:19 AM" "Back to Contents","Data 1: Total Underground Storage" ... Region Natural Gas in Underground Storage (Base Gas) (MMcf)","East Region Natural Gas in ...

  10. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"N5020NM2","N5070NM2","N5050NM2","N5060NM2" "Date","New Mexico Natural Gas Underground Storage Volume (MMcf)","New Mexico Natural Gas in Underground Storage (Base Gas) ...

  11. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  12. Operation of cover-gas system during SLSF tests. [LMFBR

    SciTech Connect (OSTI)

    Braid, T.H.; Harper, H.A.; Wilson, R.E.

    1982-01-01

    During two tests in the Sodium Loop Safety Facility (W1 and P4), high resolution gamma-ray spectroscopy was used to detect pin failure by observing radioactive fission product isotopes of Kr and Xe from exposed fuel. A continuous stream of argon cover gas from the in-pile loop was transferred to a shielded sample volume. Two germanium crystal spectrometers continuously recorded spectra of gamma rays in the energy range 80 keV to approx. 2.7 MeV. A very wide range of signal strength was accommodated without saturation by dilution of the sample, reduction of the sample chamber volume and insertion of detecter collimators. The cover gas system provided an unambiguous indication of fuel failure during a series of boiling tests in W1. In P4, spectra were recorded after a power transient that released molten fuel and from a mass of exposed fuel at a range of reactor power levels. Gamma rays were observed from isotopes of Kr and Xe with half-lives from 3.8 m to 5.2 d.

  13. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  14. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onsho

  15. Process for production desulfurized of synthesis gas

    DOE Patents [OSTI]

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  16. EIA-914 Monthly Gas Production Report Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... T T T m A test close to the actual task of estimating monthly 2005 production calibrated ... For a test month, the prior 6 months of production data were linearly fit and the linear ...

  17. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA ...

  18. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA ...

  19. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  20. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  1. Annual report of the origin of natural gas liquids production form EIA-64A

    SciTech Connect (OSTI)

    1995-12-31

    The collection of basic, verifiable information on the Nation`s reserves and production of natural gas liquids (NGL) is mandated by the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275) and the Department of Energy Organization Act of 1977 (Public Law 95-91). Gas shrinkage volumes reported on Form EIA-64A by natural gas processing plant operators are used with natural gas data collected on a {open_quotes}wet after lease separation{close_quotes} basis on Form EIA-23, Annual Survey of Domestic Oil and Gas Reserves, to estimate {open_quotes}dry{close_quotes} natural gas reserves and production volumes regionally and nationally. The shrinkage data are also used, along with the plant liquids production data reported on Form EIA-64A, and lease condensate data reported on Form EIA-23, to estimate regional and national gas liquids reserves and production volumes. This information is the only comprehensive source of credible natural gas liquids data, and is required by DOE to assist in the formulation of national energy policies.

  2. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. Federal Offshore Texas Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014 Marketed Production 1992-1998

  4. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998...

  5. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  7. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  8. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998

  9. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  10. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  11. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  12. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  13. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Locally smeared operator product expansions in scalar field theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  15. Unconventional oil and gas (UOG) development and operations release...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Oil and Natural Gas Goals The Administration has set a goal to reduce methane emissions from the oil and gas sector by 40-45 percent from 2012 levels by 2025. Achieving ...

  16. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  17. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,941,727 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  18. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,787 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046 255,911 2007-2014 From Coalbed Wells 529,891 514,531 376,543 449,281 419,132 2002-2014 Repressuring 10,043 10,439 0 NA NA 1967-2014 Vented and Flared 1,242 1,291 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1980-2014 Marketed

  19. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    7,593,697 7,934,689 8,143,510 8,299,472 8,663,333 8,763,381 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,734,153 1967-2014 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,520,200 1967-2014 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,408,980 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 558,854 502,020 437,367 423,413 452,150 1967-2014 Vented and Flared 39,569 35,248 47,530 76,113 81,755 1967-2014 Nonhydrocarbon Gases Removed 279,981

  20. Gas-liquid separator and method of operation

    DOE Patents [OSTI]

    Soloveichik, Grigorii Lev; Whitt, David Brandon

    2009-07-14

    A system for gas-liquid separation in electrolysis processes is provided. The system includes a first compartment having a liquid carrier including a first gas therein and a second compartment having the liquid carrier including a second gas therein. The system also includes a gas-liquid separator fluidically coupled to the first and second compartments for separating the liquid carrier from the first and second gases.

  1. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect (OSTI)

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  2. Operational Challenges in Gas-To-Liquid (GTL) Transportation Through Trans Alaska Pipeline System (TAPS)

    SciTech Connect (OSTI)

    Godwin A. Chukwu; Santanu Khataniar; Shirish Patil; Abhijit Dandekar

    2006-06-30

    Oil production from Alaskan North Slope oil fields has steadily declined. In the near future, ANS crude oil production will decline to such a level (200,000 to 400,000 bbl/day) that maintaining economic operation of the Trans-Alaska Pipeline System (TAPS) will require pumping alternative products through the system. Heavy oil deposits in the West Sak and Ugnu formations are a potential resource, although transporting these products involves addressing important sedimentation issues. One possibility is the use of Gas-to-Liquid (GTL) technology. Estimated recoverable gas reserves of 38 trillion cubic feet (TCF) on the North Slope of Alaska can be converted to liquid with GTL technology and combined with the heavy oils for a product suitable for pipeline transport. Issues that could affect transport of this such products through TAPS include pumpability of GTL and crude oil blends, cold restart of the pipeline following a prolonged winter shutdown, and solids deposition inside the pipeline. This study examined several key fluid properties of GTL, crude oil and four selected blends under TAPS operating conditions. Key measurements included Reid Vapor Pressure, density and viscosity, PVT properties, and solids deposition. Results showed that gel strength is not a significant factor for the ratios of GTL-crude oil blend mixtures (1:1; 1:2; 1:3; 1:4) tested under TAPS cold re-start conditions at temperatures above - 20 F, although Bingham fluid flow characteristics exhibited by the blends at low temperatures indicate high pumping power requirements following prolonged shutdown. Solids deposition is a major concern for all studied blends. For the commingled flow profile studied, decreased throughput can result in increased and more rapid solid deposition along the pipe wall, resulting in more frequent pigging of the pipeline or, if left unchecked, pipeline corrosion.

  3. Systems acceptance and operability testing for rotary mode core sampling in flammable gas tanks

    SciTech Connect (OSTI)

    Corbett, J.E., Westinghouse Hanford

    1996-07-29

    This document provides instructions for the system acceptance and operability testing of the rotary mode core sampling system, modified for use in flammable gas tanks.

  4. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  5. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,908,739 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667 508,739 429,731 328,780 261,863 2002-2014 Repressuring 2,810 5,747 6,630 2,124 5,210 1967-2014 Vented and Flared 42,101 57,711 45,429 34,622 29,641 1967-2014 Nonhydrocarbon Gases Removed 164,221 152,421

  6. Production of Substitute Natural Gas from Coal

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  7. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

  8. Covered Product Category: Residential Gas Storage Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  9. Covered Product Category: Residential Gas Storage Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  10. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 506 516 501 488 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee Natural Gas Plant Processing NGPL

  11. ,"U.S. Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Underground Storage",6,"Monthly","72015","01151973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","72015","01151973" ,"Release...

  12. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel

  13. Internal combustion engine for natural gas compressor operation

    DOE Patents [OSTI]

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  14. Lower 48 States Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    8,266,377 8,001,243 7,270,200 6,866,117 2011-2016 Base Gas 4,350,036 4,350,581 4,353,183 4,348,362 4,346,354 4,345,766 2011-2016 Working Gas 3,600,021 3,928,475 3,913,194 ...

  15. Midwest Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    375 2,180,135 2,319,830 2,461,785 2,582,258 2,578,619 2014-2015 Base Gas 1,496,379 1,496,378 1,488,687 1,489,658 1,487,866 1,487,894 2014-2015 Working Gas 564,995 683,757 831,144...

  16. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,863,519 1,917,665 2,042,184 2,206,064 2,200,189 2,159,737 1994-2014 Base Gas 1,083,436 1,087,842 1,089,725 1,089,543 1,089,660 1,089,228 1994-2014 Working Gas 780,084 829,824...

  17. South Central Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    225 2,109,107 2,154,799 2,265,050 2,381,950 2,393,620 2014-2015 Base Gas 1,058,973 1,059,103 1,058,987 1,058,721 1,060,652 1,061,199 2014-2015 Working Gas 1,002,252 1,050,004...

  18. AGA Producing Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    1,689,895 1,688,206 1,865,696 2,041,963 2,126,724 2,176,332 1994-2015 Base Gas 1,087,170 1,084,178 1,084,148 1,086,406 1,088,335 1,088,465 1994-2015 Working Gas 602,725 604,028...

  19. Natural Gas Transportation - Infrastructure Issues and Operational Trends

    Reports and Publications (EIA)

    2001-01-01

    This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.

  20. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  1. High pressure operation of tubular solid oxide fuel cells and their intergration with gas turbines

    SciTech Connect (OSTI)

    Haynes, C.; Wepfer, W.J.

    1996-12-31

    Fossil fuels continue to be used at a rate greater than that of their natural formation, and the current byproducts from their use are believed to have a detrimental effect on the environment (e.g. global warming). There is thus a significant impetus to have cleaner, more efficient fuel consumption alternatives. Recent progress has led to renewed vigor in the development of fuel cell technology, which has been shown to be capable of producing high efficiencies with relatively benign exhaust products. The tubular solid oxide fuel cell developed by Westinghouse Electric Corporation has shown significant promise. Modeling efforts have been and are underway to optimize and better understand this fuel cell technology. Thus far, the bulk of modeling efforts has been for operation at atmospheric pressure. There is now interest in developing high-efficiency integrated gas turbine/solid oxide fuel cell systems. Such operation of fuel cells would obviously occur at higher pressures. The fuel cells have been successfully modeled under high pressure operation and further investigated as integrated components of an open loop gas turbine cycle.

  2. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  3. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  4. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  5. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOE Patents [OSTI]

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  6. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  7. U.S. Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming ... Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History Natural Gas in Storage 8,317,848 ...

  8. Lower 48 States Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    5,996,949 5,804,144 6,125,877 6,622,606 6,984,761 7,267,318 2011-2015 Base Gas 4,345,006 4,345,836 4,345,412 4,347,895 4,356,082 4,357,143 2011-2015 Working Gas 1,651,943 1,458,308...

  9. New Mexico Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    74,320 74,935 73,367 71,954 73,611 74,781 1990-2016 Base Gas 29,362 29,362 29,362 29,362 29,362 29,362 1990-2016 Working Gas 44,957 45,573 44,005 42,592 44,249 45,419 1990-2016 Net ...

  10. California State Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Texas Offshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    7 (Million Cubic Feet)

    Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

  12. Texas Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

    7,615,836 7,565,123

  13. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  14. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  15. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  16. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  17. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  18. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.

    1996-01-01

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  19. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  20. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect (OSTI)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  1. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2003-10-01

    This report documents work performed in the fourth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: second field test; test data analysis for the first field test; operational optimization plans.

  2. Pacific Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    535,527 521,897 525,124 546,324 565,012 575,122 2014-2016 Base Gas 259,331 259,331 259,331 259,331 259,331 259,331 2014-2016 Working Gas 276,196 262,566 265,792 286,993 305,681 315,790 2014-2016 Net Withdrawals 43,542 13,538 -3,232 -21,206 -22,310 -10,113 2014-2016 Injections 7,399 8,534 16,892 23,819 27,387 15,868 2014-2016 Withdrawals 50,941 22,072 13,660 2,613 5,078 5,755 2014-2016 Change in Working Gas from Same Period Previous Year Volume 219 -10,585 -9,885 -6,564 -19,775 -20,204 2014-2016

  3. West Virginia Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    91,056 355,390 343,819 357,455 384,746 410,685 1990-2016 Base Gas 270,042 269,935 270,125 269,945 269,945 270,137 1990-2016 Working Gas 121,014 85,455 73,694 87,511 114,801 140,547 1990-2016 Net Withdrawals 62,059 35,666 11,571 -14,238 -27,290 -25,941 1990-2016 Injections 734 2,318 4,083 17,376 27,487 27,482 1990-2016 Withdrawals 62,793 37,985 15,654 3,137 197 1,542 1990-2016 Change in Working Gas from Same Period Previous Year Volume 21,210 26,758 34,404 25,047 18,992 19,873 1990-2016 Percent

  4. Mountain Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    582,516 569,950 570,852 578,589 603,180 623,304 2014-2016 Base Gas 426,151 426,075 426,050 426,104 426,133 426,165 2014-2016 Working Gas 156,365 143,875 144,803 152,484 177,047 197,139 2014-2016 Net Withdrawals 29,411 12,562 -910 -7,610 -24,696 -20,024 2014-2016 Injections 4,057 9,286 16,189 15,107 27,298 22,765 2014-2016 Withdrawals 33,468 21,849 15,279 7,497 2,602 2,741 2014-2016 Change in Working Gas from Same Period Previous Year Volume 25,398 27,993 31,462 36,352 41,855 42,528 2014-2016

  5. New Claus tail-gas process proved in German operation

    SciTech Connect (OSTI)

    Kettner, R.; Liermann, N.

    1988-01-11

    A process for removing sulfur components from Claus-plant tail gases increases sulfur-recovery rates to 99.5%. It has been in use for more than 4 years. In December 1983, a tail-gas cleaning unit was started up for the sulfur-recovery plants of the Nordeutsche Erdgas Aufbereitungsgesellschaft (NEAG) natural-gas treating complex at Voigten, West Germany. NEAG, a joint venture of Exxon, Shell, and Mobil Oil, desulfurizes 7.7 million normal cu m/day (approximately 271.2 million cfd) of sour gas in three plants. Up to 1,050 tons/day of elemental sulfur are produced (Fig. 1). Mobil Oil AG developed the process which has been dubbed the Mobil direct-oxidation process (Modop).

  6. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  7. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  8. Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Kansas (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Kansas

  9. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  10. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  11. Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Texas

  12. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  13. DOE-Sponsored Project to Study Shale Gas Production

    Broader source: Energy.gov [DOE]

    A consortium led by the Energy Department's National Energy Technology Laboratory (NETL) will implement a process to monitor unconventional gas production at a test site near Morgantown, WV. The goal is to develop ways to increase efficiency and reduce environmental impacts.

  14. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  15. East Region Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals 7,271 12,466 45,095 85,288 232,321 162,639 2014-2016 Change in Working Gas from Same Period Previous Year Volume 53,666 26,264 82,451 113,777 93,945 141,451 2014-2016 ...

  16. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-03-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and qualitatively demonstrated in tests on three different integral engine/compressors in natural gas transmission service.

  17. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-08-01

    This report documents work performed in Phase I of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infracture''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes a number of potential enhancements to the existing natural gas compression infrastructure that have been identified and tested on four different integral engine/compressors in natural gas transmission service.

  18. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 74 19 12 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  19. Illinois Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Liquids Production Extracted in Illinois (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  20. Florida Natural Gas Plant Liquids Production Extracted in Florida (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquids Production Extracted in Florida (Million Cubic Feet) Florida Natural Gas Plant Liquids Production Extracted in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Florida-Florida

  1. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous

  2. Novel Hydrogen Production Systems Operative at Thermodynamic Extremes

    SciTech Connect (OSTI)

    Gunsalus, Robert

    2012-11-30

    We have employed a suite of molecular, bioinformatics, and biochemical tools to interrogate the thermodynamically limiting steps of H{sub 2} production from fatty acids in syntrophic communities. We also developed a new microbial model system that generates high H{sub 2} concentrations (over 17% of the gas phase) with high H{sub 2} yields of over 3 moles H{sub 2} per mole glucose. Lastly, a systems-based study of biohydrogen production in model anaerobic consortia was performed to begin identifying key regulated steps as a precursor to modeling co-metabolism. The results of these studies significantly expand our ability to predict and model systems for H{sub 2} production in novel anaerobes that are currently very poorly documented or understood.

  3. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  4. Assessment of biogas production from MBT waste under different operating conditions

    SciTech Connect (OSTI)

    Pantini, Sara; Verginelli, Iason; Lombardi, Francesco; Scheutz, Charlotte; Kjeldsen, Peter

    2015-09-15

    Highlights: • BMP test displayed high gas potential generation capacity of MBT waste. • Strong inhibition effects were observed due to ammonia and VFA accumulation. • Waste water content was found as the key parameter limiting gas generation. • First order k-values were determined for different operating conditions. - Abstract: In this work, the influence of different operating conditions on the biogas production from mechanically–biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26–43% w/w up to 75% w/w), the temperature (from 20 to 25 °C up to 55 °C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150 Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007 d{sup −1} at room temperature that increased to 0.03–0.05 d{sup −1} at 37 °C and to 0.04–0.11 d{sup −1} at 55 °C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution

  5. New York Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    202,549 188,208 183,548 185,119 196,365 203,711 1990-2016 Base Gas 114,956 114,913 114,853 114,603 114,779 114,826 1990-2016 Working Gas 87,594 73,296 68,695 70,516 81,586 88,885 1990-2016 Net Withdrawals 21,931 14,573 4,660 -1,571 -11,246 -7,422 1990-2016 Injections 351 2,066 5,092 7,990 11,932 9,211 1990-2016 Withdrawals 22,282 16,639 9,752 6,419 686 1,789 1990-2016 Change in Working Gas from Same Period Previous Year Volume 11,336 14,144 23,322 20,310 18,553 10,564 1990-2016 Percent 14.9 23.9

  6. Thermodynamic behavior of gas in storage cavities and production wells

    SciTech Connect (OSTI)

    Hugout, B.

    1982-01-01

    A computer model predicts the performance of gas storage in salt cavities in terms of the volume of cavity that is available for the gas and the pressure and temperature within the cavity and at all points of the production well. The model combines a simplified estimate of volume (derived from studies of rock mechanics) with two thermodynamic models - one for the cavity, the other for the well. Designed specifically for single-phase flow, the model produces values that agree well with measured data.

  7. Overview of NETL Field Studies Related to Oil and Gas Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY lab 18 Aug 2015 Richard Hammack, Monitoring Team Lead USDOE National Energy Technology Laboratory, Pittsburgh, PA Overview of NETL Field Studies Related to Oil and Gas Production DOE Tribal Leaders Forum Denver, Colorado Newfield Exploration, Bakken Petroleum System, North Dakota * Reduce Environmental Impacts * Demonstrate Safe/Reliable Operations * Improve Efficiency of Hydraulic Fracturing Program Objectives * Surface Monitoring - Ambient Air Quality - Air Emissions - Ground Motion -

  8. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  9. A review of the Arun field gas production/cycling and LNG export project. [Sumatra, Indonesia

    SciTech Connect (OSTI)

    Alford, M.E.

    1983-03-01

    The Arun field was discovered by Mobil Oil Indonesia Inc. in late 1971 in its Bee block in the Aceh province on the north coast of Sumatra, Indonesia. Mobil's operations in this area are conducted under the terms of a production sharing agreement with Pertamina, the Indonesian state-owned oil and gas enterprise. The scope of operations covered by this paper is from production of gas and raw condensate in the field through stabilization and export of condensate and purification, liquefaction, and export of gas at the LNG plant at Blang Lancang, near Lho Seumawe (Sumatra) Indonesia. Mobil Oil Indonesia, Inc. is the field operator and P.T. Arun NGL Company operates the pipelines and LNG plant facilities. All the facilities which will be described are owned by Pertamina; P.T. Arun is owned by Pertamina, Mobil Oil Indonesia, and Japan Indonesia LNG company (JILCO). JILCO represents the five (5) original Japanese LNG purchasers. Brief descriptions are included of the geology, reservoir geometry, well producing characteristics, field producing and cycling facilities, and the treating, liquefaction and export facilities.

  10. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  11. H. R. 4564: a bill to amend the Internal Revenue Code of 1954 to provide a deduction and special net operating loss rules with respect to certain losses on domestic crude oil, to increase tariffs on petroleum and petroleum products, to require the Strategic Petroleum Reserve to be filled with stripper well oil, and to eliminate certain restrictions on the sale of natural gas and on the use of natural gas and oil. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 10, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Secure Energy Supply Act of 1986 amends the Internal Revenue Code of 1954. Title I provides a deduction and special net operating loss treatment for certain losses on crude oil. Title II increases tariffs on petroleum and petroleum products, the revenues of which will cover authorized refunds. Title III provides that only stripper well oil or oil exchanged for stripper well oil will be used to fill the Strategic Petroleum Reserve. Title IV removes wellhead price controls and repeals Natural Gas Act jurisdiction over certain first sales of natural gas. Later titles repeal certain restrictions on the use of natural gas and petroleum, repeal incremental pricing requirements, and promote flexibility in rescheduling or marking down troubled loans. The bill was referred to the House Committees on Ways and Means, Energy and Commerce, and Banking, Finance, and Urban Affairs.

  12. Kepiting field production/storage barge; Design, installation, and operation

    SciTech Connect (OSTI)

    Carl, A.C.; Satar, S. ); Liles, S.P. )

    1990-04-01

    The Kepiting field is located in 295 ft (90 m) of water in the Natuna Sea, Indonesia. Development of this two-well field required innovative planning and involved unique designs of producing systems. The plan includes seafloor wells tied back to a spread-anchored, purpose-built, oil-process and -storage barge. The barge is designed to handle four producing wells and to process 10,000 B/D (1590 m{sup 3}/d) well fluid and 10 million scf/D (283 {times} 10{sup 3} std m{sup 3}/d) gas. Excess gas beyond barge-fuel needs and artificial-lift requirements is flared on the barge. Heated oil storage for 53,000 bbl (8430 m{sup 3}) is available. Processed crude is transported from the barge to a floating export terminal by a shuttle tanker. Kepiting field was operated profitably from Oct. 27, 1986, to Aug. 8, 1989, at which time the wells were plugged and the tieback risers disconnected. This paper discusses the design and construction of the barge and the operating philosophy and experience.

  13. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTNG NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalle; Ralph E. Harris; Gary D. Bourn

    2003-07-01

    This report documents work performed in the third quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: first field test; test data analysis.

  14. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    SciTech Connect (OSTI)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn

    2004-01-01

    This report documents work performed in the fifth quarter of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report describes the following work: completion of analysis of data from first visit to second site; preparation for follow-up testing.

  15. U.S. Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,819,121 2,668,329 2,823,451 2,682,073 2,768,037 2,633,983 1973-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1973-2016 Vented and Flared NA NA NA NA NA NA 1973-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1973-2016 Marketed Production 2,444,353 2,322,999 2,451,302 2,359,586 2,420,982 2,323,578 1973-2016 Dry Production

  16. New York Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,849 35,813 31,124 26,424 23,458 20,201 1967-2014 From Gas Wells 44,273 35,163 30,495 25,985 23,111 19,808 1967-2014 From Oil Wells 576 650 629 439 348 393 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 44,849 35,813 31,124 26,424 23,458 20,201 1967-2014 Dry Production 44,849 35,813 31,124 26,424 23,458

  17. California Federal Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 651 261 240 - = No Data Reported; -- = Not Applicable; NA = Not

  18. South Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,927 12,540 12,449 15,085 16,205 15,307 1967-2014 From Gas Wells 1,561 1,300 933 14,396 15,693 15,005 1967-2014 From Oil Wells 11,366 11,240 11,516 689 512 303 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 2,160 2,136 2,120 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 8,638 8,543 8,480 0 NA NA 1997-2014 Marketed Production 2,129 1,862 1,848 15,085 16,205 15,307 1970-2014 Dry Production 2,129

  19. Texas State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 36,820 27,421 23,791 15,953 13,650 10,924 1978-2014 From Oil Wells 991 1,153 0 552 386 299 1978-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2003-2014 Marketed Production 37,811 28,574 23,791 16,506 14,036 11,222 1992-2014 Dry Production 16,506 11,222 2012

  20. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  1. Oil and gas production equals jobs and revenue

    SciTech Connect (OSTI)

    Aimes, L.A.

    1994-12-31

    The effects of oil and gas production on jobs and revenue are discussed. Some suggestions are presented that should provide the climate to increase jobs, add revenue and increase efficiency in state agencies within the producing states. Some of the ideas and suggestions are summarized. Some of these ideas include: how to extend the economic limits of marginal properties; how the states can encourage additional drilling without incurring loss of revenue; and the use of investment tax credits.

  2. Microbial Community Dynamics Dominate Greenhouse Gas Production in Thawing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permafrost | U.S. DOE Office of Science (SC) Microbial Community Dynamics Dominate Greenhouse Gas Production in Thawing Permafrost Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  3. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,170 794 598 1970's 555 599 539 474 460 313 259 226 168 139 1980's 126 153 133 137 132 115 77 81 59 29 1990's 0 13 3 8 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Ohio Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 20 23 29 41 67 68 50 44 46 1990's 58 49 72 95 104 94 85 83 78 78 2000's 78 86 72 68 58 29 5 9 0 0 2010's 0 0 155 2,116 33,332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  5. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  6. Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Extracted in Ohio (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania-Ohio

  7. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  8. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  9. Colorado Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 170 1980's 183 195 174 173 142 155 127 142 162 191 1990's 152 181 193 190 210 243 254 244 235 277 2000's 288 298 329 325 362 386 382 452 612 722 2010's 879 925 705 762 813 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  10. Florida Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  11. Kansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 387 407 300 441 422 370 437 459 342 327 1990's 311 426 442 378 396 367 336 263 331 355 2000's 303 300 261 245 267 218 204 194 175 162 2010's 195 192 174 138 186 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  12. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  13. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  14. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  15. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  16. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  17. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  18. Pennsylvania Natural Gas Plant Liquids Production Extracted in West

    Gasoline and Diesel Fuel Update (EIA)

    Virginia (Million Cubic Feet) West Virginia (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 14,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  19. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  20. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  1. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  2. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 11 10 9 8 9 8 8 9 10 1990's 10 12 13 14 15 18 17 21 18 19 2000's 21 22 23 24 26 26 26 27 38 48 2010's 58 63 57 52 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  3. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 26 24 14 17 20 20 19 19 18 18 1990's 17 26 27 27 29 29 31 24 28 30 2000's 28 26 25 22 22 19 18 18 18 16 2010's 16 16 15 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 579 1980's 572 580 564 568 597 580 566 569 572 549 1990's 556 577 599 608 608 616 655 655 631 649 2000's 688 655 657 593 627 597 615 637 654 701 2010's 734 773 854 920 1,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 12 12 11 10 10 8 9 8 8 8 1990's 6 6 6 5 5 5 5 4 4 4 2000's 4 4 3 3 3 3 2 3 3 2 2010's 3 2 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  7. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  8. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  9. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 6 6 5 5 6 7 6 6 7 7 1990's 7 7 7 7 6 4 4 4 4 4 2000's 6 6 6 4 4 4 5 5 5 5 2010's 5 5 8 10 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet)

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL

  13. California Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    47,281 46,755 41,742 32,313 32,924 34,206 1977 California (Million Cubic Feet)

    Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next

  14. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of

  15. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  16. Louisiana Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    7 Louisiana (Million Cubic Feet)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  17. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  18. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  19. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Michigan Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 102 93 91 99 77 62 77 90 82 79 1990's 66 54 52 44 43 38 48 45 43 42 2000's 32 41 42 44 44 36 36 50 58 43 2010's 48 38 26 27 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  2. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  9. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect (OSTI)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  10. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  11. U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  12. Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  13. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration ...

  14. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect (OSTI)

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  15. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  16. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,761 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  17. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  18. Alabama Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  19. California Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  20. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production