National Library of Energy BETA

Sample records for gas production facilities

  1. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  2. Location of Natural Gas Production Facilities in the Gulf of Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  3. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  4. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  5. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  6. Isotopic noble gas signatures released from medical isotope production facilities - Simulations and measurements

    SciTech Connect (OSTI)

    Saey, Paul R.; Bowyer, Ted W.; Ringbom, Anders

    2010-09-09

    Journal article on the role that radioxenon isotopes play in confirming whether or not an underground explosion was nuclear in nature. Radioxenon isotopes play a major role in confirming whether or not an underground explosion was nuclear in nature. It is then of key importance to understand the sources of environmental radioxenon to be able to distinguish civil sources from those of a nuclear explosion. Based on several years of measurements, combined with advanced atmospheric transport model results, it was recently shown that the main source of radioxenon observations are strong and regular batch releases from a very limited number of medical isotope production facilities. This paper reviews production processes in different medical isotope facilities during which radioxenon is produced. Radioxenon activity concentrations and isotopic compositions are calculated for six large facilities. The results are compared with calculated signals from nuclear explosions. Further, the outcome is compared and found to be consistent with radioxenon measurements recently performed in and around three of these facilities. Some anomalies in measurements in which {sup 131m}Xe was detected were found and a possible explanation is proposed. It was also calculated that the dose rate of the releases is well below regulatory values. Based on these results, it should be possible to better understand, interpret and verify signals measured in the noble gas measurement systems in the International Monitoring of the Comprehensive Nuclear-Test-Ban Treaty.

  7. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  8. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  9. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  10. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  11. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  12. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  13. Design of generic coal conversion facilities: Production of oxygenates from synthesis gas---A technology review

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report concentrates on the production of oxygenates from coal via gasification and indirect liquefaction. At the present the majority of oxygenate synthesis programs are at laboratory scale. Exceptions include commercial and demonstration scale plants for methanol and higher alcohols production, and ethers such as MTBE. Research and development work has concentrated on elucidating the fundamental transport and kinetic limitations governing various reactor configurations. But of equal or greater importance has been investigations into the optimal catalyst composition and process conditions for the production of various oxygenates.

  14. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  15. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  16. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  17. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  18. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  19. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  20. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  1. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  2. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  3. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  4. Altamont Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Altamont Gas Recovery Biomass Facility Facility Altamont Gas Recovery Sector Biomass Facility Type Landfill Gas Location Alameda County, California Coordinates...

  5. Stowe Power Production Plant Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Stowe Power Production Plant Sector Biomass Facility Type Landfill Gas Location Montgomery County, Pennsylvania Coordinates 40.2290075, -75.3878525 Show Map Loading map......

  6. Shale Gas Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012...

  7. Production Facility SCADA Design Report

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Baily, Scott A.; Woloshun, Keith Albert; Wheat, Robert Mitchell Jr.

    2015-03-23

    The following report covers FY 14 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production facility. The goal of this effort is to provide Northstar with a baseline system design.

  8. Permian basin gas production

    SciTech Connect (OSTI)

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  9. Gas production apparatus

    DOE Patents [OSTI]

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  10. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  11. Chestnut Ridge Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Chestnut Ridge Gas Recovery Sector Biomass Facility Type Landfill Gas Location Anderson County, Tennessee Coordinates 36.0809574, -84.2278796 Show Map Loading map......

  12. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    SciTech Connect (OSTI)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  13. Shale Gas Production

    Gasoline and Diesel Fuel Update (EIA)

    Gas Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 3,110 5,336 7,994 10,371 11,415 13,447 2007-2014 Alabama 0 0 2007-2010 Alaska 0 0 0 0 0 0 2007-2014 Arkansas 527 794 940 1,027 1,026 1,038 2007-2014 California 101 90 89 3 2011-2014 Colorado 1 1 3 9 18 236 2007-2014 Kansas 1 3 1 2012-2014 Kentucky 5 4 4 4 4 2 2007-2014 Louisiana 293

  14. World-Class Test Facility Increases Efficiency of Solar Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of Solar Products World-Class Test Facility Increases Efficiency of ...

  15. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  16. Requirements for Petitions to Construct Electric and Gas Facilities...

    Open Energy Info (EERE)

    requirements for petitions to construct electric generation, electric transmission, and natural gas facilities pursuant to 30 V.S.A. 248. In addition, the rule clarifies...

  17. Alternative Fuels Data Center: Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Natural Gas Production on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production on AddThis.com... More

  18. Distributed Hydrogen Production from Natural Gas: Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production from Natural Gas: IndependentReview Panel Report Distributed Hydrogen Production from Natural Gas: Independent Review Panel Report Independent review report on the ...

  19. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added Product Report ...

  20. Natural Gas Marketed Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price Marketed Production Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 2,444,353 2,322,999 2,451,302 2,359,586 2,420,982 2,323,578 1973-2016 Federal Offshore Gulf of Mexico 107,121 99,600 109,645 100,355 107,005 98,896 1997-2016 Alabama NA NA NA NA NA NA 1989-2016 Alaska 30,686 28,434 29,893 26,259 27,071

  1. EIA's Natural Gas Production Data

    Reports and Publications (EIA)

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  2. Noble gas atmospheric monitoring at reprocessing facilities

    SciTech Connect (OSTI)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  3. Toda Cathode Materials Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Production Facility Toda Cathode Materials Production Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2013_p.pdf (1.45 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities

  4. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  5. Coiled tubing helps gas production

    SciTech Connect (OSTI)

    Matheny, S.L. Jr.

    1980-08-11

    To boost production from its gas fields in Lake Erie, Consumers' Gas Co., Toronto, used a giant reel holding a 33,000-ft coil of 1-in. polypropylene-coated steel tubing to lay about 44 miles of control lines that now service 20 wells 17 miles offshore. As the forward motion of the boat unwound the tubing, the reel rig's hydraulic motor served as a brake to maintain the proper tension. This innovative method of laying the lines eliminated more than 80% of the pipe joints, correspondingly reduced the installation labor time, and improved the system's reliability. The two hydraulic-control lines that were laid actuate the gas-gathering line valves, while a hydrate-control line injects each well with methyl alcohol to inhibit hydrate formation.

  6. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toda Material/Component Production Facilities Toda Material/Component Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. esarravt017_han_2010_p.pdf (2.09 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  7. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Program Document: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  8. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: ARM Climate Research Facility Quarterly Value-Added Product Report Citation Details In-Document Search Title: ARM Climate Research Facility Quarterly Value-Added ...

  9. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    Climate Research Facility Quarterly Value-Added Product Report Fourth Quarter: July 1-September 30, 2012 Citation Details In-Document Search Title: ARM Climate Research Facility ...

  10. Desulfurized gas production from vertical kiln pyrolysis

    DOE Patents [OSTI]

    Harris, Harry A.; Jones, Jr., John B.

    1978-05-30

    A gas, formed as a product of a pyrolysis of oil shale, is passed through hot, retorted shale (containing at least partially decomposed calcium or magnesium carbonate) to essentially eliminate sulfur contaminants in the gas. Specifically, a single chambered pyrolysis vessel, having a pyrolysis zone and a retorted shale gas into the bottom of the retorted shale zone and cleaned product gas is withdrawn as hot product gas near the top of such zone.

  11. ,"West Virginia Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050WV2" "Date","West Virginia Natural Gas Marketed Production (MMcf)" ...

  12. ,"New Mexico Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:47 AM" "Back to Contents","Data 1: New Mexico Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NM2" "Date","New Mexico Natural Gas Marketed Production (MMcf)" ...

  13. ,"New Mexico Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: New Mexico Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NM2" "Date","New Mexico Natural Gas Marketed Production (MMcf)" ...

  14. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:45 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  15. ,"North Dakota Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9:53:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050ND2" "Date","North Dakota Natural Gas Marketed Production ...

  16. Production Facility System Reliability Analysis Report

    SciTech Connect (OSTI)

    Dale, Crystal Buchanan; Klein, Steven Karl

    2015-10-06

    This document describes the reliability, maintainability, and availability (RMA) modeling of the Los Alamos National Laboratory (LANL) design for the Closed Loop Helium Cooling System (CLHCS) planned for the NorthStar accelerator-based 99Mo production facility. The current analysis incorporates a conceptual helium recovery system, beam diagnostics, and prototype control system into the reliability analysis. The results from the 1000 hr blower test are addressed.

  17. EIA - Analysis of Natural Gas Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    storage inventories. Categories: Prices, Production, Consumption, ImportsExports & Pipelines, Storage (Released, 792010, Html format) Natural Gas Data Collection and...

  18. Toda Material/Component Production Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review June 7-9, 2010 Washington D.C. Jun Nakano, David Han, Yasuhiro Abe Toda America Inc. Project ID: ARRAVT017 Esarravt017_han_2010_p_final This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview Li-ion Cathode Materials Production Facility Timelines Start: February, 2010 Finish: December, 2013 1 st Line Schedule: Feb., 2011 Completion: ~10% Challenges Compressed schedule - first line production within 1 year

  19. Adjusted Estimates of Texas Natural Gas Production

    Reports and Publications (EIA)

    2005-01-01

    The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO2) production.

  20. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data ...

  1. Future use of BI-GAS facility. Final report, Part II. [Other possible uses

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The 120 tpd BI-GAS pilot plant, intended to produce SNG at high pressure, was completed in 1976. For the next three and a half years, the operator, Stearns-Roger Inc., was engaged in operating the plant while overcoming a series of mechanical problems that have prevented the plant from running at design capacity and pressure. Since July 1980, these problems have apparently been corrected and considerable progress was made. In late 1979, the Yates Congressional Committee directed DOE to investigate the possibility of establishing an entrained-bed gasifier test facility at the site. In January 1981, the DOE established a study group composed of DOE and UOP/SDC personnel to determine how best to use the BI-GAS facility. The group considered four possibilities: Continue operation of the facility in accordance with the technical program plan developed by DOE and Stearns-Roger; modify the plant into an entrained-bed facility for testing components and processes; mothball the facility, or dismantle the facility. The group took the view that modifying the plant into a test facility would increase substantially the amount of engineering data available to the designers of commercial gasification plants. Since it appears that syngas plants will be of commercial interest sooner than SNG plants will, it was decided that the facility should test syngas production components and processes at high pressure. Consequently, it was recommended that: Operation of the plant be continued, both to collect data and to prove the BI-GAS process, as long as the schedule of the technical program plan is met; Begin at once to prepare a detailed design for modifying the BI-GAS plant to a high-pressure, entrained flow syngas test facility; and Implement the modification plan as soon as the BI-GAS process is proven or it becomes apparent that progress is unsatisfactory.

  2. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update (EIA)

    Market Centers and Hubs: A 2003 Update EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Market Centers and Hubs: A 2003 Update Printer-Friendly Version "This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or

  3. Hanford, WA Selected as Plutonium Production Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility Hanford, WA Groves selects Hanford, Washington, as site for full-scale plutonium production and separation facilities. Three reactors--B, D, and F--are built

  4. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt017_es_han_2012_p.pdf (1.52 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Cathode Materials Production Facility Toda Material/Component Production Facilities

  5. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt017_es_han_2011_p.pdf (1.08 MB) More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  6. Gas turbine based cogeneration facilities: Key issues to be addressed at an early design stage

    SciTech Connect (OSTI)

    Vandesteene, J.L.; De Backer, J.

    1998-07-01

    The basic design of a cogeneration facility implies much more than looking for a gas turbine generating set that matches the steam host heat demand, and making an economical evaluation of the project. Tractebel Energy Engineering (TEE) has designed, built and commissioned since the early nineties 350 MW of cogeneration facilities, mainly producing electricity and steam with natural gas fired gas turbines, which is the present most common option for industrial combined heat and power production. A standardized cogeneration design does not exist. Each facility has to be carefully adapted to the steam host's particular situation, and important technical issues have to be addressed at an early stage of plant design. Unexpected problems, expensive modifications, delays during execution of the project and possible long term operational limitations or drawbacks may result if these questions are left unanswered. This paper comments the most frequent questions on design values, required flexibility of the HRSG, reliability and backup, control system, connection to the grid

  7. Advanced integration concepts for oxygen plants and gas turbines in gasification/IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Klosek, J.; Woodward, D.W.

    1996-12-31

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. Other processes, such as coal-based ironmaking and combined power and industrial gas production facilities, can benefit from the integration of these two units. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NOx emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper will review basic integration principles and describe advanced concepts based on emerging high compression ratio gas turbines. Humid Air Turbine (HAT) cycles, and integration of compression heat and refrigeration sources from the ASU. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  8. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  9. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  10. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  11. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  12. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  13. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  14. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  15. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151991" ,"Release ...

  16. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  17. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  18. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  19. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  20. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  1. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  2. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  7. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301991" ,"Release...

  14. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  15. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","32016","01151989" ,"Release ...

  7. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  8. New York Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New York Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New York Dry Natural Gas Proved Reserves Dry ...

  9. New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves ...

  10. West Virginia Dry Natural Gas Reserves Estimated Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) West Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production West Virginia Dry Natural Gas Proved ...

  11. Virginia Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Virginia Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production Virginia Dry Natural Gas Proved Reserves Dry ...

  12. Federal Offshore--Texas Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Texas Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Federal Offshore Texas Natural Gas Gross ...

  13. Louisiana--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed ... Natural Gas Marketed Production Louisiana State Offshore Natural Gas Gross Withdrawals and ...

  14. Texas--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Texas--State Offshore Natural Gas Marketed ... Referring Pages: Natural Gas Marketed Production Texas State Offshore Natural Gas Gross ...

  15. North Dakota Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated ... Dry Natural Gas Reserves Estimated Production North Dakota Dry Natural Gas Proved Reserves ...

  16. STEO December 2012 - natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 natural gas production seen at record 69 billion cubic feet per day U.S. natural gas production is expected to increase 4.5 percent this year to a record 69 billion cubic feet per day, according to the new monthly energy forecast from the U.S. Energy Information Administration. A big portion of that natural gas is going to the U.S. electric power sector, which is generating more electricity from gas in place of coal. Consumption of natural gas for power generation this year is forecast to

  17. EERE Success Story-BASF Catalysts Opens Cathode Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy BASF Catalysts Opens Cathode Production Facility EERE Success Story-BASF Catalysts Opens Cathode Production Facility March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is running the largest cathode materials manufacturing facility in the country with support from EERE's Vehicle Technologies Office (VTO). The factory was supported by a $25 million American Recovery and Reinvestment Act project. Located in Elyria, Ohio, the facility at full

  18. Offshore LNG (liquefied natural gas) production and storage systems

    SciTech Connect (OSTI)

    Barden, J.K.

    1982-01-01

    A barge, outfitted with gas liquefaction processing equipment and liquefied natural gas (LNG) storage tanks, is suggested as a possible way to exploit remote offshore gas production. A similar study with a barge-mounted methanol plant was conducted several years ago, also using remote offshore feed gas. This barge-mounted, LNG system is bow-moored to a single point mooring through which feed gas is piped via seafloor pipeline from a nearby gas production facility. The barge is arranged with personnel accommodation forward, LNG storage midships, and gas liquefaction processing equipment aft. A flare boom is cantilevered off the barge's stern. The basis of design stipulates feed gas properties, area environmental data, gas liquefaction process, LNG storage tank type plus other parameters desirable in a floating process plant. The latter were concerned with safety, low maintenance characteristics, and the fact that the process barge also would serve as an offshore port where LNG export tankers would moor periodically. A brief summary of results for a barge-mounted methanol plant from an earlier study is followed then by a comparison of LNG and methanol alternatives.

  19. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fairless Hills, PA | Department of Energy 7: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA EA-1727: AE Polysilicon Corporation Polysilicon Production Facility in Fairless Hills, PA November 1, 2010 EA-1727: Final Environmental Assessment Loan Guarantee To AE Polysilicon Corporation for Construction And Startup Of Their Phase 2 Polysilicon Production Facility In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact

  20. KCP celebrates production milestone at new facility | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates production milestone at new facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2014-11-21

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility.

  2. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major ...

  3. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  4. EA-1727: AE Polysilicon Corporation Polysilicon Production Facility...

    Broader source: Energy.gov (indexed) [DOE]

    In Fairless Hills, Pennsylvania November 19, 2010 EA-1727: Finding of No Significant Impact Construction and Startup of their Phase 2 Polysilicon Production Facility in...

  5. Exemptions from OSHA`s PSM rule oil and gas field production

    SciTech Connect (OSTI)

    West, H.H. [Shawnee Engineers, Houston, TX (United States); Landes, S. [SH Landes, Houston, TX (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) regulation, OSHA 1910.119, contains a number of exemptions which are specifically directed to the low hazard situations typically found in the field production facilities of the oil and gas industry. Each relevant PSM exemption is discussed with particular regard to the requirements of hydrocarbon production facilities.

  6. New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent New Mexico Natural Gas Plant ...

  7. West Virginia Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent West Virginia Natural Gas Plant Processing NGPL ...

  8. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  9. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  10. Production and Injection data for NV Binary facilities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mines, Greg

    2013-12-24

    Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.

  11. How EIA Estimates Natural Gas Production

    Reports and Publications (EIA)

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  12. Microbial Community Dynamics Dominate Greenhouse Gas Production in Thawing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permafrost | U.S. DOE Office of Science (SC) Microbial Community Dynamics Dominate Greenhouse Gas Production in Thawing Permafrost Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  13. Natural gas production on the rise

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural gas production on the rise After a brief slowdown in early 2016, U.S. natural gas production is expected to increase during the second half of this year and continue rising through 2017. In its new monthly forecast, the U.S. Energy Information Administration said domestic natural gas output during the fourth quarter of this year is expected to top 80 billion cubic feet per day and then climb to a new record of 82 billion cubic feet per day by end of 2017. With record production and

  14. Cancer-fighting treatment gets boost from Isotope Production Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it

  15. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:24 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  16. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  17. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  18. ,"Alabama Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"06292016 10:51:21 AM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AL2","N9011AL2","N9012AL2","NGME...

  19. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  20. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  1. ,"New York Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12152015 12:13:03 PM" "Back to Contents","Data 1: New York Natural Gas Marketed Production (MMcf)" "Sourcekey","N9050NY2" "Date","New York...

  2. Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 Virginia Dry Natural Gas Proved Reserves ...

  3. West Virginia Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) West Virginia Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 West Virginia Dry Natural Gas Proved ...

  4. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore ... Dry Natural Gas Proved Reserves as of Dec. 31 LA, State Offshore Dry Natural Gas Proved ...

  5. North Dakota Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected ... Dry Natural Gas Proved Reserves as of Dec. 31 North Dakota Dry Natural Gas Proved Reserves ...

  6. Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 North Louisiana Dry Natural Gas Proved ...

  7. Challenges associated with shale gas production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges associated with shale gas production Challenges associated with shale gas production What challenges are associated with shale gas production? (1012.02 KB) More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Development Challenges: Air Shale Gas Development Challenges: Fracture Fluids

  8. Hydrogen Production and Dispensing Facility Opens at W. Va. Airport |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Production and Dispensing Facility Opens at W. Va. Airport Hydrogen Production and Dispensing Facility Opens at W. Va. Airport August 19, 2009 - 1:00pm Addthis Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Washington, D.C. -- A

  9. Alternative Fuels Data Center: Conventional Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center: Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Conventional Natural Gas Production on Digg Find More

  10. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  11. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  12. Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Miscellaneous States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  13. CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: ...

  14. ,"Texas--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Natural Gas Marketed Production ... "Back to Contents","Data 1: Texas--State Offshore Natural Gas Marketed Production (MMcf)" ...

  15. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alabama--State Offshore Natural Gas Marketed Production (MMcf)" ...

  16. ,"Alaska--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Alaska--State Offshore Natural Gas Marketed Production (MMcf)" ...

  17. ,"Louisiana--State Offshore Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production ... to Contents","Data 1: Louisiana--State Offshore Natural Gas Marketed Production (MMcf)" ...

  18. ,"Federal Offshore--Texas Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Natural Gas Marketed Production ...

  19. ,"Federal Offshore--Alabama Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production ... AM" "Back to Contents","Data 1: Federal Offshore--Alabama Natural Gas Marketed Production ...

  20. ,"Louisiana - North Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production ... "Back to Contents","Data 1: Louisiana - North Dry Natural Gas Expected Future Production ...

  1. Cost estimate for muddy water palladium production facility at Mound

    SciTech Connect (OSTI)

    McAdams, R.K.

    1988-11-30

    An economic feasibility study was performed on the ''Muddy Water'' low-chlorine content palladium powder production process developed by Mound. The total capital investment and total operating costs (dollars per gram) were determined for production batch sizes of 1--10 kg in 1-kg increments. The report includes a brief description of the Muddy Water process, the process flow diagram, and material balances for the various production batch sizes. Two types of facilities were evaluated--one for production of new, ''virgin'' palladium powder, and one for recycling existing material. The total capital investment for virgin facilities ranged from $600,000 --$1.3 million for production batch sizes of 1--10 kg, respectively. The range for recycle facilities was $1--$2.3 million. The total operating cost for 100% acceptable powder production in the virgin facilities ranged from $23 per gram for a 1-kg production batch size to $8 per gram for a 10-kg batch size. Similarly for recycle facilities, the total operating cost ranged from $34 per gram to $5 per gram. The total operating cost versus product acceptability (ranging from 50%--100% acceptability) was also evaluated for both virgin and recycle facilities. Because production sizes studied vary widely and because scale-up factors are unknown for batch sizes greater than 1 kg, all costs are ''order-of-magnitude'' estimates. All costs reported are in 1987 dollars.

  2. Covered Product Category: Residential Gas Furnaces

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential gas furnaces, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  3. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  4. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  5. BASF Catalysts Opens Cathode Production Facility | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Driving Battery Production in Ohio Statement by Energy Secretary Steven Chu...

  6. Efficient Technologies and Products for Federal Facilities |...

    Broader source: Energy.gov (indexed) [DOE]

    Find products and technologies covered by a specific efficiency program. ENERGY STAR EPEAT FEMP Designated FEMP Low Standby Power FEMP Promising Technologies WaterSense Advanced ...

  7. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1" "Date","U.S. Gas Plant Production of Natural Gas Liquids ...

  8. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  9. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA 1991-2016 Dry Production 2006-2014

  10. Production Facility Prototype Blower Installation Report

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-07-28

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating.  Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere.  With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig).  An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing.  This report describes this blower/motor/ppressure vessel package and the status of the facility preparations.

  11. Edison is back to production in the new facility building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back to production in the new facility building Edison is back to production in the new facility building January 4, 2016 Edison is back online after about 5 weeks of downtime to move to a new facility building, Wang Hall, at the main Berkeley campus. The following are the changes: Edison's batch system is now Slurm. All your old job scripts (for Torque/Moab) will not work anymore. Please visit our Running Jobs page to learn how to run job scripts under Slurm. If you need help with migrating

  12. Natural Gas Plant Field Production: Natural Gas Liquids

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 PADD 1

  13. New Methodology for Natural Gas Production Estimates

    Reports and Publications (EIA)

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  14. Covered Product Category: Commercial Gas Water Heaters

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  15. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  16. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  17. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1996-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production NA NA NA NA NA NA

  18. Oxygen permeation and coal-gas-assisted hydrogen production using...

    Office of Scientific and Technical Information (OSTI)

    Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes Citation Details In-Document Search Title: Oxygen permeation and coal-gas-assisted ...

  19. Oil & Natural Gas Projects Exploration and Production Technologies...

    Open Energy Info (EERE)

    & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration...

  20. Isotope production facility produces cancer-fighting actinium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer therapy gets a boost from new isotope Isotope production facility produces cancer-fighting actinium A new medical isotope project shows promise for rapidly producing major quantities of a new cancer-treatment agent, actinium 225 (Ac-225). April 11, 2012 Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments.

  1. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  2. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,848 1967-2015 Dry Production 78,122

  3. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  4. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  5. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  6. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  7. U.S. Plutonium "Pit" Production: Additional Facilities, Production

    National Nuclear Security Administration (NNSA)

    Plutonium "Pit" Production: Additional Facilities, Production Restart are Unnecessary, Costly, and Provocative Greg Mello, 1/18/10 draft A strategy that conserves production capability in existing and nearly-completed Los Alamos facilities for the foreseeable future with neither stockpile production nor expansion of capacity, neither of which are needed, is the one that best minimizes risks, maximizes opportunities, harmonizes goals, and avoids waste of all kinds. Planning for

  8. New York Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New York Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New York Dry Natural Gas Proved Reserves Dry ...

  9. New Mexico Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) New Mexico Dry Natural Gas Expected Future ... Dry Natural Gas Proved Reserves as of Dec. 31 New Mexico Dry Natural Gas Proved Reserves ...

  10. Texas State Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas State Offshore Dry ... Dry Natural Gas Proved Reserves as of Dec. 31 TX, State Offshore Dry Natural Gas Proved ...

  11. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  12. Nebraska Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  13. Lower 48 States Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Lower 48 States Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  14. Texas - RRC District 9 Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 9 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  15. Texas - RRC District 10 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 10 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  16. Texas - RRC District 8 Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8 Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  17. ,"Nevada Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Dry Natural Gas Production (Million Cubic ... 1:11:52 AM" "Back to Contents","Data 1: Nevada Dry Natural Gas Production (Million Cubic ...

  18. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million ... 10:12:48 AM" "Back to Contents","Data 1: New Mexico Dry Natural Gas Production (Million ...

  19. ,"New York Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Production (Million ... 10:12:49 AM" "Back to Contents","Data 1: New York Dry Natural Gas Production (Million ...

  20. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend ... Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast ...

  1. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  2. New Mexico - West Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - West Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  3. New Mexico - East Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) New Mexico - East Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  4. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million ... 9:54:27 AM" "Back to Contents","Data 1: North Dakota Dry Natural Gas Production (Million ...

  5. ,"Texas Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Dry Natural Gas Expected Future Production ... 7:18:08 AM" "Back to Contents","Data 1: Texas Dry Natural Gas Expected Future Production ...

  6. ,"U.S. Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production ... to Contents","Data 1: U.S. Natural Gas Plant Liquids, Expected Future Production ...

  7. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  8. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  9. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,499,599 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  10. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  11. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8,737 17,100 18,166 17,618 18,096 17,265 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 18,737 17,100 18,166 17,618 18,096 17,265

  12. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    707,527 664,972 702,555 680,919 696,269 671,978 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 635,571 597,344 631,105 611,669 625,459 603,638

  13. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,450 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  14. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  15. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  16. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  17. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,218 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,218

  18. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    34,199 31,283 33,192 31,720 31,806 29,945 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1994-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 34,199 31,283 33,192 31,720 31,806 29,945

  19. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    55,930 145,478 156,116 148,710 148,672 145,311 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 139,012 129,693 139,178 132,575 132,542 129,545 1989

  20. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,521 4,233 4,426 4,275 4,454 4,280 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 4,521 4,233 4,426 4,275 4,454 4,280

  1. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,680 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  2. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,423 116,401 120,760 118,944 121,569 115,202 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 112,423 116,401 120,760 118,944 121,569 115,202 1991

  3. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    214,000 201,258 214,561 203,524 211,217 201,673 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 214,000 201,258 214,561 203,524 211,217 201,673 1989

  4. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    447,447 430,800 452,601 429,503 441,514 434,346 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 447,447 430,800 452,601 429,503 441,514 434,346

  5. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,423 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  6. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  7. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  8. Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  9. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  10. ,"Kansas Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production ...

  11. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  12. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  13. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production ...

  14. ,"Utah Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production ...

  15. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  16. ,"Montana Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production ...

  17. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production ...

  18. ,"Michigan Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production ...

  19. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    SciTech Connect (OSTI)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  20. Natural Gas Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing: The Crucial Link Between Natural Gas Production and Its Transportation to Market Energy Information Administration, Office of Oil and Gas, January 2006 1 The natural gas product fed into the mainline gas transportation system in the United States must meet specific quality measures in order for the pipeline grid to operate properly. Consequently, natural gas produced at the wellhead, which in most cases contains contaminants 1 and natural gas liquids, 2 must be processed, i.e.,

  1. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2014-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

  2. Summary of Historical Production for Nevada Binary Facilities

    SciTech Connect (OSTI)

    Mines, Greg; Hanson, Hillary

    2001-09-01

    The analysis described was initiated to validate inputs used in the US Department of Energy’s (DOE) economic modeling tool GETEM (Geothermal Electricity Technology Evaluation Model) by using publically available data to identify production trends at operating geothermal binary facilities in the state of Nevada. Data required for this analysis was obtained from the Nevada Bureau of Mines and Geology (NBMG), whom received the original operator reports from the Nevada Division of Minerals (NDOM). The data from the NBMG was inputted into Excel files that have been uploaded to the DOE’s National Geothermal Data System (NGDS). Once data was available in an Excel format, production trends for individual wells and facilities could be established for the periods data was available (thru 2009). Additionally, this analysis identified relationships existing between production (temperature and flow rates), power production and plant conversion efficiencies. The data trends showed that temperature declines have a significant impact on power production, and that in some instances operators increased production flow rate to offset power declines. The production trends with time that were identified are being used to update GETEM’s default inputs.

  3. Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor

    SciTech Connect (OSTI)

    Spencer, J.W.

    1982-01-22

    The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

  4. ARM Climate Research Facility Quarterly Value-Added Product Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra

    2013-07-31

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  5. ,"Upcoming U.S. Natural Gas Storage Facilities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Upcoming U.S. Natural Gas Storage Facilities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","Units","Frequency" ,"Facilities","Upcoming natural gas storage projects ","Billion cubic feet (Bcf)","Quarterly" ,"Expansions","Upcoming expansions to existing natural gas storage projects","Billion cubic feet (Bcf)","Quarterly"

  6. City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility

    Broader source: Energy.gov [DOE]

    The western Colorado town of Grand Junction is fueling city vehicles with compressed natural gas (CNG) that was produced from biogas at their water treatment facility and is then shipped to a public fueling station nearby. Similar to other wastewater treatment and manufacturing facilities, Grand Junction’s Persigo Plant uses an anaerobic digester to break down organic matter in the sewage and produces bio-methane gas as a byproduct. The bio-methane gas is then cleaned and treated to meet transportation fuel quality standards.

  7. Production and Injection data for NV Binary facilities (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: Production and Injection data for NV Binary facilities Citation Details In-Document Search Title: Production and Injection data for NV Binary facilities Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web

  8. Analyses in support of risk-informed natural gas vehicle maintenance facility codes and standards :

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Blaylock, Myra L.; LaFleur, Angela Christine; LaChance, Jeffrey L.; Horne, Douglas B.

    2014-03-01

    Safety standards development for maintenance facilities of liquid and compressed gas fueled large-scale vehicles is required to ensure proper facility design and operation envelopes. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase I work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest. Finally, scenario analyses were performed using detailed simulations and modeling to estimate the overpressure hazards from HAZOP defined scenarios. The results from Phase I will be used to identify significant risk contributors at NGV maintenance facilities, and are expected to form the basis for follow-on quantitative risk analysis work to address specific code requirements and identify effective accident prevention and mitigation strategies.

  9. Fire protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This standard addresses the design, operation, and maintenance of LPG storage facilities from the standpoint of prevention and control of releases, fire-protection design, and fire-control measures, as well as the history of LPG storage facility failure, facility design philosophy, operating and maintenance procedures, and various fire-protection and firefighting approaches and presentations. The storage facilities covered are LPG installations (storage vessels and associated loading/unloading/transfer systems) at marine and pipeline terminals, natural gas processing plants, refineries, petrochemical plants, and tank farms.

  10. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  11. Gas-filled hohlraum experiments at the national ignition facility.

    SciTech Connect (OSTI)

    Fernndez, J. C.; Gautier, D. C.; Goldman, S. R.; Grimm, B. M.; Hegelich, B. M.; Kline, J. L.; Montgomery, D. S.; Lanier, N. E.; Rose, H. A.; Schmidt, D. M.; Swift, D. C.; Workman, J. B.; Alvarez, Sharon; Bower, Dan.; Braun, Dave.; Campbell, K.; DeWald, E.; Glenzer, S.; Holder, J.; Kamperschroer, J. H.; Kimbrough, Joe; Kirkwood, Robert; Landen, O. L.; Mccarville, Tom; Macgowan, B.; Mackinnon, A.; Niemann, C.; Schein, J.; Schneider, M; Watts, Phil; Young, Ben-li 194154; Young B.

    2004-01-01

    The summary of this paper is: (1) We have fielded on NIF a gas-filled hohlraum designed for future ignition experiments; (2) Wall-motion measurements are consistent with LASNEX simulations; (3) LPI back-scattering results have confounded expectations - (a) Stimulated Brillouin (SBS) dominates Raman (SRS) for any gas-fill species, (b) Measured SBS time-averaged reflectivity values are high, peak values are even higher, (c) SRS and SBS peak while laser-pulse is rising; and (4) Plasma conditions at the onset of high back-scattering yield high SBS convective linear gain - Wavelengths of the back-scattered light is predicted by linear theory.

  12. ,"Montana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  13. ,"Miscellaneous States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  14. ,"Colorado Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. ,"Pennsylvania Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"Michigan Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  17. ,"Florida Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  18. ,"Lower 48 States Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  19. ,"Wyoming Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  20. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  1. ,"Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  2. ,"Kentucky Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  3. ,"Mississippi Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  4. American Gas Association (AGA) for DOE Furnace Product Class | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (AGA) for DOE Furnace Product Class American Gas Association (AGA) for DOE Furnace Product Class Thank you for the opportunity to brief your staff in recent weeks on an impact analysis of a national condensing furnace standard, which was conducted jointly by the American Gas Association (AGA), the American Public Gas Association (APGA), and the Gas Technology Institute (GTI). AGA e-mail for DOE Furnace Product Class (83.56 KB) AGA Cover Letter for Furnace Product Class White Paper

  5. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details ... OSTI Identifier: 879832 Report Number(s): US 6755021 US patent application 10246064 DOE ...

  6. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  7. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  9. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"West Virginia Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  11. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  12. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  13. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  14. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  15. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  16. Air quality/energy management review of production facilities

    SciTech Connect (OSTI)

    Rosenthal, J.W.

    1995-06-01

    This is the only presentation that integrates energy management and air quality. You will learn how to reduce energy operating costs while minimizing air pollution. This presentation is condensed from a full day course focusing on hands-on techniques for conducting an air quality/energy management review of your operation or plant. The stringent (Non-attainment for PM{sub 10}, Ozone and CO) South Coast Air Quality Management District (SCAQMD) of Southern California rules and regulations are applied to the die casting (metals) industry as well as other production processes. Examples and a case study of real energy intensive production facilities will be used. Developing options for air quality improvement with energy cost control are the key goals of the presentation. Also, the review techniques can be used to determine the {open_quotes}maximum potential to emit{close_quotes} as required for the new Federal EPA, Title V requirements. The outline of the one day course is provided to give the overall scope covered during performing an Air Quality/Energy Management Review of a Production Facility.

  17. Evaluation of medical isotope production with the accelerator production of tritium (APT) facility

    SciTech Connect (OSTI)

    Benjamin, R.W.; Frey, G.D.; McLean, D.C., Jr; Spicer, K.M.; Davis, S.E.; Baron, S.; Frysinger, J.R.; Blanpied, G.; Adcock, D.

    1997-07-10

    The accelerator production of tritium (APT) facility, with its high beam current and high beam energy, would be an ideal supplier of radioisotopes for medical research, imaging, and therapy. By-product radioisotopes will be produced in the APT window and target cooling systems and in the tungsten target through spallation, neutron, and proton interactions. High intensity proton fluxes are potentially available at three different energies for the production of proton- rich radioisotopes. Isotope production targets can be inserted into the blanket for production of neutron-rich isotopes. Currently, the major production sources of radioisotopes are either aging or abroad, or both. The use of radionuclides in nuclear medicine is growing and changing, both in terms of the number of nuclear medicine procedures being performed and in the rapidly expanding range of procedures and radioisotopes used. A large and varied demand is forecast, and the APT would be an ideal facility to satisfy that demand.

  18. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  19. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Decrease 48% Decrease 90% Carbon Capture at the Power Plant Results in 80% Reduction in LC GHG Emissions for Coal-fired Power Plants and 70% Reduction for Natural Gas- fired ...

  20. Oak Ridge Isotope Production Cyclotron Facility and Target Handling

    SciTech Connect (OSTI)

    Bradley, Eric Craig; Varma, Venugopal Koikal; Egle, Brian; Binder, Jeffrey L; Mirzadeh, Saed; Tatum, B Alan; Burgess, Thomas W; Devore, Joe; Rennich, Mark; Saltmarsh, Michael John; Caldwell, Benjamin Cale

    2011-01-01

    Abstract The Nuclear Science Advisory Committee issued in August 2009 an Isotopes Subcommittee report that recommended the construction and operation of a variable-energy, high-current, multiparticle accelerator for producing medical radioisotopes. To meet the needs identified in the report, Oak Ridge National Laboratory is developing a technical concept for a commercial 70 MeV dual-port-extraction, multiparticle cyclotron to be located at the Holifield Radioactive Ion Beam Facility. The conceptual design of the isotope production facility as envisioned would provide two types of targets for use with this new cyclotron. One is a high-power target cooled by water circulating on both sides, and the other is a commercial target cooled only on one side. The isotope facility concept includes an isotope target vault for target irradiation and a shielded transfer station for radioactive target handling. The targets are irradiated in the isotope target vault. The irradiated targets are removed from the target vault and packaged in an adjoining shielded transfer station before being sent out for postprocessing. This paper describes the conceptual design of the target-handling capabilities required for dealing with these radioactive targets and for minimizing the contamination potential during operations.

  1. Production of biodiesel using expanded gas solvents

    SciTech Connect (OSTI)

    Ginosar, Daniel M; Fox, Robert V; Petkovic, Lucia M

    2009-04-07

    A method of producing an alkyl ester. The method comprises providing an alcohol and a triglyceride or fatty acid. An expanding gas is dissolved into the alcohol to form a gas expanded solvent. The alcohol is reacted with the triglyceride or fatty acid in a single phase to produce the alkyl ester. The expanding gas may be a nonpolar expanding gas, such as carbon dioxide, methane, ethane, propane, butane, pentane, ethylene, propylene, butylene, pentene, isomers thereof, and mixtures thereof, which is dissolved into the alcohol. The gas expanded solvent may be maintained at a temperature below, at, or above a critical temperature of the expanding gas and at a pressure below, at, or above a critical pressure of the expanding gas.

  2. GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.

  3. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    SciTech Connect (OSTI)

    Bishofberger, Kip A.

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  4. Michigan Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Michigan Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. Kentucky Dry Natural Gas Expected Future Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  7. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. Utah Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Utah Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. Florida Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Florida Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  10. Montana Dry Natural Gas Expected Future Production (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. Alaska Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alaska Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. Arkansas Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Arkansas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Wyoming Dry Natural Gas Expected Future Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Wyoming Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. Colorado Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Colorado Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  15. Alabama Dry Natural Gas Expected Future Production (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  16. West Virginia Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. New Mexico Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  19. New Mexico Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  20. Federal Offshore--Alabama Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. Federal Offshore--Louisiana Natural Gas Marketed Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  2. Alabama--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Alaska--State Offshore Natural Gas Marketed Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Nevada Dry Natural Gas Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Dry Production Nevada Natural Gas Gross

  5. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals

  6. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 6,878,956 7,135,326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Texas Onshore Natural Gas Gross Withdrawals and

  7. Gas-metering test and research facility to meet North Sea needs

    SciTech Connect (OSTI)

    Bosio, J.; Wilcox, P.; Sembsmoen, O. )

    1988-12-12

    A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipeline network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.

  8. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  9. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  10. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    23,819 23,559 22,451 22,896 22,535 20,900 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA ...

  11. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 ...

  12. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA ...

  13. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA ...

  14. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed ...

  15. STEO September 2012 - natural gas production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Katherine Teller explains: "This strong growth in production was driven in large part by production in Pennsylvania's Marcellus shale formation where drilling companies ...

  16. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  17. SEP Success Story: City in Colorado Fueling Vehicles with Gas Produced from Wastewater Treatment Facility

    Broader source: Energy.gov [DOE]

    The City of Grand Junction built a 5-mile underground pipeline to transport compressed natural gas (CNG) from a local wastewater treatment facility to a CNG station using a grant from the Colorado Department of Local Affairs and seed funding from the Energy Department's State Energy Program.

  18. A review of the Arun field gas production/cycling and LNG export project. [Sumatra, Indonesia

    SciTech Connect (OSTI)

    Alford, M.E.

    1983-03-01

    The Arun field was discovered by Mobil Oil Indonesia Inc. in late 1971 in its Bee block in the Aceh province on the north coast of Sumatra, Indonesia. Mobil's operations in this area are conducted under the terms of a production sharing agreement with Pertamina, the Indonesian state-owned oil and gas enterprise. The scope of operations covered by this paper is from production of gas and raw condensate in the field through stabilization and export of condensate and purification, liquefaction, and export of gas at the LNG plant at Blang Lancang, near Lho Seumawe (Sumatra) Indonesia. Mobil Oil Indonesia, Inc. is the field operator and P.T. Arun NGL Company operates the pipelines and LNG plant facilities. All the facilities which will be described are owned by Pertamina; P.T. Arun is owned by Pertamina, Mobil Oil Indonesia, and Japan Indonesia LNG company (JILCO). JILCO represents the five (5) original Japanese LNG purchasers. Brief descriptions are included of the geology, reservoir geometry, well producing characteristics, field producing and cycling facilities, and the treating, liquefaction and export facilities.

  19. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  20. Calif--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Calif--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 201,754 205,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Dry Production California Onsho

  1. World-Class Test Facility Increases Efficiency of Solar Products

    Broader source: Energy.gov [DOE]

    This photograph features PV arrays at the SunEdison Facility at the Solar Technology Acceleration Center (SolarTAC) in Aurora, Colorado. SolarTAC is an integrated, world-class test facility where...

  2. Process for production desulfurized of synthesis gas

    DOE Patents [OSTI]

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  3. EIA-914 Monthly Gas Production Report Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... T T T m A test close to the actual task of estimating monthly 2005 production calibrated ... For a test month, the prior 6 months of production data were linearly fit and the linear ...

  4. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  5. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA ...

  6. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA ...

  7. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  8. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Federal Offshore Texas Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014 Marketed Production 1992-1998

  10. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998...

  11. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  12. ,"Arizona Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:54 AM" "Back to Contents","Data 1: Arizona Dry Natural Gas Production (Million Cubic Feet)" "Sourcekey","NA1160SAZ2"...

  13. Table 9. Natural Gas Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Production, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2...

  14. Federal Offshore Alabama Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA 0 0 0 1987-2014 From Gas Wells NA NA NA 0 0 0 1987-2014 From Oil Wells NA NA NA 0 0 0 1987-2014 Marketed Production 1992-1998

  15. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  16. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  17. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  18. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  20. Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ADM Leads to Petroleum-Free Glycol Production Facility Lab Breakthrough: ADM Leads to Petroleum-Free Glycol Production Facility May 22, 2012 - 9:38am Addthis Pacific Northwest National Laboratory discovered a viable way to deliver propylene glycol from feedstock, including glycerin byproducts. ADM licensed that technology and in 2010 completed construction and commissioning of its full-scale production facility for the sole purpose of commercializing the PGRS process.

  1. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  2. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  3. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,941,727 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  4. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,787 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046 255,911 2007-2014 From Coalbed Wells 529,891 514,531 376,543 449,281 419,132 2002-2014 Repressuring 10,043 10,439 0 NA NA 1967-2014 Vented and Flared 1,242 1,291 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1980-2014 Marketed

  5. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    7,593,697 7,934,689 8,143,510 8,299,472 8,663,333 8,763,381 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,734,153 1967-2014 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,520,200 1967-2014 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,408,980 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 558,854 502,020 437,367 423,413 452,150 1967-2014 Vented and Flared 39,569 35,248 47,530 76,113 81,755 1967-2014 Nonhydrocarbon Gases Removed 279,981

  6. Fast flux test facility radioisotope production and medical applications

    SciTech Connect (OSTI)

    Schenter, R.E.; Smith, S.G.; Tenforde, T.S.

    1997-12-01

    The Fast Flux Test Facility (FFTF) is a 400-MW, sodium-cooled reactor that operated successfully from 1982 to 1992, conducting work in support of the liquid-metal reactor industry by developing and testing fuel assemblies, control rods, and other core reactor components. Upon termination of this program, the primary mission of FFTF ended, and it was placed in a standby mode in 1993. However, in January 1997 the U.S. Secretary of Energy requested that FFTF be evaluated for a future mission that would consist of a primary goal of producing tritium for nuclear defense applications and a secondary goal of supplying medical isotopes for research and clinical applications. Production by FFTF of tritium for U.S. nuclear weapons would augment the dual-track strategy now under consideration for providing a long-term tritium supply in the United States (consisting of a light water reactor option and an accelerator option). A decision by the Secretary of Energy on proceeding with steps leading toward the possible reactivation of FFTF will be made before the end of 1998.

  7. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    SciTech Connect (OSTI)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  8. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  9. ARM Climate Research Facility Quarterly Value-Added Product Report...

    Office of Scientific and Technical Information (OSTI)

    (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. ... approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive. ...

  10. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L.; and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  11. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  12. US production of natural gas from tight reservoirs

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  13. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,908,739 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667 508,739 429,731 328,780 261,863 2002-2014 Repressuring 2,810 5,747 6,630 2,124 5,210 1967-2014 Vented and Flared 42,101 57,711 45,429 34,622 29,641 1967-2014 Nonhydrocarbon Gases Removed 164,221 152,421

  14. Production of Substitute Natural Gas from Coal

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  15. Covered Product Category: Residential Gas Storage Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  16. Covered Product Category: Residential Gas Storage Water Heaters

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  17. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  18. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  19. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 506 516 501 488 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee Natural Gas Plant Processing NGPL

  20. Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Representative of the Year | Department of Energy Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year May 24, 2016 - 10:30am Addthis Jeff Edlund of the NNSA Production Office Y12 Site Named 2015 Facility Representative of the Year About 200 Department of Energy (DOE) federal employees are Facility Representatives (FR) who provide day-to-day oversight

  1. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  2. Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Key Manufacturing Material | Department of Energy North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material Expanded North Carolina Lithium Facility Opens, Boosting U.S. Production of a Key Manufacturing Material June 29, 2012 - 12:28pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Steven Chu recognized the opening of Rockwood Lithium's expanded manufacturing facility in Kings Mountain, North Carolina. Rockwood is

  3. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel

  4. From the Lab to Your Gas Tank: 4 Bioenergy Testing Facilities That Are Making a Difference

    Broader source: Energy.gov [DOE]

    The Energy Department is working to cut the cost of biofuel production by supporting advanced development and demonstration facilities throughout the country that enable researchers to fully examine their efforts on a large scale without having to maintain an expensive pilot plant.

  5. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  6. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  7. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  8. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products

    DOE Patents [OSTI]

    Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel

    2000-01-01

    Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

  9. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  10. California State Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 114 213 231 1980's 164 254 252 241 231 1990's 192 59 63 64 61 59 49 56 44 76 2000's 91 85 92 83 86 90 90 82 57 57 2010's 66 82 66 75 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Texas Offshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    7 (Million Cubic Feet)

    Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

  12. Texas Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

    7,615,836 7,565,123

  13. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  14. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  15. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  16. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect (OSTI)

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  17. Nevada Production and Injection Well Data for Facilities with Flash Steam

    Office of Scientific and Technical Information (OSTI)

    Plants (Dataset) | SciTech Connect Dataset: Nevada Production and Injection Well Data for Facilities with Flash Steam Plants Citation Details In-Document Search Title: Nevada Production and Injection Well Data for Facilities with Flash Steam Plants Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 2009 Authors: Mines, Greg Publication Date: 2014-03-26 OSTI Identifier:

  18. BUILDING MATERIALS MADE FROM FLUE GAS DESULFURIZATION BY-PRODUCTS

    SciTech Connect (OSTI)

    Michael W. Grutzeck; Maria DiCola; Paul Brenner

    2006-03-30

    Flue gas desulphurization (FGD) materials are produced in abundant quantities by coal burning utilities. Due to environmental restrains, flue gases must be ''cleaned'' prior to release to the atmosphere. They are two general methods to ''scrub'' flue gas: wet and dry. The choice of scrubbing material is often defined by the type of coal being burned, i.e. its composition. Scrubbing is traditionally carried out using a slurry of calcium containing material (slaked lime or calcium carbonate) that is made to contact exiting flue gas as either a spay injected into the gas or in a bubble tower. The calcium combined with the SO{sub 2} in the gas to form insoluble precipitates. Some plants have been using dry injection of these same materials or their own Class C fly ash to scrub. In either case the end product contains primarily hannebachite (CaSO{sub 3} {center_dot} 1/2H{sub 2}O) with smaller amounts of gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). These materials have little commercial use. Experiments were carried out that were meant to explore the feasibility of using blends of hannebachite and fly ash mixed with concentrated sodium hydroxide to make masonry products. The results suggest that some of these mixtures could be used in place of conventional Portland cement based products such as retaining wall bricks and pavers.

  19. Use of the fast flux test facility for tritium production

    SciTech Connect (OSTI)

    Drell, S.; Hammer, D.; Cornwall, J.M.; Dyson, F.; Garwin, R.

    1996-10-25

    This report provides the results of a JASON review of the technical feasibility of using the Department of Energy`s (DOE`s) Fast Flux Test Facility (FFTF) to generate tritium needed for the enduring United States nuclear weapons stockpile.

  20. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  1. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  2. Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Kansas (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Kansas

  3. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  4. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  5. Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Texas

  6. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  7. DOE-Sponsored Project to Study Shale Gas Production

    Broader source: Energy.gov [DOE]

    A consortium led by the Energy Department's National Energy Technology Laboratory (NETL) will implement a process to monitor unconventional gas production at a test site near Morgantown, WV. The goal is to develop ways to increase efficiency and reduce environmental impacts.

  8. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  9. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 74 19 12 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  10. Illinois Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Liquids Production Extracted in Illinois (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  11. Florida Natural Gas Plant Liquids Production Extracted in Florida (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquids Production Extracted in Florida (Million Cubic Feet) Florida Natural Gas Plant Liquids Production Extracted in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Florida-Florida

  12. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous

  13. Evaluation of a Low-Cost Salmon Production Facility; 1988 Annual Report.

    SciTech Connect (OSTI)

    Hill, James M.; Olson, Todd

    1989-05-01

    This fiscal year 1988 study sponsored by the Bonneville Power Administration evaluates an existing, small-scale salmon production facility operated and maintained by the Clatsop County Economic Development Committee's Fisheries Project.

  14. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    SciTech Connect (OSTI)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  15. Thermodynamic behavior of gas in storage cavities and production wells

    SciTech Connect (OSTI)

    Hugout, B.

    1982-01-01

    A computer model predicts the performance of gas storage in salt cavities in terms of the volume of cavity that is available for the gas and the pressure and temperature within the cavity and at all points of the production well. The model combines a simplified estimate of volume (derived from studies of rock mechanics) with two thermodynamic models - one for the cavity, the other for the well. Designed specifically for single-phase flow, the model produces values that agree well with measured data.

  16. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Petrochemical Plant | Department of Energy describes how Dow Chemical Company saved 272,000 MMBtu and $1.9 million annually after increasing the steam system energy efficiency of a plant in Louisiana. Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant (November 2007) (549.15 KB) More Documents & Publications Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Chrysler: Save Energy Now

  17. Performance Characterization of the Production Facility Prototype Helium Flow System

    SciTech Connect (OSTI)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen; Romero, Frank Patrick

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  18. EERE Success Story-BASF Catalysts Opens Cathode Production Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 5, 2015 - 6:27pm Addthis BASF Catalysts, a battery component manufacturer, is ... forward; in 2012, they lowered the production costs of battery cathodes by more than 15%. ...

  19. Search for Efficient Technologies and Products for Federal Facilities

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program provides information and resources about energy- and water-efficient technologies and products that are well suited for federal applications and can help agencies meet federal laws and requirements.

  20. Wheeling for cogeneration and small power-production facilities

    SciTech Connect (OSTI)

    Tiano, J.R.; Zimmer, M.J.

    1982-01-01

    New problems have arisen over the ability to wheel power from decentralized cogeneration and small generation sources between electric utilities or between industrial facilities within a common geographical area. This article explores the historical and current positions of the Federal Power Commission, now the Federal Energy Regulatory Commission (FERC) as it has interpreted its authority under Part II of the Federal Power Act to order the wheeling of electric power. The authors also outline and discuss related antitrust issues which often arise within the context of wheeling and the possibilities of recognizing potential antitrust violations as a factor in promoting wheeling arrangements. Concluding that Congress will not address the issue, they recommend the negotiation of wheeling rates by project sponsors to introduce flexibility and avoid more regulation and costly antitrust litigation. 21 references.

  1. U.S. Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2,819,121 2,668,329 2,823,451 2,682,073 2,768,037 2,633,983 1973-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1973-2016 Vented and Flared NA NA NA NA NA NA 1973-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1973-2016 Marketed Production 2,444,353 2,322,999 2,451,302 2,359,586 2,420,982 2,323,578 1973-2016 Dry Production

  2. New York Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,849 35,813 31,124 26,424 23,458 20,201 1967-2014 From Gas Wells 44,273 35,163 30,495 25,985 23,111 19,808 1967-2014 From Oil Wells 576 650 629 439 348 393 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 44,849 35,813 31,124 26,424 23,458 20,201 1967-2014 Dry Production 44,849 35,813 31,124 26,424 23,458

  3. California Federal Offshore Dry Natural Gas Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) California Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 250 246 322 1980's 414 1,325 1,452 1,552 1,496 1990's 1,454 1,162 1,118 1,099 1,170 1,265 1,244 544 480 536 2000's 576 540 515 511 459 824 811 805 704 739 2010's 724 710 651 261 240 - = No Data Reported; -- = Not Applicable; NA = Not

  4. South Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    12,927 12,540 12,449 15,085 16,205 15,307 1967-2014 From Gas Wells 1,561 1,300 933 14,396 15,693 15,005 1967-2014 From Oil Wells 11,366 11,240 11,516 689 512 303 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 2,160 2,136 2,120 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 8,638 8,543 8,480 0 NA NA 1997-2014 Marketed Production 2,129 1,862 1,848 15,085 16,205 15,307 1970-2014 Dry Production 2,129

  5. Texas State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 36,820 27,421 23,791 15,953 13,650 10,924 1978-2014 From Oil Wells 991 1,153 0 552 386 299 1978-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2003-2014 Marketed Production 37,811 28,574 23,791 16,506 14,036 11,222 1992-2014 Dry Production 16,506 11,222 2012

  6. Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003

    U.S. Energy Information Administration (EIA) Indexed Site

    Productive Capacity for the Lower-48 States 1985 - 2003 EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Productive Capacity for the Lower-48 States 1985 - 2003 Printer-Friendly Version gascapdata.xls ratiodata.xls wellcountdata.xls Executive Summary This analysis examines the availability of effective productive capacity to meet the projected wellhead demand for natural gas through 2003. Effective productive capacity is defined as the maximum production available

  7. Oil and gas production equals jobs and revenue

    SciTech Connect (OSTI)

    Aimes, L.A.

    1994-12-31

    The effects of oil and gas production on jobs and revenue are discussed. Some suggestions are presented that should provide the climate to increase jobs, add revenue and increase efficiency in state agencies within the producing states. Some of the ideas and suggestions are summarized. Some of these ideas include: how to extend the economic limits of marginal properties; how the states can encourage additional drilling without incurring loss of revenue; and the use of investment tax credits.

  8. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,170 794 598 1970's 555 599 539 474 460 313 259 226 168 139 1980's 126 153 133 137 132 115 77 81 59 29 1990's 0 13 3 8 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Ohio Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 20 23 29 41 67 68 50 44 46 1990's 58 49 72 95 104 94 85 83 78 78 2000's 78 86 72 68 58 29 5 9 0 0 2010's 0 0 155 2,116 33,332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  10. Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Pennsylvania Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 52 69 117 1980's 68 94 102 121 134 123 116 128 162 136 1990's 160 140 139 138 141 113 132 129 131 130 2000's 117 114 133 165 155 181 176 183 211 273 2010's 591 1,248 2,241 3,283 4,197 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Extracted in Ohio (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania-Ohio

  12. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  14. Colorado Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 170 1980's 183 195 174 173 142 155 127 142 162 191 1990's 152 181 193 190 210 243 254 244 235 277 2000's 288 298 329 325 362 386 382 452 612 722 2010's 879 925 705 762 813 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  15. Florida Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  16. Kansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 387 407 300 441 422 370 437 459 342 327 1990's 311 426 442 378 396 367 336 263 331 355 2000's 303 300 261 245 267 218 204 194 175 162 2010's 195 192 174 138 186 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  19. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  1. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  2. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  3. Pennsylvania Natural Gas Plant Liquids Production Extracted in West

    Gasoline and Diesel Fuel Update (EIA)

    Virginia (Million Cubic Feet) West Virginia (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 14,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  4. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  5. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  6. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  7. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 11 10 9 8 9 8 8 9 10 1990's 10 12 13 14 15 18 17 21 18 19 2000's 21 22 23 24 26 26 26 27 38 48 2010's 58 63 57 52 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  8. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 26 24 14 17 20 20 19 19 18 18 1990's 17 26 27 27 29 29 31 24 28 30 2000's 28 26 25 22 22 19 18 18 18 16 2010's 16 16 15 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 579 1980's 572 580 564 568 597 580 566 569 572 549 1990's 556 577 599 608 608 616 655 655 631 649 2000's 688 655 657 593 627 597 615 637 654 701 2010's 734 773 854 920 1,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 12 12 11 10 10 8 9 8 8 8 1990's 6 6 6 5 5 5 5 4 4 4 2000's 4 4 3 3 3 3 2 3 3 2 2010's 3 2 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  13. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  16. West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 6 6 5 5 6 7 6 6 7 7 1990's 7 7 7 7 6 4 4 4 4 4 2000's 6 6 6 4 4 4 5 5 5 5 2010's 5 5 8 10 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  17. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet)

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL

  18. California Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    47,281 46,755 41,742 32,313 32,924 34,206 1977 California (Million Cubic Feet)

    Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next

  19. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of

  20. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  1. Louisiana Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    7 Louisiana (Million Cubic Feet)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  2. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  3. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  4. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Michigan Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 102 93 91 99 77 62 77 90 82 79 1990's 66 54 52 44 43 38 48 45 43 42 2000's 32 41 42 44 44 36 36 50 58 43 2010's 48 38 26 27 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  6. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  7. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alaska Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 206 216 228 1980's 213 235 261 273 324 312 324 349 400 401 1990's 339 353 414 393 423 396 446 475 513 459 2000's 506 461 460 478 478 469 408 388 354 358 2010's 317 327 299 285 304 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  9. Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Arkansas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 109 120 100 1980's 117 121 158 206 188 175 123 129 159 166 1990's 164 173 204 188 186 182 200 189 170 163 2000's 154 160 157 166 170 174 188 269 456 698 2010's 951 1,079 1,151 1,140 1,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. California Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) California Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 301 313 347 1980's 294 372 345 335 306 1990's 293 308 285 252 244 216 217 212 246 266 2000's 282 336 291 265 247 268 255 253 237 239 2010's 243 311 200 188 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Utah Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 58 54 1980's 61 79 87 68 76 73 60 60 40 64 1990's 71 81 111 165 184 165 180 177 216 220 2000's 226 288 286 278 282 308 349 365 417 447 2010's 432 449 478 456 433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G.; Sandstrom, William A.; Tarman, Paul B.

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  14. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  15. U.S. Federal Offshore Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) U.S. Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  16. Texas - RRC District 8A Dry Natural Gas Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Texas - RRC District 8A Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  17. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration ...

  18. Sandia Develops Stochastic Production Cost Model Simulator for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Geothermal Natural Gas Safety, Security & ... Hydrogen Production Market Transformation Fuel Cells ... DETL, Distribution Grid Integration, Energy, Facilities, ...

  19. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  20. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    113,867 157,025 258,568 345,787 462,929 581,761 1967-2015 From Gas Wells 10,501 14,287 22,261 24,313 22,354 1967-2014 From Oil Wells 38,306 27,739 17,434 12,854 9,098 1967-2014 From Shale Gas Wells 65,060 114,998 218,873 308,620 431,477 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 1981-2014 Vented and Flared 24,582 49,652 79,564 102,855 129,384 1967-2014 Nonhydrocarbon Gases Removed 7,448 10,271 6,762 7,221 7,008 1984-2014 Marketed Production 81,837 97,102 172,242

  1. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  2. Alabama Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  3. California Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  4. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  5. West Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    14,272 108,093 112,282 110,827 114,410 103,175 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2006-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2016 Marketed Production 114,272 108,093 112,282 110,827 114,410 103,175 1991

  6. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  7. California Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  8. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  9. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  10. California Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  11. North Dakota Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    50,146 47,912 51,852 47,507 49,979 48,555 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1996-2016 Vented and Flared NA NA NA NA NA NA 1996-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 39,686 37,918 41,036 37,597 39,553 38,42

  12. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  13. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  14. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,952 55,724 57,270 1970's 58,926 55,914 56,376 61,647 62,860 60,008 52,087 55,238 61,868 71,559 1980's 74,434 80,401 85,934 90,772 98,307 99,933 100,305 99,170 103,302 94,889 1990's 96,698 101,851 104,609 101,962 101,564 94,930 100,379 96,830 92,785 93,308 2000's 96,787 88,885 81,287 74,745 84,355 87,404

  15. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 316,456 308,512 335,608 357,629 355,905 346,325 335,426 338,806 2000's 324,577 339,311 358,936 423,366 365,100 376,892 380,221 368,344 337,359 349,457 2010's 316,546 294,728 315,682 280,101 305,061 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Calif--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Calif--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 306,829 260,560 251,390 232,005 231,640 236,725 264,610 330,370 2000's 323,864 328,778 309,399 290,212 273,232 274,817 278,933 264,838 259,988 239,037 2010's 251,559 218,638 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. California Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) California Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,487 4,701 4,700 1980's 5,000 3,928 3,740 3,519 3,374 1990's 3,185 3,004 2,778 2,682 2,402 2,243 2,082 2,273 2,244 2,387 2000's 2,849 2,681 2,591 2,450 2,634 3,228 2,794 2,740 2,406 2,773 2010's 2,647 2,934 1,999 1,887 2,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. California--State Offshore Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) California--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,211 6,467 7,204 5,664 5,975 6,947 6,763 6,500 2000's 6,885 6,823 6,909 6,087 6,803 6,617 6,652 7,200 6,975 5,832 2010's 5,120 4,760 5,051 5,470 5,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. Federal Offshore California Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Federal Offshore California Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 51,592 48,825 50,833 41,886 48,879 42,018 43,904 45,844 2000's 45,831 42,223 43,896 40,917 39,884 36,204 29,624 35,121 29,506 31,706 2010's 30,162 26,779 27,262 27,454 28,245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Texas Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,591 43,264 40,574 38,711 38,167 38,381 1990's 38,192 36,174 35,093 34,718 35,974 36,542 38,270 37,761 37,584 40,157 2000's 42,082 43,527 44,297 45,730 49,955 56,507 61,836 72,091 77,546 80,424 2010's 88,997 98,165 86,924 90,349 97,154 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Texas--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Texas--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,734,715 4,894,291 4,961,117 4,983,373 5,068,868 5,102,806 5,167,180 5,005,568 2000's 5,240,909 5,229,075 5,084,012 5,189,998 5,022,369 5,239,469 5,523,237 6,093,951 6,913,906 6,781,162 2010's 6,686,719 7,089,072 7,458,989 7,619,582 7,942,121 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  3. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908

  5. Louisiana State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 72,278 63,222 64,448 67,801 70,015 54,501 1978-2014 From Oil Wells 4,108 6,614 6,778 5,443 7,735 7,161 1978-2014 Repressuring 285 116 120 NA NA NA 1992-2014 Vented and Flared 215 146 149 NA NA NA 1999-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production 75,885 69,574 70,957 73,244 77,750 61,662 1992-2014 Dry Production 68,145 58,077 2012

  6. Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 486 466 495 - = No Data Reported; -- =

  7. Montana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Montana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 744 744 705 1970's 3,032 750 839 918 857 831 761 630 503 776 1980's 890 818 940 1,049 1,069 1,189 1,086 1,058 1,072 1,095 1990's 1,091 1,055 907 741 631 597 576 409 410 435 2000's 272 470 575 615 634 1,149 1,422 1,576 1,622 1,853 2010's 1,367 1,252 1,491 1,645 1,670 - = No Data Reported; -- = Not Applicable;

  8. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Florida Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 5 4 3 2 2 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 1 1 1 1 0 0 0 0 0 2000's 0 0 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 315 329 355 1980's 416 423 391 414 484 433 402 456 510 591 1990's 583 639 714 713 780 806 782 891 838 1,213 2000's 1,070 1,286 1,388 1,456 1,524 1,642 1,695 1,825 2,026 2,233 2010's 2,218 2,088 2,001 1,992 1,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Virginia Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Virginia Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 2,579 2,373 2,800 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. Illinois Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,725 13,657 13,425 1970's 14,165 13,520 13,346 13,534 13,821 12,785 12,477 13,310 13,173 13,484 1980's 13,340 13,264 11,741 12,843 11,687 11,436 9,259 6,662 61 81 1990's 81 100 100 86 80 77 64 200 70 55 2000's 42 35 47 48 49 46 47 48 42 31 2010's 345 1,043 0 0 47 - = No Data Reported; -- = Not

  15. Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,511,271 1,517,415 1,531,493 1,589,019 1,437,037 1,325,445 1,360,141 1,403,510 2000's 1,314,375 1,350,494 1,226,613 1,219,627 1,226,268 1,189,611 1,264,850 1,293,590 1,292,366 1,472,722 2010's 2,140,525 2,958,249 2,882,193 2,282,452 1,918,626 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Lower 48 States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,191 1980's 5,187 5,478 5,611 6,280 6,121 6,109 6,348 6,327 6,448 6,000 1990's 5,944 5,860 5,878 5,709 5,722 5,896 6,179 6,001 5,868 6,112 2000's 6,596 6,190 6,243 5,857 6,338 6,551 6,795 7,323 7,530 8,258 2010's 9,521 10,537 10,489 11,655

  17. Alaska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 188 1970's 264 99 749 986 1,097 1,244 1,229 1,321 954 701 1980's 483 529 468 440 2,849 6,703 4,206 19,590 23,240 19,932 1990's 21,476 28,440 32,004 32,257 30,945 35,052 38,453 41,535 40,120 38,412 2000's 39,324 36,149 34,706 33,316 33,044 27,956 24,638 26,332 24,337 22,925 2010's 20,835 21,554 21,470 20,679

  18. Alaska State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 From Oil Wells 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Repressuring 308,661 310,329 301,516 269,203 272,772 324,092 1992-2014 Vented and Flared 1,210 2,139 1,690 2,525 1,549 776 1992-2014 Marketed Production 47,620 57,680 61,496 35,577 58,081 40,269 1992-2014 Dry Production 35,577 40,269 2012

  19. Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 486 582 - = No Data Reported; -- = Not Applicable; NA =

  20. California State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6,052 5,554 5,163 5,051 5,470 5,961 1978-2014 From Gas Wells 582 71 259 640 413 431 1978-2014 From Oil Wells 5,470 5,483 4,904 4,411 5,057 5,530 1978-2014 Repressuring 219 435 403 NA NA NA 1992-2014 Vented and Flared 0 0 0 NA NA NA 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 NA NA NA 2003-2014 Marketed Production 5,832 5,120 4,760 5,051 5,470 5,961 1992-2014 Dry Production 5,051 5,952